08立体几何专题解析

合集下载

2020年高考数学解答题核心:立体几何综合问题(专项训练)(教师版)

2020年高考数学解答题核心:立体几何综合问题(专项训练)(教师版)

专题08 立体几何综合问题(专项训练)1.如图,菱形ABCD 中,∠ABC =60°,AC 与BD 相交于点O ,AE ⊥平面ABCD ,CF ∥AE ,AB =AE =2. (1)求证:BD ⊥平面ACFE ;(2)当直线FO 与平面BED 所成的角为45°时,求异面直线OF 与BE 所成的角的余弦值大小.【答案】见解析【解析】(1)因为四边形ABCD 是菱形,所以BD ⊥AC .因为AE ⊥平面ABCD ,BD ⊂平面ABCD ,所以BD ⊥AE .因为AC ∩AE =A ,所以BD ⊥平面ACFE .(2)以O 为原点,OA →,OB →的方向为x ,y 轴正方向,过O 且平行于CF 的直线为z 轴(向上为正方向),建立空间直角坐标系,则B (0,3,0),D (0,-3,0),E (1,0,2),F (-1,0,a )(a >0),OF →=(-1,0,a ).设平面EBD 的法向量为n =(x ,y ,z ),则有⎩⎪⎨⎪⎧n ·OB →=0,n ·OE →=0,即⎩⎨⎧3y =0,x +2z =0,令z =1,则n =(-2,0,1),由题意得sin 45°=|cos 〈OF →,n 〉|=|OF →·n ||OF →||n |=|2+a |a 2+1·5=22.因为a >0,所以解得a =3.所以OF →=(-1,0,3),BE →=(1,-3,2),所以cos 〈OF →,BE →〉=OF →·BE →|OF →|·|BE →|=-1+610·8=54.故异面直线OF 与BE 所成的角的余弦值为54.2.(2019·河南郑州模拟)如图,在△ABC 中,∠ABC =π4,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平面ABC ,2DA =2AO =PO ,且DA ∥PO .(1)求证:平面PBAD ⊥平面COD ;(2)求直线PD 与平面BDC 所成角的正弦值.【答案】见解析【解析】(1)证明:因为OB =OC ,又因为∠ABC =π4,所以∠OCB =π4,所以∠BOC =π2,即CO ⊥AB .又PO ⊥平面ABC ,OC ⊂平面ABC ,所以PO ⊥OC .又因为PO ,AB ⊂平面PAB ,PO ∩AB =O ,所以CO ⊥平面PAB ,即CO ⊥平面PBAD .又CO ⊂平面COD ,所以平面PBAD ⊥平面COD .(2)以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示.设|OA |=1,则|PO |=|OB |=|OC |=2,|DA |=1.则C (2,0,0),B (0,2,0),P (0,0,2),D (0,-1,1),所以PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).设平面BDC 的法向量为n =(x ,y ,z ),所以⎩⎪⎨⎪⎧n ·BC →=0,n ·BD →=0,所以⎩⎪⎨⎪⎧2x -2y =0,-3y +z =0,令y =1,则x =1,z =3,所以n =(1,1,3).设PD 与平面BDC 所成的角为θ,则sin θ=⎪⎪⎪⎪⎪⎪⎪⎪PD →·n |PD →||n |=⎪⎪⎪⎪⎪⎪1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=22211.即直线PD 与平面BDC 所成角的正弦值为22211. 3.(2019·湖北武汉调考)如图, 四棱锥S -ABCD 中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.(1)证明:SD ⊥平面SAB ;(2)求AB 与平面SBC 所成角的正弦值.【答案】见解析【解析】方法一 (1)证明:建立如图所示的空间直角坐标系Cxyz ,则D (1,0,0),A (2,2,0),B (0,2,0),设S (x ,y ,z ),则x >0,y >0,z >0,且AS →=(x -2,y -2,z ,),BS →=(x ,y -2,z ).DS→=(x -1,y ,z ).由|AS →|=|BS →|,得(x -2)2+(y -2)2+z 2=x 2+(y -2)2+z 2,得x =1,由|DS →|=1得y 2+z 2=1,①由|BS →|=2得y 2+z 2-4y +1=0,②由①②解得y =12,z =32,所以S ⎝ ⎛⎭⎪⎫1,12,32,AS →=⎝⎛⎭⎪⎫-1,-32,32,BS →=⎝ ⎛⎭⎪⎫1,-32,32,DS →=⎝ ⎛⎭⎪⎫0,12,32,所以DS →·AS →=0,DS →·BS →=0,所以DS ⊥AS ,DS ⊥BS ,又AS ∩DS =S ,所以SD ⊥平面SAB .(2)设平面SBC 的一个法向量为m =(a ,b ,c ),BS →=⎝ ⎛⎭⎪⎫1,-32,32,CB →=(0,2,0),AB →=(-2,0,0),由⎩⎪⎨⎪⎧m ·BS →=0,m ·CB →=0得⎩⎪⎨⎪⎧a -32b +32c =0,2b =0,所以可取m =(-3,0,2),故AB 与平面SBC 所成的角的正弦值为cos 〈m ,AB →〉=m ·AB →|m |·|AB →|=-2×(-3)7×2=217. 方法二 (1)证明:如下图,取AB 的中点E ,连接DE ,SE ,则四边形BCDE 为矩形,所以DE =CB =2,所以AD =DE 2+AE 2= 5.因为侧面SAB 为等边三角形,AB =2,所以SA =SB =AB =2,且SE =3,又SD =1,所以SA 2+SD 2=AD 2,SE 2+SD 2=ED 2,所以SD ⊥SA ,SD ⊥SB ,又AS ∩DS =S ,所以SD ⊥平面SAB .(2)作S 在DE 上的射影G ,因为AB ⊥SE ,AB ⊥DE ,AB ⊥平面SDE ,所以平面SDE ⊥平面ABCD ,两平面的交线为DE ,所以SG ⊥平面ABCD ,在Rt △DSE 中,由SD ·SE =DE ·SG 得1×3=2×SG ,所以SG =32,作A 在平面SBC 上的射影H ,则∠ABH 为AB 与平面SBC 所成的角,因为CD ∥AB ,AB ⊥平面SDE ,所以CD ⊥平面SDE ,所以CD ⊥SD ,在Rt △CDS 中,由CD =SD =1,求得SC = 2.在△SBC 中,SB =BC =1,SC =2,所以S △SBC =12×2×22-12=72,由V A -SBC =V S -ABC 得13·S △SBC ·AH =13·S △ABC ·SG ,即13×72×AH =13×12×2×2×2,得AH =2217,所以sin ∠ABH =AHAB =217,故AB 与平面SBC 所成的角的正弦值为217. 4.(2019·安徽江南名校联考)如图,在四棱锥P -ABCD 中,PD ⊥平面ABCD ,AB ∥DC ,AB ⊥AD ,DC =6,AD =8,BC=10,∠PAD =45°,E 为PA 的中点. (1)求证:DE ∥平面BPC ;(2)线段AB 上是否存在一点F ,满足CF ⊥DB ?若存在,试求出二面角F -PC -D 的余弦值;若不存在,请说明理由.【答案】见解析【解析】(1)证明:取PB 的中点M ,连接EM 和CM ,过点C 作CN ⊥AB ,垂足为点N .因为CN ⊥AB ,DA ⊥AB ,所以CN ∥DA ,又AB ∥CD ,所以四边形CDAN 为平行四边形,所以CN =AD =8,DC =AN =6,在Rt △BNC 中,BN =BC 2-CN 2=102-82=6,所以AB =12,而E ,M 分别为PA ,PB 的中点,所以EM ∥AB 且EM =6,又DC ∥AB ,所以EM ∥CD 且EM =CD ,四边形CDEM 为平行四边形,所以DE ∥CM .因为CM ⊂平面PBC ,DE ⊄平面PBC ,所以DE ∥平面BPC .(2)由题意可得DA ,DC ,DP 两两互相垂直,如图,以D 为原点,DA ,DC ,DP 分别为x ,y ,z 轴建立空间直角坐标系Dxyz ,则A (8,0,0),B (8,12,0),C (0,6,0),P (0,0,8).假设AB 上存在一点F 使CF ⊥BD ,设点F 坐标为(8,t,0),则CF →=(8,t -6,0),DB →=(8,12,0),由CF →·DB →=0得t =23.又平面DPC 的法向量为m =(1,0,0),设平面FPC 的法向量为n =(x ,y ,z ).又PC →=(0,6,-8),FC →=⎝ ⎛⎭⎪⎫-8,163,0.由⎩⎪⎨⎪⎧n ·PC →=0,n ·FC →=0得⎩⎪⎨⎪⎧6y -8z =0,-8x +163y =0,即⎩⎪⎨⎪⎧z =34y ,x =23y ,不妨令y =12,有n =(8,12,9).则cos 〈n ,m 〉=n ·m |n ||m |=81×82+122+92=817.又由图可知,该二面角为锐二面角,故二面角F -PC -D 的余弦值为817.5.(2017·山东卷)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是DF的中点.(1)设P是CE上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.【答案】见解析【解析】(1)因为AP⊥BE,AB⊥BE,AB,AP⊂平面ABP,AB∩AP=A,所以BE⊥平面ABP,又BP⊂平面ABP,所以BE⊥BP,又∠EBC=120°,因此∠CBP=30°.(2)方法一取EC的中点H,连接EH,GH,CH.因为∠EBC=120°,所以四边形BEHC为菱形,所以AE=GE=AC=GC=32+22=13.取AG中点M,连接EM,CM,EC,则EM⊥AG,CM⊥AG,所以∠EMC为所求二面角的平面角.又AM=1,所以EM=CM=13-1=2 3.在△BEC中,由于∠EBC=120°,由余弦定理得EC2=22+22-2×2×2×cos120°=12,所以EC=23,因此△EMC为等边三角形,故所求的角为60°.方法二 以B 为坐标原点,分别以BE ,BP ,BA 所在的直线为x ,y ,z 轴,建立如图所示的空间直角坐标系.由题意得A (0,0,3),E (2,0,0),G (1,3,3),C (-1,3,0),故AE →=(2,0,-3),AG →=(1,3,0),CG →=(2,0,3),设m =(x 1,y 1,z 1)是平面AEG 的一个法向量.由⎩⎪⎨⎪⎧m ·AE →=0,m ·AG →=0可得⎩⎨⎧2x 1-3z 1=0,x 1+3y 1=0.取z 1=2,可得平面AEG 的一个法向量m =(3,-3,2). 设n =(x 2,y 2,z 2)是平面ACG 的法向量. 由⎩⎪⎨⎪⎧n ·AG →=0,n ·CG →=0可得⎩⎨⎧x 2+3y 2=0,2x 2+3z 2=0.取z 2=-2,可得平面ACG 的一个法向量n =(3,-3,-2).所以cos 〈m ,n 〉=m ·n |m |·|n |=12.由图可得此二面角为锐二面角,故所求的角为60°.6.(2017·全国卷Ⅲ)如图,四面体ABCD 中,△ABC 是正三角形,△ACD 是直角三角形,∠ABD =∠CBD ,AB =BD . (1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角D -AE -C 的余弦值.【答案】见解析【解析】(1)证明:由题设可得△ABD ≌△CBD ,从而AD =CD . 又△ACD 是直角三角形,所以∠ADC =90°. 取AC 的中点O ,连接DO ,BO ,则DO ⊥AC ,DO =AO . 又因为△ABC 是正三角形,故BO ⊥AC , 所以∠DOB 为二面角D -AC -B 的平面角. 在Rt △AOB 中,BO 2+AO 2=AB 2,又AB =BD ,所以BO 2+DO 2=BO 2+AO 2=AB 2=BD 2, 故∠BOD =90°.所以平面ACD ⊥平面ABC .(2)由题设及(1)知,OA ,OB ,OD 两两垂直,以O 为坐标原点,OA →的方向为x 轴正方向,|OA →|为单位长度,建立如图所示的空间直角坐标系Oxyz ,则A (1,0,0),B (0,3,0),C (-1,0,0),D (0,0,1).由题设知,四面体ABCE 的体积为四面体ABCD 的体积的12,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,即E 为DB 的中点,得E ⎝ ⎛⎭⎪⎫0,32,12,故AD →=(-1,0,1),AC →=(-2,0,0),AE →=⎝⎛⎭⎪⎫-1,32,12.设n =(x ,y ,z )是平面DAE 的法向量,则⎩⎪⎨⎪⎧ n ·AD →=0,n ·AE →=0,即⎩⎪⎨⎪⎧-x +z =0,-x +32y +12z =0,可取n =⎝ ⎛⎭⎪⎫1,33,1.设m 是平面AEC 的法向量,则⎩⎪⎨⎪⎧m ·AC →=0,m ·AE →=0,同理可取m =(0,-1,3),则cos 〈n ,m 〉=n·m |n||m|=77.所以二面角D -AE -C 的余弦值为77.。

专题8.8 立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.8  立体几何中的向量方法(二)—求空间角与距离(重难点突破)(解析版)

专题8.7 立体几何中的向量方法(二)求空间角与距离一、考纲要求1.能用向量方法解决直线与直线、直线与平面、平面与平面的夹角的计算问题;2.了解向量方法在研究立体几何问题中的应用.二、考点梳理考点一 异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角β l 1与l 2所成的角θ范围 (0,π) ⎝⎛⎦⎤0,π2 求法cos β=a ·b|a ||b |cos θ=|cos β|=|a ·b ||a ||b |考点二 求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.考点三 求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=__〈AB →,CD →〉.(2)如图②③,n 1,n 2 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角). 【特别提醒】1.线面角θ的正弦值等于直线的方向向量a 与平面的法向量n 所成角的余弦值的绝对值,即sin θ=|cos 〈a ,n 〉|,不要误记为cos θ=|cos 〈a ,n 〉|.2.二面角与法向量的夹角:利用平面的法向量求二面角的大小时,当求出两半平面α,β的法向量n 1,n 2时,要根据向量坐标在图形中观察法向量的方向,来确定二面角与向量n 1,n 2的夹角是相等,还是互补.三、题型分析例1. (黑龙江鹤岗一中2019届期末)如图,在空间四边形OABC 中,OA =8,AB =6,AC =4,BC =5,∠OAC =45°,∠OAB =60°,则OA 与BC 所成角的余弦值为( )A.3-225B.2-26C.12D.32【答案】A【解析】因为BC →=AC →-AB →,所以OA →·BC →=OA →·AC →-OA →·AB →=|OA →||AC →|cos 〈OA →,AC →〉-|OA →||AB →|cos 〈OA →,AB →〉=8×4×cos 135°-8×6×cos 120°=-162+24. 所以cos 〈OA →,BC →〉=OA →·BC →|OA →||BC →|=24-1628×5=3-225.即OA 与BC 所成角的余弦值为3-225.【变式训练1-1】、(天津新华中学2019届高三质检)如图所示,四棱柱ABCD -A 1B 1C 1D 1中,底面为平行四边形,以顶点A 为端点的三条棱长都为1,且两两夹角为60°.(1)求AC 1的长; (2)求证:AC 1⊥BD ;(3)求BD 1与AC 夹角的余弦值.【解析】(1) 记AB →=a ,AD →=b ,AA 1→=c ,则|a |=|b |=|c |=1,〈a ,b 〉=〈b ,c 〉=〈c ,a 〉=60°, ∴a ·b =b ·c =c ·a =12.|AC 1→|2=(a +b +c )2=a 2+b 2+c 2+2(a ·b +b ·c +c ·a )=1+1+1+2×⎝⎛⎭⎫12+12+12=6, ∴|AC →1|=6,即AC 1的长为 6. (2)证明 ∵AC 1→=a +b +c ,BD →=b -a ,∴AC 1→·BD →=(a +b +c )·(b -a )=a ·b +|b |2+b ·c -|a |2-a ·b -a ·c =b ·c -a ·c =|b ||c |cos 60°-|a ||c |cos 60°=0.∴AC 1→⊥BD →,∴AC 1⊥BD .(3)解 BD 1→=b +c -a ,AC →=a +b ,∴|BD 1→|=2,|AC →|=3, BD 1→·AC →=(b +c -a )·(a +b )=b 2-a 2+a ·c +b ·c =1.∴cos 〈BD 1→,AC →〉=BD 1→·AC →|BD 1→||AC →|=66.∴AC 与BD 1夹角的余弦值为66.例2、(2018年天津卷)如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n0=(x,y,z)为平面CDE的法向量,则即不妨令z=–1,可得n0=(1,0,–1).又=(1,,1),可得,又因为直线MN平面CDE,所以MN∥平面CDE.(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n=(x,y,z)为平面BCE的法向量,则即不妨令z=1,可得n=(0,1,1).设m=(x,y,z)为平面BCF的法向量,则即不妨令z=1,可得m=(0,2,1).因此有cos<m,n>=,于是sin<m,n>=.所以,二面角E–BC–F的正弦值为.(Ⅲ)设线段DP的长为h(h∈[0,2]),则点P的坐标为(0,0,h),可得.易知,=(0,2,0)为平面ADGE的一个法向量,故,由题意,可得=sin60°=,解得h=∈[0,2].所以线段的长为.【变式训练2-1】、(吉林长春市实验中学2019届高三模拟)如图所示,在四棱锥P-ABCD中,底面ABCD 是正方形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,过点E作EF⊥PB于点F.求证:(1)PA ∥平面EDB ; (2)PB ⊥平面EFD .【证明】以D 为坐标原点,射线DA ,DC ,DP 分别为x 轴、y 轴、z 轴的正方向建立如图所示的空间直角坐标系D -xyz .设DC =a .(1)连接AC 交BD 于点G ,连接EG .依题意得A (a,0,0),P (0,0,a ),C (0,a,0),E ⎝⎛⎭⎫0,a 2,a 2. 因为底面ABCD 是正方形,所以G 为AC 的中点故点G 的坐标为⎝⎛⎭⎫a 2,a 2,0,所以PA ―→=(a,0,-a ),EG ―→=⎝⎛⎭⎫a2,0,-a 2, 则PA ―→=2EG ―→,故PA ∥EG .而EG ⊂平面EDB ,PA ⊄平面EDB ,所以PA ∥平面EDB . (2)依题意得B (a ,a,0),所以PB ―→=(a ,a ,-a ).又DE ―→=⎝⎛⎭⎫0,a 2,a 2, 故PB ―→·DE ―→=0+a 22-a 22=0,所以PB ⊥DE ,所以PB ⊥DE .由题可知EF ⊥PB ,且EF ∩DE =E ,所以PB ⊥平面EFD .例3、如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥底面ABCD ,E 是PC 的中点.已知AB =2,AD =22,PA =2,求异面直线BC 与AE 所成的角的大小.【解析】 建立如图所示的空间直角坐标系,则A(0,0,0),B(2,0,0),C(2,22,0),E(1,2,1),AE →=(1,2,1),BC →=(0,22,0).设AE →与BC →的夹角为θ,则cosθ=AE →·BC →|AE →|·|BC →|=42×22=22,所以θ=π4,所以异面直线BC 与AE 所成的角的大小是π4.【变式训练3-1】、 如图所示,在空间直角坐标系中有直三棱柱ABCA 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1夹角的余弦值为________.【答案】55【解析】 不妨令CB =1,则CA =CC 1=2,可得C(0,0,0),B(0,0,1),C 1(0,2,0),A(2,0,0),B 1(0,2,1),所以BC 1→=(0,2,-1),AB 1→=(-2,2,1),所以cos 〈BC 1→,AB 1→〉=BC 1→·AB 1→|BC 1→|·|AB 1→|=4-15×9=15=55>0,所以BC 1→与AB 1→的夹角即为直线BC 1与直线AB 1的夹角,所以直线BC 1与直线AB 1夹角的余弦值为55.【变式训练3-2】、如图,已知三棱柱ABC -A 1B 1C 1,平面A 1ACC 1⊥平面ABC ,∠ABC =90°,∠BAC =30°,A 1A =A 1C =AC ,E ,F 分别是AC ,A 1B 1的中点. (1)证明:EF ⊥BC ;(2)求直线EF 与平面A 1BC 所成角的余弦值.【解析】 (1)证明:连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC . 又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1, 平面A 1ACC 1∩平面ABC =AC ,所以A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E -xyz . 不妨设AC =4,则A 1(0,0,23),B (3,1,0),B 1(3,3,23),F ⎝⎛⎭⎫32,32,23,C (0,2,0). 因此,EF ―→=⎝⎛⎭⎫32,32,23,BC ―→=(-3,1,0).由EF ―→·BC ―→=0得EF ⊥BC .(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得BC ―→=(-3,1,0),A 1C ―→=(0,2,-23).设平面A 1BC 的法向量为n =(x ,y ,z ).由⎩⎪⎨⎪⎧BC ―→·n =0,A 1C ―→·n =0,得⎩⎨⎧-3x +y =0,y -3z =0.取n =(1, 3,1),故sin θ=|cos 〈EF ―→,n 〉|=|EF ―→·n ||EF ―→|·|n |=45,∴cos θ=35.因此,直线EF 与平面A 1BC 所成的角的余弦值为35.。

2020版高考数学大一轮复习-8.8立体几何中的向量方法二——求空间角和距离教案(理)(含解析)新人教A版

2020版高考数学大一轮复习-8.8立体几何中的向量方法二——求空间角和距离教案(理)(含解析)新人教A版

§8.8立体几何中的向量方法(二)——求空间角距离1.两条异面直线所成角的求法设a ,b 分别是两异面直线l 1,l 2的方向向量,则2.斜线和平面所成的角(1)斜线和它在平面内的射影的所成的角叫做斜线和平面所成的角(或斜线和平面的夹角). (2)斜线和它在平面内的射影所成的角,是斜线和这个平面内所有直线所成角中最小的角. 3.二面角(1)从一条直线出发的两个半平面所组成的图形叫做二面角.(2)在二面角α—l —β的棱上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α—l —β的平面角. 4.空间向量与空间角的关系(1)设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=|cos 〈m 1,m 2〉|.(2)设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=|cos 〈m ,n 〉|. (3)求二面角的大小1°如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD →〉.2°如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=cos 〈n 1,n 2〉或-cos 〈n 1,n 2〉.概念方法微思考1.利用空间向量如何求线段长度?提示 利用|AB →|2=AB →·AB →可以求空间中有向线段的长度. 2.如何求空间点面之间的距离? 提示 点面距离的求法:已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为 |BO →|=|AB →||cos 〈AB →,n 〉|.题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)两直线的方向向量所成的角就是两条直线所成的角.( × )(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.( × ) (3)两个平面的法向量所成的角是这两个平面所成的角.( × )(4)两异面直线夹角的范围是⎝ ⎛⎦⎥⎤0,π2,直线与平面所成角的范围是⎣⎢⎡⎦⎥⎤0,π2,二面角的范围是[0,π]. ( √ )(5)若二面角α-a -β的两个半平面α,β的法向量n 1,n 2所成角为θ,则二面角α-a-β的大小是π-θ.( ×)题组二 教材改编2.已知两平面的法向量分别为m =(0,1,0),n =(0,1,1),则两平面所成的二面角为( ) A.45° B.135° C.45°或135° D.90°答案 C解析 cos 〈m ,n 〉=m·n |m||n |=11·2=22,即〈m ,n 〉=45°.∴两平面所成二面角为45°或180°-45°=135°.3.如图,正三棱柱(底面是正三角形的直棱柱)ABC -A 1B 1C 1的底面边长为2,侧棱长为22,则AC 1与侧面ABB 1A 1所成的角为______.答案π6解析 如图,以A 为原点,以AB →,AE →(AE ⊥AB ),AA 1→所在直线分别为x 轴、y 轴、z 轴(如图)建立空间直角坐标系,设D 为A 1B 1的中点,则A (0,0,0),C 1(1,3,22),D (1,0,22),∴AC 1→=(1,3,22), AD →=(1,0,22).∠C 1AD 为AC 1与平面ABB 1A 1所成的角, cos∠C 1AD =AC 1→·AD→|AC 1→||AD →|=(1,3,22)·(1,0,22)12×9=32, 又∵∠C 1AD ∈⎣⎢⎡⎦⎥⎤0,π2,∴∠C 1AD =π6.题组三 易错自纠4.在直三棱柱ABC -A 1B 1C 1中,∠BCA =90°,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成角的余弦值为( ) A.110B.25C.3010D.22 答案 C解析 以点C 为坐标原点,CA ,CB ,CC 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系.设BC =CA =CC 1=2,则可得A (2,0,0),B (0,2,0),M (1,1,2),N (1,0,2),∴BM →=(1,-1,2),AN →=(-1,0,2).∴cos〈BM →,AN →〉=BM →·AN →|BM →||AN →|=1×(-1)+(-1)×0+2×212+(-1)2+22×(-1)2+02+22=36×5=3010. 5.已知向量m ,n 分别是直线l 和平面α的方向向量和法向量,若cos 〈m ,n 〉=-12,则l与α所成的角为________. 答案 30°解析 设l 与α所成角为θ,∵cos〈m ,n 〉=-12,∴sin θ=|cos 〈m ,n 〉|=12,∵0°≤θ≤90°,∴θ=30°.题型一求异面直线所成的角例1 如图,四边形ABCD为菱形,∠ABC=120°,E,F是平面ABCD同一侧的两点,BE⊥平面ABCD,DF⊥平面ABCD,BE=2DF,AE⊥EC.(1)证明:平面AEC⊥平面AFC;(2)求直线AE与直线CF所成角的余弦值.(1)证明如图所示,连接BD,设BD∩AC=G,连接EG,FG,EF.在菱形ABCD中,不妨设GB=1.由∠ABC=120°,可得AG=GC= 3.由BE⊥平面ABCD,AB=BC=2,可知AE=EC.又AE⊥EC,所以EG=3,且EG⊥AC.在Rt△EBG中,可得BE=2,故DF=22.在Rt△FDG中,可得FG=62.在直角梯形BDFE 中,由BD =2,BE =2,DF =22,可得EF =322,从而EG 2+FG 2=EF 2,所以EG ⊥FG .又AC ∩FG =G ,AC ,FG ⊂平面AFC , 所以EG ⊥平面AFC .因为EG ⊂平面AEC ,所以平面AEC ⊥平面AFC .(2)解 如图,以G 为坐标原点,分别以GB ,GC 所在直线为x 轴、y 轴,|GB →|为单位长度,建立空间直角坐标系Gxyz ,由(1)可得A (0,-3,0),E (1,0,2),F ⎝ ⎛⎭⎪⎫-1,0,22,C (0,3,0), 所以AE →=(1,3,2),CF →=⎝ ⎛⎭⎪⎫-1,-3,22.故cos 〈AE →,CF →〉=AE →·CF →|AE →||CF →|=-33.所以直线AE 与直线CF 所成角的余弦值为33. 思维升华 用向量法求异面直线所成角的一般步骤 (1)选择三条两两垂直的直线建立空间直角坐标系;(2)确定异面直线上两个点的坐标,从而确定异面直线的方向向量; (3)利用向量的夹角公式求出向量夹角的余弦值;(4)两异面直线所成角的余弦值等于两向量夹角余弦值的绝对值.跟踪训练1 三棱柱ABC -A 1B 1C 1中,△ABC 为等边三角形,AA 1⊥平面ABC ,AA 1=AB ,N ,M 分别是A 1B 1,A 1C 1的中点,则AM 与BN 所成角的余弦值为( ) A.110B.35C.710D.45 答案 C解析 如图所示,取AC 的中点D ,以D 为原点,BD ,DC ,DM 所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系,不妨设AC =2,则A (0,-1,0),M (0,0,2),B (-3,0,0),N ⎝ ⎛⎭⎪⎫-32,-12,2, 所以AM →=(0,1,2), BN →=⎝⎛⎭⎪⎫32,-12,2,所以cos 〈AM →,BN →〉=AM →·BN →|AM →|·|BN →|=725×5=710,故选C.题型二求直线与平面所成的角例2 (2018·全国Ⅰ)如图,四边形ABCD为正方形,E,F分别为AD,BC的中点,以DF为折痕把△DFC折起,使点C到达点P的位置,且PF⊥BF.(1)证明:平面PEF⊥平面ABFD;(2)求DP与平面ABFD所成角的正弦值.(1)证明由已知可得BF⊥PF,BF⊥EF,PF∩EF=F,PF,EF⊂平面PEF,所以BF⊥平面PEF.又BF⊂平面ABFD,所以平面PEF⊥平面ABFD.(2)解如图,作PH⊥EF,垂足为H.由(1)得,PH ⊥平面ABFD .以H 为坐标原点,HF →的方向为y 轴正方向,|BF →|为单位长,建立如图所示的空间直角坐标系Hxyz .由(1)可得,DE ⊥PE . 又DP =2,DE =1, 所以PE = 3.又PF =1,EF =2,所以PE ⊥PF . 所以PH =32,EH =32. 则H (0,0,0),P ⎝ ⎛⎭⎪⎫0,0,32,D ⎝⎛⎭⎪⎫-1,-32,0,DP →=⎝⎛⎭⎪⎫1,32,32,HP →=⎝⎛⎭⎪⎫0,0,32. 又HP →为平面ABFD 的法向量, 设DP 与平面ABFD 所成的角为θ,则sin θ=|cos 〈HP →,DP →〉|=|HP →·DP →||HP →||DP →|=343=34.所以DP 与平面ABFD 所成角的正弦值为34. 思维升华 若直线l 与平面α的夹角为θ,直线l 的方向向量l 与平面α的法向量n 的夹角为β,则θ=π2-β或θ=β-π2,故有sin θ=|cos β|=|l ·n ||l ||n |.跟踪训练2 (2018·全国Ⅱ)如图,在三棱锥P -ABC 中,AB =BC =22,PA =PB =PC =AC =4,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M -PA -C 为30°,求PC 与平面PAM 所成角的正弦值. (1)证明 因为PA =PC =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =2 3. 如图,连接OB .因为AB =BC =22AC , 所以△ABC 为等腰直角三角形, 所以OB ⊥AC ,OB =12AC =2.由OP 2+OB 2=PB 2知PO ⊥OB .因为OP ⊥OB ,OP ⊥AC ,OB ∩AC =O ,OB ,AC ⊂平面ABC , 所以PO ⊥平面ABC .(2)解 由(1)知OP ,OB ,OC 两两垂直,则以O 为坐标原点,分别以OB ,OC ,OP 所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系Oxyz ,如图所示.由已知得O (0,0,0),B (2,0,0),A (0,-2,0),C (0,2,0), P (0,0,23),AP →=(0,2,23).由(1)知平面PAC 的一个法向量为OB →=(2,0,0). 设M (a ,2-a ,0)(0≤a ≤2),则AM →=(a ,4-a ,0). 设平面PAM 的法向量为n =(x ,y ,z ). 由AP →·n =0,AM →·n =0,得⎩⎨⎧2y +23z =0,ax +(4-a )y =0,可取y =3a ,得平面PAM 的一个法向量为n =(3(a -4),3a ,-a ),所以cos 〈OB →,n 〉=OB →·n |OB →||n |=23(a -4)23(a -4)2+3a 2+a 2. 由已知可得|cos 〈OB →,n 〉|=cos30°=32,所以23|a -4|23(a -4)2+3a 2+a 2=32, 解得a =-4(舍去)或a =43.所以n =⎝ ⎛⎭⎪⎫-833,433,-43.又PC →=(0,2,-23),所以cos 〈PC →,n 〉=34.所以PC 与平面PAM 所成角的正弦值为34. 题型三 求二面角例3 (2018·锦州模拟)如图,在梯形ABCD 中,AB ∥CD ,AD =DC =CB =2,∠ABC =60°,平面ACEF ⊥平面ABCD ,四边形ACEF 是菱形,∠CAF =60°.(1)求证:BF ⊥AE ;(2)求二面角B -EF -D 的平面角的正切值.(1)证明 依题意,在等腰梯形ABCD 中,AC =23,AB =4,∵BC=2,∴AC2+BC2=AB2,即BC⊥AC,又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,BC⊂平面ABCD,∴BC⊥平面ACEF,而AE⊂平面ACEF,∴AE⊥BC,连接CF,∵四边形ACEF为菱形,∴AE⊥FC,又∵BC∩CF=C,BC,CF⊂平面BCF,∴AE⊥平面BCF,∵BF⊂平面BCF,∴BF⊥AE.(2)解取EF的中点M,连接MC,∵四边形ACEF是菱形,且∠CAF=60°,∴由平面几何易知MC⊥AC,又∵平面ACEF⊥平面ABCD,平面ACEF∩平面ABCD=AC,CM⊂平面ACEF,∴MC⊥平面ABCD.以CA ,CB ,CM 所在直线分别为x ,y ,z 轴建立空间直角坐标系,各点的坐标依次为C (0,0,0),A (23,0,0),B (0,2,0),D (3,-1,0),E (-3,0,3),F (3,0,3),设平面BEF 和平面DEF 的一个法向量分别为n 1=(a 1,b 1,c 1),n 2=(a 2,b 2,c 2), ∵BF →=(3,-2,3),EF →=(23,0,0), ∴⎩⎪⎨⎪⎧BF →·n 1=0,EF →·n 1=0,即⎩⎨⎧3a 1-2b 1+3c 1=0,23a 1=0,即⎩⎪⎨⎪⎧a 1=0,2b 1=3c 1,不妨令b 1=3,则n 1=(0,3,2), 同理可求得n 2=(0,3,-1),设二面角B -EF -D 的大小为θ,由图易知θ为锐角, ∴cos θ=|cos 〈n 1,n 2〉|=|n 1·n 2||n 1|·|n 2|=7130,故二面角B -EF -D 的平面角的正切值为97.思维升华 利用向量法求二面角的大小的关键是确定平面的法向量,求法向量的方法主要有两种:①求平面的垂线的方向向量;②利用法向量与平面内两个不共线向量的数量积为零,列方程组求解.跟踪训练3 (2018·全国Ⅲ)如图,边长为2的正方形ABCD 所在的平面与半圆弧»CD 所在平面垂直,M 是»CD上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M -ABC 体积最大时,求平面MAB 与平面MCD 所成二面角的正弦值.(1)证明 由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,又DM ⊂平面CMD ,故BC ⊥DM .因为M 为»CD上异于C ,D 的点,且DC 为直径, 所以DM ⊥CM .又BC ∩CM =C ,BC ,CM ⊂平面BMC , 所以DM ⊥平面BMC .又DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)解 以D 为坐标原点,DA →的方向为x 轴正方向,建立如图所示的空间直角坐标系Dxyz .当三棱锥M -ABC 体积最大时,M 为»CD的中点.由题设得 D (0,0,0),A (2,0,0),B (2,2,0),C (0,2,0),M (0,1,1),AM →=(-2,1,1),AB →=(0,2,0),DA →=(2,0,0),设n =(x ,y ,z )是平面MAB 的法向量,则 ⎩⎪⎨⎪⎧n ·AM →=0,n ·AB →=0,即⎩⎪⎨⎪⎧-2x +y +z =0,2y =0.可取n =(1,0,2), DA →是平面MCD 的一个法向量,因此cos 〈n ,DA →〉=n ·DA →|n ||DA →|=55,sin 〈n ,DA →〉=255.所以平面MAB 与平面MCD 所成二面角的正弦值是255.利用空间向量求空间角例(12分)如图,四棱锥S-ABCD中,△ABD为正三角形,∠BCD=120°,CB=CD=CS=2,∠BSD=90°.(1)求证:AC⊥平面SBD;(2)若SC⊥BD,求二面角A-SB-C的余弦值.(1)证明设AC∩BD=O,连接SO,如图①,因为AB=AD,CB=CD,所以AC 是BD 的垂直平分线, 即O 为BD 的中点,且AC ⊥BD .[1分]在△BCD 中,因为CB =CD =2,∠BCD =120°, 所以BD =23,CO =1.在Rt△SBD 中,因为∠BSD =90°,O 为BD 的中点, 所以SO =12BD = 3.在△SOC 中,因为CO =1,SO =3,CS =2, 所以SO 2+CO 2=CS 2, 所以SO ⊥AC .[4分]因为BD ∩SO =O ,BD ,SO ⊂平面SBD , 所以AC ⊥平面SBD .[5分](2)解 方法一 过点O 作OK ⊥SB 于点K ,连接AK ,CK ,如图②,由(1)知AC ⊥平面SBD ,所以AO ⊥SB . 因为OK ∩AO =O ,OK ,AO ⊂平面AOK , 所以SB ⊥平面AOK .[6分] 因为AK ⊂平面AOK ,所以AK ⊥SB . 同理可证CK ⊥SB .[7分]所以∠AKC 是二面角A -SB -C 的平面角. 因为SC ⊥BD ,由(1)知AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC , 所以BD ⊥平面SAC .而SO ⊂平面SAC ,所以SO ⊥BD . 在Rt△SOB 中,OK =SO ·OB SB =62. 在Rt△AOK 中,AK =AO 2+OK 2=422, 同理可求CK =102.[10分] 在△AKC 中,cos∠AKC =AK 2+CK 2-AC 22AK ·CK =-10535.所以二面角A -SB -C 的余弦值为-10535.[12分] 方法二 因为SC ⊥BD ,由(1)知,AC ⊥BD ,且AC ∩SC =C ,AC ,SC ⊂平面SAC , 所以BD ⊥平面SAC . 而SO ⊂平面SAC , 所以SO ⊥BD .[6分]由(1)知,AC ⊥平面SBD ,SO ⊂平面SBD , 所以SO ⊥AC .因为AC ∩BD =O ,AC ,BD ⊂平面ABCD , 所以SO ⊥平面ABCD .[7分]以O 为原点,OA →,OB →,OS →的方向分别为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,如图③,则A (3,0,0),B (0,3,0),C (-1,0,0),S (0,0,3). 所以AB →=(-3,3,0),CB →=(1,3,0), SB →=(0,3,-3).[8分]设平面SAB 的法向量n =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧AB →·n =-3x 1+3y 1=0,SB →·n =3y 1-3z 1=0,令y 1=3,得平面SAB 的一个法向量为n =(1,3,3). 同理可得平面SCB 的一个法向量为m =(-3,1,1).[10分]所以cos 〈n ,m 〉=n ·m |n ||m |=-3+3+37×5=10535.因为二面角A -SB -C 是钝角,所以二面角A -SB -C 的余弦值为-10535.[12分]利用向量求空间角的步骤第一步:建立空间直角坐标系,确定点的坐标;第二步:求向量(直线的方向向量、平面的法向量)坐标;第三步:计算向量的夹角(或函数值),并转化为所求角.1.已知两平面的法向量分别为m =(1,-1,0),n =(0,1,-1),则两平面所成的二面角为( )A.60°B.120°C.60°或120°D.90° 答案 C解析 cos 〈m ,n 〉=m·n |m||n |=-12·2=-12,即〈m ,n 〉=120°.∴两平面所成二面角为120°或180°-120°=60°.2.如图,在空间直角坐标系中有直三棱柱ABC -A 1B 1C 1,CA =CC 1=2CB ,则直线BC 1与直线AB 1所成角的余弦值为( )A.55B.53C.56D.54答案 A解析 设CA =2,则C (0,0,0),A (2,0,0),B (0,0,1),C 1(0,2,0),B 1(0,2,1),可得向量AB 1→=(-2,2,1),BC 1→=(0,2,-1),由向量的夹角公式得cos 〈AB 1→,BC 1→〉=AB 1→·BC 1→|AB 1→||BC 1→|=0+4-14+4+1×0+4+1=15=55,故选A.3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12B.23C.33D.22 答案 B解析 以A 为原点,AB ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系Axyz ,设棱长为1,则A 1(0,0,1),E ⎝ ⎛⎭⎪⎫1,0,12,D (0,1,0),∴A 1D →=(0,1,-1),A 1E →=⎝ ⎛⎭⎪⎫1,0,-12.设平面A 1ED 的一个法向量为n 1=(1,y ,z ), 则有⎩⎪⎨⎪⎧A 1D →·n 1=0,A 1E →·n 1=0,即⎩⎪⎨⎪⎧y -z =0,1-12z =0,∴⎩⎪⎨⎪⎧y =2,z =2,∴n 1=(1,2,2).∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴cos〈n 1,n 2〉=23×1=23,即所成的锐二面角的余弦值为23.4.在正方体ABCD —A 1B 1C 1D 1中,AC 与B 1D 所成角的大小为( ) A.π6B.π4C.π3D.π2 答案 D解析 以A 为坐标原点,AB ,AD ,AA 1所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系,设正方体的边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0). ∴AC →=(1,1,0),B 1D →=(-1,1,-1), ∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0, ∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.5.(2018·包头模拟)已知正三棱柱ABC -A 1B 1C 1,AB =AA 1=2,则异面直线AB 1与CA 1所成角的余弦值为( ) A.0B.-14C.14D.12答案 C解析 以A 为原点,在平面ABC 内过A 作AC 的垂线为x 轴,以AC 所在直线为y 轴,以AA 1所在直线为z 轴,建立空间直角坐标系,则A (0,0,0),B 1(3,1,2),A 1(0,0,2),C (0,2,0),AB 1→=(3,1,2),A 1C →=(0,2,-2),设异面直线AB 1和A 1C 所成的角为θ, 则cos θ=|AB 1→·A 1C →||AB 1→|·|A 1C →|=|-2|8·8=14.∴异面直线AB 1和A 1C 所成的角的余弦值为14.6.如图,点A ,B ,C 分别在空间直角坐标系O -xyz 的三条坐标轴上,OC →=(0,0,2),平面ABC 的法向量为n =(2,1,2),设二面角C -AB -O 的大小为θ,则cos θ等于( )A.43B.53C.23D.-23答案 C解析 由题意可知,平面ABO 的一个法向量为OC →=(0,0,2), 由图可知,二面角C -AB -O 为锐角,由空间向量的结论可知,cos θ=|OC →·n ||OC →||n |=|4|2×3=23.7.在三棱锥P -ABC 中,PA ⊥平面ABC ,∠BAC =90°,D ,E ,F 分别是棱AB ,BC ,CP 的中点,AB =AC =1,PA =2,则直线PA 与平面DEF 所成角的正弦值为________.答案55解析 以A 为原点,AB ,AC ,AP 所在直线分别为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系,由AB =AC =1,PA =2, 得A (0,0,0),B (1,0,0),C (0,1,0),P (0,0,2),D ⎝ ⎛⎭⎪⎫12,0,0,E ⎝ ⎛⎭⎪⎫12,12,0,F ⎝⎛⎭⎪⎫0,12,1.∴PA →=(0,0,-2),DE →=⎝ ⎛⎭⎪⎫0,12,0,DF →=⎝ ⎛⎭⎪⎫-12,12,1.设平面DEF 的法向量为n =(x ,y ,z ),则由⎩⎪⎨⎪⎧n ·DE →=0,n ·DF →=0,得⎩⎪⎨⎪⎧y =0,-x +y +2z =0.取z =1,则n =(2,0,1),设直线PA 与平面DEF 所成的角为θ,则sin θ=|cos 〈n ,PA →〉|=|PA →·n ||PA →||n |=55, ∴直线PA 与平面DEF 所成角的正弦值为55. 8.如图,在正方形ABCD 中,EF ∥AB ,若沿EF 将正方形折成一个二面角后,AE ∶ED ∶AD =1∶1∶2,则AF 与CE 所成角的余弦值为________.答案 45解析 ∵AE ∶ED ∶AD =1∶1∶2, ∴AE ⊥ED ,即AE ,DE ,EF 两两垂直, 所以建立如图所示的空间直角坐标系,设AB =EF =CD =2,则E (0,0,0),A (1,0,0),F (0,2,0),C (0,2,1), ∴AF →=(-1,2,0),EC →=(0,2,1), ∴cos〈AF →,EC →〉=AF →·EC →|AF →||EC →|=45,∴AF 与CE 所成角的余弦值为45.9.如图所示,在三棱柱ABC —A 1B 1C 1中,AA 1⊥底面ABC ,AB =BC =AA 1,∠ABC =90°,点E ,F 分别是棱AB ,BB 1的中点,则直线EF 和BC 1所成的角是__________.答案 60°解析 以B 点为坐标原点,以BC 所在直线为x 轴,BA 所在直线为y 轴,BB 1所在直线为z 轴,建立空间直角坐标系.设AB =BC =AA 1=2,则C 1(2,0,2),E (0,1,0),F (0,0,1), 则EF →=(0,-1,1),BC 1→=(2,0,2), ∴EF →·BC 1→=2,∴cos〈EF →,BC 1→〉=EF →·BC 1→|EF →||BC 1→|=22×22=12,∵异面直线所成角的范围是(0°,90°], ∴EF 和BC 1所成的角为60°.10.(2019·福州质检)已知点E ,F 分别在正方体ABCD -A 1B 1C 1D 1的棱BB 1,CC 1上,且B 1E =2EB ,CF =2FC 1,则平面AEF 与平面ABC 所成的锐二面角的正切值为________.答案23解析 方法一 延长FE ,CB 相交于点G ,连接AG ,如图所示.设正方体的棱长为3,则GB =BC =3,作BH ⊥AG 于点H ,连接EH ,则∠EHB 为所求锐二面角的平面角.∵BH =322,EB =1,∴tan∠EHB =EB BH =23. 方法二 如图,以点D 为坐标原点,DA ,DC ,DD 1所在直线分别为x 轴、y 轴、z 轴,建立空间直角坐标系Dxyz ,设DA =1,由已知条件得A (1,0,0),E ⎝⎛⎭⎪⎫1,1,13,F ⎝⎛⎭⎪⎫0,1,23,AE →=⎝⎛⎭⎪⎫0,1,13,AF →=⎝⎛⎭⎪⎫-1,1,23,设平面AEF 的法向量为n =(x ,y ,z ), 由⎩⎪⎨⎪⎧n ·AE →=0,n ·AF →=0,得⎩⎪⎨⎪⎧y +13z =0,-x +y +23z =0.令y =1,z =-3,x =-1,则n =(-1,1,-3), 取平面ABC 的法向量为m =(0,0,-1), 设平面AEF 与平面ABC 所成的锐二面角为θ, 则cos θ=|cos 〈n ,m 〉|=31111,tan θ=23. 11.(2018·鄂尔多斯联考)如图,在几何体ABC -A 1B 1C 1中,平面A 1ACC 1⊥底面ABC ,四边形A 1ACC 1是正方形,B 1C 1∥BC ,Q 是A 1B 的中点,且AC =BC =2B 1C 1,∠ACB =2π3.(1)证明:B 1Q ⊥A 1C ;(2)求直线AC 与平面A 1BB 1所成角的正弦值.(1)证明 如图所示,连接AC 1与A 1C 交于M 点,连接MQ .∵四边形A 1ACC 1是正方形, ∴M 是AC 1的中点, 又Q 是A 1B 的中点, ∴MQ ∥BC ,MQ =12BC ,又∵B 1C 1∥BC 且BC =2B 1C 1, ∴MQ ∥B 1C 1,MQ =B 1C 1,∴四边形B 1C 1MQ 是平行四边形,∴B 1Q ∥C 1M , ∵C 1M ⊥A 1C ,∴B 1Q ⊥A 1C .(2)解 ∵平面A 1ACC 1⊥平面ABC ,平面A 1ACC 1∩平面ABC =AC ,CC 1⊥AC ,CC 1⊂平面A 1ACC 1, ∴CC 1⊥平面ABC .如图所示,以C 为原点,CB ,CC 1所在直线分别为y 轴和z 轴建立空间直角坐标系,令AC =BC =2B 1C 1=2,则C (0,0,0),A (3,-1,0),A 1(3,-1,2),B (0,2,0),B 1(0,1,2), ∴CA →=(3,-1,0),B 1A 1—→=(3,-2,0),B 1B →=(0,1,-2),设平面A 1BB 1的法向量为n =(x ,y ,z ), 则由n ⊥B 1A 1—→,n ⊥B 1B →, 可得⎩⎨⎧3x -2y =0,y -2z =0,可令y =23,则x =4,z =3,∴平面A 1BB 1的一个法向量n =(4,23,3), 设直线AC 与平面A 1BB 1所成的角为α, 则sin α=|n ·CA →||n |·|CA →|=23231=9331.12.(2019·盘锦模拟)如图,在四棱锥P -ABCD 中,侧面PAD ⊥底面ABCD ,底面ABCD 为直角梯形,其中AB ∥CD ,∠CDA =90°,CD =2AB =2,AD =3,PA =5,PD =22,点E 在棱AD 上且AE =1,点F 为棱PD 的中点.(1)证明:平面BEF ⊥平面PEC ; (2)求二面角A -BF -C 的余弦值. (1)证明 在Rt△ABE 中,由AB =AE =1, 得∠AEB =45°,同理在Rt△CDE 中,由CD =DE =2,得∠DEC =45°,所以∠BEC =90°,即BE ⊥EC . 在△PAD 中,cos∠PAD =PA 2+AD 2-PD 22PA ·AD =5+9-82×3×5=55,在△PAE 中,PE 2=PA 2+AE 2-2PA ·AE ·cos∠PAE =5+1-2×5×1×55=4, 所以PE 2+AE 2=PA 2,即PE ⊥AD .又平面PAD ⊥平面ABCD ,平面PAD ∩平面ABCD =AD ,PE ⊂平面PAD , 所以PE ⊥平面ABCD ,所以PE ⊥BE . 又因为CE ∩PE =E ,CE ,PE ⊂平面PEC , 所以BE ⊥平面PEC ,所以平面BEF ⊥平面PEC .(2)解 由(1)知EB ,EC ,EP 两两垂直,故以E 为坐标原点,以射线EB ,EC ,EP 分别为x 轴、y 轴、z 轴的正半轴建立如图所示的空间直角坐标系,则B (2,0,0),C (0,22,0),P (0,0,2),A ⎝⎛⎭⎪⎫22,-22,0,D (-2,2,0),F ⎝ ⎛⎭⎪⎫-22,22,1, AB →=⎝⎛⎭⎪⎫22,22,0,BF →=⎝ ⎛⎭⎪⎫-322,22,1, BC →=(-2,22,0),设平面ABF 的法向量为m =(x 1,y 1,z 1), 则⎩⎪⎨⎪⎧m ·AB →=22x 1+22y 1=0,m ·BF →=-322x 1+22y 1+z 1=0,不妨设x 1=1,则m =(1,-1,22), 设平面BFC 的法向量为n =(x 2,y 2,z 2),则⎩⎨⎧n ·BC →=-2x 2+22y 2=0,n ·BF →=-322x 2+22y 2+z 2=0,不妨设y 2=2,则n =(4,2,52),记二面角A -BF -C 为θ(由图知应为钝角), 则cos θ=-|m ·n ||m |·|n |=-|4-2+20|10·70=-11735,故二面角A -BF -C 的余弦值为-11735.13.如图,在四棱锥S -ABCD 中,SA ⊥平面ABCD ,底面ABCD 为直角梯形,AD ∥BC ,∠BAD =90°,且AB =4,SA =3.E ,F 分别为线段BC ,SB 上的一点(端点除外),满足SF BF =CE BE=λ,当实数λ的值为________时,∠AFE 为直角.答案916解析 因为SA ⊥平面ABCD ,∠BAD =90°,以A 为坐标原点,AD ,AB ,AS 所在直线分别为x 轴、y 轴、z 轴,建立如图所示的空间直角坐标系Axyz .∵AB =4,SA =3, ∴B (0,4,0),S (0,0,3). 设BC =m ,则C (m ,4,0), ∵SF BF =CE BE=λ, ∴SF →=λFB →.∴AF →-AS →=λ(AB →-AF →).∴AF →=11+λ(AS →+λAB →)=11+λ(0,4λ,3), ∴F ⎝ ⎛⎭⎪⎫0,4λ1+λ,31+λ. 同理可得E ⎝ ⎛⎭⎪⎫m 1+λ,4,0, ∴FE →=⎝ ⎛⎭⎪⎫m 1+λ,41+λ,-31+λ. ∵FA →=⎝ ⎛⎭⎪⎫0,-4λ1+λ,-31+λ,要使∠AFE 为直角, 即FA →·FE →=0,则0·m1+λ+-4λ1+λ·41+λ+-31+λ·-31+λ=0, ∴16λ=9,解得λ=916. 14.(2018·满洲里模拟)如图,已知直三棱柱ABC -A 1B 1C 1中,AA 1=AB =AC =1,AB ⊥AC ,M ,N ,Q 分别是CC 1,BC ,AC 的中点,点P 在直线A 1B 1上运动,且A 1P →=λA 1B 1—→(λ∈[0,1]).(1)证明:无论λ取何值,总有AM ⊥平面PNQ ;(2)是否存在点P ,使得平面PMN 与平面ABC 的夹角为60°?若存在,试确定点P 的位置,若不存在,请说明理由.(1)证明 连接A 1Q .∵AA1=AC=1,M,Q分别是CC1,AC的中点,∴Rt△AA1Q≌Rt△CAM,∴∠MAC=∠QA1A,∴∠MAC+∠AQA1=∠QA1A+∠AQA1=90°,∴AM⊥A1Q.∵N,Q分别是BC,AC的中点,∴NQ∥AB.又AB⊥AC,∴NQ⊥AC.在直三棱柱ABC-A1B1C1中,AA1⊥底面ABC,∴NQ⊥AA1.又AC∩AA1=A,AC,AA1⊂平面ACC1A1,∴NQ⊥平面ACC1A1,∴NQ⊥AM.由NQ∥AB和AB∥A1B1可得NQ∥A1B1,∴N,Q,A1,P四点共面,∴A1Q⊂平面PNQ.∵NQ∩A1Q=Q,NQ,A1Q⊂平面PNQ,∴AM⊥平面PNQ,∴无论λ取何值,总有AM⊥平面PNQ.(2)解如图,以A为坐标原点,AB,AC,AA1所在的直线分别为x轴、y轴、z轴建立空间直角坐标系,则A 1(0,0,1),B 1(1,0,1),M ⎝ ⎛⎭⎪⎫0,1,12,N ⎝ ⎛⎭⎪⎫12,12,0,Q ⎝ ⎛⎭⎪⎫0,12,0,NM →=⎝ ⎛⎭⎪⎫-12,12,12,A 1B 1→=(1,0,0).由A 1P →=λA 1B 1→=λ(1,0,0)=(λ,0,0),可得点P (λ,0,1),∴PN →=⎝ ⎛⎭⎪⎫12-λ,12,-1.设n =(x ,y ,z )是平面PMN 的法向量,则⎩⎪⎨⎪⎧n ·NM →=0,n ·PN →=0,即⎩⎪⎨⎪⎧ -12x +12y +12z =0,⎝ ⎛⎭⎪⎫12-λx +12y -z =0,得⎩⎪⎨⎪⎧y =1+2λ3x ,z =2-2λ3x ,令x =3,得y =1+2λ,z =2-2λ,∴n =(3,1+2λ,2-2λ)是平面PMN 的一个法向量.取平面ABC 的一个法向量为m =(0,0,1).假设存在符合条件的点P ,则|cos 〈m ,n 〉|=|2-2λ|9+(1+2λ)2+(2-2λ)2=12,化简得4λ2-14λ+1=0,解得λ=7-354或λ=7+354(舍去). 综上,存在点P ,且当A 1P =7-354时, 满足平面PMN 与平面ABC 的夹角为60°.15.在四棱锥P -ABCD 中,AB →=(4,-2,3),AD →=(-4,1,0),AP →=(-6,2,-8),则这个四棱锥的高h 等于( )A.1B.2C.13D.26 答案 B解析 设平面ABCD 的法向量为n =(x ,y ,z ),则⎩⎪⎨⎪⎧ n ⊥AB →,n ⊥AD →,即⎩⎪⎨⎪⎧ 4x -2y +3z =0,-4x +y =0,令y =4,则n =⎝⎛⎭⎪⎫1,4,43, 则cos 〈n ,AP →〉=n ·AP →|n ||AP →|=-6+8-323133×226=-2626, ∴h =2626×226=2. 16.如图所示,在梯形ABCD 中,AB ∥CD ,∠BCD =120°,四边形ACFE 为矩形,且CF ⊥平面ABCD ,AD =CD =BC =CF .(1)求证:EF⊥平面BCF;(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成的锐二面角最大,并求此时二面角的余弦值.(1)证明设AD=CD=BC=1,∵AB∥CD,∠BCD=120°,∴AB=2,∴AC2=AB2+BC2-2AB·BC·cos60°=3,∴AB2=AC2+BC2,则BC⊥AC.∵CF⊥平面ABCD,AC⊂平面ABCD,∴AC⊥CF,而CF∩BC=C,CF,BC⊂平面BCF,∴AC⊥平面BCF.∵EF∥AC,∴EF⊥平面BCF.(2)解以C为坐标原点,分别以直线CA,CB,CF为x轴、y轴、z轴建立如图所示的空间直角坐标系,设FM =λ(0≤λ≤3),则C (0,0,0),A (3,0,0),B (0,1,0),M (λ,0,1),∴AB →=(-3,1,0),BM →=(λ,-1,1).设n =(x ,y ,z )为平面MAB 的法向量,由⎩⎪⎨⎪⎧ n ·AB →=0,n ·BM →=0,得⎩⎨⎧ -3x +y =0,λx -y +z =0,取x =1,则n =(1,3,3-λ).易知m =(1,0,0)是平面FCB 的一个法向量,∴cos〈n ,m 〉=n ·m |n ||m |=11+3+(3-λ)2×1=1(λ-3)2+4. ∵0≤λ≤3,∴当λ=0时,cos 〈n ,m 〉取得最小值77, ∴当点M 与点F 重合时,平面MAB 与平面FCB 所成的锐二面角最大,此时二面角的余弦值为77.。

2020高考数学解答题核心素养题型《专题08 立体几何综合问题》(专项训练)(原卷版)

2020高考数学解答题核心素养题型《专题08 立体几何综合问题》(专项训练)(原卷版)

专题08 立体几何综合问题1.如图,菱形ABCD中,∠ABC=60°,AC与BD相交于点O,AE⊥平面ABCD,CF∥AE,AB=AE=2.(1)求证:BD⊥平面ACFE;(2)当直线FO与平面BED所成的角为45°时,求异面直线OF与BE所成的角的余弦值大小.2.(2019·河南郑州模拟)如图,在△ABC中,∠ABC=π4,O为AB边上一点,且3OB=3OC=2AB,已知PO⊥平面ABC,2DA=2AO=PO,且DA∥PO.(1)求证:平面PBAD⊥平面COD;(2)求直线PD与平面BDC所成角的正弦值.3.(2019·湖北武汉调考)如图,四棱锥S-ABCD中,AB∥CD,BC⊥CD,侧面SAB为等边三角形,AB=BC =2,CD=SD=1.(1)证明:SD⊥平面SAB;(2)求AB与平面SBC所成角的正弦值.4.(2019·安徽江南名校联考)如图,在四棱锥P-ABCD中,PD⊥平面ABCD,AB∥DC,AB⊥AD,DC=6,AD =8,BC=10,∠PAD=45°,E为PA的中点.(1)求证:DE∥平面BPC;(2)线段AB上是否存在一点F,满足CF⊥DB?若存在,试求出二面角F-PC-D的余弦值;若不存在,请说明理由.5.(2017·山东卷)如图,几何体是圆柱的一部分,它是由矩形ABCD(及其内部)以AB边所在直线为旋转轴旋转120°得到的,G是DF的中点.(1)设P是CE上的一点,且AP⊥BE,求∠CBP的大小;(2)当AB=3,AD=2时,求二面角E-AG-C的大小.6.(2017·全国卷Ⅲ)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB =BD.(1)证明:平面ACD⊥平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D-AE-C的余弦值.。

专题8.8 立体几何综合问题(精练)-2021年新高考数学一轮复习学与练(解析版)

专题8.8   立体几何综合问题(精练)-2021年新高考数学一轮复习学与练(解析版)

专题8.8 立体几何综合问题一、选择题1.(2020·浙江高三月考)“直线l与平面α内无数条直线垂直”是“直线l与平面α垂直”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不必要也不充分条件【答案】B【解析】设命题p:直线l与平面α内无数条直线垂直,命题q:直线l与平面α垂直,⇒,所以p是q的必要不充分条件.则p q,但q p故选:B、是空间两个不同的平面,则“平面α上存在不共线的三点到2.(2020·上海市建平中学月考)已知αβαβ”的()平面β的距离相等”是“//A.充分非必要条件B.必要非充分条件C.充要条件D.非充分非必要条件【答案】B【解析】、是空间两个不同的平面,若平面α内存在不共线的三点到平面β的距离相等,已知αβαβ或相交,可得//αβ,则平面α上存在不共线的三点到平面β的距离相等;反之,若//αβ”的必要不充分条件.所以“平面α上存在不共线的三点到平面β的距离相等”是“//故选:B.3.(2020·浙江高三月考)设m,n是空间两条不同直线,α,β是空间两个不同平面,则下列选项中不正确的是()A.当n⊥α时,“n⊥β”是“α∥β”成立的充要条件⊥”的充分不必要条件B.当时,“m⊥β”是“αβC.当时,“n//α”是“”必要不充分条件D .当时,“”是“”的充分不必要条件【答案】C 【解析】A,B,D 正确;C 错误.,////m n m n m n αα⊂⇒或与异面;,////;m n m n n ααα⊂⇒⊂或所以当m α⊂时,//n α是//m n 的既不充分又不必要条件.故选C3.(2020·河北新华·石家庄二中高三月考(理))如图,正方体1111ABCD A BC D -中,P 为底面ABCD 上的动点,1PE A C ⊥于E ,且,PA PE =则点P 的轨迹是( )A .线段B .圆C .椭圆的一部分D .抛物线的一部分【答案】A【解析】 连结1AP ,可证11A AP A EP ≌,即11A A A E =,即点E 是体对角线1AC 上的定点,直线AE 也是定直线.PA PE =,∴动点P 必定在线段AE 的中垂面α上,则中垂面α与底面ABCD 的交线就是动点P 的轨迹,所以动点P 的轨迹是线段.故选:A5.(2020·河南月考(理))3D 打印属于快速成形技术的一种,它是一种以数字模型文件为基础,运用粉末状金属或塑料等可粘合材料,通过逐层堆叠累积的方式来构造物体的技术(即“积层造型法”).过去常在模具制造、工业设计等领域被用于制造模型,现正用于一些产品的直接制造,特别是一些高价值应用(比如髋关节、牙齿或一些飞机零部件等).已知利用3D 打印技术制作如图所示的模型.该模型为在圆锥底内挖去一个正方体后的剩余部分(正方体四个顶点在圆锥母线上,四个顶点在圆锥底面上),圆锥底面直径为31 g/cm,不考虑打印损耗,制作该模型所需原料的质量约为()(取π 3.14=,精确到0.1)A.609.4g B.447.3g C.398.3g D.357.3g【答案】C【解析】如图,是几何体的轴截面,因为圆锥底面直径为,所以半径为OB=.因为母线与底面所成角的正切值为tan B,所以圆锥的高为10cmPO=.设正方体的棱长为a,DE=1010a-=,解得5a=.所以该模型的体积为(()2331500ππ105125cm33V=⨯⨯-=-.所以制作该模型所需原料的质量为()500π500π1251125398.3g33⎛⎫-⨯=-≈⎪⎝⎭.故选:C.6.(2020·上海浦东新·华师大二附中月考)运用祖暅原理计算球的体积时,夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意一个平面所截,若截面面积都相等,则这两个几何体的体积相等.构造一个底面半径和高都与球的半径相等的圆柱,与半球(如图①)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥后得到一新几何体(如图②),用任何一个平行于底面的平面去截它们时,可证得所截得的两个截面面积相等,由此可证明新几何体与半球体积相等.现将椭圆221916x y +=绕y 轴旋转一周后得一橄榄状的几何体(如图③),类比上述方法,运用祖暅原理可求得其体积等于( )A .64πB .48πC .16πD .32π【答案】B【解析】 构造一个底面半径为3,高为4的圆柱,在圆柱中挖去一个以圆柱下底面圆心为顶点的圆锥,则当截面与顶点距离为(04)h h 时,小圆锥的底面半径为r ,则43h r =, 34r h ∴=, 故截面面积为26991h ππ-,把y h =代入椭圆221916x y +=可得x =, ∴橄榄球形几何体的截面面积为221699h x πππ=-, 由祖暅原理可得橄榄球形几何体的体积()1229494483V V V πππ⎛⎫=-=⨯-⨯⨯= ⎪⎝⎭圆柱圆锥. 故选:B .7.(2018·浙江高考真题)已知四棱锥S ABCD -的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为1θ,SE 与平面ABCD 所成的角为2θ,二面角S AB C --的平面角为3θ,则( )A .123θθθ≤≤B .321θθθ≤≤C .132θθθ≤≤D .231θθθ≤≤【答案】D【解析】 设O 为正方形ABCD 的中心,M 为AB 中点,过E 作BC 的平行线EF ,交CD 于F ,过O 作ON 垂直EF 于N ,连接SO 、SN 、OM ,则SO 垂直于底面ABCD ,OM 垂直于AB ,因此123,,,SEN SEO SMO θθθ∠=∠=∠= 从而123tan ,tan ,tan ,SN SN SO SO EN OM EO OMθθθ==== 因为SN SO EO OM ≥≥,,所以132tan tan tan ,θθθ≥≥即132θθθ≥≥,选D.8.(2019·山西高二期中(理))如图,在Rt ABC ∆中,D ,E 分别为AB ,AC 边上的中点,且4AB =,2BC =.现将ABC ∆沿DE 折起,使得A 到达1A 的位置,且二面角1A DE B --为60︒,则1AC =( )A .B .3CD .【答案】A【解析】 ,D E 分别为,AB AC 中点 //DE BC ∴ DE BD ∴⊥,1DE A D ⊥又1,BD A D ⊂平面1A BD ,1BD A D D = DE ∴⊥平面1A BD二面角1A DE B --的平面角为1A DB ∠ 160A DB ∴∠=12A D BD == 12A B ∴=//BC DE BC ∴⊥平面1A BD ,又1A B ⊂平面1A BD 1BC A B ∴⊥1AC ∴===故选:A9.(2020·浙江诸暨·)正方体1111ABCD A BC D -中,在111A B D ∆内部(不含边界)存在点P ,满足点P 到平面11ACC A 的距离等于点P 到棱1BB 的距离.分别记二面角P AD B --为α,P AC B --为β,P BC A --为γ,则下列说法正确的是( )A .αβγ>>B .αγβ<<C .αβγ<<D .以上说法均不正确【答案】C【解析】如图所示,作PQ ⊥面ABCD 于Q ,作QE AD ⊥于E ,QF BC ⊥于F ,QG AC ⊥于G ,连PE ,PF ,PG , 则PEQ α=∠,PGQ β=∠,PFQ γ=∠. 因此tan PQ QE α=,tan PQ QG β=,tan PQ QFγ=, 作111PE A D ⊥于1E ,111PF B C ⊥于1F ,111PG AC ⊥于1G ,1PG 即点P 到平面11ACC A 的距离,1PB 即点P 到棱1BB 的距离,因此11PB PG =,因为111QF PF PB PG QG =<==,因此tan tan βγ<,因为11QG PG PE QE =<=,因此tan tan αβ<综上有:tan tan tan αβγ<<,即αβγ<<,故选:C10.(2020·安徽合肥·高三三模(理))在长方体1111ABCD A B C D -中,6AB AD ==,12AA =,M 为棱BC 的中点,动点P 满足APD CPM ∠=∠,则点P 的轨迹与长方体的面11DCC D 的交线长等于()A .23πB .πC .43πD【答案】A【解析】如下图所示:当P 在面11DCC D 内时,AD ⊥面11DCC D ,CM ⊥面11DCC D ;又APD MPC ∠=∠, 在Rt PDA △与Rt PCM 中,∵6AD =,则3MC =, ∴tan tan AD MC APD MPC PD PC ∠==∠=,则63PD PC =, 即2PD PC =.在平面11DCC D 中,以DC 所在直线为x 轴,以DC 的垂直平分线为y 轴建立平面直角坐标系, 则()3,0D -,()3,0C ,设(),P x y , 由2PD PC ==整理得:221090x x y -++=,即()22516x y -+=.∴点P 的轨迹是以()5,0F 为圆心,半径为4的圆.设圆F 与面11DCC D 的交点为E 、M ,作EK 垂直x 轴于点K ,则21sin 42EK EFK EF ∠===; ∴6EFK π∠=;故点P 的轨迹与长方体的面11DCC D 的交线为劣弧ME ,所以劣弧ME 的长为2463ππ⨯=. 故选:A .二、多选题 11.(2020·广东宝安·高三开学考试)如图,正方体1111ABCD A BC D -的棱长为1,线段11B D 上有两个动点E 、F ,且12EF =,则下列结论中正确的是( )A .AC BE ⊥B .//EF 平面ABCDC .AEF 的面积与BEF 的面积相等D .三棱锥A BEF -的体积为定值【答案】ABD【解析】可证AC ⊥平面11D DBB ,从而AC BE ⊥,故A 正确;由11//B D 平面ABCD ,可知//EF 平面ABCD ,B 也正确;连结BD 交AC 于O ,则AO 为三棱锥A BEF -的高,1111224BEF S =⨯⨯=△,三棱锥A BEF -的体积为1134224⨯⨯=为定值,D 正确;很显然,点A 和点B 到的EF 距离是不相等的,C 错误. 故选:ABD 12.(2020·江苏赣榆一中高一月考)已知在矩形ABCD 中,4AB =,3BC =,将矩形ABCD 沿对角线AC 折成大小为θ的二面角B AC D --,若折成的四面体ABCD 内接于球O ,则下列说法正确的是( ) A .四面体ABCD 的体积的最大值是245 B .球的体积随θ的变化而变化C .球心O 为原矩形的两条对角线的交点D .球O 的表面积为定值25π 【答案】ACD【解析】如图,(1)当面ACD ⊥面ABC 时,四面体ABCD 的体积最大,此时,如图,过点D 作AC 的垂线,交AC 于点E ,则DE 即为四面体ABCD 的高,由等面积法得:AC DE AD DC ⨯=⨯,∴ 125DE = , ∴四面体ABCD 的最大值为11112243433255ABC V S h =⋅=⨯⨯⨯⨯=, 故A 选项正确; (2)在四面体ABCD 内,AC 的中点O 到点,,,A B C D 的距离相等,∴点O 为外接球的球心,此时球的半径522AC R ==,球的体积242533V R ππ== ,为定值,球的表面积2425S R ππ== ,为定制,故B 选项错误,,C D 正确,故选,,A C D 13.(2020·湖北江岸·期末)向体积为1的正方体密闭容器内注入体积为x (01x <<)的液体,旋转容器,下列说法正确的是( )A .当12x =时,容器被液面分割而成的两个几何体完全相同 B .不管注入多少液体,液面都可以成正三角形形状CD 【答案】AC【解析】对于A ,当12x =时,题目等价于过正方体中心的平面截正方体为两部分, 根据对称性知两部分完全相同,所以A 正确; 对于B ,取12x =,此时液面过正方体中心,截面不可能为三角形,所以B 错误; 对于C ,当液面与正方体的体对角线垂直时,液面为如图所示正六边形时面积最大,其中正六边形的顶点均为对应棱的中点,所以液面面积的最大值为162S ==,C 正确; 对于D ,当液面过1DB 时,截面为1B NDG ,将1111D C B A 绕11C D 旋转2π,如图所示;则111DN B N DN B N DB ''+=+≥= 当D 、N 、1B '三点共线时等号成立,所以液面周长最小值为D 错误. 故选:AC.14.(2020·广东深圳·高二月考)(多选题)如图,在直三棱柱111ABC A B C -中,1223AA AC AB ===,AB AC ⊥,点D ,E 分别是线段BC ,1BC 上的动点(不含端点),且1EC DC B C BC=.则下列说法正确的是( )A .//ED 平面1ACCB .该三棱柱的外接球的表面积为68πC .异面直线1BC 与1AA 所成角的正切值为32 D .二面角A EC D --的余弦值为413【答案】AD【解析】在直三棱柱111ABC A B C -中,四边形11BCC B 是矩形, 因为1EC DC B C BC=,所以11////ED BB AA ,ED 不在平面1ACC 内,1AA ⊂平面1ACC , 所以//ED 平面1ACC ,A 项正确; 因为1223AA AC AB ===,所以3AB =, 因为AB AC ⊥,所以BC ==1BC 易知1BC 是三棱柱外接球的直径,所以三棱柱外接球的表面积为22417πππ=⨯=⎝⎭,所以B 项错误; 因为11//AA BB ,所以异面直线1BC 与1AA 所成角为1BB C ∠.在1Rt B BC 中,12BB =,BC =,所以11tan BC BB C BB ∠==C 项错误; 二面角A EC D --即二面角1A B C B --,以A 为坐标原点,以AB ,AC ,1AA 的方向分别为x ,y ,z 轴的正方向,建立空间直角坐标系,如图则1(0,0,0),(3,0,0),(0,2,0),(3,0,2)A B C B ,1(3,0,2)AB ∴=,(3,2,0)BC =-,1(3,2,2)BC =--, 设平面1ABC 的法向量(,,)n x y z =,则1100n AB n B C ⎧⋅=⎪∴⎨⋅=⎪⎩,即3203220x z x y z +=⎧⎨-+-=⎩,令2x =可得(2,0,3)n =-, 设平面1BB C 的一个法向量为(,,)m x y z =,则100m BC m B C ⎧⋅=⎪⎨⋅=⎪⎩,即3203220x y x y z -+=⎧⎨-+-=⎩,令2x =可得(2,3,0)m = 故二面角A EC D --413=,所以D 项正确. 故选:AD.三、填空题15.(2020·浙江高三月考)在2000多年前,古希腊数学家阿波罗尼斯采用平面切割圆锥的方法来研究圆锥曲线:用垂直于锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面倾斜到“和且仅和”圆锥的一条母线平行时,得到抛物线;当平面再倾斜一些就可以得到双曲线.已知一个圆锥的高和底面半径都为2,则用与底面呈45的平面截这个圆锥,得到的曲线是___________.【答案】抛物线【解析】因为圆锥的高和底面半径都为2,因此有, ︒tan 145OS SAO SAO AO︒∠==⇒∠=所以母线SA 与底面所成的角为45,因为用与底面呈45的平面截这个圆锥,所以该平面一定会与圆锥的某条母线(如SA )平行,由题中所给的结论可知:用与底面呈45的平面截这个圆锥,得到的曲线是抛物线.故答案为:抛物线16.(2020·江西其他(文))《九章算术》是我国古代著名数学经典,其中对勾股定理的论述,比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小;以锯锯之,深一寸,锯道长一尺,问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺,问这块圆柱形木料的直径是多少?长为0.5丈的圆柱形木材部分镶嵌在墙体中,截面图如图所示(阴影部分为镶嵌在墙体内的部分).己知弦尺,弓形高寸,估算该木材镶嵌墙内部分的体积约为______立方寸.(注:一丈=10尺=100寸,,答案四舍五入,只取整数...........)【答案】317 【解析】如图,设圆半径为寸(下面长度单位都是寸),连接,已知,, 在中,,即,解得, ︒︒︒1AB =1CD =53.14,sin 22.513π≈≈r ,OA OD 152AD AB ==1OD OC CD r =-=-Rt ADO 222AD OD OA 2225(1)r r +-=13r =由得,所以, 图中阴影部分面积为扇形(平方寸), 镶嵌在墙体中木材是以阴影部分为底面,以锯刀长为高的柱体,所以其体积为(立方寸)故答案为:317.17.(2020·河北新华·石家庄二中高二月考)如图,在四棱锥中,四边形为菱形,且是等边三角形,点是侧面内的一个动点,且满足,则点所形成的轨迹长度是_______.【解析】根据题意,连接AC ,BD ,记其交点为O ,取PC 上一点为M ,连接MB ,MD ,作图如下:5sin 13AD AOD AO ∠==22.5AOD ∠=︒45AOB ∠=︒S S =214131012 6.332522AOB S πππ-=⨯⨯-⨯⨯≈△6.332550317V Sh =≈⨯≈P ABCD -ABCD 2,60,AB DAB PAD =∠=∆PB Q =PBC DQ AC ⊥Q若满足题意,又,故平面DBQ ,则点Q 只要在平面DBQ 与平面PBC 的交线上即可.假设如图所示:平面DBM 与平面DBQ 是同一个平面,则Q 点的轨迹就是线段BM.根据假设,此时直线平面DBM ,则.故三角形MOC 为直角三角形.因为三角形PAD 是等边三角形,三角形BAD 也是等边三角形,故AD ,又因为BC //AD ,故BC PB ,故三角形PBC 为直角三角形,故故在三角形PAC 中,由余弦定理可得:故在直角三角形MOC 中, 在直角三角形PBC 中, 在三角形BCM 中: 故可得:. DQ AC ⊥AC BD ⊥AC ⊥AC ⊥AC MO ⊥PB ⊥⊥2210PC PB BC +2,23,10PA AC PC ===33021023cos PCA ∠==⨯210OC MC cos PCA ==∠BC cos PCB PC ∠=1010=2222829BM BC CM BC CM cos PCB =+-⨯⨯⨯∠=27BM =故答案为. 18.(2021·福建其他)《九章算术》中,将四个面都为直角三角形的四面体称之为鳖臑.在如图所示的鳖臑中,平面,,,,为中点,为内的动点(含边界),且.①当在上时,______;②点的轨迹的长度为______.【答案】【解析】 (1)当在上时,因为平面,故,又,故平面.故.又,为中点,故所以为中点.故. (2)取中点则由(1)有平面,故,又,设平面则有平面.故点的轨迹为.又此时,,故. 所以3P ABC -PA ⊥ABC 90ACB ∠=︒4CA =2PA =D AB E PAC ∆PC DE ⊥E AC AE =E E AC PA ⊥ABC PA DE ⊥PC DE ⊥DE ⊥PAC DE AC ⊥90ACB ∠=︒D AB //DE BC E AC 122AE AC ==AC F DF ⊥PAC PC DF ⊥PC DE ⊥DEF PC G ⋂=PC ⊥DGF E FG 2CF =1tan 2PA PCA AC ∠==sin PCA ∠==sin 5FG CF PCA =⋅∠==故答案为:19.(2020·全国高三专题练习(文))现代足球运动是世上开展得最广泛、影响最大的运动项目,有人称它为“世界第一运动”.早在2000多年前的春秋战国时代,就有了一种球类游戏“蹴鞠”,后来经过阿拉伯人传到欧洲,发展成现代足球.1863年10月26日,英国人在伦敦成立了世界上第一个足球运动组织——英国足球协会,并统一了足球规则.人们称这一天是现代足球的诞生日.如图所示,足球表面是由若干黑色正五边形和白色正六边形皮围成的,我们把这些正五边形和正六边形都称为足球的面,任何相邻两个面的公共边叫做足球的棱.已知足球表面中的正六边形的面为20个,则该足球表面中的正五边形的面为______个,该足球表面的棱为______条.【答案】12 90【解析】足球每块黑色皮子的5条边分别与5块白色皮子的边缝在一起;每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其他白色皮子的边缝在一起.所以设这个足球有x 块正五边形,一共有5x 条边,其中白皮三条边和黑皮相连,又足球表面中的正六边形的面为20个,根据题意可得方程:,解得,该足球表面中的正五边形的面为12个;因为任何相邻两个面的公共边叫做足球的棱,所以每条棱由两条边组成,该足球表面的棱为:条.故答案为:12;90.20.如图在三棱锥S ABC -中,SA SB SC ==,且2ASB BSC CSA π∠=∠=∠=,M N 、分别是AB 和SC 的中点.则异面直线SM 与BN 所成的角的余弦值为______,直线SM 与面SAC 所成角大小为5203x =⨯12x =()125+206290⨯⨯÷=_________.4π 【解析】 因为2ASB BSC CSA π∠=∠=∠=,所以以S 为坐标原点,SA,SB,SC 为x,y,z 轴建立空间直角坐标系.设2SA SB SC ===,则(1,1,0),(0,2,0),(0,0,1),(2,0,0),(0,0,2).M B N A C因为2(1,1,0),(0,2,1),cos ,2SM BNSM BN -==-==,所以异面直线SM 与BN 所成的角的余弦值为5,面SAC 一个法向量为(0,2,0),SB =则由2cos ,22SM SB ==得π,4SM SB =,即直线SM 与面SAC 所成角大小为π4. 21.(2020·包头市第九中学高一期末)设三棱锥的底面和侧面都是全等的正三角形,是棱的中点.记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则,,中最大的是_________,最小的是________.【答案】【解析】S ABC -P SA PB AC αPB ABC βP AC B --γαβγαβ作交于,由于,, 所以为正三棱锥,由对称性知,取中点,连接,作平面,交平面于,连接, 作平面,交平面于,连接,作,交于,连接,所以, 由于,所以,由于平面,所以,由于,平面,所以,, 因为,在上,平面于,平面于, 所以.所以.所以, 由于都是锐角,所以, 由于在上,由对称性,而,则,由于也是锐角,所以,由,,所以 综上所述,三个角中的最小角是,最大角是.故答案为:①;②.四、解答题//PD CA SC D AB BC CA ==SA SB SC ==S ABC -BD PB =PD E BE EH ⊥ABC ABC H BH PF ⊥ABC ABC F BF PG AC ⊥AC G GF BE PD ⊥//PD AC BPD α=∠PF ⊥ABC PBF β=∠PG AC ⊥PF ⊥ABC PGF γ=∠sin BE EH BP BP BP BPα==>=//PD CA E PD EH ⊥ABC H PF ⊥ABC F EH PF =sin PF EH BP BPβ==sin sin αβ>,αβαβ>P SA PB CP =CP PG >sin sin PF PF PF PG CP BP γβ=>==γγβ>PB BG<sin BE EH PF BP BP BP α==>==sin PF PGγ>=αγβααβ22.(2019·北京西城·高三三模)如图,在正四棱柱1111ABCD A BC D -中,1AB =,13AA =,过顶点A ,1C 的平面与棱1BB ,1DD 分别交于M ,N 两点(不在棱的端点处).(1)求证:四边形1AMC N 是平行四边形;(2)求证:AM 与AN 不垂直;(3)若平面1AMC N 与棱BC 所在直线交于点P ,当四边形1AMC N 为菱形时,求PC 长.【答案】(1)证明见解析;(2)证明见解析;(3)=2PC .【解析】(1)依题意1AM C N ,,,都在平面1AC 上, 因此AM ⊆平面1AC ,1NC ⊆平面1AC ,又AM ⊆平面11ABB A ,1NC ⊆平面11DCC D ,平面11ABB A 与平面11DCC D 平行,即两个平面没有交点,则AM 与1NC 不相交,又AM 与1NC 共面,所以//AM 1NC ,同理可证//AN 1MC ,所以四边形1AMC N 是平行四边形;(2)因为M ,N 两点不在棱的端点处,所以11MN BD AC <=,又四边形1AMC N 是平行四边形,1MN AC ≠,则1AMC N 不可能是矩形,所以AM 与AN 不垂直;(3)如图,延长1C M 交CB 的延长线于点P ,若四边形1AMC N 为菱形,则1AM MC =,易证11Rt ABM Rt C B M ≅,所以1BM B M =,即M 为1BB 的中点, 因此112BM CC =,且1//BM CC ,所以BM 是1PCC 的中位线, 则B 是PC 的中点,所以22PC BC ==.23.(2019·全国高三专题练习)如图,正△ABC 的边长为4,CD 为AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A -DC -B .(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)在线段BC 上是否存在一点P ,使AP DE ⊥?如果存在,求出BP BC 的值;如果不存在,请说明理由. 【答案】(1)//AB 平面DEF ,理由见解析;(2)13. 【解析】(1)AB∥平面DEF ,理由如下:在△ABC 中,由E ,F 分别是AC ,BC 的中点,得EF∥AB.又因为AB ⊄平面DEF ,EF ⊂平面DEF ,所以AB∥平面DEF.(2)以点D 为坐标原点,直线DB ,DC ,DA 分别为x 轴,y 轴,z 轴,建立空间直角坐标系(如图所示),则A(0,0,2),B(2,0,0),C(0,0),E(01),故DE =(01).假设存在点P(x ,y ,0)满足条件,则AP =(x ,y ,-2),AP ·DE 20-=,所以y =.又BP =(x 2-,y ,0),PC =(-x ,y ,0),BP ∥PC ,所以(x 2-)(y )=xy -y +=把y =代入上式得4x 3=,所以BP =1BC 3, 所以在线段BC 上存在点P 使AP⊥DE,此时BP 1BC 3=. 24.(2019·上海市金山中学高二月考)几何特征与圆柱类似,底面为椭圆面的几何体叫做“椭圆柱”,如图所示的“椭圆柱”中,A B ''、AB 和O '、O 分别是上下底面两椭圆的长轴和中心,1F 、2F 是下底面椭圆的焦点,其中长轴的长度为2,两中心O '、O M 、N 分别是上、下底面椭圆的短轴端点,且位于平面AA B B ''的两侧.(1)求证:OM ∥平面A B N '';(2)求点M 到平面A B N ''的距离;(3)若点Q 是下底面椭圆上的动点,Q '是点Q 在上底面的投影,且1Q F '、2Q F '与下底面所成的角分别为α、β,试求出tan()αβ+的取值范围.【答案】(1)证明见解析;(2(3)tan()[5αβ+∈-. 【解析】(1)连接,,O M O N ON '',M N 分别为上下椭圆的短轴端点 //O M ON '∴∴四边形O MPN '为平行四边形 //OM O N '∴O N '⊂平面A B N '',OM ⊄平面A B N '' //OM ∴平面A B N ''(2)连接OO '由“椭圆柱”定义可知OO '⊥平面12F NFON ⊂平面12F NF OO ON '∴⊥ O N '∴==由对称性可知:A N B N ''= O N A B '''∴⊥1122A B N S A B O N ''∆'''∴=⋅=⨯=又12A B M S A B O M ''∆'''=⨯⋅=,OO '1133N A B M A B M V S OO ''''-∆'∴=⋅==设点M 到平面A B N ''的距离为d ,则13M A B N N A B M A B N V V S d ''''''--∆==⋅==解得:7d =,即点M 到平面A B N ''的距离为7(3)连接12,QF QF由题意知:QQ '⊥平面12F F Q,QQ '=1Q FQ '∴∠即为1Q F'与下底面所成角;2Q F Q '∠即为2Q F '与下底面所成角 即1Q FQ α'∠=,2Q F Q β'∠= 设1QF m =,由椭圆定义知:2QF m =1tan QQ QF α'∴==,2tan QQ QF β'== ()tan tan tan 1tan tan 1αβαβαβ+∴+===-21m ⎡⎤∈⎣⎦[]265,4m∴-+-∈-- ()tan 5αβ⎡∴+∈-⎢⎣⎦25.(2016·天津高考真题(理))如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF⊥平面ABCD ,点G 为AB 的中点,AB=BE=2.(Ⅰ)求证:EG∥平面ADF ;(Ⅱ)求二面角O −EF −C 的正弦值;(Ⅲ)设H 为线段AF 上的点,且AH=23HF ,求直线BH 和平面CEF 所成角的正弦值. 【答案】(Ⅰ)详见解析;(Ⅱ)√33;(Ⅲ)√721.【解析】依题意,OF ⊥平面ABCD ,如图,以O 为点,分别以AD ⃗⃗⃗⃗⃗ ,BA⃗⃗⃗⃗⃗ ,OF ⃗⃗⃗⃗⃗ 的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,依题意可得O(0,0,0),A(−1,1,0),B(−1,−1,0),C(1,−1,0),D(1,1,0),E(−1,−1,2),F(0,0,2),G(−1,0,0).(Ⅰ)证明:依题意,AD ⃗⃗⃗⃗⃗ =(2,0,0),AF⃗⃗⃗⃗⃗ =(1,−1,2). 设n 1=(x,y,z)为平面ADF 的法向量,则{n 1⋅AD ⃗⃗⃗⃗⃗ =0n 1⋅AF⃗⃗⃗⃗⃗ =0 ,即{2x =0x −y +2z =0 . 不妨设z =1,可得n 1=(0,2,1),又EG ⃗⃗⃗⃗⃗ =(0,1,−2),可得EG⃗⃗⃗⃗⃗ ⋅n 1=0, 又因为直线EG ⊄平面ADF ,所以EG//平面ADF .(Ⅱ)解:易证,OA⃗⃗⃗⃗⃗ =(−1,1,0)为平面OEF 的一个法向量. 依题意,EF⃗⃗⃗⃗⃗ =(1,1,0),CF ⃗⃗⃗⃗⃗ =(−1,1,2).设n 2=(x,y,z)为平面CEF 的法向量,则{n 2⋅EF ⃗⃗⃗⃗⃗ =0n 2⋅CF⃗⃗⃗⃗⃗ =0 ,即{x +y =0−x +y +2z =0 . 不妨设x =1,可得n 2=(1,−1,1).因此有cos <OA ⃗⃗⃗⃗⃗ ,n 2>=OA⃗⃗⃗⃗⃗⃗ ⋅n 2|OA ⃗⃗⃗⃗⃗⃗ |⋅|n 2|=−√63,于是sin <OA ⃗⃗⃗⃗⃗ ,n 2>=√33, 所以,二面角O −EF −C 的正弦值为√33.(Ⅲ)解:由AH =23HF ,得AH =25AF .因为,所以AH ⃗⃗⃗⃗⃗⃗ =25AF ⃗⃗⃗⃗⃗ =(25,−25,45),进而有H(−35,35,45),从而BH⃗⃗⃗⃗⃗⃗=(25,85,45),因此cos <BH ⃗⃗⃗⃗⃗⃗ ,n 2>=BH⃗⃗⃗⃗⃗⃗ ⋅n 2|BH ⃗⃗⃗⃗⃗⃗ |⋅|n 2|=−√721. 所以,直线BH 和平面CEF 所成角的正弦值为√721.26.(2018·天津高考真题(理))如图,且AD =2BC ,,且EG =AD ,且CD =2FG ,,DA =DC =DG =2.(I )若M 为CF 的中点,N 为EG 的中点,求证:;(II )求二面角的正弦值;(III )若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ). 【解析】依题意,可以建立以D 为原点, 分别以,,的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),//AD BC AD CD ⊥//EG AD //CD FG DG ABCD ⊥平面MN CDE 平面E BC F --103DA DC DGE (2,0,2),F (0,1,2),G (0,0,2),M (0,,1),N (1,0,2).(Ⅰ)依题意=(0,2,0),=(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则 即不妨令z =–1,可得n 0=(1,0,–1).又=(1,,1),可得,又因为直线MN 平面CDE ,所以MN ∥平面CDE .(Ⅱ)依题意,可得=(–1,0,0),,=(0,–1,2).设n =(x ,y ,z )为平面BCE 的法向量,则 即 不妨令z =1,可得n =(0,1,1).设m =(x ,y ,z )为平面BCF 的法向量,则 即不妨令z =1,可得m =(0,2,1).因此有cos <m ,n>=,于是sin <m ,n.所以,二面角E –BC–F . 32DC DE 0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 20220y x z ,,=⎧⎨+=⎩MN 32-00MN n ⋅=⊄BC ()122BE =-,,CF 00n BC n BE ,,⎧⋅=⎨⋅=⎩0220x x y z -=⎧⎨-+=⎩,,00m BC m CF ⎧⋅=⎨⋅=⎩,,020x y z -=⎧⎨-+=⎩,,10⋅=m nm n(Ⅲ)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得. 易知,=(0,2,0)为平面ADGE 的一个法向量,故=sinh0,2].所以线段27.(2020届浙江省宁波市余姚中学高考模拟)如图,ABC 为正三角形,且2BC CD ==,CD BC ⊥,将ABC 沿BC 翻折.(1)若点A 的射影在BD 上,求AD 的长;(2)若点A 的射影在BCD 中,且直线AB 与平面ACD ,求AD 的长. 【答案】(1)2 (2【解析】(1)过A 作AE BD ⊥交BD 于E ,则AE ⊥平面BCD .取BC 中点O ,连接AO ,OE ,∵AE ⊥平面BCD ,BC ⊂平面BCD ,∴AE BC ⊥,又ABC 是正三角形,∴BC AO ⊥,又AE AO A =,AE ,AO ⊂平面AOE ,∴BC ⊥平面AOE ,∴BC OE ⊥.又BC CD ⊥,O 为BC 的中点,∴E 为BD 的中点.()12BP h =--,,DC BP DCcos BP DC BP DC h ⋅⋅==DP∵2BC CD ==,∴112OE CD ==,AO =BD =∴DE =AE =∴2AD =;(2)取BC 中点为,O 过点A 作平面BCD 的垂线,垂足为E ,连接AO ,因为,AB AC OE BC =∴⊥.以O 为原点,以BC 为x 轴,以OE 为y 轴,以平面BCD 的过O 的垂线为z 轴建立空间直角坐标系,如图所示:设二面角D BC A --为θ,因为AE ⊥平面BCD ,与(1)同理可证BC ⊥平面AOE ,OE BC ⊥,AOE θ∴∠=,AO则)A θθ,(1,0,0)B -,(1,0,0)C ,(1,2,0)D .∴(1,)BA θθ=,(0,2,0)CD =,(1)CA θθ=-,设平面ACD 的法向量为(,,)n x yz =,则200n CD y n CA x y z θθ⎧⋅==⎪⎨⋅=-⋅+⋅=⎪⎩, 令1z =,得(3sin ,0,1)n θ=.∴cos ,n BA <>==解得sin 6θ=. ∴1(0,,22A ,又(1,2,0)D ,∴AD ==。

初二数学中常见的立体几何问题解析

初二数学中常见的立体几何问题解析

初二数学中常见的立体几何问题解析立体几何是数学中的一个重要分支,涉及到空间中的各种图形和物体的性质和关系。

在初二数学中,立体几何问题是一个重点和难点,需要我们掌握一定的方法和技巧来解决。

本文将针对初二数学中常见的立体几何问题进行详细的解析和讲解。

一、棱柱和棱锥的性质和计算棱柱和棱锥是初二数学中最常见的立体几何图形,它们有着许多的性质和计算方法。

1. 棱柱的性质和计算棱柱是由两个并排的多边形底面和连接底面的若干个平行线段组成的立体图形。

常见的棱柱有三棱柱、四棱柱、五棱柱等。

首先,我们来看棱柱的性质。

棱柱的底面是一多边形,顶面是和底面相对应的平行的多边形。

对于一个棱柱,它的侧面是由底面上的各个顶点与顶面上相对应的点连接而成的多边形。

此外,棱柱的侧面与底面和顶面均相交于一条边。

根据这些性质,我们可以计算棱柱的表面积和体积。

棱柱的表面积计算公式为:S = 2A + Dh,其中A为底面积,D为底面周长,h为棱柱的高。

棱柱的体积计算公式为:V = Ah,其中A为底面积,h为棱柱的高。

通过这些公式,我们可以快速计算棱柱的表面积和体积,从而解决与此相关的问题。

2. 棱锥的性质和计算棱锥是由一个多边形底面和连接底面顶点与底面各边上的点所形成的三维图形。

常见的棱锥有三棱锥、四棱锥、五棱锥等。

棱锥的性质与棱柱有一些差别。

棱锥的底面是一个多边形,而顶点则是引出底面各边的连线所汇集的点。

棱锥的侧面由顶点到底面各点连线而成。

同样地,我们可以根据这些性质来计算棱锥的表面积和体积。

棱锥的表面积计算公式为:S = A + L,其中A为底面积,L为侧面积。

棱锥的体积计算公式为:V = 1/3Ah,其中A为底面积,h为棱锥的高。

掌握了这些公式,我们可以迅速解决与棱锥相关的问题。

二、圆柱和圆锥的性质和计算圆柱和圆锥是与棱柱和棱锥类似的立体图形,它们也有着特定的性质和计算方法。

1. 圆柱的性质和计算圆柱是由一个圆形底面和连接底面各点与底面中心点的垂直线段所形成的立体图形。

对2008年高考数学试题立体几何部分的评析

对2008年高考数学试题立体几何部分的评析
王锐
【期刊名称】《中学数学教学》
【年(卷),期】2008(000)005
【摘要】@@ 1 考点分析rn立体几何的核心内容是空间线面的位置关系、空间角和距离的计算.先前的试验教材和新课标的教材以及近几年的高考题,都比较重视向量知识在立体几何中的应用,以向量为基础的代数方法在研究空间图形问题中得到广泛地应用,已经迅速成长为与传统的综合法并行的基本方法.立体几何的核心知识、研究立体几何问题的两类基本方法,仍是2008年各地立体几何试题的考查重点,各个考点的具体分布见下表:
【总页数】5页(P50-54)
【作者】王锐
【作者单位】安徽省六安一中,237009
【正文语种】中文
【中图分类】G63
【相关文献】
1.勇于开拓大胆创新争做新课程实验领路人——评析2008年广东高考数学试题[J], 胡炎成
2.2008年江西高考数学试题评析 [J], 陈平
3.2008年四川省高考数学试题评析 [J], 毛仕理
4.对浙江省2008年高考数学试题中立体几何题的评析 [J], 沈志荣
5.对2007年高考数学试题立体几何部分的评析 [J], 邹杨枝;王邦龙
因版权原因,仅展示原文概要,查看原文内容请购买。

从2008年高考数学试题谈立体几何备考策略


20 0 8年高考数 学非 新 课标 区卷 立 体 几何 平 均 约 2 . 07 r 占 I. % , , 8 略高于立 体几何课 时比例数 1% ; 3 2 新课标 区卷 立体几何平均 1 , 占 1. % , 9分 约 2 7 与立体 几何 的课 时 比例基
本持平 .
2 考 点 解 析
卷 型 全 国卷 I 全国卷 Ⅱ 北京卷 天滓卷 安徽卷 题 号 1 、6、8 l 1 1 1 、2 1 0 1 、9 8 l 、6 4、2 1 1 、9 4

分 值 2 2 2 2 l 9 2 l
21





备 注
线面角 、 线线 角 、 二面角 、 线垂 直 线 线线角 、 面面垂直 、 线面垂直 、 面角 、 二 球 线线平行 、 线线垂 直 、 二面角 、 到平 面距 离 点 线线垂直 、 面垂直 、 线 球的体积 、 正方 体的表 面积 、 线线角 、 二面角 线线平行与垂直 、 面平行 、 线 线面垂直 、 面面平行 与垂直 、 面距 离 、 球 线 线角 、 点到面距离 球 、 四棱锥 、 四棱 柱 、 面垂直 、 正 正 线 二面角
从 20 0 8年 高考 数 亏试 题 谈 主体 何 备 考 泵略
山 东省 曹县 第一 中学
l 考情报告
24 0 7 40
张振栋
或两道的小题 ( 选择题 、 空题 ) 并且 考生 的得分 情况往往 填 ;
偏 低 .试题 考查的知识点及分值如下表 ( 理科卷 ) .
立体 几何问题历来是高考 的一个重点 , 08年全国各 在2 0 地高考数学的 1 8套理 科试卷 中, 每套都有一道解 答题 , 道 一

2008年高考试题分类(10)(数学-立体几何)

10 立体几何一、选择题1.(安徽3).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是省( B )A .,,αγβγαβ⊥⊥若则‖B .,,m n m n αα⊥⊥若则‖C .,,m n m n αα若则‖‖‖D .,,m m αβαβ若则‖‖‖2.(北京8)如图,动点P 在正方体1111ABCD A B C D -的对角线1BD 上,过点P 作垂直于平面11BB D D 的直线,与正方体表面相交于M N ,.设BP x =,MN y =,则函数()y f x =的图象大致是( B )3.(福建6)如图,在长方体ABCD -A 1B 1C 1D 1中,AB=BC =2,AA 1=1,则AC 1与平面A 1B 1C 1D 1所成角的正弦值为( D )A.3 B.23D.134.(广东7)将正三棱柱截去三个角(如图1所示A ,B ,C 分别是△CHI 三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( A )5.(宁夏12)已知平面α⊥平面β,l αβ=,点A α∈,A l ∉,直线AB l ∥,直线AC l ⊥,直线m m αβ∥,∥,则下列四种位置关系中,不一定...成立的是( D ) A .AB m ∥B .AC m ⊥C .AB β∥D .AC β⊥6.(湖南5)已知直线m,n 和平面βα,满足βα⊥⊥⊥,,a m n m ,则 ( D )ABCD MN P A 1B 1C 1D 1.A n β⊥ ,//.βn B 或β⊂n α⊥n C . ,//.αn D 或α⊂n7.(湖南9)长方体1111ABCD A B C D -的8个顶点在同一个球面上,且AB=2,AD=3,11=AA ,则顶点A 、B 间的球面距离是( B )A .42π B .22πC .π2D .2π2 8.(江西9).设直线m 与平面α相交但不.垂直,则下列说法中正确的是( B ) A .在平面α内有且只有一条直线与直线m 垂直 B .过直线m 有且只有一个平面与平面α垂直 C .与直线m 垂直的直线不.可能与平面α平行 D .与直线m 平行的平面不.可能与平面α垂直 9.(辽宁12)在正方体1111ABCD A B C D -中,E F ,分别为棱1AA ,1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( D ) A .不存在B .有且只有两条C .有且只有三条D .有无数条10.(全国Ⅰ11)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( B )A .13B.3CD .2311.(全国Ⅱ8)正四棱锥的侧棱长为32,侧棱与底面所成的角为︒60,则该棱锥的体积为( B ) A .3 B .6 C .9 D .18 12.(全国Ⅱ12)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆.若两圆的公共弦长为2,则两圆的圆心距等于( C ) A .1B .2C .3D .213.(山东6) 右图是一个几何体的三视图,根据图中数据,可得该几何体的表面积是( D )A .9πB .10πC .11πD .12π 14.(上海)给定空间中的直线l 及平面α.条件“直线l 与平面l 与平面α垂直”的( C )A.充分非必要条件 B.必要非充分条件C .充要条件 D.既非充分又非必要条件15.(四川8)设M 是球心O 的半径OP 的中点,分别过,M O 作垂直于OP 的平面,截球面得两个圆,则这两个圆的面积比值为:( D ) (A)41 (B)12 (C)23 (D)34俯视图 正(主)视图 侧(左)视图16.(四川10)设直线l ⊂平面α,过平面α外一点A 与,l α都成030角的直线有且只有:( B )(A)1条 (B)2条 (C)3条 (D)4条17.(四川12)若三棱柱的一个侧面是边长为2的正方形,另外两个侧面都是有一个内角为060的菱形,则该棱柱的体积等于( B )(B) (C) (D)18.(天津5) 设a b ,是两条直线,αβ,是两个平面,则a b ⊥的一个充分条件是( C ) A .a b αβαβ⊥⊥,∥, B .a b αβαβ⊥⊥,,∥ C .a b αβαβ⊂⊥,,∥D .a b αβαβ⊂⊥,∥,19.(浙江9)对两条不相交的空间直线a 和b ,必定存在平面α,使得 ( B ) (A ),a b αα⊂⊂ (B ),//a b αα⊂ (C ),a b αα⊥⊥ (D ),a b αα⊂⊥20.(重庆11)如题(11)图,模块①-⑤均由4个棱长为1的小正方体构成,模块⑥由15个棱长为1的小正方体构成.现从模块①-⑤中选出三个放到模块⑥上,使得模块⑥成为一个棱长为3的大正方体.则下列选择方案中,能够完成任务的为 ( A )(A)模块①,②,⑤ (B)模块①,③,⑤ (C)模块②,④,⑥ (D)模块③,④,⑤21.(湖北4).用与球必距离为1的平面去截面面积为π,则球的体积为 ( D )A.323πB.83πC.D. 322.(陕西8)长方体1111ABCD A B C D -的各顶点都在半径为1的球面上,其中1::AB AD AA =,则两,A B 点的球面距离为( C ) A .4πB .3π C .2π D .23π 23.(陕西10) 如图,l A B A B αβαβαβ⊥=∈∈,,,,,到l 的距离分别是a 和b ,AB 与αβ,所成的角分别是θ和ϕ,AB 在αβ,内的射影分别是m 和n ,若a b >,则( D ) A .m n θϕ>>, B .m n θϕ><, C .m n θϕ<<, D .m n θϕ<>,二、填空题1.(安徽16)已知点,,,A B C D 在同一个球面上,,AB BCD ⊥平面,BC CD ⊥若6,AB =AC =8AD =,则,B C 两点间的球面距离是43π2.(福建15)若三棱锥的三条侧棱两两垂直,且侧棱长均为则其外接球的表面积是 . 9π3.(广东15)(几何证明选讲选做题)已知PA 是圆O 的切点,切点为A ,PA =2.AC 是圆O 的直径,PC 与圆O 交于B 点,PB =1,则圆O 的半径R4.(宁夏14)一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一个球面上,3,则这个球的体积为 .43π 5.(江西15)连结球面上两点的线段称为球的弦.半径为4的球的两条弦AB CD 、的长度分别等于、,每条弦的两端都在球面上运动,则两弦中点之间距离的最大值为 .56.(辽宁14)在体积为的球的表面上有A 、B ,C 三点,AB =1,BC,A ,C两点的球面距离为3π,则球心到平面ABC 的距离为_________.327.(全国Ⅰ16)已知菱形ABCD 中,2AB =,120A ∠=,沿对角线BD 将ABD △折起,使二面角A BD C --为120,则点A 到BCD △所在平面的距离等于.28.(全国Ⅱ16)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② .A B abl αβ(写出你认为正确的两个充要条件)两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形. 注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分.9.(浙江15)已知球O 的面上四点A 、B 、C 、D ,DA ⊥平面ABC ,AB ⊥BC ,DA=AB=BC=3,则球O 点体积等于。

008 解析几何-2021年高考数学(理)二轮专项复习

解析几何平面解析几何主要介绍用代数知识研究平面几何的方法.为此,我们要关注:将几何问题代数化,用代数语言描述几何要素及其关系,将几何问题转化为代数问题,处理代数问题,分析代数结果的几何含义,最终解决几何问题.在此之中,要不断地体会数形结合、函数与方程及分类讨论等数学思想与方法.要善于应用初中平面几何、高中三角函数和平面向量等知识来解决直线、圆和圆锥曲线的综合问题.§8-1 直角坐标系【知识要点】1.数轴上的基本公式设数轴的原点为O ,A ,B 为数轴上任意两点,OB =x 2,OA =x 1,称x 2-x 1叫做向量AB 的坐标或数量,即数量AB =x 2-x 1;数轴上两点A ,B 的距离公式是d (A ,B )=|AB |=|x 2-x 1|.2.平面直角坐标系中的基本公式设A ,B 为直角坐标平面上任意两点,A (x 1,y 1),B (x 2,y 2),则A ,B 两点之间的距离公式是.)()(||),.(212212y y x x AB B A d -+-==A ,B 两点的中点M (x ,y )的坐标公式是⋅+=+=2,22121y y y x x x 3.空间直角坐标系 在空间直角坐标系O -xyz 中,若A (x 1,y 1,z 1),B (x 2,y 2,z 2),A ,B 两点之间的距离公式是.)()()(||),(212212212z z y y x x AB B A d -+-+-==【复习要求】1.掌握两点间的距离公式,中点坐标公式;会建立平面直角坐标系,用坐标法(也称为解析法)解决简单的几何问题.2.了解空间直角坐标系,会用空间直角坐标系刻画点的位置,并掌握两点间的距离公式.【例题分析】例1 解下列方程或不等式:(1)|x-3|=1;(2)|x-3|≤4;(3)1<|x-3|≤4.略解:(1)设直线坐标系上点A,B的坐标分别为x,3,则|x-3|=1表示点A到点B的距离等于1,如图8-1-1所示,图8-1-1所以,原方程的解为x=4或x=2.(2)与(1)类似,如图8-1-2,图8-1-2则|x-3|≤4表示直线坐标系上点A到点B的距离小于或等于4,所以,原不等式的解集为{x|-1≤x≤7}.(3)与(2)类似,解不等式1<|x-3|,得解集{x|x>4,或x<2},将此与不等式|x-3|≤4的解集{x|-1≤x≤7}取交集,得不等式1<|x-3|≤4的解集为{x|-1≤x<2,或4<x≤7}.【评析】解绝对值方程或不等式时,如果未知数x的次数和系数都为1,那么可以利用绝对值的几何意义来解绝对值方程或不等式.|x-a|的几何意义:表示数轴(直线坐标系)上点A(x)到点B(a)的距离.例2 已知矩形ABCD及同一平面上一点P,求证:P A2+PC2=PB2+PD2.解:如图8-1-3,以点A为原点,以AB为x轴,向右为正方向,以AD为y轴,向上为正方向,建立平面直角坐标系.图8-1-3设AB =a ,AD =b ,则 A (0,0),B (a ,0),C (a ,b ),D (0,b ),设P (x ,y ), 则22222222))()(()(b y a x y x PC PA -+-++=+=x 2+y 2+(x -a )2+(y -b )2,22222222))(())((b y x y a x PD PB -+++-=+=x 2+y 2+(x -a )2+(y -b )2,所以P A 2+PC 2=PB 2+PD 2.【评析】坐标法是解析几何的一个基本方法,非常重要.坐标法中要注意坐标系的建立,理论上,可以任意建立坐标系,但是坐标系的位置会影响问题解决的复杂程度,适当的坐标系可以使解题过程较为简便.例3 已知空间直角坐标系中有两点A (1,2,-1),B (2,0,2).(1)求A ,B 两点的距离;(2)在x 轴上求一点P ,使|P A |=|PB |;(3)设M 为xOy 平面内的一点,若|MA |=|MB |,求M 点的轨迹方程.解:(1)由两点间的距离公式,得.14)21()02()21(||222=--+-+-=AB(2)设P (a ,0,0)为x 轴上任一点,由题意得222)10()20()1(++-+-a,即a 2-2a +6=a 2-4a +8,解得a =1,所以P (1,0,0).40)2(2++-=a(3)设M (x ,y ,0),则有整理可得x -2y -1=0.所以,M 点的轨迹方程为x -2y -1=0. 【评析】由两点间的距离公式建立等量关系,体现了方程思想的应用.练习8-1一、选择题1.数轴上三点A ,B ,C 的坐标分别为3,-1,-5,则AC +CB 等于( )A .-4B .4C .-12D .122.若数轴上有两点A (x ),B (x 2)(其中x ∈R ),则向量的数量的最小值为( )A .B .0C .D . 3.在空间直角坐标系中,点(1,-2,3)关于yOz 平面的对称点是( )A .(1,-2,-3)B .(1,2,3)C .(-1,-2,3)D .(-1,2,3)4.已知平面直角坐标内有三点A (-2,5),B (1,-4),P (x ,y ),且|AP |=|BP |,则实数x ,y 满足的方程为( )A .x +3y -2=0B .x -3y +2=0C .x +3y +2=0D .x -3y -2=0二、填空题5.方程|x +2|=3的解是______;不等式|x +3|≥2的解为______.6.点A (2,3)关于点B (-4,1)的对称点为______.7.方程|x +2|-|x -3|=4的解为______.8.如图8-1-4,在长方体ABCD -A 1B 1C 1D 1中,|DA |=3,|DC |=4,|DD 1|=2,A 1C 的中点为M ,则点B 1的坐标是______,点M 的坐标是______,M 关于点B 1的对称点为______. ,4)0()2()10()2()1(22222+-+-=++-+-y x y x AB 214141-图8-1-4三、解答题9.求证:平行四边形ABCD满足AB2+BC2+CD2+DA2=AC2+BD2.10.求证:以A(4,3,1),B(7,1,2),C(5,2,3)三点为顶点的三角形是一个等腰三角形.11.在平面直角坐标系中,设A(1,3),B(4,5),点P在x轴上,求|P A|+|PB|的最小值.§8-2 直线的方程【知识要点】1.直线方程的概念如果以一个方程的解为坐标的点都在某条直线上,且这条直线上点的坐标都是这个方程的解,那么这个方程叫做这条直线的方程...........,这条直线叫做这个方程的直线2.直线的倾斜角和斜率x轴正向与直线向上的方向所成的角叫做这条直线的倾斜角....并规定,与x轴平行或重合的直线的倾斜角为零度角.因此,倾斜角α 的取值范围是0°≤α <180°.我们把直线y =kx +b 中的系数k 叫做这条直线的斜率...设A (x 1,y 1),B (x 2,y 2)为直线y =kx +b 上任意两点,其中x 1≠x 2,则斜率 倾斜角为90°的直线的斜率不存在,倾斜角为α 的直线的斜率k =tan α (α ≠90°).3.直线方程的几种形式点斜式:y -y 1=k (x -x 1);斜截式:y =kx +b ;两点式:一般式:Ax +By +C =0(A 2+B 2≠0).4.两条直线相交、平行与重合的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则(1)l 1与l 2相交A 1B 2-A 2B 1≠0或 (2)l 1与l 2平行(3)l 1与l 2重合 当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,截距分别为b 1,b 2,则l 1与l 2相交k 1≠k 2;l 1∥l 2k 1=k 2,b 1≠b 2;l 1与l 2重合k 1=k 2,b 1=b 2.5.两条直线垂直的条件设直线l 1:A 1x +B 1y +C 1=0,l 2:A 2x +B 2y +C 2=0,则l 1⊥l 2A 1A 2+B 1 B 2=0. 当直线l 1与l 2的斜率存在时,设斜率分别为k 1,k 2,则l 1⊥l 2k 1k 2=-1.⋅--=1212x x yy k );,(2121121121y y x x x x x x y y y y =/=/--=--⇔)0(222121=/=/B A B B A A ⇔⎪⎪⎩⎪⎪⎨⎧=/=/=≠-≠-=-).0(;00,0222212121211221211221C B A C C B B A A C A C A B C C B B A B A 或或而⇔⎪⎩⎪⎨⎧=/==≠===).0();0(,,222212*********C B A C C B B A A C C B B A A 或λλλλ⇔⇔⇔⇔⇔6.点到直线的距离点P (x 1,y 1)到直线l :Ax +By +C =0的距离d 的计算公式【复习要求】1.理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式:点斜式、两点式及一般式,体会斜截式与一次函数的关系.2.掌握两条直线平行与垂直的条件,点到直线的距离公式.能够根据直线的方程判断两条直线的位置关系,能用解方程组的方法求两直线的交点坐标.【例题分析】例1(1)直线的斜率是______,倾斜角为______;(2)设A (2,3),B (-3,2),C (-1,-1),过点C 且斜率为k 的直线l 与线段AB 相交,则斜率k 的取值范围为______.略解:(1)直线可以化简为 所以此直线的斜率为,倾斜角 (2)如图8-2-1,设直线AC 的倾斜角为α ,图8-2-1因为此直线的斜率为,所以 设直线BC 的倾斜角为β ,因为此直线的斜率为 ⋅+++=2211||B A C By Ax d 082=-+y x 082=-+y x ,22822+-=x y 22-;22tan arc π-=α341213=++=AC k ;34tan =α,231312-=+-+=BC k所以 因为直线l 与线段AB 相交,所以直线l 的倾斜角θ 满足α ≤θ ≤β ,由正切函数图象,得tan θ ≥tan α 或tan θ≤tan β,故l 斜率k 的取值范围为.【评析】(1)求直线的斜率常用方法有三种:①已知直线的倾斜角α,当α≠90°时,k =tan α; ②已知直线上两点的坐标(x 1,y 1),(x 2,y 2),当x 1≠x 2时,k =; ③已知直线的方程Ax +By +C =0,当B ≠0时,k =. (2)已知直线的斜率k 求倾斜角α 时,要注意当k >0时,α =arctan k ;当k <0时,α =π-arctan |k |.例2 根据下列条件求直线方程:(1)过点A (2,3),且在两坐标轴上截距相等;(2)过点P (-2,1),且点Q (-1,-2)到直线的距离为1.解:(1)设所求直线方程为y -3=k (x -2),或x =2(舍),令y =0,得x =2-(k ≠0);令x =0,得y =3-2k , 由题意,得2-=3-2k ,解得k =或k =-1, 所以,所求直线方程为3x -2y =0或x +y -5=0;(2)设所求直线方程为y -1=k (x +2)或x =-2,当直线为y -1=k (x +2),即kx —y +(2k +1)=0时,由点Q (-1,-2)到直线的距离为1,得=1,解得, ⋅-=23tan β]23,[],34[-∞+∞∈ k 1212x x y y --BA -k3k 3231|122|2++++-k k k 34-=k所以,直线,即4x +3y +5=0符合题意; 当直线为x =-2时,检验知其符合题意.所以,所求直线方程为4x +3y +5=0或x =-2.【评析】求直线方程,应从条件出发,合理选择直线方程的形式,并注意每种形式的适应条件.特别地,在解题过程中要注意“无斜率”,“零截距”的情况.例3 已知直线l 1:(m -2)x +(m +2)y +1=0,l 2:(m 2-4)x —my -3=0,(1)若l 1∥l 2,求实数m 的值;(2)若l 1⊥l 2,求实数m 的值.解法一:(1)因为l 1∥l 2,所以(m -2)(-m )=(m +2)(m 2-4),解得m =2或m =-1或m =-4,验证知两直线不重合,所以m =2或m =-1或m =-4时,l 1∥l 2;(2)因为l 1⊥l 2,所以(m -2)(m 2-4)+(-m )(m +2)=0,解得m =-2或m =1或m =4.解法二:当l 1斜率不存在,即m =-2时,代入直线方程,知l 1⊥l 2;当l 2斜率不存在,即m =0时,代入直线方程,知l 1与l 2既不平行又不垂直;当l 1,l 2斜率存在,即m ≠0,m ≠-2时,可求l 1,l 2,如的斜率分别为k 1=-,k 2=,截距b 1=-,b 2=, 若l 1∥l 2,由k 1=k 2,b 1≠b 2,解得m =2或m =-1或m =-4,若l 1⊥l 2,由k 1k 2=-1,解得m =1或m =4综上,(1)当m =2或m =-1或m =-4时,l 1∥l 2;(2)当m =-2或m =1或m =4时,l 1⊥l 2.【评析】两条直线平行与垂直的充要条件有几个,但各有利弊.简洁的(如解法一)相互之间易混淆,好记的要注意使用条件(如解法二,易丢“无斜率”的情况),解题过程中要注03534=---y x 22-+m m m m 42-21+m m3-意正确使用.例4 已知直线l 过两直线l 1:3x -y -1=0与l 2:x +y -3=0的交点,且点A (3,3)和B (5,2)到l 的距离相等,求直线l 的方程.【分析】所求直线l 有两种情况:一是l 与AB 平行;二是点A ,B 在l 的两侧,此时l 过线段AB 的中点.解:解方程组得交点(1,2),由题意,当①l 与AB 平行;或②l 过A ,B 的中点时.可以使得点A ,B 到l 的距离相等. ①当l ∥AB 时,因为,此时,即x +2y -5=0; ②当l 过AB 的中点时,因为AB 的中点坐标为所以 即l :x -6y +11=0.综上,所求的直线l 的方程为x +2y -5=0或l :x -6y +11=0.例5 已知直线l 1:y =kx +2k 与l 2:x +y =5的交点在第一象限,求实数k 的取值范围. 解法一:解方程组,得交点 由题意,得,解得 解法二:如图8-2-2,由l 1:y =k (x +2),知l 1过定点P (-2,0),⎩⎨⎧=-+=--03013y x y x 215323-=--=AB k )1(212:--=-x y l ),25,4(M ,1412252:--=--x y l ⎩⎨⎧=++=52y x k kx y ),1255,125(+--+-k k k k ⎪⎪⎩⎪⎪⎨⎧>+-->+-012550125k k k k ⋅<<250k图8-2-2由l 2:x +y =5,知l 2坐标轴相交于点A (0,5),B (5,0),因为 由题意,得 【评析】在例4,例5中,要充分利用平面几何知识解决问题,体会数形结合的思想与方法;要会联立两个曲线(直线)的方程,解方程得到曲线的交点,体会方程思想.例6 如图8-2-3,过点P (4,4)的直线l 与直线l 1:y =4x 相交于点A (在第一象限),与x 轴正半轴相交于点B ,求△ABO 面积的最小值.图8-2-3解:设B (a ,0),则 将y =4x 代入直线l 的方程,得点A 的坐标为 则△ABO 的面积 所以当a =6时,△ABO 的面积S 取到最小值24.练习8-2一、选择题1.若直线l 的倾斜角的正弦为,则l 的斜率k 是( ) ,0,252005==+-=BP AP k k ⋅<<250k ),4(4044:---=-x a y l ),3)(34,3(>--a a a a a ,121)611(3234212+--=-⨯⨯=a a a a S 53A .B .C .或D .或 2.点P (a +b ,ab )在第二象限内,则bx +ay -ab =0直线不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限 3.“”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件 4.若直线与直线2x +3y -6=0的交点位于第一象限,则l 的倾角的取值范围( )A .B .C .D . 二、填空题5.已知两条直线l 1:ax +3y -3=0,l 2:4x +6y -1=0,若l 1∥l 2,则a =_______.6.已知点A (3,0),B (0,4),则过点B 且与A 的距离为3的直线方程为_______.7.若点P (3,4),Q (a ,b )关于直线x -y -1=0对称,则a +2b =_______.8.若三点A (2,2),B (a ,0),C (0,b ),(ab ≠0)共线,则的值等于_______. 三、解答题9.已知点P 在直线2x +3y -2=0上,点A (1,3),B (-1,-5).(1)求|P A |的最小值;(2)若|P A |=|PB |,求点P 坐标.10.若直线l 夹在两条直线l 1:x -3y +10=0与l 2:2x +y -8=0之间的线段恰好被点P (0,1)平分,求直线l 的方程.43-4343-433434-21=m 3:-=kx y l )3π,6π[)2π,3π()2π,6π(]2π,6π[ba 11+211.已知点P到两个定点M(-1,0)、N(1,0)距离的比为,点N到直线PM的距离为1.求直线PN的方程.§8-3 简单的线性规划问题【知识要点】1.二元一次不等式(组)所表示的平面区域(1)一般地,二元一次不等式Ax+By+C>0在平面区域中表示直线Ax+By+C=0某一侧的所有点组成的平面区域(开半平面),且不含边界线.不等式Ax+By+C≥0所表示的平面区域包括边界线(闭半平面).(2)由几个不等式组成的不等式组所表示的平面区域,是指各个不等式组所表示的平面区域的公共部分.(3)可在直线Ax+By+C=0的某一侧任取一点,一般地取特殊点(x0,y0),从Ax0+By0+C的正(或负)来判断Ax+By+C>0(或Ax+By+C<0)所表示的区域.当C≠0时,常把原点(0,0)作为特殊点.(4)也可以利用如下结论判断区域在直线哪一侧:①y>kx+b表示直线上方的半平面区域;y<kx+b表示直线下方的半平面区域.②当B>0时,Ax+By+C>0表示直线上方区域,Ax+By+C<0表示直线下方区域.2.简单线性规划(1)基本概念目标函数:关于x,y的要求最大值或最小值的函数,如z=x+y,z=x2+y2等.约束条件:目标函数中的变量所满足的不等式组.线性目标函数:目标函数是关于变量的一次函数.线性约束条件:约束条件是关于变量的一次不等式(或等式).线性规划问题:在线性约束条件下,求线性目标函数的最大值或最小值问题.最优解:使目标函数达到最大值或最小值的点的坐标,称为问题的最优解.可行解:满足线性约束条件的解(x ,y )叫可行解.可行域:由所有可行解组成的集合叫可行域.(2)用图解法解决线性规划问题的一般步骤:①分析并将已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数,求出最优解;⑥实际问题需要整数解时,应适当调整确定最优解.【复习要求】1.了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组.2.能从实际情境中抽象出一些简单的二元线性规划问题,并能加以解决.【例题分析】例1 (1)若点(3,1)在直线3x -2y +a =0的上方,则实数a 的取值范围是______;(2)若点(3,1)和(-4,6)在直线3x -2y +a =0的两侧,则实数a 的取值范围是______. 解:(1)将直线化为 由题意,得,解得a <-7. (2)由题意,将两点代入直线方程的左侧所得符号相反,则(3×3-2+a )[3×(-4)-12+a ]<0,即(a +7)(a -24)<0,所以,实数a 的取值范围是(-7,24).例2 (1)如图8-3-1,写出能表示图中阴影部分的不等式组;,223a x y +=23231a +⨯>图8-3-1(2)如果函数y =ax 2+bx +a 的图象与x 轴有两个交点,试在aOb 坐标平面内画出点(a ,b )表示的平面区域.略解:(1) (2)由题意,得b 2-4a 2>0,即(2a +b )(2a -b )<0,所以或,点(a ,b )表示的平面区域如图8-3-2.图8-3-2【评析】除了掌握二元一次不等式表示平面区域外,还应关注给定平面区域如何用不等式表示这个逆问题.例3 已知x ,y 满足求:(1)z 1=x +y 的最大值;(2)z 2=x -y 的最大值;(3)z 3=x 2+y 2的最小值;,02210⎪⎩⎪⎨⎧≥+-->≤y x y x ⎩⎨⎧<->+0202b a b a ⎩⎨⎧>-<+0202b a ba ⎪⎩⎪⎨⎧≤--≥+-≥-+.033,042,022y x y x y x(4)的取值范围(x ≠1). 略解:如图8-3-3,作出已知不等式组表示的平面区域.图8-3-3易求得M (2,3),A (1,0),B (0,2).(1)作直线x +y =0,通过平移,知在M 点,z 1有最大值5;(2)作直线x -y =0,通过平移,知在A 点,z 2有最大值1;(3)作圆x 2+y 2=r 2,显然当圆与直线2x +y -2=0相切时,r 2有最小值,即z 3有最小值 (4)可看作(1,0)与(x ,y )两点连线的斜率,所以z 4的取值范围是(-∞,-2]∪[3,+∞).【评析】对于非线性目标函数在线性约束条件下的最值问题,要充分挖掘其目标函数z 的几何意义.z 的几何意义常见的有:直线的截距、斜率、圆的半径等.例4 某公司招收男职员x 名,女职员y 名,x 和y 须满足约束条件则z =10x +10y 的最大值是( )(A)80 (B)85 (C)90 (D)95略解:由题意,根据已知不等式组及可得到点(x ,y )的可行域.14-=x yz 2)52(;541-x y ⎪⎩⎪⎨⎧≤≥+-≥-.112,932,22115x y x y x ⎩⎨⎧≥≥00y x如图8-3-4.图8-3-4作直线x +y =0,通过平移,知在M 点,z =10x +10y 有最大值,易得 又由题意,知x ,y ∈N ,作适当调整,知可行域内点(5,4)可使z 取最大值,所以,z max =10×5+10×4=90,选C .【评析】实际问题中,要关注是否需要整数解.例5 某工厂用两种不同原料生产同一产品,若采用甲种原料,每吨成本1000元,运费500元,可得产品90千克;若采用乙种原料,每吨成本1500元,运费400元,可得产品100千克.今预算每日原料总成本不得超过6000元,运费不得超过2000元,问此工厂每日采用甲、乙两种原料各多少千克,才能使产品的日产量最大?解:设此工厂每日需甲种原料x 吨,乙种原料y 吨,则可得产品z =90x +100y (千克).由题意,得上述不等式组表示的平面区域如图8-3-5所示,阴影部分(含边界)即为可行域.图8-3-5作直线l :90x +100y =0,并作平行于直线l的一组直线与可行域相交,其中有一条直),29,211(M ⎪⎩⎪⎨⎧≥≥≤+≤+⇒⎪⎩⎪⎨⎧≥≥≤+≤+.0,0,2045,1232.0,0,2000400500,600015001000y x y x y x y x y x yx线经过可行域上的M 点,且与直线l 的距离最大,此时目标函数达到最大值.这里M 点是直线2x +3y =12和5x +4y =20的交点,容易解得M ,此时z 取到最大值 答:当每天提供甲原料吨,乙原料吨时,每日最多可生产440千克产品. 例6 设函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.(1)在平面直角坐标系aOb 中,画出点(a ,b )所表示的区域;(2)试利用(1)所得的区域,求f (-2)的取值范围.解:(1)∵f (-1)=a -b ,f (1)=a +b ,∴即如图8-3-6,在平面直角坐标系aOb 中,作出满足上述不等式组的区域,阴影部分(含边界)即为可行域.图8-3-6(2)目标函数f (-2)=4a -2b .在平面直角坐标系aOb 中,作直线l :4a -2b =0,并作平行于直线l 的一组直线与可行域相交,其中有一条直线经过可行域上的B 点,且与直线l 的距离最大,此时目标函数达到最大值.这里B 点是直线a -b =2和a +b =4的交点,容易解得B (3,1),此时f (-2)取到最大值4×3-2×1=10.)720,712(71290⨯.440720100=⨯+712720⎩⎨⎧≤+≤≤-≤.42,21b a b a ⎪⎪⎩⎪⎪⎨⎧<+≥+≤-≥-.4,2,2,1b a b a b a ba同理,其中有一条直线经过可行域上的C 点,此时目标函数达到最小值.这里C 点是直线a -b =1和a +b =2的交点,容易解得 此时f (-2)取到最小值 所以5≤f (-2)≤10. 【评析】线性规划知识是解决“与二元一次不等式组有关的最值(或范围)问题”的常见方法之一.练习8-3一、选择题1.原点(0,0)和点(1,1)在直线x +y -a =0的两侧,则a 的取值范围是 ( )A .a <0或a >2B .a =0或a =2C .0<a <2D .0≤a ≤22.若x ≥0,y ≥0,且x +y ≤1,则z =x -y 的最大值是( )A .-1B .1C .2D .-23.已知x 和y 是正整数,且满足约束条件则z =2x +3y 的最小值是( )A .24B .14C .13D .11.54.根据程序设定,机器人在平面上能完成下列动作:先从原点O 沿正东偏北α 方向行走-段时间后,再向正北方向行走一段时间,但α 的大小以及何时改变方向不定.如图8-3-7.假定机器人行走速度为10米/分钟,设机器人行走2分钟时的可能落点区域为S ,则S 可以用不等式组表示为( )图8-3-7),21,23(C .5212234=⨯-⨯⎪⎩⎪⎨⎧≥≤-≤+.72,2,10x y x y x )2π0(≤≤αA .B .C .D .二、填空题 5.在平面直角坐标系中,不等式组表示的平面区域的面积是______.6.若实数x 、y 满足,则的取值范围是______. 7.点P (x ,y )在直线4x +3y =0上,且满足-14≤x -y ≤7,则点P 到坐标原点距离的取值范围是______.8.若当实数x ,y 满足时,z =x +3y 的最小值为-6,则实数a 等于______.三、解答题9.如果点P 在平面区域内,点Q (2,2),求|PQ |的最小值.10.制定投资计划时,不仅要考虑可能获得的盈利,而且要考虑可能出现的亏损.某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%(),可能的最大亏损率分别为30%和10%( ⎩⎨⎧≤≤≤≤200200y x ⎩⎨⎧≥+≤+2040022y x y x ⎪⎩⎪⎨⎧≥≥≤+0040022y x y x ⎪⎩⎪⎨⎧≤≤≥+202020y x y x ⎪⎩⎪⎨⎧≤≥+-≥-+20202x y x y x ⎪⎩⎪⎨⎧≤>≤+-2001x x y x x y ⎪⎩⎪⎨⎧≤≥+≥+-a x y x y x 005⎪⎩⎪⎨⎧≥-+≤-+≥+-0102022y x y x y x %100⨯=投资额盈利额盈利率投资额亏损额亏损率=),投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元.问投资人对甲、乙两个项目各投多少万元,才能使可能的盈利最大?11.设a ,b ∈R ,且b (a +b +1)<0,b (a +b -1)<0.(1)在平面直角坐标系aOb 中,画出点(a ,b )所表示的区域; (2)试利用(1)所得的区域,指出a 的取值范围.§8-4 圆的方程【知识要点】1.圆的方程(1)标准方程:(x -a )2+(y -b )2=r 2(r >0),其中点(a ,b )为圆心,r 为半径. (2)一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),其中圆心为,半径为2.点和圆的位置关系设圆的半径为r ,点到圆的圆心距离为d ,则 d >r 点在圆外; d =r 点在圆上; d <r 点在圆内. 3.直线与圆的位置关系(1)代数法:联立直线与圆的方程,解方程组,消去字母y ,得关于x 的一元二次方程,则%100⨯)2,2(ED --21.422F E D -+⇔⇔⇔>0方程组有两解直线和圆相交; =0方程组有一解直线和圆相切;<0方程组无解直线和圆相离.(2)几何法(重点):计算圆心到直线的距离d ,设圆的半径为r ,则 d <r 直线和圆相交; d =r 直线和圆相切; d >r 直线和圆相离. 4.圆与圆的位置关系设两圆的半径分别为R ,r (R ≥r ),两圆的圆心距为d (d >0),则 d >R +r 两圆相离; d =R +r 两圆外切; R -r <d <R +r 两圆相交; d =R -r 两圆内切; d <R -r 两圆内含. 【复习要求】1.掌握圆的标准方程与一般方程,能根据条件,求出圆的方程.2.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系,解决一些简单问题. 【例题分析】例1根据下列条件,求圆的方程: (1)一条直径的端点是A (3,2),B (-4,1);(2)经过两点A (1,-1)和B (-1,1),且圆心在直线x +y -2=0上; (3)经过两点A (4,2)和B (-1,3),且在两坐标轴上的四个截距之和为2.【分析】求圆的方程,可以用待定系数法.若已知条件与圆心、半径有关,则设圆的标准方程,如第(2)问.若已知条件与圆心、半径关系不大,则设圆的一般方程,如第(3)问.∆⇔⇔∆⇔⇔∆⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔解:(1)由题意圆心为AB 的中点M ,即, 因为所以圆的半径所以,所求圆的方程为 (2)方法一:设圆的方程为(x -a )2+(y -b )2=r 2(r >0),则,解得所以,所求圆的方程为(x -1)2+(y -1)2=4.方法二:由圆的几何性质可知,圆心一定在弦AB 的垂直平分线上.易得AB 的垂直平分线为y =x .由题意,解方程组,得圆心C 为(1,1),于是,半径r =|AC |=2,所以,所求圆的方程为(x -1)2+(y -1)2=4. (3)设所求圆的方程为x 2+y 2+Dx +Ey +F =0, 因为圆过点A ,B ,所以 4D +2E +F +20=0,① -D +3E +F +10=0,②在圆的方程中,令y =0,得x 2+Dx +F =0, 设圆在x 轴上的截距为x 1,x 2,则x 1+x 2=-D . 在圆的方程中,令x =0,得y 2+Ey +F =0, 设圆在y 轴上的截距为y 1,y 2,则y 1+y 2=-E .)212,243(+-)23,21(-M ,50)12()43(||22=-++=AB ⋅==250||21AB r ⋅=-++225)23()21(22y x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=-+--=--+-=-+222222)1()1()1()1(02r b a r b a b a ⎪⎩⎪⎨⎧===2,11r b a ⎩⎨⎧=-+=02y x xy由题意,得-D +(-E )=2,③解①②③,得D =-2,E =0,F =-12, 所以,所求圆的方程为x 2+y 2-2x -12=0.【评析】①以A (x 1,y 1),B (x 2,y 2)为一直径端点的圆的方程是(x -x 1)(x -x 2)+(y -y 1)(y -y 2)=0.②求圆的方程时,要注意挖掘题中圆的几何意义(如第(2)问);③待定系数法求圆的方程时,要恰当选择的圆的方程(如第(3)问),这样有时能大大减少运算量.例2 (1)点P (a ,b )在圆C :x 2+y 2=r 2(r >0)上,求过点P 的圆的切线方程;(2)若点P (a ,b )在圆C :x 2+y 2=r 2(r >0)内,判断直线ax +by =r 2与圆C 的位置关系. 解:(1)方法一:因为切线l 与半径OP 垂直,又可求出直线OP 的斜率,所以可得切线l 的斜率,再由点斜式得到切线方程.但要注意斜率是否存在(详细过程略).方法二:设Q (x ,y )为所求切线上任一点,则,即(x -a ,y -b )·(a ,b )=0. 整理得ax +by =a 2+b 2,又因为P 在圆上,所以a 2+b 2=r 2, 故所求的切线方程为ax +by =r 2. (2)由已知,得a 2+b 2<r 2,则圆心O (0,0)到直线ax +by =r 2的距离所以此直线与圆C 相离.【评析】随着点P (a ,b )与圆C :x 2+y 2=r 2的位置关系的变化,直线l :ax +by =r 2与圆C 的位置关系也在变化.①当点P 在圆C 上时,直线l 与圆C 相切;②当点P 在圆C 内时,直线l 与圆C 相离;③当点P 在圆外时,直线l 与圆C 相交.例3 已知点A (a ,3),圆C :(x -1)2+(y -2)2=4. (1)设a =3,求过点A 且与圆C 相切的直线方程;(2)设a =4,直线l 过点A 且被圆C 截得的弦长为2,求直线l 的方程;(3)设a =2,直线l 1过点A ,求l 1被圆C 截得的线段的最短长度,并求此时l 1的方程. 解:(1)如图8-4-1,此时A (3,3),0=⋅.||22222r rr ba r d =>+=3图8-4-1设切线为y -3=k (x -3)或x =3, 验证知x =3符合题意;当切线为y -3=k (x -3),即kx -y -3k +3=0时,圆心(1,2)到切线的距离解得所以,切线方程为3x +4y -21=0或x =3. (2)如图8-4-2,此时A (4,3),图8-4-2设直线l 为y -3=k (x -4)或x =4(舍), 设弦PQ 的中点为M ,则|CP |=r =2,所以,即圆心到直线l 的距离为1,,21|332|2=++--=k k k d ,43-=k ,3||=PM ,1||||||22=-=PM CP CM于是,解得k =0或, 所以,直线l 的方程为或y =3. (3)如图8-4-3,此时A (2,3),设所截得的线段为DE ,圆心到直线l 1的距离为d ,图8-4-3则,即 因为直线l 1过点A ,所以圆心到直线l 1的距离为d ≤|CA|=故当d =时,, 此时AC ⊥l 1,因为 所以=-1,故直线l 1方程为y -3=-(x -2),即x +y -5=0.【评析】(1)用点斜式设直线方程时,要注意斜率是否存在;(2)涉及直线与圆的位置关系问题时,用与圆有关的几何意义解题较为方便,常见的有:①比较圆心到直线的距离与半径的大小;②如图8-4-2,在由弦心距、半径及弦组成的Rt △CMP 中,有|CM |2+|MP |2=|CP |2,CM ⊥MP 等;③如图8-4-1,由切线段、半径组成的Rt △AB C .例4 已知圆C :(x -1)2+(y -2)2=25,直线l :mx +y +m =0.求证:不论m 取何值,直线l 与圆C 恒交于两点.11|342|2=++--=k k k d 43x y 43=222|)|21(r d DE =+,42||2d DE -=,2222||min =DE ,11223=--=AC k 1l k【分析】要证明直线l 与圆C 恒交于两点,可以用圆心到直线的距离小于半径,也可以联立直线和圆的方程,消去y 后用判别式大于零去证明,但此题这两种方法计算量都很大.如果能说明直线l 恒过圆内一定点,那么直线l 与圆C 显然有两个交点.解:因为直线l :mx +y +m =0可化为y =-m (x +1), 所以直线l 恒过点A (-1,0),又圆C :(x -1)2+(y -2)2=25的圆心为(1,2),半径为5, 且点A 到圆C 的圆心的距离等于 所以点A 为圆C 内一点,则直线l 恒过圆内一点A , 所以直线l 与圆C 恒交于两点.例5 四边形ABCD 的顶点A (4,3),B (0,5),C (-3,-4),D O 为坐标原点. (1)此四边形是否有外接圆,若有,求出外接圆的方程,若没有,请说明理由; (2)记△ABC 的外接圆为W ,过W 上的点E (x 0,y 0)(x 0>0,y 0>0)作圆W 的切线l ,设l 与x 轴、y 轴的正半轴分别交于点P 、Q ,求△OPQ 面积的最小值.【分析】判断四点是否共圆,初中的方法是证明一组对角之和为180°,此题此法不易做.如何用所学知识解决问题是此题的关键,如果想到三点共圆,那么可以求出过三点的圆的方程,然后再判断第四点是否在圆上,问题就迎刃而解.解:(1)设△ABC 的外接圆为W ,圆心M (a ,b ),半径为r (r >0). 则W 为:(x -a )2+(y -b )2=r 2.由题意,得,解得,所以W :x 2+y 2=25. 将点D 的坐标代入W 的方程,适合. 所以点D 在△ABC 的外接圆W 上,故四边形ABCD 有外接圆,且外接圆的方程为x 2+y 2=25. (2)设切线l 的斜率为k ,直线ME (即OE )的斜率为k 1,,522)2()11(22<=-+--).1,62(⎪⎪⎪⎩⎪⎪⎪⎨⎧=--+--=-+-=-+-222222222)4()3()5()0()3()4(r b a r b a r b a ⎪⎩⎪⎨⎧===500r b a∵圆的切线l 垂直于过切点的半径,∴∴切线,整理得而,∵点E (x 0,y 0)在圆W 上,即,∴切线l :x 0x +y 0y =25.在l 的方程中,令x =0,得,同理 ∴△OPQ 的面积 ∵,(其中x 0>0,y 0>0)∴当且仅当时,等号成立. 即当时,△OPQ 的面积有最小值25. 练习8-4一、选择题1.以点(2,-1)为圆心且与直线3x -4y +5=0相切的圆的方程为( ) A .(x -2)2+(y +1)2=3 B .(x +2)2+(y -1)2=3 C .(x -2)2+(y +1)2=9D .(x +2)2+(y -1)2=92.圆x 2+y 2-4x +4y +6=0截直线x -y -5=0所得的弦长等于( ) A .B .C .1D .53.若直线与圆x 2+y 2=1有公共点,则( ) ,11k k -= ,,00001y xk x y k -=∴=)(:0000x x y xy y l --=-202000y x y y x x +=+252020=+y x )25,0(,2500y Q y y ∴=).0,25(0x P ,26252525210000y x y x S OPQ ==⋅⋅∆002020225y x y x ≥=+.2525625262500=≥=∆y x S OPQ 22500==y x )225225(,E 62251=+bya xA .a 2+b 2≤1B .a 2+b 2≥1C .D .4.圆(x +2)2+y 2=5关于点(1,2)对称的圆的方程为( ) A .(x +4)2+(y -2)2=5 B .(x -4)2+(y -4)2=5 C .(x +4)2+(y +4)2=5 D .(x +4)2+(y +2)2=5二、填空题5.由点P (-1,4)向圆x 2+y 2-4x -6y +12=0所引的切线长是______. 6.若半径为1的圆分别与y 轴的正半轴和射线相切,则这个圆的方程为______.7.圆x 2+y 2+2x +4y -3=0上到直线x +y +1=0的距离为的点共有______个. 8.若不等式x 2+2x +a ≥-y 2-2y 对任意的实数x 、y 都成立,则实数a 的取值范围是______. 三、解答题9.已知直线l :x -y +2=0与圆C :(x -a )2+(y -2)2=4相交于A 、B 两点. (1)当a =-2时,求弦AB 的垂直平分线方程; (2)当l 被圆C 截得弦长为时,求a 的值.10.已知圆满足以下三个条件:①截y 轴所得的弦长为2;②被x 轴分成两段圆弧,其弧长的比为3∶1;③圆心到直线l :x -2y =0的距离为.求该圆的方程.11.已知圆C :(x -1)2+(y -2)2=25,直线l :mx +y +m =0.求直线l 被圆C 截得的线段的最短长度,以及此时l 的方程.11122≤+b a 11122≥+b a )0(33≥=x x y 23255§8-5 曲线与方程【知识要点】1.轨迹方程一般地,一条曲线可以看成动点运动的轨迹,曲线的方程又常称为满足某种条件的点的轨迹方程.2.曲线与方程在平面直角坐标系中,如果曲线C 与方程F (x ,y )=0之间有如下关系: (1)曲线C 上点的坐标都是方程F (x ,y )=0的解; (2)以方程F (x ,y )=0的解为坐标的点都在曲线C 上.那么,曲线C 叫做方程F (x ,y )=0的曲线,方程F (x ,y )=0叫做曲线C 的方程. 3.曲线的交点已知两条曲线C 1和C 2的方程分别是F (x ,y )=0,G (x ,y )=0,那么求两条曲线C 1和C 2的交点坐标,只要求方程组的实数解就可以得到.【复习要求】1.了解曲线与方程的对应关系,体会数形结合的思想、方程思想. 2.会求简单的轨迹方程;能根据方程研究曲线的简单性质. 【例题分析】例1 已知点A (-1,0),B (2,0),动点P 到点A 的距离与它到点B 的距离之比为2,求动点P 的轨迹方程.解:设P (x ,y ),则,即 化简得x 2+y 2-6x +5=0,所以动点P 的轨迹方程为x 2+y 2-6x +5=0.⎩⎨⎧==0),(0),(y x G y x F 2||||=PB PA ,2)2()1(2222=+-++yx y x。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

08立体几何专题解析
一、高考试题特点
高考试卷中,立体几何把考查的立足点放在空间图形上,突出对空间概念和空间想象能力的考查。
立体几何的基础是对点、线、面的位置关系的讨论和研究,进而讨论几何体。高考命题时,突出空间图
形的特点,侧重于直线与直线、直线与平面、两个平面的位置的关系以及空间角、距离、面积、体积的
计算的考查,以便检测考生立体几何的知识水平和能力。
二、高考试题中题型分布及分值比例
以下是08考题、考点、分值分布统计表
卷型 题 序 分 值 考查的题型及知识点
全国Ⅰ 11、16、18 5+5+12=22 棱柱的性质、线线角、线面角、二面角、
垂直的证明
全国Ⅱ 10、12、16、19 5+5+4+12=26 线线角、球的性质、四棱柱与平行六面体
的性质、线面关系、面面关系、二面角
北京卷 8、16 5+14=19 空间想象能力和函数图象、垂直关系、二
面角、点到面的距离
天津卷 4、12、19 5+4+12=21 面面关系、球的性质、线面垂直、异面直
线所成的角、二面角
湖北卷 3、18 5+12=17 球的性质、直棱柱、线面角、二面角、线
面关系
湖难卷 5、9、17 5+5+12=22 线线、线面、面面的位置关系、球面距离、
面面垂直的证明、二面角
浙江卷 10、14、18 5+4+14=23 空间想象能力、球的性质、线面平行、二
面角
江西卷 10、16、20 5+4+12=21 空间想象能力、线面垂直、二面角
辽宁卷 11、14、19 5+4+12=21 空间想象能力、球的性质、线面关系、面
面关系、解三角形
福建卷 6、15、18 5+4+12=21 线面角、球的性质、线面关系、线线角、
点到面的距离
四川卷 8、9、15、19 5+5+4+12=26 球的性质、空间想象能力及最小角定理、
四棱柱的性质、四点共面、二面角
安徽卷 4、16、18 5+4+12=21 线线、线面、面面的位置关系、球面距离、
线线角、点到面的距离
陕西卷 9、14、19 5+4+12=21 线面角、线面垂直性质、球面距离、面面
垂直、二面角
广东卷 5、15、20 5+5+14=23 三视图、平面几何、线面角、线线垂直
山东卷 6、20 5+12=17 三视图、线线垂直、线面垂直、二面角
宁夏/海南 12、15、18、22 5+5+12+10=32 三视图、球的性质、线线角、线面角、平
面几何
重庆卷 9、13 5+13=18 球的性质、折叠问题
上海卷 13、16 4+12=16 线面垂直、线面角
三、本专题高考试题结构分析
从上表可以看出:立体几何均分在21分左右,高考的命题坚持以稳定大局,控制难度,贯彻“说明”
要求,同时在创新方面做拉一些有益的尝试。
命题的稳定主要表现在:考查的重点及难点稳定,高考始终把空间直线与直线、直线与平面、平面与平
面的平行与垂直的性质与判定,线、面间的角与距离的计算作为考查的重点,尤其是以多面体和旋转体为载
体的线面位置关系的论证,年年反复进行考查,在难度上也始终是以中等偏难为主。
在改革创新方面表现在:
全国Ⅱ16题,
平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,
类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:

充要条件① ;
充要条件② .
(写出你认为正确的两个充要条件)
答案不唯一,使试题更具有开放性和探索性;

北京卷第8题,
如图,动点P在正方体1111ABCDABCD的对角线1BD上.过点P作垂直于平面

11
BBDD
的直线,与正方体表面相交于MN,.设BPx,MNy,则函数()yfx的图象大
致是( B )

把立体几何的空间想象能力和函数图象有机的结合,是数形完美的结合;
江西卷16题是多选题,
如图1,一个正四棱柱形的密闭容器底
部镶嵌了同底的正四棱锥形实心装饰块,容器内盛有a升水
时,水面恰好经过正四棱锥的顶点P。如果将容器倒置,水面
也恰好过点P(图2)。有下列四个命题:
A.正四棱锥的高等于正四棱柱高的一半
B.将容器侧面水平放置时,水面也恰好过点P
C.任意摆放该容器,当水面静止时,水面都恰好经过点P
D.若往容器内再注入a升水,则容器恰好能装满
其中真命题的代号是: B,D (写出所有真命题的代号).
将立体几何与生活实际结合,让学生学以致用
江西卷的第20题,如图,正三棱锥O-ABC的三条侧棱
OA、OB、OC两两垂直,且长度均为2,
E、F分别是AB、AC的中点,H是EF的中点,
过EF的一个平面与侧棱OA、OB、OC或其延长线分别相交于A1、B1、

C1,已知OA1=32.
(1)证明:B1C1平面OAH;(2)求二面角O-A1B1-C1的大小.
只要学生把图倒置,问题就很容易解,考查到了学生的灵活度。
综合性、开放性立体几何题成为命题者的试验田,这些改革尝试的目的在于激发学生独立思考,从数学的角
度去发现和提出问题,并加以探索和研究,有利于提高学生的思维能力和创新意识。
四、本专题的热点
透析高考试题,可以看出本专题的热点为:
(1) 直线和平面平行、垂直的判定与性质;
(2) 两个平面垂直的判定与性质;
(3) 异面直线所成的角、直线和平面所成的角及二面角;
(4) 考查求空间距离及求距离时的等面积(或等体积)转化的思想方法;

A B
C
D
M

N
P

A
1
B

1

C
1

D
1
y x A. O y x B. O y x C. O y

x
D.
O

P
P

图1
2图

N
M
B
1

C
1

A
1

H
F

E
C

B
A

O
(5) 利用空间向量来证明平行和垂直关系(包括线线垂直、平行;线面垂直、平行;面面垂直、平行)及
利用空间向量解决求空间角及空间距离问题;
(6) 棱柱、棱锥、球的概念和性质,棱柱、棱锥的复现率较高,在迎考中应继续关注;
(7) 寻找截面形状,多面体的外切球、内接球,计数问题,折叠问题渐成新热点;
(8) 从与新课标的关系看,08年高考命题不同程度体现了三视图的思想方法,如山东卷第6题、广东卷
第5题、海南卷第12题等等。

五、09复习建议:

1、回归课本,抓好基础落实
系统地掌握每一章节的概念、性质、法则、公式、定理、公理及典型例题,这是高考复习必须做好的第
一步,高考题“源于课本,高于课本”,这是一条不变的真理,所以复习时万万不能远离课本,必要时还应对一
些课本内容进行深入探究、合理延伸和拓展。
2、注重规范,力求颗粒归仓
网上阅卷对考生的答题规范提出更高要求,填空题要求:数值准确、形式规范、表达式(数)最简;解答
题要求:语言精练、字迹工整、完整规范。
考生答题时常见问题:如立几论证中的“跳步”,缺少必要文字说明,忽视分类讨论,或讨论遗漏或重
复等等。这些都是学生的“弱点”,自然也是考试时的“失分点”,平时学习中,我们应该引起足够的重视。
3、加强计算,提高运算能力
“差之毫厘,缪以千里”,“会而不对,对而不全”,计算能力偏弱,计算合理性不够,这些在考试时有发
生,对此平时复习过程中应该加强对计算能力的培养;学会主动寻求合理、简捷运算途径;平时训练应树立
“题不在多,做精则行”的理念。
4、整体把握,培养综合能力
对于综合能力的培养,我们坚持整体着眼,局部入手,重点突破,逐步深化原则;适度关注创新题。高
考数学考查学生的能力,势必设计一定的创新题,以增加试题的区分度,平时复习应注重数学建模、直觉思
维能力、合情推理能力、策略创造能力的培养。

相关文档
最新文档