数值分析总结
数值分析作学习总结

摘 要在科学工作中经常出现这类问题,我们关注求解非线性方程或非线性方程组——求x 使得f (x )=0或求得X= 使得F (X )=0。
这些方程中,至少一个变量以任意的非线性方程形式出现。
在实变量变量的实值函数这种最简单的情况下,提出的一般问题是:已知函数f :R →R ,求x 的解使得f (X )=0这里主要讨论解决这类问题的一般方法和过程。
在许多应用中可以发现非线性方程的例子。
例如在光的衍射理论中,我们需要用到方程:X-tanX=0在行星轨道的计算中我们需要开普勒方程:X-asinX=b其中a 和b 任意取值。
在科学研究和科学计算中常常碰到以上的非线性方程求解问题。
非线性方程的解一般不能解析求出。
所以数值解法显得非常重要,而数值解法在实际中的实现则更为重要。
本文将介绍几种数值解法以及Matlab 中的实现程序。
为研究非线性方程数值解,给出了二分法、简单迭代法和牛顿迭代法的Matlab 程序,并进行了近似计算。
结果表明,牛顿迭代法收敛最快。
关键词:非线性方程;Matlab 程序;二分法;迭代法;简单迭代法;弦截法。
()T1n x x x ⋅⋅⋅2,,非线性方程数值解法1 二分法设f (x)在[a,b]连续,假定f (a)<0,f (b)>0,取中点 ,检查f (x0)符号。
若f (x0)=0,则x0就是一个根;若f (x0)>0,记a为a1,x0为b1,则得有根区间[a1,b1];若f(x0)<0,记x0为a1,b为b1,则得有根区间[a1,b1]。
后两种情况都得到有根区间[a1,b1],它的长度为原区间的一半。
对[a1,b1],令 ,再用同样的方法,可得新的有根区间[a2,b2],它的长度为[a1,b1]的一半,如此反复进行下去,其中每一个区间是前一区间的一半。
有这就是方程的根。
而即为方程的近似根,且有估计误差下面用二分法求在区间[1,2]上的根.因为二分法只能求单根,首先可以搜索函数(2.2)在区间[1,2]的根的情况。
数值分析知识点总结

数值分析知识点总结数值分析知识点总结:本文提供了数值分析中的一些重要知识点和例题,但更多的例题可以参考老师布置的作业题和课件相关例题。
第1章数值分析与科学计算引论:绝对误差和相对误差是衡量近似值精度的指标,有效数字则是描述近似值精度的一种方式。
其中,相对误差限是绝对误差的上界。
有效数字的计算方法为:如果近似值x的误差限是某一位的半个单位,该位到x的第一位非零数字共有n位,就说x*共有n位有效数字。
一个比较好用的公式是f(x)的误差限:f(x)f'(x)(x)。
第2章插值法:插值多项式的余项表达式可以用来估计截断误差。
三次样条插值与三次分段埃尔米特插值有所不同,但哪一个更优越需要根据实际情况而定。
确定n+1个节点的三次样条插值函数需要多少个参数?为确定这些参数,需加上什么条件?三弯矩法可以用来求解三次样条表达式。
第3章函数逼近与快速傅里叶变换:带权(x)的正交多项式是在特定区间上满足一定条件的多项式,其中[-1,1]上的勒让德多项式具有重要性质。
切比雪夫多项式也有其独特的性质。
用切比雪夫多项式零点做插值点得到的插值多项式与拉格朗日插值有所不同。
最小二乘拟合的法方程可以用来拟合曲线,但当次数n较大时,不直接求解法方程。
第4章数值积分与数值微分:XXX让德求积公式和XXX-XXX求积公式是数值积分中的两种方法,其中高斯求积公式可以用来计算定积分。
勒让德多项式的零点就是高斯点,这种形式的高斯公式被称为XXX让德求积公式。
中点方法是一种数值积分方法,其公式如下:插值型的求导公式有两点公式和三点公式。
第5章介绍了解线性方程组的直接方法,其中包括LU矩阵的推导过程。
相关例题可以在教材第4章作业题和课件中找到。
第6章介绍了解线性方程组的迭代法,判断迭代法是否收敛的条件如下:第7章介绍了非线性方程与方程组的数值解法,其中牛顿法是一种常见的方法。
对于单根且光滑的f(x)=0,牛顿法是局部二阶收敛的。
简化牛顿法和牛顿下山法都是非线性方程组的求解方法。
数值分析考试复习总结

第一章1误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时 ,一般要经历哪几个阶段?在哪些阶 段将有哪些误差产生?答:实际问题-数学模型-数值方法-计算结果在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差 选用数值方法产生:截断误差 计算过程产生:舍入误差传播误差6•设a =0.937关于精确数x 有3位有效数字,估计a 的相对误差.对于f(x^ .j_x ,估计f(a)对于f(x)的误差和相对误差I l /£、I I 匚 . a-x I .(2^10 . _ _3 | E( f)冃心 _x —G —a |= ------------ _,=] < ------------------ =10、1—x +H — a| 2 沃 0.25| E r(f)|E10,1 -a =4 10;.□2有效数字基本原则:1两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子)例题:4 •改变下列表达式使计算结果比较精确:a 的相对误差:由于1 _3x —a|E(x)|< x — <-10 .E r (X )=—2 XE r (x) < 12 7 2 1 2 10 =— 10 .18(Th1)解 f(a)对于f(x)的误差和相对误差第二章拉格朗日插值公式(即公式(1))插值基函数(因子)可简洁表示为n其中:n (x) - JI. 1n(X - X j ),nX i =「 (X i - X j )j /j工j料例1 n=1时,线性插值公式R(x) = y ° x( )+y 1 (x-X 0)X ----------------- ?(xo-xj ' (X 1 -X o )例2 n=2时,抛物插值公式 牛顿(Newton )插值公式由差商的引入,知(1) 过点x 0, x 1的一次插值多项式 为 其中(2) 过点x 0, x 1, x 2的二次插值多项式为其中重点是分段插值: 例题:(1)-1 01/2 1-3 -1/2 0 1 (2)-1 0 1/2 1-3/21/2解⑵:方法一.由Lagrange 插值公式(1) (2) 1 1 - x 1 2x 1 x(3)解⑴⑶1 - COS Xx对 x 0,| x 卜:::1.2x1(1x)(1 2x).⑵2 x(\ X 1 X 、X - 1 x)21 -cosx sin xsin x------------------ = ------------------------------ a s ---------------------x x(1 cosx) 1 cosx1 x可得:L3(x)=x2(x -1 2)方法二•令3 1由L3(-1)=-3,L3(1)=—,定A, B (称之为待定系数法)□2 215.设f(x) =x2,求f(x)在区间[0,1]上的分段线性插值函数f h(x),并估计误差,取等距节点,且h =1/10.解f(x) =x2,人=ih ,i =0,1, ,10,110设X i乞X乞X i 1 ,贝U:误差估计:第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间L 2[a,b ]中讨论2. 离散意义下在n 维欧氏空间R n 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设 L 2[a,b ]的 n 1 维子空间 P =span {1,x,x 2, x n },其中1,x,x 2…,x n 是L 2[a,b ]的线性无关多项式系. n对-f • L 2[a,b ],设其最佳逼近多项式''可表示为:''二a i x i i=0由(f - *, )=o, - P n即 n (x i ,x j )a * =(f ,x i ),0(1) n(*2)j=o其中称(*2)式为最佳逼近多项式的法方程组(或正规方程组) . 由{x [二的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一.11、求f(x)二cos 二X , X- [0,1]的一次和二次最佳平方逼近多项式. 解: 设 P ;(X) =a 0 a 1x , P ;(x)二 b 0 b,x b 2x 2 分别为f (x)的一次、二次最佳平方逼近多项式。
数值分析的所有知识点总结

数值分析的所有知识点总结一、数值分析的基本概念1.1 数值分析的定义和作用数值分析是研究利用计算机对数学问题进行数值计算的一门学科。
它旨在发展和分析数值计算方法,以解决实际问题中出现的数学模型。
数值分析的主要作用在于加快科学研究和工程设计的速度,提高计算精度和可靠性,以及发现新的科学规律和工程技术。
1.2 数值计算的基本步骤数值计算通常包括以下基本步骤:建立数学模型、选择适当的数值方法、编写计算程序、进行计算和分析结果。
其中,建立数学模型是数值计算的基础,它将实际问题抽象为数学公式或方程组的形式;选择适当的数值方法是指根据具体问题的特点,选择合适的数值计算方法进行求解;编写计算程序是指将选择的数值方法用计算机程序的形式实现;进行计算和分析结果是指利用计算机进行数值计算,并分析计算结果的准确性和可靠性。
1.3 数值分析的应用范围数值分析广泛应用于科学、工程、经济、金融等领域。
在科学研究中,数值分析常用于数学建模、实验数据处理、科学计算等方面;在工程领域,数值分析常用于工程设计、结构分析、流体力学、传热传质等方面;在经济金融领域,数值分析常用于风险评估、金融工程、市场预测等方面。
二、数值计算方法2.1 插值法插值法是利用已知的离散数据(如实验数据、观测数据)推导出未知的数据值的一种数值计算方法。
常用的插值方法包括拉格朗日插值、牛顿插值、分段插值等。
2.2 数值微分与数值积分数值微分是指利用离散数据计算函数的导数值的数值计算方法。
常用的数值微分方法包括差商法、中心差商法等。
数值积分是指利用离散数据计算函数的积分值的数值计算方法。
常用的数值积分方法包括复合梯形法、复合辛普森法等。
2.3 数值线性代数数值线性代数是研究线性代数问题的数值计算方法。
它涉及到线性方程组的求解、线性方程组的特征值和特征向量的计算、矩阵的LU分解、矩阵的QR分解等内容。
2.4 非线性方程求解非线性方程求解是研究非线性方程的数值计算方法。
数值分析例题和知识点总结

数值分析例题和知识点总结数值分析是数学的一个重要分支,它主要研究如何用数值方法求解数学问题。
数值分析在科学计算、工程技术、经济金融等领域都有着广泛的应用。
为了更好地理解和掌握数值分析的知识,下面我们将通过一些例题来总结相关的知识点。
一、误差分析误差是数值分析中一个非常重要的概念。
误差可以分为绝对误差、相对误差和有效数字。
绝对误差是指精确值与近似值之差,即$|x x^|$,其中$x$ 是精确值,$x^$是近似值。
相对误差是绝对误差与精确值之比,即$\frac{|x x^|}{|x|}$。
有效数字是指从左边第一个非零数字到最后一位数字的所有数字。
例如,对于数$x = 314159$,如果近似值为$x^ = 314$,则绝对误差为$|314159 314| = 000159$,相对误差为$\frac{000159}{314159} \approx 0000503$,有效数字为 3 位。
二、插值法插值法是数值分析中的一种基本方法,用于通过已知的点来构造函数。
常见的插值方法有拉格朗日插值和牛顿插值。
(一)拉格朗日插值假设有$n + 1$ 个点$(x_0, y_0),(x_1, y_1),\cdots, (x_n, y_n)$,则拉格朗日插值多项式为:\L_n(x) =\sum_{i = 0}^n y_i \ell_i(x)\其中,\(\ell_i(x) =\prod_{j = 0, j \neq i}^n \frac{x x_j}{x_i x_j}\)。
例如,已知点$(0, 1),(1, 3),(2, 5)$,求插值多项式。
首先计算拉格朗日基函数:\(\ell_0(x) =\frac{(x 1)(x 2)}{(0 1)(0 2)}=\frac{1}{2}(x 1)(x 2)\)\(\ell_1(x) =\frac{(x 0)(x 2)}{(1 0)(1 2)}= x(x 2)\)\(\ell_2(x) =\frac{(x 0)(x 1)}{(2 0)(2 1)}=\frac{1}{2}x(x 1)\)则插值多项式为:\L_2(x) = 1 \times \frac{1}{2}(x 1)(x 2) + 3 \times (x)(x 2) + 5 \times \frac{1}{2}x(x 1)\(二)牛顿插值牛顿插值多项式为:\N_n(x) = fx_0 +\sum_{k = 1}^n fx_0, x_1, \cdots, x_k \prod_{i = 0}^{k 1}(x x_i)\其中,差商\(fx_0, x_1, \cdots, x_k =\frac{fx_1, \cdots, x_k fx_0, \cdots, x_{k 1}}{x_k x_0}\)。
数值分析总结

数值分析总结第二章数值分析基本概念教学内容:1.误差与有效数字误差、误差限、相对误差、相对误差限和有效数字的定义及相互关系;误差的来源和误差的基本特性;误差的计算(估计)的基本方法。
2.算法的适定性问题数值分析中的病态和不稳定性问题介绍;病态问题和不稳定算法的实例分析。
3.数值计算的几个注意问题避免相近二数相减;避免小分母;避免大数吃小数;选用稳定的算法。
1.数值分析简介数值分析的任务数值分析是研究求解各类数学问题的数值方法和有关理论的学科 ● 数值分析的过程构造算法、使用算法、分析算法2. 数值计算的基本概念● 误差概念和分析误差的定义:设x 是精确值,p 是近似值,则定义两者之差是绝对误差: a x p ∆=-由于精确值一般是未知的,因而Δ不能求出来,但可以根据测量误差或计算情况估计它的上限|-|x p εε<称为绝对误差限。
相对误差定义为绝对误差与精确值之比ar x∆∆=ar xη∆∆=<称为相对误差限误差的来源:舍入误差将无限位字长的精确数处理成有限位字长近似数的处理方法称为舍入方法。
带来舍人误差。
有效数字 对于a=a0 a1 … am . am+1 … am+n(a0≠0) 的近似数, 若|Δ|≤0.5x10-n ,则称a 为具有m+n+1位有效数字的有效数,其中每一位数字都叫做a 的有效数字。
有效数和可靠数的最末位数字称为可疑数字 有效数位的多少直接影响到近似值的绝对误差与相对误差的大小。
推论1 对于给出的有效数,其绝对误差限不大于其最末数字的半个单位。
推论2 对于给出的一个有效数,其相对误差限可估计如下:例:计算y = ln x 。
若x ≈ 20,则取x 的几位有效数字可保证y 的相对误差 <120.10mn x a a a =±⨯1102m nx x *-∆=-≤⨯120.10mn x a a a =±⨯15()10n r x a -∆≤⨯0.1% ?截断误差用数值法求解数学模型时,往往用简单代替复杂,或者用有限过程代替无限过程所引起的误差。
数值分析期末知识点总结
数值分析期末知识点总结一、引言数值分析是一门研究如何使用计算机提高数学模型数值计算精度和效率的学科。
它是计算数学的一个重要分支,涉及到数值计算、数值逼近和误差分析等一系列内容。
在数值分析课程中,我们将学习到数值解微分方程、线性代数问题的求解、插值与拟合、积分等一系列内容。
本文将对数值分析期末知识点进行总结,以便帮助大家复习。
二、常见数值计算方法1. 插值与拟合插值与拟合是数值分析中重要的内容,它们用于在给定数据点集上构造一个函数,以便在其他点上进行求值。
插值是通过一些已知数据点来求得一个函数,使得这个函数能够通过这些点,而拟合则是通过已知数据点来求得一个函数,使得这个函数在这些点附近能够比较好地拟合数据。
常见的插值方法包括线性插值、拉格朗日插值、牛顿插值等;而拟合方法包括最小二乘法拟合、多项式拟合等。
2. 数值解微分方程数值解微分方程是数值分析的一个重要内容,它讨论如何使用计算机对微分方程进行数值求解。
微分方程是自然界中描述变化的数学方程,它们在物理学、化学、生物学等领域都有着重要的应用。
数值解微分方程的方法包括欧拉法、中点法、四阶龙格-库塔法等。
3. 数值线性代数数值线性代数是数值分析领域的另一个重要内容,它讨论如何使用数值方法解决线性代数问题。
原始的线性代数问题可能非常大或者非常复杂,因此我们常常需要使用计算机进行数值计算。
数值线性代数的方法包括高斯消元法、LU分解、Jacobi迭代法、Gauss-Seidel 迭代法等。
4. 数值积分数值积分是数值分析的一个重要内容,它讨论如何使用数值方法对积分进行数值求解。
在实际问题中,有很多积分问题是无法解析求解的,因此我们需要使用数值方法进行近似求解。
数值积分的方法包括复合辛普森法、复合梯形法、龙贝格积分法等。
三、数值分析的误差分析在数值计算过程中,我们会遇到误差的问题。
这些误差可能来自于测量、舍入、截断等各种原因。
因此,误差分析是数值分析中一个非常重要的内容。
数值分析考试复习总结汇总
第一章1 误差相对误差和绝对误差得概念 例题:当用数值计算方法求解一个实际的物理运动过程时, 一般要经历哪几个阶段? 在哪些阶段将有哪些误差产生? 答: 实际问题-数学模型-数值方法-计算结果 在这个过程中存在一下几种误差:建立数学模型过程中产生:模型误差 参数误差选用数值方法产生:截断误差 计算过程产生:舍入误差 传播误差6.设937.0=a 关于精确数x 有3位有效数字,估计a 的相对误差. 对于x x f -=1)(,估计)(a f 对于)(x f 的误差和相对误差.解 a 的相对误差:由于 31021|)(|-⋅≤-≤a x x E . x ax x E r -=)(, 221018110921)(--⋅=⨯≤x E r . (1Th ))(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r . □2有效数字基本原则:1 两个很接近的数字不做减法:2: 不用很小得数做分母(不用很大的数做分子)例题:4.改变下列表达式使计算结果比较精确:(1) ;1||,11211<<+--+x xxx 对(2) ;1,11>>--+x xx xx 对(3)1||,0,cos 1<<≠-x x xx对.解 (1) )21()1(22x x x ++. (2) )11(2x x x x x-++.(3) xxx x x x x cos 1sin )cos 1(sin cos 12+≈+=-. □ 第二章拉格朗日插值公式(即公式(1))∑==ni i i n x l y x p 0)()(插值基函数(因子)可简洁表示为)()()()()()(0i n i n nij j j i j i x x x x x x x x x l ωω'-=--=∏≠= 其中: ()∏∏≠==-='-=nij j j i i nnj jn x x x xx x 00)(,)()(ωω. 例1 n=1时,线性插值公式 )()()()()(010110101x x x x y x x x x y x P --⨯+--⨯=, 例2 n=2时,抛物插值公式))(())(())(())(())(())(()(1202102210120120102102x x x x x x x x y x x x x x x x x y x x x x x x x x y x P ----⨯+----⨯+----⨯= 牛顿(Newton )插值公式由差商的引入,知(1) 过点10,x x 的一次插值多项式为)()()(0101x x c x f x p -+=其中],[)()(1001011x x f x x x f x f c =--=⇒ )](,[)()(01001x x x x f x f x p -+=(2) 过点210,,x x x 的二次插值多项式为))(()()(10212x x x x c x p x p --+=其中],,[)()()()(21002010112122x x x f x x x x x f x f x x x f x f c =------=⇒ ))(](,,[)()(1021012x x x x x x x f x p x p --+=))(](,,[)](,[)(102100100x x x x x x x f x x x x f x f --+-+=重点是分段插值: 例题:1. 利用Lagrange 插值公式求下列各离散函数的插值多项式(结果要简化):(1)(2)解(2):方法一. 由 Lagrange 插值公式)()()()()(332211003x l f x l f x l f x l f x L ⋅+⋅+⋅+⋅= 可得: )21()(23-=x x x L 方法二. 令)()21()(3B Ax x x x L +-=由 23)1(3-=-L , 21)1(3=L , 定A ,B (称之为待定系数法) □15.设2)(x x f =,求)(x f 在区间]1,0[上的分段线性插值函数)(x f h ,并估计误差,取等距节点,且10/1=h .解 2)(x x f =, ih x i = , 10,,1,0 =i , 101=h设 1+≤≤i i x x x ,则: ii ii i i i i h x x x x x f x x x x x f x f --+--⋅=++++1111)()()(h ihx h i h h i x h i -++-+-⋅=22))1(()1()( 100)1(10)12(+-+=i i x i 误差估计: ))1(()(!2|)()(|max)1(h i x ih x f x f x f hi x ix h +--''≤-+≤≤. □第三章最佳一致逼近:(了解) 最佳平方逼近 主要分两种情形:1. 连续意义下在空间],[2b a L 中讨论2. 离散意义下在n 维欧氏空间n R 中讨论,只要求提供f 的样本值1. 最佳逼近多项式的法方程组设],[2b a L 的1+n 维子空间 n P =span },,,1{2n x x x , 其中 n x x x ,,,12 是],[2b a L 的线性无关多项式系.对],[2b a L f ∈∀,设其最佳逼近多项式*φ可表示为: ∑==ni i i x a 0**φ由 n P f ∈∀=-φφφ ,0),(*⇒ ∑===-ni j i i n j x x a f 0*)1(0,0),(即 ∑===nj ij j i n i x f a x x 0*)1(0),,(),((*2) 其中⎰⎰⎰⋅==⋅=+b ab abai iji jijidx x x f x f dx x dx x x x x)(),( ,),(称(*2)式为最佳逼近多项式的法方程组(或正规方程组). 由n i i x 0}{=的线性无关性,可证明G 正定,即 上述法方程组的解存在且唯一 .11、 求x x f πcos )(= ,]1,0[∈x 的一次和二次最佳平方逼近多项式. 解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++= 分别为)(x f 的一次、二次最佳平方逼近多项式。
数值分析总结
数值分析复习总结任课教师王建国第二章数值分析基本概念教学内容:1.误差与有效数字误差、误差限、相对误差、相对误差限和有效数字的定义及相互关系;误差的来源和误差的基本特性;误差的计算(估计)的基本方法。
2.算法的适定性问题数值分析中的病态和不稳定性问题;病态问题和不稳定算法的实例分析。
3.数值计算的几个注意问题数值计算的基本概念误差概念和分析误差的定义:设x是精确值,p是近似值,则定义两者之差是绝对误差:a x p∆=-由于精确值一般是未知的,因而Δ不能求出来,但可以根据测量误差或计算情况估计它的上限|-|x p εε<称为绝对误差限。
相对误差定义为绝对误差与精确值之比ar x∆∆=ar xη∆∆=<称为相对误差限● 误差的来源:舍入误差将无限位字长的精确数处理成有限位字长近似数的处理方法称为舍入方法。
带来舍人误差。
截断误差用数值法求解数学模型时,往往用简单代替复杂,或者用有限过程代替无限过程所引起的误差。
● 有效数字对于a=a0 a1 … am . am+1 … am+n(a0≠0) 的近似数, 若|Δ|≤0.5x10-n ,则称a 为具有m+n+1位有效数字的有效数,其中每一位数字都叫做a 的有效数字。
有效数和可靠数的最末位数字称为可疑数字有效数位的多少直接影响到近似值的绝对误差与相对误差的大小。
推论1 对于给出的有效数,其绝对误差限不大于其最末数字的半个单位。
推论2 对于给出的一个有效数,其相对误差限可估计如下:例:计算y = ln x 。
若x ≈ 20,则取x 的几位有效数字可保证y 的相对误差 < 0.1% ?120.10mn x a a a =±⨯1102m nx x *-∆=-≤⨯120.10mn x a a a =±⨯15()10nr x a -∆≤⨯●数值计算的算法问题“良态”问题和“病态”问题在适定的情况下,若对于原始数据很小的变化δX,对应的参数误差δy也很小,则称该数学问题是良态问题;若δy很大,则称为病态问题。
数值分析考试知识点总结
数值分析考试知识点总结数值分析是一门研究数值计算方法和数值计算误差的学科,它的研究对象是计算机数值计算和数值模拟方法的理论和技术。
一、误差分析数值计算是以实际问题为基础的分析过程,其目的是研究数值计算误差和误差的影响,以确保数值计算的准确性和可靠性。
数值计算误差主要包括截断误差和舍入误差两个部分。
1. 截断误差截断误差是由于在数值计算过程中,使用了近似代替精确值而引起的误差。
例如,在对连续函数的微分或积分进行数值计算时,所采用的近似公式都会引起截断误差。
截断误差可以通过增加计算步骤或者采用更加精确的计算方法来减小。
2. 舍入误差舍入误差是由于计算机对于无限小数进行截断或者舍入时引起的误差。
由于计算机是以有限的二进制数进行存储和运算,因此对于很小的数字或者非常大的数字,都会存在舍入误差。
舍入误差的大小与计算精度有关,可以通过提高计算精度来减小舍入误差。
二、插值和逼近插值和逼近是数值分析中常见的计算技术,用于利用已知的数据点来估计未知函数的值。
1. 插值插值是通过已知的数据点来估计未知函数在这些数据点之间的取值。
插值方法的目标是通过已知数据点构造一个函数,使得该函数在已知点上的取值与已知数据点的取值一致。
常见的插值方法包括拉格朗日插值多项式和牛顿插值多项式。
2. 逼近逼近是通过已知的数据点来估计未知函数的近似值,与插值不同的是,逼近方法不要求逼近函数必须在已知数据点上取特定的值。
常用的逼近方法包括最小二乘法逼近和样条逼近。
三、数值积分数值积分是通过数值计算来近似求解定积分的值,它是数值分析中的一个重要内容。
1. 复化数值积分复化数值积分是通过将积分区间划分成若干子区间,然后在每个子区间上进行数值积分来近似求解定积分的值。
复化数值积分方法包括复化梯形公式、复化辛普森公式以及复化辛普森三分法等。
2. 数值积分的误差分析在数值积分中,由于使用了近似方法,所以会引入数值积分误差。
要保证数值积分的准确性,需要对数值积分误差进行分析和评价。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数值分析总结
数值分析是一门研究实际问题数值解法和计算方法的学科。
它
通过将求解问题的过程数值化,利用计算机进行数值计算,从而
得到问题的近似解。
数值分析在自然科学、工程学和经济学等领
域有着广泛的应用。
在本文中,我将对数值分析这门学科进行总
结和分析。
首先,数值分析主要包括数值插值、数值积分、数值微分、数
值代数方程组求解和常微分方程数值解等内容。
其中,数值插值
是通过已知函数值的一些点来推求未知点的近似值的方法;数值
积分是利用数值方法计算函数在给定区间上的积分;数值微分是
利用近似方法计算函数在某一点的导数。
而数值代数方程组求解
和常微分方程数值解则是求解方程组和常微分方程近似解的方法,这两者是数值分析最重要的应用之一。
其次,数值分析方法的选择对于问题的求解有着重要的影响。
对于不同的问题,我们需要选择适合的数值方法来得到较为准确
的解。
例如,在求解数值积分问题时,我们可以选择梯形法则、
辛普森法则等方法来近似计算积分值;在求解常微分方程数值解时,我们可以选择显式欧拉法、隐式欧拉法、龙格-库塔法等数值
解法。
合理选择数值方法可以提高求解问题的准确性和计算效率。
此外,数值分析中的误差分析是一项重要的工作。
由于数值计算的舍入误差和截断误差的存在,我们得到的数值解通常会与真实解有所偏差。
因此,在进行数值计算时,我们需要对误差进行分析和控制。
误差分析可以帮助我们评估数值方法的可靠性,并调整计算过程来尽量减小误差。
在实际问题中,误差分析对于判断结果的合理性至关重要。
最后,数值分析的发展受到计算机技术的支持。
随着计算机性能的提升和算法的改进,数值分析的应用范围也在不断扩大。
计算机的高速计算和存储能力使得我们能够处理更加复杂的问题,并得到更加精确的数值解。
同时,以数值分析为基础的科学计算软件的开发也极大地推进了数值分析的发展。
综上所述,数值分析是一门重要的学科,它为实际问题的求解提供了有效的数值方法和计算工具。
在实践中,我们需要选择合适的数值方法来解决具体问题,并进行误差分析以确保结果的可靠性。
未来,随着计算机技术的不断进步,数值分析的应用将进一步扩大,为各个领域的科学研究和工程实践提供更加有效的支持。