概率论与数理统计教案
《概率论与数理统计》课程教学进度与教案表

《概率论与数理统计》课程教学进度与教案表第一章:概率论的基本概念1.1 随机试验与样本空间1.2 事件及其运算1.3 概率的基本性质1.4 条件概率与独立性1.5 贝叶斯定理第二章:随机变量及其分布2.1 随机变量的定义及其分类2.2 离散型随机变量的概率分布2.3 连续型随机变量的概率密度2.4 随机变量的期望与方差2.5 大数定律与中心极限定理第三章:多维随机变量及其分布3.1 二维随机变量的联合分布3.2 边缘分布与条件分布3.3 随机变量的独立性3.4 随机向量的重要结论3.5 协方差与相关系数第四章:数理统计的基本概念4.1 统计量及其性质4.2 点估计与区间估计4.3 假设检验的基本方法4.4 参数估计的置信区间4.5 假设检验的错误类型与功效第五章:回归分析与相关分析5.1 一元线性回归模型5.2 回归模型的参数估计5.3 回归模型的检验与预测5.4 多元线性回归模型5.5 相关分析与协方差分析第六章:大数定律与中心极限定理6.1 大数定律的意义及其应用6.2 中心极限定理的证明与意义6.3 样本均值的分布6.4 样本方差的估计6.5 样本分布的性质第七章:假设检验7.1 假设检验的基本概念7.2 常见的检验方法7.3 检验的统计功效与类型II 错误7.4 参数估计的显著性检验7.5 非参数检验方法第八章:回归分析8.1 简单线性回归分析8.2 多元线性回归分析8.3 回归模型的诊断与改进8.4 回归分析的应用实例8.5 岭回归与套索回归第九章:时间序列分析9.1 时间序列的基本概念9.2 平稳时间序列的性质9.3 自相关函数与偏自相关函数9.4 时间序列的模型建立9.5 预测与控制方法第十章:贝叶斯统计10.1 贝叶斯统计的基本概念10.2 贝叶斯估计方法10.3 贝叶斯推断的应用10.4 贝叶斯决策理论10.5 贝叶斯网络及其应用重点和难点解析一、事件及其运算补充说明:通过具体例子解释事件的包含关系、交集、并集、补集等概念,以及如何运用这些概念解决实际问题。
《概率论与数理统计》课程教案

P{a<W(X1,X2,…,Xn;θ)<b}1-α,
注意这里尽量选取置信区间使其长度最短,以达到最佳估计精度。
3°若能从不等式a<W(X1,X2,…,Xn;θ)<b中得到等价的不等式 <θ< ,其中 = (X1,X2,…,Xn), = (X1,X2,…,Xn)都是统计量,那么( , )就是θ的一个置信水平为1-α的置信区间。
解:已知(0-1)分布的均值μ=p,方差σ2=p(1-p)
现在样本容量很大,由棣莫弗-拉普拉斯中心极限定理
样本的和 近似服从正态分布,且有
= ~N(0,1),于是有
≈1-α
而不等式 等价于
(n+ )p2-(2n + )p+n <0
设其两个解为p1,p2,p1<p2
则(p1,p2)即为所求置信水平为1-α的置信区间.
( , )
第三部分两个正态总体的区间估计(30分钟)
(二)两个总体的情况N(μ1,σ12),N(μ2,σ22)
背景:已知产品的某一质量指标服从正态分布,但由于原料、设备、操作人员不同,或工艺过程改变等因素,引起总体均值、总体方差有所改变,需要知道这样的变化有多大,需要考虑两个正态总体的均值差或方差比的估计问题。
设已给定置信水平为1-α,并设X1,X2,…,Xn1是来自第一个总体的样本;Y1,Y2,…,Yn2是来自第二个总体的样本,两个样本相互独立,且设 , 为相应的总体的样本均值, , 分别是两个总体的样本方差。
1°两个总体均值差μ1-μ2的置信区间
(a)σ12,σ22均为已知的情况
, 分别为μ1,μ2的无偏估计,所以 - 是μ1-μ2的无偏估计量
概率论与数理统计教案 第3章 多维随机变量及其分布

40 概率论与数理统计教学教案 第3章 多维随机变量及其分布 授课序号01
教 学 基 本 指 标 教学课题 第3章 第1节 二维随机变量及其分布 课的类型 新知识课
教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合
教学重点 二维随机变量的联合分布函数、性质及两种基本形式、二维均匀分布、二维正态分布的概率密度 教学难点 利用二维概率分布求有关事件
的概率
参考教材 浙江大学《概率论与数理统计》第四版 作业布置 课后习题
大纲要求 1.理解二维随机变量的概念,理解二维随机变量的联合分布的概念、性质及两种基本形式:离
散型联合概率分布;连续型联合概率密度。会利用二维概率分布求有关事件的概率。
2.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义。 教 学 基 本 内 容 一.二维随机变量 1.二维随机变量:设E是随机试验, ()XX和()YY是定义在同一个样本空间S上的随机变量,则称(,)XY为二维随机变量或二维随机向量. 2.说明:二维随机变量(,)XY的性质不仅与X和Y有关,还依赖于两个随机变量之间的相互关系,因此要将随机变量(,)XY作为一个整体进行研究.
二.二维随机变量的联合分布函数
1.二维随机变量的联合分布函数:设(,)XY为二维随机变量,对于任意的2(,)xyR,则称 (,){,}FxyPXxYy 为二维随机变量(,)XY的联合分布函数,简称为分布函数. 2.二维联合分布函数的几何意义:若将(,)XY看作是平面直角坐标系上的随机点,那么(,){,}FxyPXxYy表示随机点落入阴影部分的概率(如图3.1),即落入点(,)xy左下方区域内的概率. 40
图3.1 3.随机点(,)XY落入矩形区域1212{(,),}xyxXxyYy的概率:
121222122111{,}(,)(,)(,)(,)PxXxyYyFxyFxyFxyFxy 4.联合分布函数(,)Fxy的性质: (1)单调性:对x或y都是单调不减的; (2)有界性:对任意的x和y,有0(,)1Fxy,并且: (,)lim(,)0xFyFxy,
概率论与数理统计教案(48课时)

概率论与数理统计教案(48课时)Chapter 1: XXX1.Learning Objectives and Basic Requirements:1) Understand the concepts of random experiments。
sample space。
and random events;2) Master the nships and ns een random events;3) Master the basic XXX。
learn how to XXX;4) Understand the concept of event frequency。
know the XXX random phenomena。
and the XXX.5) XXX。
the law of total probability。
Bayes' theorem。
and their XXX.2.Teaching Content and Time n:n 1: XXXn 2: XXX (2 hours)n 3: XXX (Classical Probability) (2 hours)n 4: XXXn 5: Independence of Events (2 hours)3.XXX:1) Random events and nships een random events;2) XXX;3) Properties of probability;4) nal probability。
the law of total probability。
and Bayes' theorem;5) XXX。
XXX。
XXX.4.XXX:1) Enable students to correctly describe the sample space of random experiments and us random events;2) Pay n to helping students understand the specific meanings of events such as A∪B。
《概率论与数理统计电子教案第一章

随机变量的定义
根据随机变量可能取值的性质,可以分为离散型随 机变量和连续型随机变量。
随机变量的分类
离散型随机变量分布律
分布律的定义 二项分布、泊松分布等。
常见离散型随机变量的分布 律
对于一个离散型随机变量X,其所有可能取 的值xi(i=1,2,...)与取这些值的概率 P{X=xi}(i=1,2,...)构成的表格或公式称为 离散型随机变量X的分布律。
叁 多维随机变量函数的概率密度求法
对于多维随机变量的函数,其概率密度可以通过换元法和雅可比行 列式求得。
随机变量数字特征
数学期望与方差概念
数学期望(期望值)
01
描述了随机变量取值的"平均"水平,是概率加权的平均
值。
方差
02
描述了随机变量取值的离散程度,即取值与期望值的偏
离程度。方差越大,说明随机变量的取值越分散。
大数定律应用
大数定律概念
中心极限定理内容及意义
中心极限定理内容
中心极限定理指出,大量相互独立、同分布 的随机变量之和的分布,当变量个数足够大 时,将趋于正态分布。
中心极限定理意义
中心极限定理是概率论和数理统计中的基本 定理之一,为许多统计方法的推导和应用提 供了理论基础,如置信区间、假设检验等。
棣莫弗-拉普拉斯定理
事件的独立性
计算多个事件同时发生的概率。
两个或多个事件的发生互不影响。
条件概率
在给定条件下,某事件发生的概 率。
独立试验
每次试验的结果与其他次试验的 结果无关。
随机变量及其分布
随机变量概念及分类
设随机试验的样本空间为 S={e}, X=X{e}是定义在 样本空间S上的实值单值 函数。称X=X{e}为随机变 量。
概率与数理统计教案-(2)

《概率论与数理统计》教案东北农业大学信息与计算科学系第一次课(2 学时)教学内容:教材1-6页,主要内容有引言、概率论的基本概念、事件之间的关系及运算、事件之间的运算规律。
教学目的:(1)了解概率论这门学科的研究对象,主要任务和应用领域;(2)深刻理解随机试验、基本事件、样本空间、随机事件的概念;掌握一个随机试验的样本空间、基本事件和有关事件的表示方法。
(3)深刻理解事件的包含关系、和事件、积事件、互斥事件、互逆事件和差事件的意义;掌握事件之间的各种运算,熟练掌握用已知事件的运算表示随机事件;(4)掌握事件之间的运算规律,理解对偶律的意义。
教学的过程和要求:(1)概率论的研究对象及主要任务(10分钟)举例说明概率论的研究对象和任务,与高等数学和其它数学学科的不同之处,简单介绍概率论发展的历史和应用;(i)概率论的研究对象:确定性现象或必然现象:在相同的条件下,每次观察(试验)得到的结果是完全相同的现象。
例:向空中抛掷一物体,此物体上升到一定高度后必然下落;例:在一个标准大气压下把水加热到100℃必然会沸腾等现象。
随机现象或偶然现象:在相同的条件下,每次观察(试验)可能出现不同结果的现象。
例:在相同的条件下抛一枚均匀的硬币,其结果可能是正面(分值面)向上,也可能是反面向上,重复投掷,每次的结果在出现之前都不能确定;例:从同一生产线上生产的灯泡的寿命等现象。
(ii)概率论的研究任务:概率论与数理统计就是研究和揭示随机现象的统计规律性的一门数学学科。
(iii)概率论发展的历史:概率论起源于赌博问题。
大约在17世纪中叶,法国数学家帕斯卡(B •Pascal)、费马(fermat)及荷兰数学家惠更斯(C•Hugeness)用排列组合的方法,研究了赌博中一些较复杂的问题。
随着18、19世纪科学的迅速发展,起源于赌博的概率论逐渐被应用于生物、物理等研究领域,同时也推动了概率理论研究的发展. 概率论作为一门数学分支日趋完善,形成了严格的数学体系。
《概率论与数理统计》课程教案
P{X=m,Y=n}=(1-p)•…•(1-p)•p•(1-p)…•(1-p)•p=p2(1-p)n-2
第m次第n次
即联合分布律为P{X=m,Y=n}=p2(1-p)n-2,m=1,2,…,n=2,3,…,m<n
又关于X的边缘分布律:
P{X=m}= = = =p(1-p)m-1,
m=1,2,…
P{Y=n}= =(n-1)p2(1-p)n-2,n=2,3,…
二维随机变量的条件分布
教学方法
提问、讲授、启发、讨论
工具仪器
多媒体教具、教材、教案、教学课件、考勤表、平时成绩登记表
教学安排
考勤、复习相关知识点、新课内容概述、组织教学、布置作业、课后小结
教学过程
教学组织、具体教学内容及教学方法、手段、时间分配及其它说明
备 注
第一部分:旧知识点复习和新课内容概述(5分钟)
当y=0时,及y=1/2时fX|Y(x|y)均是相应区间上的均匀分布,但区间长短和概率密度值不同。
例4:设数X在区间(0,1)上随机地取值,当观察到X=x(0<x<1)时,数Y在区间(x,1)上随机地取值,求Y的概率密度fY(y).由条件概率密度-》联合概率密度-》边缘概率密度
解:由题意,X具有概率密度fX(x)= ,在(0<x<1)区间内,对于任意给定的x,在X=x条件下,Y的条件概率密度为fY|X(y|x)=
几乎处处成立的意义是,除去平面上面积为0的集合(点,线)以外,处处成立
对于离散型随机变量(X,Y),
X和Y相互独立的条件等价于P{X=xi,Y=yj}=P{X=xi}P{Y=yj}对于X和Y的所有可能取值(xi,yj)都成立,或记为pij=pi•p•j,i,j=1,2,…
概率论与数理统计教案(48课时)
概率论与数理统计教案(48课时)第一章随机事件及其概率本章的教学目标及基本要求(1)理解随机试验、样本空间、随机事件的概念;(2)掌握随机事件之间的关系与运算,;(3)掌握概率的基本性质以及简单的古典概率计算;学会几何概率的计算;(4)理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。
了解概率的公理化定义。
(5)理解条件概率、全概率公式、Bayes公式及其意义。
理解事件的独立性。
本章的教学内容及学时分配第一节随机事件及事件之间的关系第二节频率与概率2学时第三节等可能概型(古典概型)2学时第四节条件概率第五节 事件的独立性2学时三.本章教学内容的重点和难点1)随机事件及随机事件之间的关系;2)古典概型及概率计算;3)概率的性质;5)独立性、n 重伯努利试验和伯努利定理四.教学过程中应注意的问题1)使学生能正确地描述随机试验的样本空间和各种随机事件;2)注意让学生理解事件4uB,AuB 、AcB,4-B,4B = ®,A... 的具体含义,理解事件的互斥关系;根定律;4)条件概率, 全概率公式和Bayes 公式 3) 让学生掌握事件之间的运算法则和德莫4)古典概率计算中,为了计算样本点总数和1)事件的有利场合数,经常要用到排列和组合,复习排列、组合原理;2)讲清楚抽样的两种方式有放回和无放回;思考题和习题思考题:1.集合的并运算和差运算-是否存在消去律?2.怎样理解互斥事件和逆事件?3.古典概率的计算与几何概率的计算有哪些不同点?哪些相同点?习题:第二章随机变量及其分布本章的教学目标及基本要求(1)理解随机变量的概念,理解随机变量分布函数的概念及性质,理解离散型和连续型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率;(2)熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质;二.本章的教学内容及学时分配第一节随机变量第二节第二节离散型随机变量及其分布离散随机变量及分布律、分布律的特征第三节常用的离散型随机变量常见分布(0-1分布、二项分布、泊松分布)2学时第四节随机变量的分布函数分布函数的定义和基本性质,公式第五节连续型随机变量及其分布连续随机变量及密度函数、密度函数的性质2学时第六节常用的连续型随机变量常见分布(均匀分布、指数分布、正态分布)及概率计算2学时三.本章教学内容的重点和难点a)随机变量的定义、分布函数及性质;b)离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率;C)六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布);四.教学过程中应注意的问题a)注意分布函数F(x) P{X x}的特殊值及左连续性概念的理解;b)构成离散随机变量X的分布律的条件,它与分布函数F(x)之间的关系;c)构成连续随机变量X的密度函数的条件,它与分布函数F(x)之间的关系;d)连续型随机变量的分布函数F(x)关于x处处连续,且P(X x) 0,其中x为任意实数,同时说明了P(A) 0不能推导A 。
概率论与数理统计教案 第4章 随机变量的数字特征
第4章 随机变量的数字特征教学要求1.理解随机变量的数字特征(数学期望、方差、标准差、协方差、相关系数)的概念,掌握用数字特征的定义、常用计算公式及基本性质计算具体分布的数字特征.2.掌握利用随机变量X 的概率分布求其函数)(X g 的数字期望[])(X g E ,掌握利用随机变量X 和Y 的联合分布求其函数),(Y X g 的数学期望[]),(Y X g E .3.理解X 与Y 不相关的概念,掌握X 与Y 独立和不相关的关系与判定方法.4.掌握六个常用分布的数学期望和方差,理解二维正态分布中5个参数的意义.5.了解原点矩、中心矩、协方差矩阵的概念.6.了解n 维正态随机变量的四个性质.教学重点数学期望、方差的概念与性质及其应用,用数字特征(数学期望、方差、标准差、协方差、相关系数)的定义、常用计算公式及性质计算具体分布的数字特征.教学难点协方差、相关系数概念的理解.课时安排本章安排6课时.教学内容和要点一、 数学期望1.离散型随机变量数学期望2.连续型随机变量数学期望3.随机变量的函数数学期望4.常用分布的数学期望5.数学期望的性质二、 方差1.方差的概念2.方差的计算3.常用分布的方差4.方差的性质5.随机变量的标准化三、协方差和相关系数1.协方差的定义与性质2.相关系数的定义与性质四、矩与协方差矩阵1.矩与协方差矩阵的概念2. n 维正态分布主要概念1.数学期望(离散型随机变量的数学期望、连续型随机变量的数学期望、随机变量函数的数学期望)2.方差 、标准差3.标准化随机变量4.协方差5.相关系数X Y不相关6.,7.矩8.协方差矩阵。
《概率论与数理统计》教案第1课《概率论与数理统计》发展史简介
《概率论与数理统计》教案课时分配表让纪玖麦来来!课题《概率论与数理统计》发展史简介课时2课时(90min)教学目标知识技能目标:(1)了解概率论与数理统计的发展史(2)通过学习认识到事物的变化规律与发展,对学习充满信心素质目标:让学生明白一切事物都是相互联系和不断发展的,认识到学习《概率论与数理统计》对解决现实问题的重要性教学重难点教学重点:了解概率与数理统计的发展史教学难点:体会事物的变化规律教学方法问答法、讨论法、讲练结合法教学用具电脑、投影仪、多媒体课件、教材教学过程主要教学内容及步骤课前任务【教师】布置课前任务,和学生负责人取得联系,让其提醒同学通过文旌课堂APP或其他学习软件,搜集并了解概率论与数理统计的发展的相关知识【学生】完成课前任务考勤【教师】使用文旌课堂APP进行签到【学生】按照老师要求签到新课预热【教师】自我介绍,与学生简单互动,介绍课程内容、考核标准等【学生】聆听、互动【教师】引入课题,并讲一些有关概率与数理统计的知识在自然界和现实生活中,一些事物都是相互联系和不断发展的.在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成截然不同的两大类:确定性现象和不确定性现象.确定性的现象剧旨在一定条件下,必定会导致某种确定的结果.举例来说,在标准大气压下,水加热到100摄氏度,就必然会沸腾.事物间的这种联系是属于必然性的.通常的自然科学各学科就是专门研究和认识这种必然性的,寻求这类必然现象的因果关系,把握它们之间的数量规律.襁定性的现象是指在一定条件下,它的结果是不确定的.举例来说,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异.又如,在同样条件下,进行小麦品种的人工催芽试验,各棵种子的发芽情况也不尽相同,有强弱和早晚的分别等等.为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素又是人们无法事先——能够掌握的.正因为这样,在这一类现象中,就无法用必然性的因果关系,对个别现象的结果事先做出确定的判断.事物间的这种关系是属于偶然性的,这种现象叫作偶然现象,或者叫作随楣朦.在自然界,在生产、生活中,随机现象十分普遍,也就是说随机现象是大量存在的.比如:每期体育彩票的中奖号码、同一条生产线上生产的灯泡的寿命等,都是随机现象.因此,我们说:随机现象就是在同样条件下,多次进行同一试验或调查同一现象,所得结果不完全一样,而且无法准确地预测下一次所得结果的现象.随机现象这种结果的不确定性,是由于一些次要的、偶然的因素影响所造成的.随机现象从表面上看,似乎是杂乱无章的、没有什么规律的现象.但实践证明,如果同类的随机现象大量重复出现,它的总体就呈现出一定的规律性.大量同类随机现象所呈现的这种规律性,随着观察的次数的增多而愈加明显.比如掷硬币,每一次投掷很难判断是哪一面朝上,但是如果多次重复地掷这枚硬币,就会越来越清楚地发现它们朝上的次数大体相同.这种由大量同类随机现象所呈现出来的集体规律性,叫作统计规律性.概率论和数理统计就是研究大量同类随机现象的统计规律性的数学学科.【学生】聆听、记录互动导入【教师】创设情景,并提出问题:概率论起源于赌徒对赌博的研究.在作风严谨的数学大家庭中,概率论的诞生背景有点受人轻视,但其在自然科学,社会科学,工程技术,军事科学及工农业生产等诸多领域中都起着不可或缺的作用.直观地说,卫星上天,导弹巡航,飞机制造,宇宙飞船遨游太空等都有概率论的一份功劳;及时准确的天气预报,海洋探险,考古研究等更离不开概率论与数理统计;电子技术发展,影视文化的进步,人口普杳及教育等同概率论与数理统计也是密不可分的.它内容丰富,结论深刻,有别开生面的研究课题,有自己独特的概念和方法,已经成为了近代数学一个有特色的分支.拉普拉斯曾说过:"一门开始于研究赌博机会的科学,居然成了人类知识中最重要的学科,这无疑是令人惊讶的事情."但如果认真研究概率论的发展历史,就会发现这门科学独特的魅力,以及其吸引了众多优秀数学家为之付出无数心血努力,最终成为人类文明的一个璀璨成果也是历史的必然.那么,你认为生活中哪些方面会应用到概率的知识?【学生】聆听、思考、讨论、回答传授新知【教师】通过大家的发言,引入新的知识点,介绍《概率论与数理统计》的发展史一、机会游戏引起的思考(16世纪初至17世纪中叶)概率论萌芽之作最早可归属于意大利数学怪杰卡尔达诺(G.Cardano,1501-1576)在1663年出版的遗著《论机会游戏》(另译《游戏机遇的学说》)・卡尔达诺本人是一个狂热的赌徒.他在《论机会游戏》中讲述的是自己作为一个赌徒的亲身体会,因为书中包含了与赌博有关的各种各样的问题,其中不仅有对赌局的描述,而且还有如何在赌博过程中防止对手的欺骗等问题.……(详见教材)二、概率理论的早期探索(17世纪中叶)1654年,法国数学家帕斯卡(B.Pascal,1623—1662)和费马(P.deFermat,1601—1665)针对赌博中提出的赌金分配问题进行通信讨论,两人主要探讨赌博中赌金的"公平”分配和计算.帕斯卡和费马的这些信件被看作是数学史上最早的概率论文献.其中一个最有名的问题就是——"点数问题",是帕斯卡的朋友梅累所提出.由于这一问题是古典概率的经典题例并影响日后古典概率思想的发展,现将其概述如下.…(详见教材)【教师】对学生进行分组,并选出一名组长,然后组织学生以小组为单位完成以下任务:请简单总结17-20世纪概率与数理统计的研究成果与发展状况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《概率论与数理统计》课程教案 第一章 随机事件及其概率 一.本章的教学目标及基本要求 (1) 理解随机试验、样本空间、随机事件的概念; (2) 掌握随机事件之间的关系与运算,; (3) 掌握概率的基本性质以及简单的古典概率计算; 学会几何概率的计算; (4) 理解事件频率的概念,了解随机现象的统计规律性以及概率的统计定义。了解概率的公理化定义。 (5) 理解条件概率、全概率公式、Bayes 公式及其意义。理解事件的独立性。 二.本章的教学内容及学时分配 第一节 随机事件及事件之间的关系 第二节 频率与概率 2学时 第三节 等可能概型(古典概型) 2 学时 第四节 条件概率 第五节 事件的独立性 2 学时 三.本章教学内容的重点和难点 1) 随机事件及随机事件之间的关系; 2) 古典概型及概率计算; 3)概率的性质; 4)条件概率,全概率公式和Bayes公式 5)独立性、n 重伯努利试验和伯努利定理 四.教学过程中应注意的问题 1) 使学生能正确地描述随机试验的样本空间和各种随机事件; 2) 注意让学生理解事件…的具体含义,理解事件的互斥关系; 3) 让学生掌握事件之间的运算法则和德莫根定律; 4) 古典概率计算中,为了计算样本点总数和事件的有利场合数,经常要用到排列和组合,复习排列、组合原理; 5) 讲清楚抽样的两种方式——有放回和无放回; 五.思考题和习题 思考题:1. 集合的并运算和差运算-是否存在消去律? 2. 怎样理解互斥事件和逆事件? 3. 古典概率的计算与几何概率的计算有哪些不同点?哪些相同点? 习题:
第二章 随机变量及其分布 一.本章的教学目标及基本要求 (1) 理解随机变量的概念,理解随机变量分布函数的概念及性质, 理解离散型和连续 型随机变量的概率分布及其性质,会运用概率分布计算各种随机事件的概率; (2) 熟记两点分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的分布律或密度函数及性质; 二.本章的教学内容及学时分配 第一节 随机变量 第二节 第二节 离散型随机变量及其分布 离散随机变量及分布律、分布律的特征 第三节 常用的离散型随机变量 常见分布(0-1分布、二项分布、泊松分布) 2学时 第四节 随机变量的分布函数 分布函数的定义和基本性质,公式 第五节 连续型随机变量及其分布 连续随机变量及密度函数、密度函数的性质 2学时 第六节 常用的连续型随机变量 常见分布(均匀分布、指数分布、正态分布)及概率计算 2学时 三.本章教学内容的重点和难点 a) 随机变量的定义、分布函数及性质; b) 离散型、连续型随机变量及其分布律或密度函数,如何用分布律或密度函数求任何事件的概率; c) 六个常见分布(二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布); 四.教学过程中应注意的问题 a) 注意分布函数的特殊值及左连续性概念的理解; b) 构成离散随机变量X的分布律的条件,它与分布函数之间的关系; c) 构成连续随机变量X的密度函数的条件,它与分布函数之间的关系; d) 连续型随机变量的分布函数关于处处连续,且,其中为任意实数,同时说明了不能推导。 e) 注意正态分布的标准化以及计算查表问题; 五.思考题和习题 思考题:1. 函数是否是某个随机变量的分布函数? 2. 分布函数有两种定义——,主要的区别是什么? 3. 均匀分布与几何概率有何联系? 4. 讨论指数分布与泊松分布之间的关系。 5.列举正态分布的应用。 习题:
第三章 多维随机变量及其分布 一.教学目标及基本要求 (1) 了解二维随机变量概念及其联合分布函数概念和性质,了解二维离散型和连续 型随机变量定义及其概率分布和性质,了解二维均匀分布和正态分布。 (2) 会用联合概率分布计算有关事件的概率,会求边缘分布。 (3) 掌握随机变量独立性的概念,掌握运用随机变量的独立性进行概率计算。 (4) 会求两个独立随机变量的简单函数(如函数X+Y, max(X, Y), min(X, Y))的分布。 二.教学内容及学时分配 第一节 二维随机变量 二维随机变量及其分布,离散型随机变量及其分布律、连续型随机变量及其密度函数、它们的性质、n维随机变量 2学时 第二节 边缘分布 边缘分布律、边缘密度函数 2学时 第三节 条件分布 1学时 第四节 相互独立的随机变量 两个变量的独立性,n 个变量的独立性 1学时 第四节 二维随机变量的函数的分布 已知(X,Y)的分布率pij或密度函数,求的分布律或密度函数。特别如函数形式:。 2学时 三.本章教学内容的重点和难点 a) 二维随机变量的分布函数及性质,与一维情形比较有哪些不同之处; b) 边缘密度函数的计算公式:的运用,特别是积分限的确定和变量x的取值范围的讨论; c) 随机变量独立性的判定条件以及应用独立性简化计算,如由边缘分布律或密度函数
可以确定联合分布律或联合密度函数; d) 推导的密度函数的卷积公式:,正确使用卷积公式; e) 在X,Y独立性的条件下,推导的密度函数,注意它们在可靠性方面的应用。 四.教学过程中应注意的问题 a) 注意联合分布函数能决定任意随机变量X或Y的分布(边缘分布),反之则不能确定(X,Y)的联合分布,由正态分布可以说明; b) 在判断两个随机变量是否独立过程中,如果存在某点,使得: 或,则称变量X与Y不独立; c) 一般计算概率使用如下公式: ,注意二重积分运算知识点的复习。 d) 二维均匀分布的密度函数的具体表达形式。 五.思考题和习题 思考题:1. 由随机变量的边缘分布能否决定它们的联合分布? 2. 条件分布是否可以由条件概率公式推导? 3. 事件的独立性与随机变量的独立性是否一致? 4.如何利用随机变量之间的独立性去简化概率计算,试举例说明。 习题:
第四章 随机变量的数字特征 一.教学目标及基本要求 (1) 理解数学期望和方差的定义并且掌握它们的计算公式; (2) 掌握数学期望和方差的性质与计算,会求随机变量函数的数学期望,特别是利用期望或方差的性质计算某些随机变量函数的期望和方差。 (3) 熟记0-1分布、二项分布、泊松分布、正态分布、均匀分布和指数分布的数学期 望和方差; (4) 了解矩、协方差和相关系数的概念和性质,并会计算。 二.教学内容及学时分配 第一节 数学期望 离散型、连续型随机变量的数学期望、随机变量函数的数学期望、数学期望的应用、数学期望的性质 3学时 第二节 方差 方差的概念及计算、方差的性质、常见分布的数学期望及方差简单归纳 2学时 第三节 协方差与相关系数 2学时 第四节 矩和协方差矩阵 1学时 三.本章教学内容的重点和难点 a) 数学期望、方差的具体含义; b) 数学期望、方差的性质,使用性质简化计算的技巧;特别是级数的求和运算。 c) 期望、方差的应用; 四.本章教学内容的深化和拓宽 将数学期望拓展到数学期望向量和数学期望矩阵;协方差及相关系数概念和公式拓宽到n维随机变量的协方差矩阵和相关系数矩阵。 五.教学过程中应注意的问题 a) 一个随机变量并不一定存在数学期望和方差,也有可能数学期望存在,而方差不存在,如柯西分布是最著名的例子; b) 数学期望的一个具体的数字,不是函数; c) 由方差的定义知,方差是非负的; d) 独立性和不相关性之间的关系,一般地,X与Y独立,则X与Y不相关,反之则不然,但对于正态分布,两者却是等价的; 六.思考题和习题 思考题:1. 假定一个系统由5个电子元件组装而成,假定它们独立同服从于指数分布,将它们串接起来,求系统的平均寿命,若将它们并行连接,其系统的平均寿命是多少?并比较其优劣。 2. 方差的定义为什么不是? 3. 工程上经常遇到计算误差,它是否与方差是同一个概念? 4.协方差与相关系数有什么本质上的区别? 5.随机变量与独立可以推导,反之呢?对正态分布又如何呢? 习题:
第五章 大数定律和中心极限定理 一.教学目标及基本要求 了解切比雪夫不等式、大数定律和中心极限定理。 二.教学内容及学时分配
第一节 大数定律 第二节 中心极限定理 2学时 三.本章教学内容的重点和难点 大数定律和中心极限定理的含义; 四.本章教学内容的深化和拓宽 中心极限定理的条件拓宽。 五.教学过程中应注意的问题 1)大数定律的变形,大数定律的证明关键是使用了切比契夫不等式; 2)注意中心极限定理的条件和结论,如何使用这一结论解决应用题; 习题:
第六章 样本及抽样分布 一.教学目标及基本要求 (1) 理解总体、样本和统计量的概念;了解经验分布函数 (2) 掌握样本均值、样本方差及样本矩的计算。 (3) 了解卡方分布、t-分布和F分布的定义及性质,了解分位数的概念并会查表计算概率。 (4) 掌握在正态总体下样本均值、样本方差、t统计量的分布及性质。 二.教学内容及学时分配 (1) 第一节 总体与样本 第二节 统计量(包括经验分布函数) 2学时 第三节 几个常用的分布 正态分布,-分布,t-分布,F-分布)、抽样分布定理、分位数 2学时 三.本章教学内容的重点和难点 a) 数理统计与概率论在研究问题和方法上的根本区别; b) 总体、样本的概念; c) 统计量的定义和常用的统计量; d) 正态分布以及由正态分布导出的三大统计分布,抽样分布定理,分位数的概念。 e) -分布、分布和分布的定义 四.教学过程中应注意的问题 a) 正态分布的标准化:若,则; b) “独立正态变量之和仍为正态变量”和中心极限定理的应用; c) 对三大统计分布定义深入分析,补充例子加以说明,如