第四节 信号转换电路

第四节 信号转换电路
第四节 信号转换电路

第四节信号转换电路

一、概述

信号转换电路作用:将各种类型的信号进行相互转换,使具有不同输入、输出的器件可以联用。

从信息形态变化的观点将各种转换分为三种:

(1)从自然界物理量到电量的转换

(2)电量之间的转换

(3)从电量到物理量的转换

问题:

1、转换电路应具有所需的特性。

2、转换电路应具有一定的输入阻抗和输出阻抗和与之相联的器件阻抗匹配。

显然,该通道的核心是模/数转换器即A/D转换器,通常把模拟量输入通道称为A/D通道或AI通道。

我们所需的各种信息首先来自自然界。从自然界中我们可以得到如气象,环境,天灾等各种信息,这些信息从传感器得到。传感器是将物理量转换成电量的元件。

从传感器中得到的电量多为连续的,这种量称为模拟量。另一方面,计算机能处理的量多为离散量,叫做数字量。从模拟到数字是今后的趋势。

模拟开关是一种在数字信号控制下将模拟信号接通或断开的元件或电路。该开关由开关元件和控制(驱动)电路两部分组成。

开关电路类型:电路结构:N沟道增强型和CMOS 型;

集成模拟开关电路:在同一芯片上集成多个CMOS开关,由地址译码器和多路模拟开关组成

按切换的对象分:电压和电流开关

电压模拟开关的特点:当开关断开时,跨于它两端的电压总与被换接的电压Vx有关,而且通过开关的电流则与负载RL有关。

电流模拟开关的特点:不管负载电阻RL的大小如何,流过开关的电流总是和被换接的电流Ix相等,而且换接的电压则由RL*Ix决定。

模拟开关的性能参数

静态特性:

Ron:开关导通时输入端与输出端之间的电阻

Roff:断开时输入端与输出端之间的电阻

IS :开关断开时的泄漏电流;

IC :开关接通电流;

CS:开关断开时,开关对地电容;

COUT:开关断开时,输出端对地电容;

此外还有最大开关电压、最大开关电流和驱动功耗等.

动态特性:开关动作延迟时间,包括开关导通延迟时间Ton和开关截止延迟时间TOff, 通常Ton>T0ff, 理想模拟开关时Ton→0,Toff→0

为了得到高质量的采样保持电路,模拟开关的速度应快,极间电容,夹断电压或开启电压,导通电阻和反向漏电流等参数都应小。

1. 漏电流

通过断开的模拟开关的电流,用IS表示。在n个模拟开关的并联组合中,当一个开关导通时,其它n-1个开关是断开的,未导通开关的漏电流将通过导通的开关流经信号源,如图所示。

这样,将在输出端形成一个误差电压UOE。输出端的误差电压:

IS —单个开关的漏电流。

如果通道数增加或信号源内阻很大时,情况还要严重。

改进的方法:采用分级结合电路。将3n个通道分成3 组,再用3个第二级的开关接到输出端。这样将使流到输出端的漏电流由(3n-1) 降到(n-1),差不多减至三分之一。

3. 源负载效应误差

由于负载效应是一种分压作用,使输出到上的信号减小,因此应合理设计

①提高负载电阻,R L >> R S+R ON

②根据负载效应误差,在下级提高增益来补偿

4.串扰:断开通道的信号电压耦合到接收通道引起的干扰。

A/D转换电路

离散系统或采样数据系统--把连续变化的量变成离散量后再进行处理的计算机控制系统。离散系统的采样形式--有周期采样、多阶采样和随机采样。应用最多的是周期采样。

周期采样--就是以相同的时间间隔进行采样,即把一个连续变化的模拟信号y(t),按一定的时间间隔T 转变为在瞬时0,T,2T,…的一连串脉冲序列信号y*(t),如图下图所示。

采样器的常用术语:

采样器或采样开关--执行采样动作的装置,

采样时间或采样宽度τ--采样开关每次闭合的时间

采样周期T--采样开关每次通断的时间间隔

在实际系统中,t《T ,也就是说,可以近似地认为采样信号y*(t)是y(t)在采样开关闭合时的瞬时值。由经验可知,采样频率越高,采样信号 y*(t)越接近原信号y(t),但若采样频率过高,在实时控制系统中将会把许多宝贵的时间用在采样上,从而失去了实时控制的机会。为了使采样信号y*(t)既不失真,又不会因频率太高而浪费时间,我们可依据香农采样定理。香农定理指出:为了使采样信号

y*(t)能完全复现原信号y(t),采样频率f 至少要为原信号最高有效频率fmax的2倍,即f 2fmax。采样定理给出了y*(t)唯一地复现y(t)所必需的最低采样频率。实际应用中,常取f (5-10)fmax。

1、零阶采样保持器--在两次采样的间隔时间内,一直保持采样值不变直到下一个采样时刻。它的组成原理电路与工作波性如图(a)、(b)所示。采样保持器由输入输出缓冲放大器A1、A2和采样开关S、保持电容C H等组成。采样期间,开关S闭合,输入电压V IN通过A1对C H快速充电,输出电压V OUT跟随V IN 变化;保持期间,开关S断开,由于A2的输入阻抗很高,理想情况下电容C H将保持电压V C不变,因而输出电压V OUT=V C也保持恒定。

显然,保持电容C H的作用十分重要。实际上保持期间的电容保持电压V C在缓慢下降,这是由于保持电容的漏电流所致。保持电压V C的变化率为

式中:ID--为保持期间电容的总泄漏电流,它包括放大器的输入电流、开关截止时的漏电流与电容内部的漏电流等。电容CH值--增大电容CH值可以减小电压变化率,但同时又会增加充电即采样时间,因此保持电容的容量大小与采样精度成正比而与采样频率成反比。一般情况下,保持电容CH是外接的,所以要选用聚四氟乙烯、聚苯乙烯等高质量的电容器,容量为510-1000pF。

注意:AD采样器的实际采样率,不仅与自身参数有关还与信号输入通道带宽和阻抗特性有关。

分辨率:对应一个数字输出的模拟输入电压有一定的幅度范围,若超过这个幅度范围,数字输出就会发生变化,能分辨的最小电压范围叫做分辨率。通常用LSB(一个单位分辨率)表示。

量化和量化误差:将幅度连续取值的模拟信号变为只能取有限个某一最小当量的整数倍数值的过程称为量化。通过量化将连续量转换成离散量,必然存在类似于四舍五入产生的误差,最大误差可达到1LSB 的1/2。此误差叫做量化误差。

精度:理想的ADC是指不含量化误差以外的误差,但实际上由于使用的元件和噪声等产生各种误差。精度是表示所含误差的比例,用刻度的百分比或PPM表示。精度分为绝对精度和相对精度。

转换时间:完成一次转换所需要的时间,转换速率是转换时间的倒数。转换速率常用采样速率表示,采样速率是采样时间的倒数。

一般提高AD分辨率可提高采样精度,但过分追求分辨率也无助于采样精度。

A/D转换器接口电路主要cpu如何分时采集多路模拟量输入信号的,即主机如何启动A/D转换、判断模数转换完成、读入转换结果。AD转换电路类型有查询模式,定时模式,中断模式。

四、D/A转换器的结构及原理

结构:由基准电压源(UR)、电阻解码网络(2-i)、电子开关阵列(di)和相加运算放大器四部分组成

1.加权电阻网络电路

2.R-2R梯形电阻网络电路

一般DA转换器价格较高,且占用cpu接口资源较多,在需要模拟量输出精度不高的场合可先把数字量转化为PWM占空比输出形式,再把占空比信号经过RC滤波电路,RC滤波电路的输出电压对应占空

比大小

五、V/f 转换器

定义:V/f (电压/频率)转换器能把输入信号电压转换成相应的频率信号,即它的输出信号频率与输入信号电压值成比例,故又称为电压控制(压控)振荡器(VCO)。

应用:在调频,锁相和A/D变换等许多技术领域得到非常广泛的应用。。

指标:额定工作频率和动态范围,灵敏度或变换系数,非线性误差,灵敏度误差和温度系数等。

1. 积分复原式V/ f 转换电路

组成:积分器、比较器和积分复原开关等

N1R1C ——反相积分器;

V ——积分复位开关;

N2R5~R8——滞回比较器;

V s2V s3——限制输出电压(限幅)。

V s1——稳定门限电平;

2.电荷平衡式V/f 转换电路

N1RC ——反相积分器;

N2——过零比较器;

I s——恒流源发生器;

根据电荷平衡原理有:

六、f/V转换电路

包括三个部分:电平比较器,单稳态触发器和彽通滤波器

N1R3R4——滞回比较器,输出方波信号u1;

N2R1R2V1V2——单稳态触发器,使u2占空比随f i升高而增大; N3R12C2——低通滤波器,对u2求平均。

输出高电平时间固定,周期随频率升高而减小,占空比变大根据电荷平衡原理有:

测控电路第六章答案

第六章信号转换电路 6-1 常用的信号转换电路有哪些种类?试举例说明其功能。 常用的信号转换电路有采样/保持(S/H)电路、电压比较电路、V/f(电压/频率)转换器、f/V(频率/电压)转换器、V/I(电压/电流)转换器、I/V(电流/电压)转换器、A/D (模/数)转换器、D/A(数/模)转换器等。 采样/保持(S/H)电路具有采集某一瞬间的模拟输入信号,根据需要保持并输出采集的电压数值的功能。这种电路多用于快速数据采集系统以及一切需要对输入信号瞬时采样和存储的场合,如自动补偿直流放大器的失调和漂移、模拟信号的延迟、瞬态变量的测量及模数转换等。 模拟电压比较电路是用来鉴别和比较两个模拟输入电压大小的电路。比较器的输出反映两个输入量之间相对大小的关系。比较器的输入量是模拟量,输出量是数字量,所以它兼有模拟电路和数字电路的某些属性,是模拟电路和数字电路之间联系的桥梁,是重要的接口电路。可用作鉴零器、整形电路,其中窗口比较电路的用途很广,如在产品的自动分选、质量鉴别等场合均用到它。 V/f(电压/频率)转换器能把输入信号电压转换成相应的频率信号,广泛地应用于调频、调相、模/数转换器、数字电压表、数据测量仪器及远距离遥测遥控设备中。f/V(电压/频率)转换器把频率变化信号线性地转换成电压变化信号。广泛地应用于调频、调相信号的解调等。 V/I(电压/电流)转换器的作用是将电压转换为电流信号。例如,在远距离监控系统中,必须把监控电压信号转换成电流信号进行传输,以减少传输导线阻抗对信号的影响。I/V (电流/电压)转换器进行电流、电压信号间的转换。例如,对电流进行数字测量时,首先需将电流转换成电压,然后再由数字电压表进行测量。在用光电池、光电阻作检测元件时,由于它们的输出电阻很高,因此可把他们看作电流源,通常情况下其电流的数值极小,所以是一种微电流的测量。随着激光、光纤技术在精密测量仪器中的普及应用,微电流放大器越来越占有重要的位置。 在以微型计算机为核心组成的数据采集及控制系统中,必须将传感器输出的模拟信号转换成数字信号,为此要使用模/数转换器(简称A/D转换器或ADC)。相反,经计算机处理后的信号常需反馈给模拟执行机构如执行电动机等,因此还需要数/模转换器(简称D/A转换器或DAC)将数字量转换成相应的模拟信号。 6-2 试述在S/H电路中对模拟开关、存储电容及运算放大器这三种主要元器件的选择有什么要求。 选择要求如下: 模拟开关:要求模拟开关的导通电阻小,漏电流小,极间电容小和切换速度快。 存储电容:要选用介质吸附效应小的和泄漏电阻大的电容。 运算放大器:选用输入偏置电流小、带宽宽及转换速率(上升速率)大的运算放大器;输入运放还应具有大的输出电流。

模拟电路习题答案第6章放大电路中的反馈题解

第六章放大电路中的反馈 自测题 一、在括号内填入“√”或“×”,表明下列说法是否正确。 (1)若放大电路的放大倍数为负,则引入的反馈一定是负反馈。()(2)负反馈放大电路的放大倍数与组成它的基本放大电路的放大倍数量纲相同。() (3)若放大电路引入负反馈,则负载电阻变化时,输出电压基本不变。 ()(4)阻容耦合放大电路的耦合电容、旁路电容越多,引入负反馈后,越容易产生低频振荡。() 解:(1)×(2)√(3)×(4)√ 二、已知交流负反馈有四种组态: A.电压串联负反馈B.电压并联负反馈 C.电流串联负反馈D.电流并联负反馈选择合适的答案填入下列空格内,只填入A、B、C或D。 (1)欲得到电流-电压转换电路,应在放大电路中引入; (2)欲将电压信号转换成与之成比例的电流信号,应在放大电路中引入; (3)欲减小电路从信号源索取的电流,增大带负载能力,应在放大电路中引入; (4)欲从信号源获得更大的电流,并稳定输出电流,应在放大电路中引入。 解:(1)B (2)C (3)A (4)D 三、判断图所示各电路中是否引入了反馈;若引入了反馈,则判断是正反馈还是负反馈;若引入了交流负反馈,则判断是哪种组态的负反馈,并求 A 或f s u A 。设图中所有电容出反馈系数和深度负反馈条件下的电压放大倍数 f u 对交流信号均可视为短路。

图 解:图(a )所示电路中引入了电流串联负反馈。反馈系数和深度负反 馈条件下的电压放大倍数f u A 分别为 L 3 1321f 32131 R R R R R R A R R R R R F u 式中R L 为电流表的等效电阻。 图(b )所示电路中引入了电压并联负反馈。反馈系数和深度负反馈条 件下的电压放大倍数f u A 分别为 1 2f 2 1R R A R F u 图(c )所示电路中引入了电压串联负反馈。反馈系数和深度负反馈条 件下的电压放大倍数f u A 分别为 1 1f u A F 图(d )所示电路中引入了正反馈。 四、电路如图所示。

电流信号转电压信号方法大全

电流信号转换为电压信号的方法 由于应用和原理的不同,电流信号的输出,如传感器变送器输出的4~20mA,需要变换成电压以利于后续驱动或采集。对于不同的电流信号,考虑功率问题,有的需要先经过电流互感器将大电流变小,否则大电流容易在电阻上产生过大的功率。 下面介绍几种I/V变换的实现方法。 分压器方法 利用如图1分压电路,将电流通入电阻。在电阻上采样出电压信号。其中,可以使用电位器调节输出电压的大小。这种方法最简单,但需要考虑功率和放大倍数的选择问题。 利用如图1分压电路,将电流通入电阻。在电阻上采样出电压信号。其中,可以使用电位器调节输出电压的大小。这种方法最简单,但需要考虑功率和放大倍数的选择问题。 霍尔传感器方法 使用霍尔效应,在元件两端通过电流I,并在元件垂直方向上施加磁感应强度B的磁场,即会输出电压。由下面的公式获得线性关系。

其中,RH为霍尔常数,I为输入电流,B为磁感应强度,d为霍尔元件厚度。 这种方法多用于对电流的测量,虽然也可以实现转换,但是精度有限。 积分电路方法 电压可以看作是电流的积分,利用如图电路有: 为保证精度,选取运放时尽量找输入阻抗大的。该电路常用于PID调节,积分电路成熟且放大倍数和精度较好。但要注意这种电路输出电压和输入电流的相位是相反的。 运放直接搭接的方法(跨阻放大器) 充分利用运放“虚短”和“虚断”的概念,将电流转换为电压信号,如图电路

电流通过电阻,在电阻上产生压降,建立起电压和电流的关系为 这种方法避免了运放输入失调电压和输入偏置电流和失调电流影响带来的积分误差。也避免了电容的漏电流带来的误差。但未获得稳定的高精度放大,对电阻和运放的精度要求较高。 三极管方法 三极管同样具有放大能力,但应用上多采用运放。电路如图 下面以实际的例子叙述整个实现过程。 尝试将一个0~5A信号转换为0~5V信号。最简单的是加一个1欧的电阻,但这样发热功率过大,所以需要采用电流互感器将原先的电流变小。按照一般互感器指标是输入0~10A信号,变比为200:1,即0~5A的信号变为0~25mA。下面采用运放直接搭接的方法实现转换。考虑到相位的问题,对电路作了改进。利用50欧电阻在正端产生 的电压与负端相等的条件,并利用运放的放大功能,实现最终要求的。如图。另外,用集成运放OP27为的是得到更高的运算精度;50欧的电阻是前端互感器带负载要求。

4 脉冲信号产生电路共23页文档

4 脉冲信号产生电路 4.1 实验目的 1.了解集成单稳态触发器的基本功能及主要应用。 2.掌握555定时器的基本工作原理及其性能。 3.掌握用555定时器构成多谐振荡器、单稳态触发器的工作原理、设计及调试方法。 4.2 实验原理 1.集成单稳态触发器及其应用 在数字电路的时序组合工作中,有时需要定时、延时电路产生定时、展宽延时等脉冲,专门用于完成这种功能的IC,就是“单稳延时多谐振荡器”,也称“单稳触发器”。其基本原理是利用电阻、电容的充放电延时特性以及电平比较器对充放电电压检测的功能,实现定时或延时,只需按需要灵活改变电阻、电容值大小,就可以取得在一定时间范围的延时或振荡脉冲输出。常用的器件有LS121/122、LS/HC123、LS/HC221、LS/HC423、HC/C4538及CC4528B等。 集成单稳态触发器在没有触发信号输入时,电路输出Q=0,电路处于稳态;当输入端输入触发信号时,电路由稳态转入暂稳态,使输出Q=1;待电路暂稳态结束,电路又自动返回到稳态Q=0。在这一过程中,电路输 出一个具有一定宽度的脉冲,其宽度与电路的外接定时元件C ext 和R ext 的数 值有关。 图4-1

集成单稳态触发器有非重触发和可重触发两种,74LS123是一种双可重触发的单稳态触发器。它的逻辑符号及功能表如图4-1、表4-1所示。 在表4-1中“正”为正脉冲,“负”为负脉冲。 LS/HC123的特点是,复位端CLR也具有上跳触发单稳态过程发生的功能。 在C ext >1000pF时,输出脉冲宽度t w ≈0.45R ext C ext 。 器件的可重触发功能是指在电路一旦被触发(即Q=1)后,只要Q还未恢复到0,电路可以被输入脉冲重复触发,Q=1将继续延长,直至重复触发的最后一个触发脉冲的到来后,再经过一个t w (该电路定时的脉冲宽度)时间,Q才变为0,如图4-2所示: 图4-2 74LS123的使用方法: (1)有A和B两个输入端,A为下降沿触发,B为上升沿触发,只有AB=1时电路才被触发。 (2)连接Q和A或Q与B,可使器件变为非重触发单稳态触发器。 (3)CLR=0时,使输出Q立即变为0,可用来控制脉冲宽度。 (4)按图4-3、3-5-4连接电路,可组成一个矩形波信号发生器,利用开关S瞬时接地,使电路起振。 图4-3 图4-4 2.555时基电路及其应用 555时基电路是一种将模拟功能和数字逻辑功能巧妙地结合在同一硅片上的新型集成电路,又称集成定时器,它的内部电路框图如图4-5所示。 图4-5 电路主要由两个高精度比较器C 1、C 2 以及一个RS触发器组成。比较器 的参考电压分别是2/3V CC 和1/3V CC ,利用触发器输入端TR输入一个小于 1/3V CC 信号,或者阈值输入端TH输入一个大于2/3V CC 的信号,可以使触发 器状态发生变换。CT是控制输入端,可以外接输入电压,以改变比较器的参考电压值。在不接外加电压时,通常接0.01μF电容到地,DISC是放电输入端,当输出端的F=0时,DISC对地短路,当F=1时,DISC对地开路。 R D 是复位输入端,当R D =0时,输出端有F=0。 器件的电源电压V CC 可以是+5V~+15V,输出的最大电流可达200mA,当 电源电压为+5V时,电路输出与TTL电路兼容。555电路能够输出从微秒级到小时级时间范围很广的信号。 (1)组成单稳态触发器 555电路按图4-6连接,即构成一个单稳态触发器,其中R、C是外接定时元件。单稳态触发器的输出脉冲宽度t w ≈1.1RC。 图4-6 (2)组成自激多谐振荡器 图4-7 自激多谐振荡器电路 按图4-7连接,即连成一个自激多谐振荡器电路,此电路的工作过程

测控电路实验指导书(DOC)

《测控电路》实验指导书 王月娥编写 电子工程与自动化学院

目录 实验一典型放大器的设计 (5) 实验二精密检波和相敏检波实验 (8) 实验三信号转换电路实验 (12) 实验四细分电路实验 (14)

《测控电路》课程实验教学大纲 一、制定实验教学大纲的依据 根据本校《2011级本科指导性培养计划》和《测控电路》课程教学大纲制定。 二、本实验课在专业人才培养中的地位和作用 《测控电路》是测控技术与仪器专业专业任选课。电路实验技能是从事测控行业工作者的一项基本功。本实验课的教学目的就在于加强学生对《测控电路》课程有关理论知识的掌握以及测控电路实验技能和实验方法的训练。 三、本实验课讲授的基本实验理论 1、如何基于集成运算放大器设计模拟运算电路、电桥放大器以及仪用放大电路。 2、幅度调制与解调电路的原理。 3、信号转换电路原理。 4、电阻链细分电路的原理。 四、本实验课学生应达到的能力 1、培养学生独立分析电路的能力。 2、培养学生独立设计、搭接电路的动手能力。 3、培养学生使用典型电工电子学仪器的技能。 4、培养学生处理测量数据和撰写实验报告的能力。 五、学时、教学文件 学时:本课程总学时为32学时,其中实验为8学时,占总学时的25%。 六、实验考核办法与成绩评定 根据学生做实验的情况及实验报告,由指导教师给出成绩,成绩按优、良、中、及格、不及格五档给分。以15%的比例计入课程总成绩。 七、仪器设备及注意事项 注意事项:注意人身安全,保护设备。 八、实验项目的设置及学时分配 制定人: 审核人: 批准人:

注意事项 为了顺利完成实验任务,确保人身、设备的安全,培养学生严谨、踏实、实事求是的科学作风和爱护国家财产的优秀品质。要求每个学生在实验时,必须注意如下事项: 一、实验前必须充分预习,认真阅读实验指导书,明确实验任务及要求,弄清实验原理,拟定好实验方案,做好分工。 二、使用仪器设备前,必须熟悉其性能,预习操作方法及注意事项,并在使用时严格遵守操作规程。做到准确操作。 三、实验接线要认真检查,确定无误方可接通电源。初学或没有把握时,应请指导教师审查同意后再接通电源。使用过程中需要改线时,需先断开电源,才可拆、接线。 四、实验中应注意观察实验现象,认真记录实验结果(数据、波形及其它现象)。实验记录经指导教师审阅签字后,才可拆除实验线路。此记录应附在实验报告后,作为原始记录的依据。 五、实验过程中发生任何破坏性异常现象,(例如元器件冒烟、发烫有气味或仪器设备出现异常),应立即切断电源,保护现场,及时报告指导教师,不得自行处理。等待查明原因、排除故障、教师同意后,才能继续进行实验。如发生事故,应自觉填写事故报告单,总结经验,吸取教训。损坏仪器、器材,要服从实验室和指导教师对事故的处理。 六、实验结束后,关掉仪器设备的电源开关,再拉闸,并将工具、导线、仪器整理好,方可离开实验室。 七、遵守实验室纪律,注意保持实验室整洁、安静。不做与实验内容无关的事。 八、进行指定内容之外的实验,要经过指导教师的同意。不得乱动其他组的仪器设备、器材和工具。借用器材如有损坏、丢失,要按实验室规定赔偿。 九、实验后,应按要求认真书写实验报告,并按时交给教师。 十、每次实验结束,学生轮流协助实验室打扫卫生和整理仪器。以增强参与管理意识。

几个常用的电压电流转换电路

I/V转换电路设计1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。 电路图如下所示:

输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、V I 变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入信号提供相应的电流,在某些场合无法满足这种需要。 1 、基于运算放大器的基本VI变换电路为了保证负载电阻不影响电压/电流的变换关系,需要对电路进行调整,如图1是基于运算放大器的基本VI变换电路。利用运算放大器的“虚短”概念可知U-=U+=0;因此流过Ri的电流: Ii=Ui R

测控电路部分课后题答案1-4章

第一章绪论 1-1测控电路在整个测控系统中起着什么样的作用? 传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作的信号。在整个测控系统中,电路是最灵活的部分,它具有便于放大、便于转换、便于传输、便于适应各种使用要求的特点。测控电路在整个测控系统中起着十分关键的作用,测控系统、乃至整个机器和生产系统的性能在很大程度是取决于测控电路。 1-2影响测控电路精度的主要因素有哪些,而其中哪几个因素又是最基本的,需要特别注意? 影响测控电路精度的主要因素有: (1)噪声与干扰; (2)失调与漂移,主要是温漂; (3)线性度与保真度; (4)输入与输出阻抗的影响。 其中噪声与干扰,失调与漂移(含温漂)是最主要的,需要特别注意。 1-3测量电路的输入信号类型对其电路组成有何影响?试述模拟式测量电路与增量码数字式测量电路的基本组成及各组成部分的作用。 随着传感器类型的不同,输入信号的类型也随之而异。主要可分为模拟式信号与数字式信号。随着输入信号的不同,测量电路的组成也不同。 图X1-1是模拟式测量电路的基本组成。传感器包括它的基本转换电路,如电桥,传感器的输出已是电量(电压或电流)。根据被测量的不同,可进行相应的量程切换。传感器的输出一般较小,常需要放大。图中所示各个组成部分不一定都需要。例如,对于输出非调制信号的传感器,就无需用振荡器向它供电,也不用解调器。在采用信号调制的场合,信号调制与解调用同一振荡器输出的信号作载波信号或参考信号。利用信号分离电路(常为滤波器),将信号与噪声分离,将不同成分的信号分离,取出所需信号。有的被测参数比较复杂,或者为了控制目的,还需要进行运算。对于典型的模拟式电路,无需模数转换电路和计算机,而直接通过显示执行机构输出,因此图中将模数转换电路和计算机画在虚线框内。越来越多的模拟信号测量电路输出数字信号,这时需要模数转换电路。在需要较复杂的数字和逻辑运算、或较大量的信息存储情况下,采用计算机。

AD转换电路

A/D 转换电路 导读: A/D 转换器(ADC )是将模拟信号转换成数字信号的电路。本章将介绍A/D 转换的基本概念和原理电路,重点介绍集成芯片中的常用转换方法:逐次逼近型和V —T 双积分型转换电路,常用集成ADC 芯片,并给出典型应用实例。 0.1 A/D 转换的基本概念 A/D 转换过程包括取样、保持、量化和编码4个步骤,一般,前2个步骤在取样-保持电路中1次性完成,后2个步骤在A/D 转换电路中1次性完成。 1.取样和取样定理 我们知道,要确定(表示)1条曲线,理论上应当用无穷多个点,但有时却并非如此。比如1条直线,取2个点即可。对于曲线,只是多取几个点而已。将连续变化的模拟信号用多个时间点上的信号值来表示称为取样,取样点上的信号值称为样点值,样点值的全体称为原信号的取样信号。1个取样信号示例如图1.1.1-1(b)所示。 取样时间可以是等间隔的,也可以自适应非等时间间隔取样。问题是:对于频率为f 的信号,应当取多少个点,或者更准确地说应当用多高的频率进行取样?取样定理将回答这个问题: 只要取样频率f S 大于等于模拟信号中的最高频率f max 的2倍,利用理想滤波器即可无失真地将取样信号恢复为原来的模拟信号。这就是说,对于1个正弦信号,每个周期只要取2个样点值即可,条件是必须用理想滤波器复原信号。这就是著名的山农(Shannon )取样定理,用公式表示即为 max S 2f f ≥ (12.1-1) 在工程上,一般取max S )5~4(f f ≥。 2.取样-保持 取样后的样点值必须保存下来,并在取样脉冲结束之后到下1个取样脉冲到来之前保

第六章习题

第六章信号转换电路 6-1 信号转换电路有哪些类型?试举例说明其功能。 6-2 试述在S/H电路中对模拟开关、存储电容及运算放大器这三种主要元器件的选择有什么要求。 6-3 采样/保持器外接存储电容,当电路正在对存储电容充电时由采样转到保持,其介质吸附效应会使电容器上的电压下降,被保持的电压低于采样转保持瞬间的输入电压,试分析原因。 6-4 电容的介质吸附效应在采样/保持器和峰值检波器中对输出的影响不同,为什么? 6-5 试用多路模拟开关CD4051(参见图6-5)设计一程控放大电路。 166

167 图6-5 题6-5图 6-6 试分析图6-47中各电路的工作原理,并画出电压传输特性曲线。 6-7 如图6-48,已知R 2=10 k Ω,R 3=20k Ω,U OM =±12V ,U R =6V 。当输入u i 为如图所示的波形时,画出输出U o 的波形。 图6-47 题6-6图 a) o u U u o u U S D2 0 2 3 5 6 7 输入/输出 /输入 12 1 4

图6-48 题6-7图 6-8 某汽车空调电子温控器如图6-49所示,试分析该电路工作原理。 图6-49 题6-8图 6-9 为保障一定的转换精度,V/I转换器应具有高的输入阻抗及输出阻抗,为什么? 6-10 如果要将4~20mA的输入直流电流转换为1~5V的输出直流电压,试设计其转换电路。 6-11 查阅LM324数据手册的输出电流和输出电压范围的关系,分析V/I转换 168

器的驱动能力。 6-12 设计一单电源供电情况下0~5V至4~20mA的转换电路如图6-50所示,分析该电路并确定电路参数。 图6-50 题6-12图 6-13 如果要求一个D/A转换器能分辨5mV的电压,设其满量程电压为10V,试问其输入端数字量要多少数字位? 6-14图6-33所示为T形R-2R电阻网络D/A转换器,若取n=8,U R=10V,R=2R1,试求D in=00110011时的值。 6-15 一个6bit的D/A转换器,具有单向电流输出,当D in=110100时,i o=5 mA,试求D in=110011时的i o值。 6-16 试用D/A转换器和AD694设计一数字电流转换器控制一调节阀,要求输出电流4~20mA,调节阀死区为0.25%。 6-17 一个6bit逐次逼近式A/D转换器,分辨率为0.05V,若模拟输入电压ui=2.2V,试求其数字输出量的数值。 6-18 对一位移测量系统,测量范围0~200μm,要求分辨率为0.2μm,需AD 转换器最小多少位?为什么? 6-19 请对比几种不同工作原理的模/数转换器的特点,并分别给出应用实例。 169

几个常用的电压电流转换电路

I/V转换电路设计 1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为: Vo=Ii?(R1+Rw)(Rw可以调节输出电压范围) 缺点是:输出电压随负载的变化而变化,使得输入电流与输出电压之间没有固定的比例关系。 优点是:电路简单,适用于负载变化不大的场合, 2、由运算放大器组成的I/V转换电路 原理: 先将输入电流经过一个电阻(高精度、热稳定性好)使其产生一个电压,在将电压经过一个电压跟随器(或放大器),将输入、输出隔离开来,使其负载不能影响电流在电阻上产生的电压。然后经一个电压跟随器(或放大器)输出。C1滤除高频干扰,应为pf级电容。

电路图如下所示: 输出电压为: Vo=Ii?R4?(1+(R3+Rw) R1 ) 注释:通过调节Rw可以调节放大倍数。 优点:负载不影响转换关系,但输入电压受提供芯片电压的影响即有输出电压上限值。 要求:电流输入信号Ii是从运算放大器A1的同相输入端输入的,因此要求选用具有较高共模抑制比的运算放大器,例如,OP-07、OP-27等。R4为高精度、热稳定性较好的电阻。 V/I转换电路设计 原理: 1、V I 变换电路的基本原理: 最简单的VI变换电路就是一只电阻,根据欧姆定律:Io=Ui R ,如果保证电阻不变,输出电流与输入电压成正比。但是,我们很快发现这样的电路无法实用,一方面接入负载后,由于不可避免负载电阻的存在,式中的R发生了变化,输出电流也发生了变化;另一方面,需要输入

毫安信号转换电压信号电路

实用的4~20mA输入/0~5V输出的I/V转换电路_电路图 最简单的4-20mA输入/5V输出的I/V转换电路 在与电流输出的传感器接口的时候,为了把传感器(变送器)输出的1-10mA或者4-20mA 电流信号转换成为电压信号,往往都会在后级电路的最前端配置一个I/V转换电路,图1就是这种电路最简单的应用示意图。 仅仅使用一只I/V转换取样电阻,就可以把输入电流转换成为信号电压,其取样电阻可以按照Vin/I=R求出,Vin是单片机需要的满度A/D信号电压,I是输入的最大信号电流。 这种电路虽然简单,但是却不实用,首先,其实际意义是零点信号的时候,会有一个零点电流流过取样电阻,如果按照4~20mA输入电流转换到最大5V电压来分析,零点的时候恰好就是1V,这个1V在单片机资源足够的时候,可以由单片机软件去减掉它。可是这样一来。其有用电压就会剩下5-1=4V而不是5V了。由于单片机的A/D最大输入电压就是单片机的供电电压,这个电压通常就是5V,因此,处理这种简单的输入转换电路时比较麻烦。为了达到A/D转换的位数,就会导致芯片成本增加。 LM324组成的4-20mA输入/5V输出的I/V转换电路 解决上面问题的简单方法是在单片机输入之前配置一个由运算放大器组成的缓冲处理电路,见图2。

增加这级运算放大器可以起到对零点的处理会变得更加方便,无需耗用单片机的内部资源,尤其单片机是采用A/D接口来接受这种零点信号不为零电压的输入时,可以保证A/D转换位数的资源能够全部应用于有用信号上。 以4~20mA 例,图B中的RA0是电流取样电阻,其值的大小主要受传感变送器供电电压的制约,当前级采用24V供电时,RA0经常会使用500Ω的阻值,对应20mA 的时候,转换电压为10V,如果仅仅需要最大转换电压为5V,可以取RA0=250Ω,这时候,传感变送器的供电只要12V就够用了。因为即使传送距离达到1000米,RA0最多也就几百Ω而已。 同时,线路输入与主电路的隔离作用,尤其是主电路为单片机系统的时候,这个隔离级还可以起到保护单片机系统的作用。 图2 采用的是廉价运放LM324,其对零点的处理是在反相输入端上加入一个调整电压,其大小恰好为输入4mA时在RAO上的压降。有了运算放大器,还使得RAO的取值可以更加小,因为这时信号电压不够大的部分可以通过配置运放的放大倍数来补足。这样,就可以真正把4~20mA电流转换成为0~5V电压了。 使用运算放大器也会带来一些麻烦,尤其在注重低成本的时候,选择的运放往往是最最廉价的,运放的失调与漂移,以及因为运放的供电与单片机电路供电的稳定性,电源电压是否可以保证足够稳定,运放的输入阻抗是否对信号有分流影响,以及运放是否在整个信号范围内放大特性平坦,如此等等,造成这种廉价电路的实际效果不如人意。 而最大的不如人意之处还是在零点抵消电路上,随着信号电流的变化,运放的反相端的电压总是会与零点调整电压发生矛盾,就是这个零点电压也在随着运放输出的变化而变化,只不过由于有了信号有用电压的存在,而在结果中不容易区分而已。这种现象最容易造成非线性加大。虽然可以在单片机里采用软件校正

几个常用的电压电流转换电路

几个常用的电压电流转换电路 I/V转换电路设计 1、在实际应用中,对于不存在共模干扰的电流输入信号,可以直接利用一个精密的线绕电阻,实现电流/电压的变换,若精密电阻R1+

Rw=500Ω,可实现0-10mA/0-5V的I/V变换,若精密电阻R1+Rw=250Ω,可实现4-20mA/1-5V的I/V变换。图中R,C组成低通滤波器,抑制高频干扰,Rw用于调整输出的电压范围,电流输入端加一稳压二极管。 电路图如下所示: 输出电压为:可以调节输出电压范围))(Rw+=Ii?(R1Rw

Vo使得输入电流与输出电压之输出电压随负载的变化而变化,缺点是:间没有固定的比例关系。优点是:电路简单,适用于负载变化不大的场合, I/V转换电路2、由运算放大器组成的原理:使其产生热稳定性好)先将输入电流经过一个电阻(高精度、 ,将输入、输一个电压,在将电压经过一个电压跟随器(或放大器)然后经一使其负载不能影响电流在电阻上产生的电压。出隔离开来,级电容。pf应为滤除高频干扰,C1输出。(或放大器)个电压跟随器. 电路图如下所示:

输出电压为:)(RwR3+)R4?(1+=VoIiR1可以调节放大倍数。注释:通过调节Rw但输入电压受提供芯片电压的影响即有负载不影响转换关系,优点:输出电压上限值。因是从运算放大器A1的同相输入端输入的,要求:电流输入信号IiOP-27OP-07、此要求选用具有较高共模抑制比的运算放大器,例如,为高精度、热稳定性较好的电阻。R4等。转换电路设计V/I 原理:、V I 变换电路的基本原理:1Ui,如果保Io最简单的VI变换电路就是一只电阻,根据欧姆定律:=R我们很快发现这样但是,证电阻不变,输出电流与输入电压成正比。由于不可避免负载电阻的存在,一方面接入负载后,的电路无法实用,发生了变化,输出电流也发生了变化;另一方面,需要输

PWM至线性信号转换电路

TEMPERATURE SENSORS and THERMAL MANAGEMENT Mar 29, 2004 Circuit Converts PWM to Amplified and Buffered Linear Signal A simple circuit converts a low-voltage PWM signal to an amplified and buffered linear output. Intended for fan speed control, it allows a 3.3V input to provide linear control of a 12V fan. Maxim makes a variety of fan speed controllers with PWM outputs to control fan speed as a function of temperature. These work by cycling the power to the fan off and on. The fan's speed with the duty cycle setting the fan's speed. In many situations the typical application circuit for these is adequate. However, some situation require a constant power supply to the fan due to audible noise from the fan modulation. If the noise from cycling the fan's power is too much, consider the circuit of Figure 1. In this case, complementary pair of BJTs (Q1) and a PMOS FET (Q2) create a linear amplifier. Figure 1. A simple circuit converts a low-voltage PWM signal to an amplified and buffered linear output. The circuit works in the following manner. The base of the PNP in Q1 is the non-inverting input to the amplifier, and the emitter of the NPN is the inverting input. The PNP is biased as an emitter follower, and the NPN is used both as an emitter follower and as the initial gain element.

测控电路考试复习总结

一.名词解释 1.测量放大电路:在测量控制系统中,用来放大传感器输出的微弱电压,电流或电荷信号的放大电路称为测量放大电路,亦称仪用放大电路。P21 2.高共模抑制比电路:有抑制传感器输出共模电压(包括干扰电压)的放大电路称为高共模抑制比放大电路。P26 3.有源驱动电路:将差动式传感器的两个输出经两个运算放大器构成的同相比例差动放大后,使其输入端的共模电压1∶1地输出,并通过输出端各自电阻(阻值相等)加到传感器的两个电缆屏蔽层上,即两个输入电缆的屏蔽层由共模输入电压驱动,而不是接地,电缆输入芯线和屏蔽层之间的共模电压为零,这种电路就是有源屏蔽驱动电路。P28 4.电桥放大电路:由传感器电桥和运算放大器组成的放大电路或由传感器和运算放大器构成的电桥都称为电桥放大电路。P29 5.自举电路:自举电路是利用反馈使输入电阻的两端近似为等电位,减小向输入回路索取电流,从而提高输入阻抗的电路。P36 6.可编程增益放大电路:放大电路的增益通过数字逻辑电路由确定的程序来控制,这种电路称为可编程增益放大电路,亦称程控增益放大电路,简称PGA。P40 7.隔离放大电路:隔离放大电路的输入、输出和电源电路之间没有直接的电路耦合,即信号在传输过程中没有公共的接地端。P45 8.信号调制及解调:调制就是用一个信号(称为调制信号)去控制另一作为载体的信号(称为载波信号),让后者的某一特征参数按前者变化。在将测量信号调制,并将它和噪声分离,放大等处理后,还要从已经调制的信号中提取反映被测量值的测量信号,这一过程称为解调。P55 9.调幅、调频、调相、脉冲调宽:调幅就是用调制信号χ去控制高频载波信号的幅值。(P55) 调频就是用调制信号χ去控制高频载波信号的频率。(P78) 调相就是用调制信号χ去控制高频载波信号的相位。(P84) 脉冲调制是指用脉冲作为载波信号的调制方法。(92) 10.包络检波:从已调信号中检出调制信号的过程称为解调或检波。幅值调制就是让已调信号的幅值 随调制信号的值变化,因此调幅信号的包络线形状与调制信号一致。只要能检出调幅信号的包络线即能实现解调。这种方法称为包络检波。P60 11.P AM调速、PWM调速:将变压与变频分开完成,即在把交流电整流为直流电的同时改变直流电 压的幅值,而后将直流电压逆变为交流电时改变交流电频率的变压变频控制方式称为PAM调速。 将变压与变频集中于逆变器一起完成,即交流电整流为直流电时电压恒定,然后由逆变器既完成变频又完成变压的控制方式称为PWM调速。 12.S PWM控制:在基本的PWM控制电路中,若载频信号用等要三角波,而基准信号采用正弦波, 这时的脉宽调制控制就是SPWM控制。P242 二.简答题 1.测控电路在整个测控系统中起着什么样的作用? 答:传感器的输出信号一般很微弱,还可能伴随着各种噪声,需要用测控电路将它放大,剔除噪声、选取有用信号,按照测量与控制功能的要求,进行所需演算、处理与变换,输出能控制执行机构动作

第四节 信号转换电路..

第四节信号转换电路 一、概述 信号转换电路作用:将各种类型的信号进行相互转换,使具有不同输入、输出的器件可以联用。 从信息形态变化的观点将各种转换分为三种: (1)从自然界物理量到电量的转换 (2)电量之间的转换 (3)从电量到物理量的转换 问题: 1、转换电路应具有所需的特性。 2、转换电路应具有一定的输入阻抗和输出阻抗和与之相联的器件阻抗匹配。 显然,该通道的核心是模/数转换器即A/D转换器,通常把模拟量输入通道称为A/D通道或AI通道。 我们所需的各种信息首先来自自然界。从自然界中我们可以得到如气象,环境,天灾等各种信息,这些信息从传感器得到。传感器是将物理量转换成电量的元件。 从传感器中得到的电量多为连续的,这种量称为模拟量。另一方面,计算机能处理的量多为离散量,叫做数字量。从模拟到数字是今后的趋势。 模拟开关是一种在数字信号控制下将模拟信号接通或断开的元件或电路。该开关由开关元件和控制(驱动)电路两部分组成。 开关电路类型:电路结构:N沟道增强型和CMOS 型; 集成模拟开关电路:在同一芯片上集成多个CMOS开关,由地址译码器和多路模拟开关组成 按切换的对象分:电压和电流开关 电压模拟开关的特点:当开关断开时,跨于它两端的电压总与被换接的电压Vx有关,而且通过开关的电流则与负载RL有关。 电流模拟开关的特点:不管负载电阻RL的大小如何,流过开关的电流总是和被换接的电流Ix相等,而且换接的电压则由RL*Ix决定。 模拟开关的性能参数 静态特性: Ron:开关导通时输入端与输出端之间的电阻 Roff:断开时输入端与输出端之间的电阻 IS :开关断开时的泄漏电流; IC :开关接通电流; CS:开关断开时,开关对地电容; COUT:开关断开时,输出端对地电容; 此外还有最大开关电压、最大开关电流和驱动功耗等.

测控电路李醒飞第五版第二章习题答案

第二章 信号放大电路 2-1 何谓测量放大电路?对其基本要求是什么? 在测量控制系统中,用来放大传感器输出的微弱电压,电流或电荷信号的放大电路称为测量放大电路,亦称仪用放大电路。对其基本要求是:①输入阻抗应与传感器输出阻抗相匹配;②一定的放大倍数和稳定的增益;③低噪声;④低的输入失调电压和输入失调电流以及低的漂移;⑤足够的带宽和转换速率(无畸变的放大瞬态信号);⑥高输入共模范围(如达几百伏)和高共模抑制比;⑦可调的闭环增益;⑧线性好、精度高;⑨成本低。 2-2 (1)利用一个741μA 和一只100k Ω的电位器设计可变电源,输出电压范围为1010S V u V -≤≤; (2)如果10S u V =时,在空载状态下将一个1k Ω的负载接到电压源上时,请问电源电压的变化量是多少?(741μA 参数:输入阻抗2d r =MΩ,差模增益200a V mV =,输出阻抗75o r =Ω) (1)电路设计如图X2-1所示: 25k 25k 100k L 图X2-1 (2)由于电压跟随器属于输入串联、输出并联型结构,该结构下的输入、输出阻抗为: ()()() 5 11212000001410i d d R r T r a V V β?+=+=M Ω?+???M Ω ()))1175120000010.375o o o R r T r a V V m β?+=+=Ω+??Ω 由上式我们可以看出,电压跟随器中的反馈增大了等效输入阻抗,减小了等效输出 阻抗,可以达到阻抗变换的效果。 进一步计算得: 10110L S L I u R V k m ?=Ω=A 0.37510 3.75S o L u R I m m V μ??=Ω?A =

测控电路考试重点总结简答题南林高共模抑制比双边带调幅信号转换电路

测控电路考试重点总结简答题南林高共模抑制比双边带调 幅信号转换电路 测量放大电路:在测量控制系统中,用来放大传感器输出的微弱电压,电流或电荷信号的放大电路称为测量放大电路,亦称仪用放大电路。2.有抑制传感器输出共模电压(包括干扰电压)的放大电路称为高共模抑制比电路: 高共模抑制比放大电路。有源驱动电3.路:将差动式传感器的两个输出经两个运算放大器构成的同相比例差动放大后,使其输入端的共模电压1?1地输出,并通过输出端各自电阻(阻值相等)加到传感器的两个电缆屏蔽层上,即两个输入电缆的屏蔽层由共模输入电压驱动,而不是接地,电缆输入芯线和屏蔽层之间的共模电压为零,这种电路就是有源屏蔽驱动电路。4.电桥放大电路:由传感器电桥和运算放大器组成的放大电路或由传感器和运算放大器构成的电桥都称为电桥放大电路。自举电路:5.自举电路是利用反馈使输入电阻的两端近似为等电位,减小向输入回路索取电流,从而提高输入阻抗的电6.可编程增益路。放大电路:放大电路的增益通过数字逻辑电路由确定的程序来控制,这种电路称为可编程增益放大电路,亦称程控增益放大电路,简称PGA。7.隔离放大电 隔离放大电路的输入、输出和电源电路之间没有直接的电路耦合,即信号在传输过程中没有公共的接地端。路: 8.信号调制及解调:调制就是用一个信号(称为调制信号)去控制另一作为载体的信号(称为载波信号),让后者的某一特征参数按前者变化。在将测量信号调制,并将它和噪声分离,放大等处理后,还要从已经调制的信号中提取反映被测量值的测量信号,这一过程称为解调。9.调幅、调频、调相、脉冲调宽:调幅就是用调制信号x去控制高频载波信号的幅值。调频就是用调制信号x去控制高频载波信号的频率。调相就是用调制信号x去控制高频载波信号的相位。脉冲调制是指用脉冲作

武汉大学2016测控电路期末试题及答案

天大期末试题一答案 一、选择题(每小题2分,共20分) 1.右图所示电路为自举组合电路,其输入电流i 为 A. 0 B. u i /10kΩ C. u i /20kΩ D. u i /30kΩ ( C ) 2.右图所示电路的输出电压为 A. )1/(δδ+=i o u u B. )1/(δδ+-=i o u u C. )1/(δδ-=i o u u D. )1/(δδ--=i o u u ( D ) 3.右图所示电路中的R 为电感传感器,当对被测量进行测量时,该电路输出为( B ) A. 调幅信号 B. 调相信号 C. 调频信号 D. 调宽信号 D ) A. 二阶有源低通滤波器的传递函数 B. 二阶有源高通滤波器的传递函数 C. 二阶有源带通滤波器的传递函数 D. 二阶有源带阻滤波器的传递函数 5 .右图所示电路的输入信号u i 是代表测量振动幅值的交变信号,该电路可实现 A. 负峰值运算 B. 正峰值运算 C. 峰峰值运算 D. 绝对值运算 ( A ) 7.在相位跟踪细分电路中,相位基准 A. 既是反馈环节,又是细分机构,分频数等于细分数 B. 是反馈环节,但不是细分机构 C. 是细分机构,且分频数等于细分数,但不是反馈环节 u i T

D. 既是反馈环节,又是细分机构,细分数是分频数的2倍 ( A ) 二、简答题(30分) 1.什么是隔离放大电路?画图并简述光电耦合隔离放大电路的基本工作原理。 答:隔离放大电路是指电源、输入放大器及输出放大器没有公共端,即不共地。光耦合隔离放大电路的基本原理如图所示,它是通过中间的一个光电隔离器将输入与输出放大器隔开的,这样可提高抗干扰能力。 2.什么是双边带调幅?请写出其数学表达式,并画出其波形。 答:双边带调幅是在调幅信号中,将载波信号幅值Um 取0,从而得到频带在Ω±c ω范围内的调幅信号。 数学表达式:t t U t t mX U c xm c m s ωωcos cos cos cos Ω=Ω= m X —调制信号幅度,Ω—调制信号角频率,c ω—载波角频率,m —调制度

相关文档
最新文档