高中数学第五章数系的扩充与复数的引入5.2复数的四则运算自我小测北师大版选修2_2
深圳市翰林学校高中数学选修2-2第五章《数系的扩充与复数的引入》检测题(包含答案解析)

一、选择题1.若341iz iz i+=+-(i 是虚数单位),则||z =( ) A .32B .2C .52D .32.若z C ∈且221z i +-=,则12z i --的最小值是( ) A .2B .3C .4D .53.已知复数z 满足:121z i z ++=-,则z 的最小值是( )A .1BC .2D 4.设2i2i 1iz =++-,则复数z =( ) A .12i -B .12i +C .2i +D .2i -5.若复数z 的虚部小于0,|z |=4z z +=,则iz =( ) A .13i +B .2i +C .12i +D .12i -6.设复数z 满足()11z i z =--,则z =( )A .1B C D .27.已知i 是虚数单位,复数1i1i-+( ). A .1B .1-C .iD .i -8.当复数2(32)()z x x x i x =-+-∈R 的实部与虚部的差最小时,1zi =-( ) A .33i -+ B .33i + C .13i - D .13i -- 9.已知复数z 满足|z|=1,则|z -i|(i 为虚数单位)的最大值是( ) A .0B .1C .2D .310.已知复数z 满足(1-i)z=2+i ,则z 的共轭复数为( ) A .3322i + B .1322i - C .3322i - D .1322i + 11.下列各式的运算结果为纯虚数的是( ) A .(1)i i + B .2(1)i +C .2(1)i i +D .2(1)i i +12.已知31iz i=-,则复数z 在复平面对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.在复平面内,到点133i -+的距离与到直线:3320l z z ++=的距离相等的点的轨迹方程是________. 14.232007i i i i ++++=______.15.设复数20192534i 2019z z -=+-满足(i 是虚数单位),则||z =________.16.已知i 为虚数单位,计算1i1i-=+__________. 17.i 是虚数单位,复数z 满足(2)34z i i ⋅-=+,则z =__________.18.若复数z 满足2018z i 34i ⋅=+(其中i 为虚数单位),则z =_____________. 19.已知复数43cos sin 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,(i 为虚数单位),则tan 4πθ⎛⎫-= ⎪⎝⎭__________.20.复平面内有,,A B C 三点,点A 对应的复数为2i +,向量BA 对应的复数为23i +,向量BC 对应的复数为3i -,则点C 对应的复数是___________.三、解答题21.已知复数2(1)(24)33Z i m i m i =+-+-+ (1)当m 为何值时 , Z 为纯虚数 ?(2) 当m 为何值时 , Z 对应的点在y x =上?22.知m R ∈,复数()()22231z m m m i =--+-.(1)实数m 取什么值时,复数z 为实数、纯虚数;(2)实数m 取值范围是什么时,复数z 对应的点在第三象限.23.(I )设复数z 和它的共轭复数z 满足42i z z +=,求复数z . (Ⅱ)设复数z 满足|22|8z z ++-=,求复数z 对应的点的轨迹方程. 24.设z 是虚数1z zω=+是实数,且12ω-<<. (1)求z 的值及z 的实部的取值范围. (2)设11zzμ-=+,求证:μ为纯虚数; (3)求2ωμ-的最小值.25.已知复数22(232)(32)z m m m m i =--+-+,(其中i 为虚数单位) (1)当复数z 是纯虚数时,求实数m 的值;(2)若复数z 对应的点在第三象限,求实数m 的取值范围.26.方程21(4)02x m x m --+=的两根为α,β,且||||αβ+=m 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】结合复数的四则运算,计算z ,结合复数模长计算公式,计算,即可. 【详解】()3411i i z i +-=-,化简,得到322z i =-+,因此52z ==,故选C. 【点睛】考查了复数的四则运算,考查了复数的模长计算公式,难度中等.2.A解析:A 【分析】设z x yi =+,得到()()22221x y ++-=,化简得到12z i --=根据其几何意义计算得到答案. 【详解】设z x yi =+,则()()22221z i x y i +-=++-==,即()()22221x y ++-=,表示圆心为()2,2-,半径为1r =的圆.()()1212z i x y i --=-+-=,表示点(),x y 和()1,2之间的距离,故()()min 12122z i r --=---=. 故选:A. 【点睛】本题考查了复数的模,与圆相关距离的最值问题,意在考查学生的计算能力和转化能力.3.C解析:C 【分析】设(),,z x yi x y R =+∈,再根据121z i z ++=-求出,x y 满足的方程,根据复数的几何意义求解z 的最小值即可. 【详解】设(),,z x yi x y R =+∈,因为121z i z ++=-,故()121x y i x yi +++=-+,故()()()2222121x y x y +++=-+,即10x y ++=.故z 在复平面内的轨迹是直线10x y ++=.又z 的几何意义为z 到复平面原点的距离,故其最小值为原点到10x y ++=的距离2d ==. 故选:C 【点睛】本题主要考查了复数的几何意义运用,需要根据题意设(),,z x yi x y R =+∈再列式求解对应的轨迹方程.属于中档题.4.A解析:A 【分析】根据复数的运算法则,求得12z i =+,再结合共轭复数的概念,即可求解. 【详解】由题意,可得复数()()()2i 1i 2i2i 2i 12i 1i 1i 1i z +=++=++=+--+, 所以12i z =-. 故选:A . 【点睛】本题主要考查了复数的运算,以及复数的共轭复数的概念及应用,其中解答中熟记复数的运算法则,准确运算是解答的关键,着重考查了运算能力.5.C解析:C 【分析】根据4z z +=可得()2z mi m =+∈R ,结合模长关系列方程,根据虚部小于0即可得解. 【详解】由4z z +=,得()2z mi m =+∈R ,因为||z ==1m =±.又z 的虚部小于0,所以2z i =-,12iz i =+. 故选:C 【点睛】此题考查复数的概念辨析和模长计算,根据复数的概念和运算法则求解.6.A解析:A 【解析】 【分析】由已知可得()11i z i +=-+,变形后再由复数代数形式的乘除运算化简,再由复数模的计算公式求解. 【详解】由()11z i z =--,得()11i z i +=-+,()()()()11121112i i i iz i i i i -+--+∴====++-,则1z =. 故选A. 【点睛】本题考查复数代数形式的乘除运算,考查复数模的求法,是基础题.7.D解析:D 【解析】()()()()1i 1i 1i 12i 12ii 1i 1i 1i 112------====-++-+,故选D. 8.C解析:C 【解析】 【分析】实部与虚部的差为242x x -+。
第五章 数系的扩充与复数的引入章末总结 教案(北师大版选修2-2)

相加减,而乘法类比多项式乘法,除法类比分式的分母有理化,注意i 2=-1.复数3+2i 2-3i=( ) A .i B .-iC .12-13iD .12+13i【思路点拨】 分子、分母同乘以分母的共轭复数后,运算求解.【规范解答】 3+2i 2-3i =(3+2i )i (2-3i )i =(3+2i )i 3+2i=i. 【答案】 A(2013·山东高考)复数z 满足(z -3)(2-i)=5(i 为虚数单位),则z 的共轭复数z 为( )A .2+iB .2-iC .5+iD .5-i 【解析】 由(z -3)(2-i)=5,得z =52-i +3=5(2+i )(2-i )(2+i )+3=5(2+i )5+3=5+i ,∴z =5-i.故选D.【答案】复数z =a +b i(a ,b ∈R)与复平面内的点Z (a ,b )及向量OZ →是一一对应的,这就是复数的几何意义,几何意义就是数形结合思想的体现.在复平面内,复数2i 1-i对应的点的坐标为______. 【思路点拨】 通过复数的运算,确定复数的实部和虚部后求解.【规范解答】 ∵2i 1-i =2i (1+i )(1-i )(1+i )=2i (1+i )2=-1+i , ∴复数2i 1-i对应点的坐标为(-1,1). 【答案】 (-1,1)(2013·湖北高考)在复平面内,复数z =2i 1+i(i 为虚数单位)的共轭复数对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【解析】 z =2i 1+i =2i (1-i )(1+i )(1-i )=1+i ,所以z =1-i ,故复数z 的共轭复数对应的点位于第四象限.【答案】等,共轭复数等条件建立等式来解题都用到了方程的思想.已知复数z ,满足z ·z =1,|z -1|=1,求复数z .【思路点拨】 设出z 的代数形式,z =x +y (x ,y ∈R),然后将条件转化为x ,y 的方程组求解.【规范解答】 设z =x +y i(x ,y ∈R),由已知得⎩⎪⎨⎪⎧ (x +y i )(x -y i )=1,|x +y i -1|=1,即⎩⎪⎨⎪⎧x 2+y 2=1,(x -1)2+y 2=1, 解得⎩⎨⎧x =12,y =±32,∴z =12±32i.已知复数z 1=m +(4-m 2)i(m ∈R)和z 2=2cos θ+(λ+3sin θ)i(θ∈R),若z 1=z 2,求实数λ的取值范围.【解】 由题设及复数相等的定义,知m =2cos θ,且4-m 2=λ+3sin θ,消去参数m ,得λ=4-4cos 2θ-3sin θ=4sin 2θ-3sin θ=4(sin θ-38)2-916. ∵-1≤sin θ≤1,∴当sin θ=38时,λmin =-916; 当sin θ=-1时,λmax =7.故λ的取值范围是[-916,7].。
(必考题)高中数学高中数学选修2-2第五章《数系的扩充与复数的引入》检测题(含答案解析)(3)

一、选择题1.若i 为虚数单位,则复数311i i-+的模是( ) A .22B .5C .5D .22.已知i 是虚数单位,,a b ∈R ,31ia bi i++=-,则a b -等于( ) A .-1B .1C .3D .43.如果复数z 满足21z i -=,i 为虚数单位,那么1z i ++的最小值是( ) A .101-B .21-C .101+D .21+4.设复数z=()()12i i a ++为纯虚数,其中a 为实数,则a =( ) A .2-B .12-C .12D .25.已知复数z 满足:()()312z i i i -+=(其中i 为虚数单位),复数z 的虚部等于( ) A .15-B .25-C .45D .356.若复数满足,则复数的虚部为( )A .B .C .D .7.已知复数3412iz i+=-,是z 的共轭复数,则z 为 ( ) A .55B .221C .5D .58.已知复数z 满足z (1﹣i )=﹣3+i (期中i 是虚数单位),则z 的共轭复数z 在复平面对应的点是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.若复数z 满足(34)112i z i -=+,其中i 为虚数单位,则z 的虚部为( ) A .2-B .2C .2i -D .2i10.满足条件4z i z i ++-=的复数z 在复平面上对应点的轨迹是( ). A .椭圆 B .两条直线C .圆D .一条直线11.已知复数33iz i --=,则z 的虚部为( ) A .3-B .3C .3iD .3i -12.已知复数z 满足(1-i)z=2+i ,则z 的共轭复数为( ) A .3322i + B .1322i - C .3322i - D .1322i + 二、填空题13.已知复数z 满足|2|1z i +-=,则|21|z -的取值范围是________. 14.设复数z 满足(1)1z i i -=+(i 为虚数单位),则z 的模为________. 15.复数z 满足21z i -+=,则z 的最大值是___________. 16.213i(3i)-+化简后的结果为_________. 17.已知i 是虚数单位,则满足()1z i i +=的复数z 的共轭复数为_______________ 18.设a R ∈,若复数3a i z i-=+(i 是虚数单位)的实部为12,则 a = __________.19.已知复数43cos sin 55z i θθ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭是纯虚数,(i 为虚数单位),则tan 4πθ⎛⎫-= ⎪⎝⎭__________.20.已知z C ∈,||1z =,则2|21|z z ++的最大值为______.三、解答题21.(Ⅰ)已知m R ∈,复数()()2245215z m m m m i =--+--是纯虚数,求m 的值;(Ⅱ)已知复数z 满足方程()20z z i +-=,求z 及2z i +的值. 22.已知复数w 满足()432(w w i i -=-为虚数单位). (1)求w ;(2)设z C ∈,在复平面内求满足不等式12z w ≤-≤的点Z 构成的图形面积. 23.已知复数,, , 求:(1)求的值; (2)若,且,求的值.24.已知复数()()2226z m m m m i =-++-所对应的点分别在(1)虚轴上;(2)第三象限.试求以上实数m 的值或取值范围. 25.已知1z i =+.(1)设23(1)4z i ω=+--,求ω;(2)如果2211z az bi z z ++=--+,求实数,a b 的值. 26.下列方程至少有一个实根,求实数t 的值与相应方程的根.(1)2(2)(2)0x t i x ti ++++=; (2)2(21)(3)0x i x t i --+-=.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据复数的除法运算把311i i-+化成(),a bi a b R +∈ 【详解】()()()()2231131331241211112i i i i i i ii i i i i -----++====+++--,31121i i i-∴=+==+ 故选:B . 【点睛】本题考查复数的除法运算和复数的求模公式,属于基础题.2.A解析:A 【分析】根据复数的除法化简31ii+-,再根据复数相等的充要条件求出,a b ,即得答案. 【详解】()()()()2231334241211112i i i i i ia bi i i i i i +++++++=====+--+-, 1,2,1ab a b ∴==∴-=-.故选:A . 【点睛】本题考查复数的除法运算和复数相等的充要条件,属于基础题.3.A解析:A 【分析】由模的几何意义可转化为以(0,2)为圆心,1为半径的圆上一点与点(1,1)--距离的最小值,根据圆的性质即可求解. 【详解】 因为21z i -=,所以复数z 对应的点Z 在以(0,2)为圆心,1为半径的圆上, 因为1z i ++表示Z 点与定点(1,1)--的距离,所以Z 点与定点(1,1)--的距离的最小值等于圆心(0,2)与(1,1)--的距离减去圆的半径,即min 111z i ++==, 故选:A 【点睛】本题主要考查了复数及复数模的几何意义,圆的性质,属于中档题.4.D解析:D 【分析】利用复数代数形式的乘法运算化简,再由实部为0且虚部不为0求得a 值. 【详解】()()()()12i i 212i z a a a =++=-++为纯虚数, 20120a a -=⎧∴⎨+≠⎩,解得2a =,故选D. 【点睛】本题主要考查的是复数的乘法运算以及纯虚数的定义,属于中档题.解题时一定要注意21i =-和()()()()a bi c di ac bd ad bc i ++=-++以及()()()()a bi c di a bi c di c di c di +-+=++- 运算的准确性,否则很容易出现错误.5.C解析:C 【分析】利用复数代数形式的乘除运算法则求出241255i z i i i -=+=-++,由此能求出复数z 的虚部. 【详解】∵复数z 满足:()()312z i i i -+=(其中i 为虚数单位),∴()()()122412121255i i i z i i i i i i ---=+=+=-+++-. ∴复数z 的虚部等于45,故选C. 【点睛】本题考查复数的虚部的求法,是基础题,解题时要认真审题,注意复数代数形式的乘除运算法则的合理运用.6.B【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果. 详解:因为,所以,因此复数的虚部为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为7.C解析:C 【解析】分析:利用复数模的性质直接求解. 详解:∵3412iz i+=-, ∴2222343434512121(2)i i z z i i +++=====--+- 故选C .点睛:复数(,)z a bi a b R =+∈的模为22z a b =+1212z z z z =,1122z z z z =. 8.B解析:B 【分析】先化简得到2z i =--,再计算2z i =-+得到答案。
5.1 数系的扩充与复数的引入 课件(北师大选修2-2)

一个复数z=a+bi(a,b∈R)与复平面内的向量 OZ = (a,b) 是一一对应的.
2.复数的模 设复数 z=a+bi(a, b∈R)在复平面内对应的点是 Z(a, b),点 Z 到 原点的距离 |OZ|叫作复数 z 的模或绝对值, 记
a2+b2 . 作|z|,显然,|z|=
1.注意复数的代数形式z=a+bi中a,b∈R这一条
答案:0或2
1 9.求复数 z1=6+8i 及 z2=- - 2i 的模,并比较它们的 2 模的大小.
1 解:∵z1=6+8i,z2=- - 2i, 2 ∴|z1|= 62+82=10, |z2|=
1 - 2+- 2
3 2 = . 2
2
3 ∵10> , 2 ∴|z1|>|z2|.
1.区分实数、虚数、纯虚数与复数的关系,特别要明 确:实数也是复数,要把复数与实数加以区别.对于纯虚 数bi(b≠0,b∈R)不要只记形式,要注意b≠0. 2.复数与复平面内的点一一对应,复数与向量一一对
应,可知复数z=a+bi(a,b∈R)、复平面内的点Z(a,b)和
平面向量 OZ 之间的关系可用图表示.
解析: 复数 z1, 2 对应的点分别为 Z1(1, 3), 2(1, 3), z Z - 关于 x 轴对称. 答案:A
6.已知平面直角坐标系中O是原点,向量 OA ,OB 对应 的复数分别为2-3i,-3+2i,那么向量 BA 的坐标是
( A.(-5,5) C.(5,5) B.(5,-5) D.(-5,-5) )
OB 对应的复数分别记作z1=2-3i,z2 解析:向量 OA ,
=-3+2i,根据复数与复平面内的点一一对应,可得向
量 OA =(2,-3), OB =(-3,2).
高中数学第五章数系的扩充与复数的引入5

反思当复数写成代数形式a+bi,且a,b∈R时,才可确定a是实部,b是
虚部.复数2+ai(a∈C)的虚部不一定是a,实部也不一定是2,复数ai也
不一定是虚数.
题型一
题型二
题型三
【变式训练1】 已知复数z=(a-1)-(2-b)i的实部和虚部分别是2和1,
即
解得m=4.
+ 2 ≠ 1,且 + 2 > 0,
反思利用复数的分类求参数时,要先确定构成实部、虚部的式子
有意义的条件,再结合实部与虚部的取值求解.要特别注意复数
z=a+bi(a,b∈R)为纯虚数的充要条件是a=0,且b≠0.
题型一
题型二
题型三
【变式训练 2】 已知 m∈R,复数 z=
(+2)
+
-1
(2 + 2 − 3)i,
当为何值时:
(1)z 为实数;
(2)z 为虚数;
(3)z 为纯虚数.
解:(1)要使 z 为实数,需满足 m
(+2)
+2m-3=0,且
有意义,即
-1
2
m-1≠0,解得 m=-3.
(2)要使 z为虚数,需满足 m2+2m-3≠0,且
(+2)
有意义,即 m-1≠0,
所以当 m=-2 时,z 为实数.
6
1
2
2 + 2 + 1 > 0,
(2)若 z 是虚数,则 2
+ 3 + 2 ≠ 0,
≠ -1,
即
≠ -2,且 ≠ -1,
解得 m≠-2,且 m≠-1.
上海控江中学高中数学选修2-2第五章《数系的扩充与复数的引入》测试卷(含答案解析)

一、选择题1.设复数z 满足1z =,则1z i -+的最大值为( )A .21-B .22-C .21+D .22+2.下面是关于复数21iz =-+的四个命题:1:2p z =;22:2p z i =;3:p z 的共轭复数为1i +;4:p z 的虚部为1-.其中,真命题的个数为( ) A .1B .2C .3D .43.已知复数z 满足121iz i i+⋅=--(其中z 为z 的共轭复数),则z 的值为( ) A .1 B .2C .3D .54.如果复数212bii-+的实部与虚部互为相反数,那么实数b 的值为( ) A .2 B .23C .-2D .23-5.若复数满足,则复数的虚部为( )A .B .C .D .6.已知复数z 满足()(13)10z i i i ++=,其中i 为虚数单位,则z =( ) A 3B 6C .6D .37.已知i 为虚数单位,复数21iz =+,则z z -等于( ) A .2B .2iC .2i -D .08.已知复数113iz i-=+,则复数z 的虚部是( ) A .25 B .25i C .25-D .25i -9.满足条件4z i z i ++-=的复数z 在复平面上对应点的轨迹是( ). A .椭圆B .两条直线C .圆D .一条直线10.满足条件3z i z i +=+的复数z 对应点的轨迹是( ) A .直线B .圆C .椭圆D .线段11.若复数z 满足()2117z i i -=+(i 为虚数单位),则z =( ) A .35i +B .35i -C .35i -+D .35i --12.已知复数3z a i =+,其中a R ∈.若4z R z+∈,则a =A .1B .1-C .1或1-D .0二、填空题13.在复平面内,到点133i -+的距离与到直线:3320l z z ++=的距离相等的点的轨迹方程是________.14.i 是虚数单位,则232017232017i i i i ++++=_______.15.下列四个命题中,正确命题的个数是___________.①0比i 小②两个复数互为共轭复数,当且仅当其和为实数 ③1x yi i +=+的充要条件为1x y ==④如果实数a 与ai 对应,那么实数集与纯虚数集一一对应 16.已知i 为虚数单位,计算1i1i-=+__________. 17.已知复数43i z =+(i 为虚数单位),则z =____.18.设集合4{|10,}A x x x C =-=∈,23i z =-,若x A ∈,则||x z -最大值是________ 19.有以上结论:①若x , y C ∈,则2x yi i +=+的充要条件是2x =, 1y =; ②若实数a 与ai 对应,则实数集与虚数集是一一对应;③由“在平面内,三角形的两边之和大于第三边”类比可得“在空间中,四面体的任意三个面的面积之和大于第四个面的面积”;④由“若a , b , c R ∈,则()()ab c a bc =”类比可得“若a , b , c 为三个向量,则()()a b c a b c ⋅⋅=⋅⋅.其中正确结论的序号为__________.20.已知复数213(3)2z a i a =+-+,22(31)z a i =++(a R ∈,i 是虚数单位). (1)若,求的值;(2)若复数12z z -在复平面上对应点落在第一象限,求实数的取值范围.三、解答题21.实数m 取怎样的值时,复数226(215)z m m m m i =--+--是: (1)实数?(2)虚数?(3)纯虚数?22.已知虚数z 满足|21||22|z i z i +-=+-(i 为虚数单位). (1)求||z 的值; (2)若1mz R z+∈,求实数m 的值. 23.已知复数z=m(m-1)+( m 2+2m-3)i 当实数m 取什么值时,复数z 是 (1)零;(2)纯虚数;(3)z=2+5i24.已知m R ∈,复数()()22231m m z m m i m +=++--,当m 为何值时,(1)z R ∈?(2)z 是虚数?(3)z 是纯虚数? (4)z 对应的点位于复平面第二象限? (5)z 对应的点在直线30x y ++=上? 25.复数2(21)(1),z a a a i a R =--+-∈. (1)若z 为实数,求a 的值; (2)若z 为纯虚数,求a 的值; (3)若93z i =-,求a 的值. 26.已知z 是复数,z i +和1zi-都是实数, (1)求复数z ;(2)设关于x 的方程2(1)(31)0x x z m i ++--=有实根,求纯虚数m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】如图所示,复数满足1z =时轨迹方程为复平面内的单位圆,而()11z i z i -+=--表示z 与复数1i -所对应的点在复平面内的距离, 结合圆的性质可知,1z i -+的最大值为()2211121+-+=+.本题选择C 选项.2.B解析:B【分析】化简复数1i z =--,结合复数的基本概念,共轭复数的概念,以及复数的模的计算,即可判定,得到答案. 【详解】 由题意,复数()()()2121111i z i i i i --===---+-+--,则z =,所以1p 是错误的;22(1)2z i i =--=,所以2p 是正确的;z 的共轭复数为1i -+,所以3p 是错误的; z 的虚部为1-,所以4p 是正确的.故选:B. 【点睛】本题主要考查了复数的乘法、除法运算,以及复数的概念及分类,以及共轭复数的概念及应用,着重考查了推理与辨析能力.3.D解析:D 【分析】按照复数的运算法则先求出z ,再写出z ,进而求出z . 【详解】21(1)21(1)(1)2i i ii i i i ++===--+, 1222(2)121i iz i i z i z i i i i i+-∴⋅=-⇒⋅=-⇒==--=---,12||z i z ∴=-+⇒==故选:D 【点睛】本题考查复数的四则运算、共轭复数及复数的模,考查基本运算能力,属于基础题.4.D解析:D 【分析】先根据复数除法化为代数形式,再根据实部与虚部互为相反数解得b 的值. 【详解】因为()2242125b b i bi i --+-=+,所以()4222553b b b -+-=-=-,,选D.【点睛】本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭为.-a bi 5.B解析:B 【解析】分析:先根据复数除法法则得复数,再根据复数虚部概念得结果. 详解:因为,所以,因此复数的虚部为,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为6.D解析:D 【解析】分析:由()()1310z i i i ++=,,可得10i13iz i =-+,利用复数除法法则可得结果. 详解:因为()()1310z i i i ++=,所以()()()2210i 13i 10i 30i 10i 13i 13i 13i 19i z i i i --+=-=-=-++-- 30+10i310i =-=,所以3z =,故选D. 点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.7.C解析:C 【解析】 ∵ 22(1)112i z i i -===-+,∴ 1(1)2z z i i i -=--+=-,故选C. 点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数,共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化,转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.8.C解析:C 【解析】113i z i -=+(1)(13)121055i i i --==-- ,所以虚部是25- ,选C. 9.A解析:A 【分析】转化复数方程为复平面点的几何意义,然后利用椭圆的定义,即可判定,得到答案. 【详解】由题意,复数4z i z i ++-=的几何意义表示:复数z 在复平面上点到两定点(0,1)和(0,1)-的距离之和等于4,且距离之和大于两定点间的距离,根据椭圆的定义,可知复数z 对应点的轨迹为以两定点(0,1)和(0,1)-为焦点的椭圆, 故选A . 【点睛】本题主要考查了复数的几何意义的应用,其中解答中熟记复数的表示,以及复数在复平面内的几何意义是解答的关键,注重考查了分析问题和解答问题的能力,属于基础题.10.A解析:A 【解析】 【分析】设复数z =x +yi ,结合复数模的定义可得z 对应点的轨迹. 【详解】设复数z =x +yi ,则:()1z i x y i +=++=()3z i x y i +=++=结合题意有:()()222213x y x y ++=++,整理可得:310--=x y . 即复数z 对应点的轨迹是直线. 故选A . 【点睛】本题主要考查复数的模的计算公式,复数中的轨迹问题等知识,意在考查学生的转化能力和计算求解能力.11.B解析:B 【分析】根据复数的运算,求得35z i =+,再根据共轭复数的概念,即可曲解.【详解】由复数z 满足()2117z i i -=+,即()()()()11721171525352225i i i iz i i i i ++++====+--+, 所以35z i =-,故选B . 【点睛】本题主要考查了复数的运算,及共轭复数的概念,其中解答中熟记复数的运算法则和共轭复数的概念是解答的关键,着重考查了运算与求解能力,属于基础题.12.C解析:C 【解析】 【分析】 首先求解4z z+,然后得到关于a 的方程,解方程即可求得实数a 的值. 【详解】 由题意可得:4z a z +=++()243a a a =++22441133a i a a ⎛⎫⎫=+- ⎪⎪++⎝⎭⎭, 若4z R z +∈,则24103a -=+,解得:a =1或1-. 本题选择C 选项. 【点睛】复数的基本概念和复数相等的充要条件是复数内容的基础,高考中常常与复数的运算相结合进行考查,一般属于简单题范畴.二、填空题13.【分析】设z =x+yi (xy ∈R )可得直线l :3z+32=0化为:3x+1=0由于点3i 在直线3x+1=0上即可得出点的轨迹【详解】设z =x+yi (xy ∈R )则直线l :3z+32=0化为:3x+1= 解析:3y =【分析】设z =x +yi (x ,y ∈R ),可得直线l :3z +3z +2=0化为:3x +1=0.由于点13-+3i 在直线3x +1=0上,即可得出点的轨迹. 【详解】设z =x +yi (x ,y ∈R ),则直线l :3z +3z +2=0化为:3x +1=0. ∵点13-+3i 在直线3x +1=0上, ∴在复平面内,到点13-+3i 的距离与到直线l :3z +3z +2=0的距离相等的点的轨迹是y =3.故答案为:y =3. 【点睛】本题考查了复数的运算性质、几何意义,考查了推理能力与计算能力,属于基础题.14.【分析】将视为数列的前项的和然后利用错位相减法可求出结果【详解】为数列的前项的和则上述两式相减得故答案为:【点睛】本题考查复数乘方的运算同时也考查利用错位相减法求和考查计算能力属于中等题 解析:10081009i +【分析】 将232017232017i i i i ++++视为数列{}nni的前2017项的和,然后利用错位相减法可求出结果. 【详解】232017232017i i i i ++++为数列{}nni的前2017项的和2017S,则2320172017232017S i i i i =++++,23201720182017220162017iS i i i i ∴=++++,上述两式相减得()()2017232017201845042201711201720171i i i S i i i i i i i⨯+--=++++-=--()()4504121120172017201711i i i i i i ii⨯+--=-=+=+--, ()()()()201720171201720162018100810091112i i i iS i i i i ++++∴====+--+. 故答案为:10081009i +. 【点睛】本题考查复数乘方的运算,同时也考查利用错位相减法求和,考查计算能力,属于中等题.15.0【分析】根据复数相关概念逐一判断【详解】比不可比较大小;两个复数互为共轭复数则它们的和为实数反之不成立如2与3;当为实数时的充要条件为;因为当时所以实数集与纯虚数集不一一对应;综上无正确命题即正确解析:0 【分析】根据复数相关概念逐一判断. 【详解】0比i 不可比较大小;两个复数互为共轭复数,则它们的和为实数,反之不成立,如2与3; 当x y ,为实数时1x yi i +=+的充要条件为1x y ==; 因为当0a =时0,ai =所以实数集与纯虚数集不一一对应; 综上无正确命题,即正确命题的个数是0. 【点睛】本题考查复数相关概念,考查基本分析判断能力,属基本题.16.【解析】分析:根据复数除法法则求解详解:复数点睛:首先对于复数的四则运算要切实掌握其运算技巧和常规思路如其次要熟悉复数相关基本概念如复数的实部为虚部为模为对应点为共轭为 解析:i -【解析】分析:根据复数除法法则求解. 详解:复数1i (1)(1)2ii 1i (1)(1)2i i i i ----===-++-. 点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如()()()(),(,,.)++=-++∈a bi c di ac bd ad bc i a b c d R . 其次要熟悉复数相关基本概念,如复数(,)a bi a b R +∈的实部为a 、虚部为b (,)a b 、共轭为.-a bi17.5【解析】解析:5 【解析】5z ==.18.【解析】由得:则x=1时时当时当时故答案为解析:【解析】由410,x x C -=∈得: 1x x i ,=±=±,则x=1时 123x z i -=-+=1x =-时,123x z i -=--+=,当x i =时,2324x z i i i -=-+=-+=当x i =-时,2322x z i i i -=--+=-+=.故答案为19.③【解析】当时复数也是故①错误当时没有复数和其对于故②错误平面中的长度类比到空间即是面积故③正确由于方向与相同或者相反方向与方向相同或者相反故④错误综上所述正确的命题是③点睛:本题主要考查命题真假性解析:③【解析】当,2x i y i ==-时,复数也是2i +,故①错误.当0a =时,没有复数和其对于,故②错误.平面中的长度,类比到空间即是面积,故③正确.由于()a b c ⋅⋅方向与c 相同或者相反, ()a b c ⋅方向与a 方向相同或者相反,故④错误.综上所述,正确的命题是③.点睛:本题主要考查命题真假性的判断.第一个是复数的运算,与平时运算的差别是题目中,x y 是在复数集内选两个数,举出反例判断出结论是错误的.第一个结论主要用0a =来排除.第三个结论涉及到的知识点是向量的数量积运算,向量数量积运算结果是实数,数乘以向量,结果是向量.20.(1)(2)【解析】试题分析:(1)由复数的定义为实数时虚部为0由此可求得;(2)求得对应点是它在第一象限则横纵坐标均大于0列出不等式组可求得范围试题解析:(1)(2)21a -<<-.【解析】试题分析:(1)由复数的定义,z 为实数时,虚部为0,由此可求得a ;(2)求得2123(2)(34)2z z a a i a -=-+--+,对应点是23(3,34)2a a a ---+,它在第一象限,则横、纵坐标均大于0,列出不等式组,可求得a 范围. 试题(1)由230a -=,得3a =± (2)由条件得,2123(2)(34)2z z a a i a -=-+--+ 因为12z z -在复平面上对应点落在第一象限,故有2320{2340a a a ->+--> ∴12{241a a a -<<-><-或解得21a -<<-.考点:复数的概念,复数的几何意义.【名师点睛】复数的概念形如a+b i(a ,b ∈R)的数叫做复数,其中a ,b 分别是它的实部和虚部.若b=0,则a+b i 为实数;若b ≠0 ,则a+b i 为虚数;若a=0且b ≠0,则a+b i 为纯虚数.三、解答题21.(1)5m =或3m =-;(2)5m ≠且3m ≠-;(3)3m =或2m =- 【分析】(1)由虚部等于0列式求解m 的值; (2)由虚部不等于0列式求解m 的值;(3)由实部等于0且虚部不等于0列式求解m 的值.【详解】(1)当22150m m --=,即5m =或3m =-时,z 的虚部等于0,所以当5m =或3m =-时,z 为实数;(2)当22150m m --≠时,即5m ≠且3m ≠-时,z 为虚数;(3)当22602150m m m m ⎧--=⎨--≠⎩时,即3m =或2m =-时,z 为纯虚数. 【点睛】该题考查的是有关根据复数的类别求解参数的值的问题,涉及到的知识点有复数的分类,属于简单题目.22.(12)12m =. 【分析】(1)设z a bi =+(,a b ∈R 且0b ≠),利用模长的定义可构造出方程,整理出222a b +=,从而求得z ;(2)整理得到122a b mz am bm i z ⎛⎫+=++- ⎪⎝⎭,根据实数的定义求得结果.【详解】 (1)z 为虚数,可设z a bi =+(,a b ∈R 且0b ≠) 则22122a bi i a bi i ++-=++-,即()()()()212122a b i a b i ++-=++- ()()()()2222212122a b a b ∴++-=++-整理可得:222a b +=z ∴==(2)由(1)知221122a bi a b mz am bmi am bmi am bm i z a bi a b -⎛⎫+=++=++=++- ⎪++⎝⎭ 1mz R z +∈ 02b bm ∴-= 又0b ≠ 12m ∴=【点睛】本题考查复数模长的求解、根据复数的类型求解参数值的问题,属于基础题.23.⑴m=1⑵m=0⑶ m=2【分析】对于复数(,)z a bi a b R =+∈,(1)当且仅当0ab 时,复数0z =;(2)当且仅当0a =,0b ≠时,复数z 是纯虚数;(3)当且仅当2a =,5b =时,复数25z i =+.【详解】(1)当且仅当 ()210230m m m m ⎧-=⎨+-=⎩解得m=1,即m=1时,复数z=0. (2)当且仅当()210230m m m m ⎧-=⎨+-≠⎩解得m=0, 即m=0时,复数z=﹣3i 为纯虚数.(3)当且仅当()212235m m m m ⎧-=⎨+-=⎩ 解得m=2,即m=2时,复数z=2+5i .【点睛】 本题考查了复数的基本概念,深刻理解好基本概念是解决好本题的关键.24.(1)3m =- (2) 13m m ≠≠-且(3)0m =或2m =-(4)3m <-(5)0m =或2m =-【解析】试题分析:(1)要复数为实数,则虚部为零,即2230m m +-=且10m -≠,解得3m =.(2)要复数为纯虚数,则实部()201m m m +=-,虚部2230m m +-≠,解得0,2m m ==-.(3)复数对应的点在第二象限,则实部()201m m m +<-,虚部2230m m +->,解得3m <-.(4)将实部和虚部代入直线方程,解方程可求得0,2m m ==-.试题(1)由2230m m +-=,且10m -≠,得3m =,故当3m =-时, z R ∈;(2)由()220,{1230,m m m m m +=-+-≠ 解得0m =或2m =-,故当0m =或2m =-时, z 为纯虚数;(3)由()220,{1230,m m m m m +<-+-> 解得3m <-,故当3m <-时,复数z 对应的点位于复平面的第二象限;(4)由()()2223301m m m m m +++-+=-, 解得0m =或2m =-,故当0m =或2m =-时,复数z 对应的点在直线30x y ++=上.25.(1)1a =;(2)21-=a ;(3)2-=a . 【解析】试题分析:(1)复数(,)z a bi a b R =+∈为实数的条件0b =;(2)复数z 为纯虚数的条件0,0a b =≠;(3)两复数相等的条件:实部、虚部分别对应相等.试题解:(1)若z 为实数,则01=-a ,得1=a . (2)若z 为纯虚数,则⎩⎨⎧≠-=--010122a a a ,解得21-=a . (3)若i 39-=z ,则⎩⎨⎧-=-=--319122a a a ,解得2-=a .考点:1.复数为实数、纯虚数的条件;2.两复数相等的条件.26.(1)1z i =-;(2)m i =-.【分析】(1)设z a bi =+,化简z i +和1z i -,若为实数,则虚部为零;(2)设m di =,根据复数相等计算.【详解】(1)设z a bi =+,则(1)z i a b i +=++,122z a b a b i i -+=+- 若z i +和1z i -都是实数,则1002b a b +=⎧⎪⎨+=⎪⎩,解得1a =,1b =-, 所以1z i =-.(2)设m di =,则方程为2(2)(31)0x x i di i +---=,即223(1)0x x d x i +++-=,若方程有实数根,则223010x x d x ⎧++=⎨-=⎩,解得1x =,1d =-, 所以,纯虚数m i =-.【点睛】本题考查复数的性质和运算.注意区分虚数、纯虚数、复数等概念.。
本章测试(第五章数系的扩充与复数的引入
本章总结知识结构专题总结专题一复数的概念1.虚数单位i 的平方等于-1,实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.2.形如a+bi(a 、b ∈R )的数,叫做复数.全体复数所成的集合叫做复数集,一般用字母C 表示.3.复数表示成a+bi 的形式叫做复数的代数形式.4.对于复数a+bi,当且仅当b=0时,它是实数a;当且仅当a=b=0时,它是实数0;当b≠0时,叫做虚数;当a=0且b≠0时,叫做纯虚数;a 与b 分别叫做复数a+bi 的实部与虚部. 【例1】 (2005天津高考,理2) 若复数iia 213++(a ∈R ,i 为虚数单位)是纯虚数,则实数a 的值为( )A.-2B.4C.-6D.6 思路分析:因为iia 213++是纯虚数,所以,只要使其实部为零,虚部不为零即可,因此,要先化简i i a 213++,对其进行分母实数化,即i i a 213++=i aa i i i i a 52356)21)(21()21)(3(-++=-+-+,令其实部56+a =0且虚部523a-≠0,得a=-6. 答案:C【例2】 (2006四川高考,理2) 复数(1-i)3的虚部为( )A.3B.-3C.2D.-2 思路分析:将复数(1-i)3展开,整理得1-3i+3i 2-i 3=-2-2i,其虚部为-2.答案:D【例3】 (2005福建高考,理1) 复数z=i-11的共轭复数是( ) A.21+21i B.2121-i C.1-i D.1+i 思路分析:可先求共轭复数,再化简;也可先化简,再求共轭复数.即i i i i z 21211111)11(-=+=-=-=;或者是,因为z=i -11=21)1)(1(1ii i i +=+-+,21)21(i i z -=+==2121-i.答案:B专题二复数的四则运算1.两个复数相加(减)就是把实部与实部、虚部与虚部分别相加(减),即(a+bi)±(c+di)=(a±c)+(b±d)i.2.设z 1=a+bi,z 2=c+di 是任意两个复数,那么它们的积(a+bi)(c+di)=(ac-bd)+(bc+ad)i;它们的商(a+bi)÷(c+di)=2222dc adbc d c bd ac +-+++i(c+di≠0). 3.在进行复数除法运算时,通常先把(a+bi)÷(c+di)写成dic bia ++的形式,再把分子与分母都乘分母的共轭复数(c-di).【例4】 (2007海南、宁夏高考,文15) i 是虚数单位,i+2i 2+3i 3+…+8i 8=______________.(用a+bi 的形式表示,a,b ∈R ) 思路分析:对任何n ∈N *,都有i 4n +1=i,i 4n +2=-1,i 4n +3=-i,i 4n =1.所以,i+2i 2+3i 3+…+8i 8=i-2-3i+4+5i-6-7i+8=4-4i.答案:4-4i【例5】 (2006广东高考,理10) 对于任意的两个实数对(a,b)和(c,d),规定(a,b)=(c,d)当且仅当a=c,b=d;运算“⊗”为:(a,b)⊗(c,d)=(ac-bd,bc+ad),运算“⊕”为:(a,b)⊕(c,d)=(a+c,b+d),设p,q ∈R ,若(1,2)⊗(p,q)=(5,0)则(1,2)⊕(p,q)=( )A.(4,0)B.(2,0)C.(0,2)D.(0,-4)思路分析:这是一个新定义型的信息迁移题,通过观察,我们不难发现,这个“⊗”运算,其实就是复数的乘法运算,即(a+bi)(c+di)=(ac-bd)+(ad+bc)i,它与(a,b)⊗(c,d)=(ac-bd,bc+ad)完全对应.因此,在解题时,就将其作为复数乘法运算来处理.由(1,2)⊗(p,q)=(p-2q,2p+q)=(5,0),得⎩⎨⎧-==⇒⎩⎨⎧=+=-.2,1,02,52q p q p p p 所以(1,2)⊕(p,q)=(1,2)⊕(1,-2)=(2,0). 答案:B【例6】 (2005山东高考,理)22)1(1)1(1i ii i -+++-=( ) A.i B.-I C.1 D.-1 思路分析:本题要充分利用速算式(1±i)2=±2i,即i ii i i i i i i i i 2112121)1(1)1(122---=-++-=-+++-=-1. 答案:D专题三复数方程解复数方程时,可以综合利用解实数方程的相关技巧和复数的特有性质.【例7】 (2006上海高考,理5) 若复数z 同时满足z-z =2i,z =iz(i 为虚数单位),则z =_______________.思路分析:将z =iz 代入z-z =2i,得z-iz=2i,然后,对z 进行化简,我们观察可知,式z=ii-12中分子为2i,因此,分子分母同乘以1-i,则分母立刻可得-2i.当然也可以进行分母实数化化简.z=)1)(1()1(212i i i i i i ---=-=-1+i. 答案:-1+i【例8】 (2006上海春季高考,18) 已知复数ω满足ω-4=(3-2ω)i(i 为虚数单位),z=ω5+|ω-2|,求一个以z 为根的实系数一元二次方程. 思路分析:先将ω求出并化简,并将其代入z=ω5+|ω-2|化简,发现这一虚数如果是一个实系数的一元二次方程的根,那必定还有一个共轭复数根.然后利用韦达定理即可求得以z 为根的实系数一元二次方程. 也可设ω=a+bi(a 、b ∈R ),利用复数相等的定义,求出ω=2-i,以下和前面的思路分析内容相同. 解法1:∵ω(1+2i)=4+3i,∴ω=ii 2134++=2-i,∴z=i -25+|-i|=3+i,若实系数一元二次方程有虚根z=3+i,则必有共轭虚根z =3-i,∵z+z =6,z·z =10,∴所求的一个一元二次方程可以是x 2-6x+10=0. 解法2:设ω=a+bi(a 、b ∈R ).则a+bi-4=3i-2ai+2b,得⎩⎨⎧-==-,23,24a b b a ∴⎩⎨⎧-==,1,2b a ∴ω=2-i,以下同解法一.【例9】 (2005高考全国Ⅲ,理13) 已知复数z 0=3+2i,复数z 满足z·z 0=3z+z 0,则z=_________________. 思路分析:可将z·z 0=3z+z 0中的z 用z 0表示出来,并将z 0=3+2i 代入,再进行化简,即得,z=i i i z z 231223300-=+=-. 答案:1-23i 专题四复数的几何意义复数的几何意义,有两个方面:一是用点来表示复数,复数集C 和复平面内所有的点所成的集合是一一对应的,即复数z=a+bi复平面内的点Z(a,b),这是复数的一个几何意义.二是用向量来表示复数,重点在于复数对应点的轨迹问题. 【例10】 (2005辽宁高考,理1文1) 复数z=ii++-11-1.在复平面内所对应的点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 思路分析:将复数z=ii++-11-1化简为a+bi(a,b ∈R)的形式,从而可判断其对应点的位置.z=i i ++-11-1=)1)(1()1)(1(i i i i -+-+--1=22i -1=-1+i,可知其在复平面内所对应的点为(-1,1),应为第二象限.答案:B【例11】 (2005浙江高考,理4) 在复平面内,复数ii+1+(1+3i)2对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 思路分析:将复数ii+1+(1+3i)2化简为a+bi(a,b ∈R )的形式,从而可判断其对应点的位置. i i +1+(1+3i)2=)1)(1()1(i i i i -+-+1+23i-3=23-+(23+21)i,显然,其所对应点在第二象限.答案:B本章测试(时间:120分钟 满分:150分)一、选择题(本大题共10个小题,每小题6分,共60分.在每小题给出的四个选项中,只有一项符合要求)1.复数z 是实数的充分而不必要条件是( )A.|z|=zB.z=zC.z 2是实数D.z+z 是实数 答案:A思路分析:注意题目是求充分不必要条件而不是充要条件,即当满足条件时z 为实数,但复数z 为实数时该条件不一定成立. 当z =i 时,z 2=-1,故C 项不成立.当z 为虚数且非纯虚数时,z+z 是实数,故D 项不成立.若z=z ,设z=a +bi ,则z =a-bi,则复数相等得b=0,∴复数z 为实数;反之,若复数z 为实数,则必有z=z ,故B 项是充要条件.当|z|=z,设z=a +bi ,由复数相等得b=0,∴复数z 为实数;反之,若复数z 为实数且a<0时,得不出|z|=z.故正确答案是A 项.2.设复数z 满足关系式z +|z|=2+i,那么z 等于( ) A.43-+i B.43-i C.43--i D.43+i答案:D思路分析:设出复数由复数相等解方程组即可.设z=x+yi(x,y ∈R ),则x+yi +22y x +=2+i,∴⎪⎩⎪⎨⎧==⎪⎩⎪⎨⎧==++.1,43,1,222y x y y x x 解得∴z =43+i,∴应选D 项. 3.若z 2+z +1=0,则z 2002+z 2003+z 2005+z 2006的值是( )A.2B.-2C.21-+23i D.21-±23i 答案:B思路分析:由z 2+z +1=0,不难联系到立方差公式,从而将z 得出.将z 2+z +1=0两边乘以(z-1)得z 3-1=0,即z 3=1(z≠1).则z 4=z,z 2002=(z 3)667·z =z,于是原式=z 2002(1+z +z 3+z 4)=z(2+2z)=2(z +z 2)=-2.故选B 项. 4.复数z,a,x 满足x=azza --1,且|z|=1,则|x|等于( ) A.0 B.1 C.|a| D.21 答案:B思路分析:由|z|=1得z z =1,将分母中的1代换,便可与分子约分,否则问题很复杂. 由|z|=1得|z|2=1,即z z =1,∴x=za z z z a az z z z a 1)(-=--=--=-z,∴|x|=|-z|=1,故答案选B 项.5.以复平面内的点(0,-1)为圆心,1为半径的圆的方程是( ) A.|z-1|=1 B.|z+1|=1 C.|z-i|=1 D.|z+i|=1 答案:D思路分析:结合复数减法的几何意义来解.设复数为z=x+yi(x,y ∈R ),则|z+i|=22)1(++y x ,∴|z+i|=1表示以(0,-1)为圆心,1为半径的圆.故答案选D 项.6.若复数z 满足|z +3+4i|≤6,则|z|的最小值和最大值分别为( )A.1和11B.0和11C.5和6D.0和1 答案:B思路分析:由复数减法的几何意义知,满足条件的点的集合为圆面,|z|即圆面上的点对应复数的模,利用数形结合及解决圆上点的最值办法转化为到圆心的距离减加半径即可. ∵方程|z +3+4i|≤6是以(-3,―4)为圆心,6为半径的圆及其内部, ∴原点满足方程,故|z|的最小值为0,而|z|的最大值为6+|3+4i|=6+5=11.故答案选B 项. 7.设f(n)=(i i -+11)n +(ii +-11)n(n ∈N ),则集合{x|x=f(n)}中元素个数是( ) A.1 B.2 C.3 D.无穷多个答案:C思路分析:应先将i i -+11,i i+-11化简,再根据i 的周期性来解. 化简f(n)= i i -+11)n +(ii +-11)n(n ∈N )=i n +(-i)n .由i 4n =1,i 4n+1=i,i 4n+2=-1,i 4n+3=-i,给n 赋值发现集合{x|x=f(n)}={0,-2,2},故选C 项.8.若方程x 2+x+m=0有两个虚根α、β,且|α-β|=3,则实数m 的值为…( ) A.25 B.25- C.2 D.-2 答案:A思路分析:实系数一元二次方程不能简单地利用韦达定理来解,应由方程的根适合方程及相关知识来解. ∵方程x 2+x+m=0为实系数一元二次方程,且有两个虚根α、β,∴α、β互为共轭复数. 设α=a+bi,则β=a-bi, 由|α-β|=3,得b =±23.当b=23时,α=a+23i,代入方程得(a+23i)2+(a+23i)+m=0, 即(a 2+a+m-49)+(3a+23)i =0,∴⎪⎪⎩⎪⎪⎨⎧=-=⎪⎪⎩⎪⎪⎨⎧=+=-++.25,21.0233,0492m a a m a a 得出故选A 项.9.在复平面内,若复数z 满足|z +1|=|1+iz|,则z 在复平面内对应点的轨迹为( ) A.直线 B.圆 C.椭圆 D.双曲线 答案:A思路分析:设复数z=x+yi(x,y ∈R ),求模,用几何意义来解即可.设z=x+yi(x,y ∈R),|x+1+yi|=22)1(y x ++,|1+iz|=|1+i(x+yi)|=22)1(x y +-,则22)1(y x ++=22)1(x y +-.∴复数z=x+yi 对应点(x,y)的轨迹为到点(-1,0)和(0,1)距离相等的直线.故答案选A 项.10.已知|z 1|=|z 2|=1,|z 1-z 2|=2,则|z 1+z 2|=( )A.2B.2C.3D.5答案:A 思路分析:由向量加减法的几何意义知,|z 1-z 2|是以z 1,z 2对应的向量为邻边的平行四边形的一对角线长,则|z 1+z 2|为另一对角线长. 由向量的平行四边形法则,知∠z 1Oz 2=90°,∴对应的四边形为正方形.∴|z 1+z 2|=2.故答案选A 项.二、填空题(本大题共5个小题,每小题4分,共20分.把答案填在题中横线上)11.设i yi i x -+-=+1231(x,y ∈R ),则x=_________,y=___________. 答案:53 59-思路分析:此题是复数相等的应用,将等式两边整理后列方程组求解即可. 由已知得)1)(1()1()2)(2()2(3)1)(1()1(i i i y i i i i i i x +-+++-+=-+-, 整理得:i y y i x x )253(25622+++=-. ∴⎪⎪⎩⎪⎪⎨⎧-==⎪⎪⎩⎪⎪⎨⎧+=-+=.59,53,2532,2562y x y x y x 解得∴答案为x=53,y=59-. 12.设ω=21-+23i,A={x|x=ωk +ω-k ,k ∈Z },则集合A 中的元素有__________-个. 答案:2思路分析:此题是ω3=1,ω2=ω的周期性的应用.∵ω3=1,设n ∈Z ,∴k=3n 时x=2;k=3n+1时x=-1;k=3n+2时x=-1,故有2个元素. 13.(2007上海高考,理9文10) 对于非零实数a,b,以下四个命题都成立: ①a+a1≠0;②(a+b)2=a 2+2ab+b 2;③若|a|=|b|,则a=±b;④若a 2=ab,则a=b. 那么,对于非零复数a,b,仍然成立的命题的所有序号是_____________. 答案:②④思路分析:熟练掌握复数代数形式的四则运算是关键.我们也可以利用特例法进行一一验证.①不成立,例如,a=i,则a+a 1=i+i1=0;③不成立,例如,a=i,b=1,则|a|=|b|,而a≠±b. 14.(2007重庆高考,理11) 复数322ii+的虚部为_____________. 答案:54思路分析:化简542)2)(2()2(222223ii i i i i i i i +-=+-+=-=+,所以其虚部为54. 15.(2007海南、宁夏高考,理15) i 是虚数单位,ii43105++-=___________.(用a+bi 的形式表示,a,b ∈R ) 答案:25)43)(105()43)(43()43)(105(43105i i i i i i i i -+-=-+-+-=++-=1+2i. 思路分析:1+2i三、解答题(本大题共6个小题,共70分,解答应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)已知复数z=3232++-x x x +(x 2+2x-3)i ,求实数x,使:(1)z 是实数;(2)z 是虚数;(3)z 是纯虚数.解:解方程3232++-x x x =0得x=1或x=2;解x 2+2x-3=0得x=-3或x=1.答:x=1时z 是实数;x≠-3且x≠1时z 是虚数;x=2时z 是纯虚数.思路分析:复数z=a+bi 表示实数的条件是b=0,表示虚数的条件是b≠0,表示纯虚数的条件是a=0且b≠0.17.(本小题满分12分)已知复数z 的实部和虚部分别是a 和1,z 是z 的共轭复数,且z ·(1-2i)∈R ,求z. 解:∵z=a +i,z =a-i,z ·(1-2i)=(a-i)(1-2i)=(a-2)-(1+2a)i. 又z ·(1-2i)∈R ,∴1+2a=0,a=21-,∴z=21-+i. 思路分析:依据复数的乘法法则化简后再由复数表示实数的条件求解.18.(本小题满分12分)设方程(1+i)x 2+(1+5i)x-(2-6i)=0有实根,求这个实数根. 解:方程整理为(x 2+x-2)+i(x 2+5x+6)=0.设方程的实根为x 0,则⎪⎩⎪⎨⎧=++=-+)2(,065)1(,02020020x x x x解方程组得⎩⎨⎧--=-=.23,2100或或x x x同时满足①②的值为x 0=-2.∴所求的根为x 0=-2.思路分析:我们将方程的实根x 0代入方程,由复数相等的充要条件可得方程组,求解即可. 19.(本小题满分12分)已知x,y ∈R ,x 2+2x+(2y+x)i 和3x-(y+1)i 是共轭复数,求复数z=x+yi 和z .解:由已知得⎩⎨⎧+=+=+,12,322y x y x x x解方程组得⎩⎨⎧==⎩⎨⎧==.0,1,1,0y x y x 或 ∴z=i 或z=1,z =-i 或z =1.思路分析:两个复数a+bi 与c+di 共轭,等价于a=c 且b=d.由此可以得到关于x 、y 的方程组.20.(本小题满分12分)解方程2102221222++=+-++x x x x x .解:原方程可化为2222223)1(1)1(2)2(++=+-++x x ,设z 1=2x+2i,z 2=1-x+i, z 1+z 2=1+x+3i, ∴原方程可化为|z 1|+|z 2|=|z 1+z 2|,显然,仅当1OZ 与2OZ 共线且同向时上式才成立,从而xx -=1122, ∴x=21时等号成立,即x=21是方程的根. 思路分析:无理方程一般解法是平方去根号转化为有理方程再求解.但平方后次数高,项数多,求解更加困难.由于本题根号里面可配方,类似复数的模,所以,可转化为复数问题来解决.21.(本小题满分12分)实系数一元二次方程ax 2+bx+c=0的两根之比为p ,求证: (1)当11+-p p 为实数时,原方程有实根; (2)当11+-p p 为纯虚数时,原方程有虚根. 证明:设α与β是实系数一元二次方程ax 2+bx+c=0的两根, 且βα=p,则α+β=a b -α·β=a c ,βαβαβαβα+-=+-=+-1111p p , (2222222224)()(4)()(4)()()()11(b ac b aa c ab p p -=---=+-+=+-=+-βααββαβαβα.① (1)当11+-p p 为实数时,(11+-p p )2≥0,则由①可得b 2-4ac≥0,故原方程有实根.(2)当11+-p p 为纯虚数时,(11+-p p )2<0,则由①可得b 2-4ac<0,故原方程有虚根. 思路分析:判定实系数一元二次方程根的实、虚,只要判定其判别式b 2-4ac 的符号就可以了.由题意,应在b 2-4ac 与11+-p p 之间建立起联系. 教材习题点拨 复习题五(P 112)A 组1.解:(1)(-4x+1)+(y+2)i=0⎪⎩⎪⎨⎧-==⇒⎩⎨⎧=+=+-⇒.2,4102,014y x y x (2)(x-2y)-(3x+y)i=3-6i ⎪⎪⎩⎪⎪⎨⎧-==⇒⎩⎨⎧-=+-=--⇒.73,156)3(,32y y x y x y x 思路分析:利用复数为0或复数相等的条件先列出方程组,然后再求出未知量.2.答案:i 11=i 4×2+3=i 3=-i,i 25=i 4×6+1=i,i 26=i 4×6+2=i 2=-1,i 36=i 4×9=1,i 70=i 4×17+2=i 2=-1,i 101=i 4×25+1=i,i 355=i 4×88+3=i 3=-i,i 400=i 4×100=1.思路分析:利用公式i 4n =1,i 4n +1=i,i 4n +2=-1,i 4n +3=-i.3.解:(1)(3+4i )+(-5-3i )=(3-5)+(4i-3i )=-2+i ; (2)(1-5i )+(2+3i )=(1+2)+(-5i+3i )=3-2i ; (3)(-2+3i )+(6-5i )=(-2+6)+(3i-5i )=4-2i ; (4)(7-i )-(2i-3)=(7+3)+(-i-2i )=10-3i.4.解:(1)(-8-7i)(-3i)=24i-21;(2)(4-3i)(-5-4i)=-20-16i+15i-12=-32-i; (3)(21-+23i)(1+i)= 21-21-i+23i 23-=21-23--(2123-)i; (4)(1-2i)(2+i)(3-4i)=(2+i-4i+2)(3-4i)=(4-3i)(3-4i)=-25i. 5.解:(1)(1+2i)2=1+4i-4=-3+4i;(2)(2-3i)3=(2-3i)2(2-3i)=(-5-12i)(2-3i)=-10+15i-24i-36=-46-9i; (3)(21-+23i)(21-23-i)=(21-)2-(23i)2=41+43=1;(4)ii ii ∙=1=-i;(5)222)1)(1()1(212i i i i i i i +-=+-+=-=-1+i; (6)5521024)31)(31()31)(1(311i i i i i i i i -=-=-+-+=++. 6.解:ω2-ω+1=(231i +)2-(231i +)+1=231i +--231i ++1=0. 思路分析:通过计算不难得出ω2-ω+1=0这一结果,我们可以熟记这一结论,这有利于今后的计算.B 组1.解:(1)1321331323)32)(32()32(32i i i i i i i i +=+=-+-=+; (2)5512555567)2)(2()2)(3()2)(2()2)(4(2324i i i i i i i i i i i i i i i +=-++=+---++-++=+-+-+; (3)8244)22)(22()22)(57(225722643)1(2)32(2)1(2)1)(21(132221i i i i i i i i i i i i i i i i i i i i i i --=--+---+=+-+=+-++-=+--++-=+---=21--3i ;` (4))53)(53()53)(53()35)(35()35)(35(53533535i i i i i i i i i ii i+-++-+-++=-+--+8152281522i i +--+==21. 2.解:将原式变为15)33()(18422-+---=-+-z z z z z z z =z-3+15-z ,然后将z=2+i 代入得: z-3+15-z =2+i-3+125-+i =2+i-3+i +15=2+i-3+)1)(1()1(5i i i -+-255i -=23-23i. 思路分析:此题有两种解法,另一种解法是原式不变形,直接将z=2+i 代入也可得出结果.高效率学习决定学习成败的七个因素决定学习成败的因素可分为两大类:一类是内在因素;另一类是外部因素.内在因素归纳起来有七个方面.1.学习的动力是否强大要使学习获得成功,学习动力是第一个因素.学习活动中,有两个系统在同时进行工作,一个是认识系统,另一个是动力系统.动力系统对学习系统起着指向的作用和原动力的作用.所以,搞好学习首先要增强学习的动力.2.基础知识,基本技能是否循序作好了准备不少学习成绩优秀的同学成功的一个重要原因,就是已经学过的基础知识和基本技能掌握得比较扎实.特别是连贯性比较强的知识和技能,一定要一步一个脚印地打好基础.3.阅读、书写、计算的技巧是否已经达到自动化、半自动化的熟练程度“工欲善其事,必先利其器”.学习活动最基本的工具就是阅读技能、书写技能、计算技能,如果读、写的速度太慢,上课就会跟不上老师的讲课进度,课后复习和作业就会比别人多用时间.据有的国家对落后生的调查统计说明,这是造成部分学生学习落后的主要原因.4.好的学习方法一般说来,好的学习方法符合以下三个条件:符合认识规律;符合自己的个性特点;符合不同学习的内容和不同教师教课的特点.5.学习的才能是否强学习的才能主要指三种能力:独立获取知识的自学能力;运用知识分析和解决实际问题的能力;创造才能、发展才能比获得具体知识更重要,学习才能既是提高学习成绩的重要因素,又是通过学习要努力追求的目标.6.是否养成了良好的学习习惯学习方法经过长时期的运用,就会形成比较稳定的学习习惯.好的习惯对于获得学习上的成功极为重要,不好的习惯常常导致学习的失败.7.体力与精力是否充沛要使大脑处于积极工作的状态,必须有健壮的身体和充沛的精力.有的同学经常不吃早饭去上学,到上午第四节课已经饿得不行了,这时,听课效率就会降低.。
【数学】5.2.1 复数的加法与减法 课件(北师大版选修2-2)
复数减法的几何意义:
OZ1 - OZ 2 = Z 2 Z1
O
Z2
x
复数加减法的几何意义
1、|z1|= |z2| 平行四边形OABC是 菱形 z2 z2-z1
C
z1+z2
B
2、| z1+ z2|= | z1- z2|
平行四边形OABC是 矩形 o
z1 A
3、 |z1|= |z2|,| z1+ z2|= | z1- z2|
探究? 复数的加法满足交换律,结合律吗?
证:设Z1=a1+b1i,Z2=a2+b2i,Z3=a3+b3i (a1,a2, 复数的加法满足交换律、结合律,即对任 a3,b1,b2,b3∈R)
(a1+a2)+(b1+b2)i,Z2+Z1=(a2+a1)+(b2+b1)i
平行四边形OABC是 正方形
例1:设z1= x+2i,z2= 3-yi(x,y∈R),且 z1+z2 = 5 - 6i,求z1-z2
解:∵z1=x+2i,z2=3-yi,z1+z2=5-6i ∴(3+x)+(2-y)i=5-6i 3+x=5, ∴ 2-y=-6. x=2 ∴ y=8
∴z1 - z2 = (2+2i) - (3-8i) = -1+10i
两个复数相减就是把实部与实部、虚部与虚 部分别相减。
思考?
如何理解复数的减法?
复数的减法规定是加法的逆运算,即把满足 (c+di)+(x+yi)= a+bi 的复数x+yi 叫做复数 a+bi减去复数c+di的差,记作 (a+bi) - (c+di) 事实上,由复数相等的定义,有: c+x=a, d+y=b
数学学案 北师大版选修2-2 同步学习第5章小节测试题
第5章 §1 数系的扩充与复数的引入A 级 基础巩固一、选择题1.(2019·泉州高二检测)如果复数z =a 2+a -2+(a 2-3a +2)i 为纯虚数,那么实数a 的值为( A ) A .-2 B .1 C .2D .1或-2[解析] 由题意知:⎩⎪⎨⎪⎧a 2+a -2=0a 2-3a +2≠0解得a =-2,故选A.2.设(1+2i)(a +i)的实部与虚部相等,其中a 为实数,则a =( A ) A .-3 B .-2 C .2D .3[解析] 由题意知(1+2i)(a +i)=a -2+(2a +1)i ∴a -2=2a +1,解得a =-3. 故选A.3.(2019·西安高二检测)设a ,b ∈R ,i 是虚数单位,则“ab=0”是“复数a +bi 为纯虚数”的( B )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[解析] a +b i =a +bii 2=a -bi 为纯虚数,则a =0,b≠0,故选B.4.设(1+i)x =1+yi ,其中x ,y 是实数,则|x +yi|=( B ) A .1 B . 2 C . 3D .2[解析] 因为(1+i)x =x +xi =1+yi ,所以x =y =1,|x +yi|=|1+i|=12+12=2,选B. 5.设x ,y 均是实数,i 是虚数单位,复数(x -2y)+(5-2x -y)i 的实部大于0,虚部不小于0,则复数z =x +yi 在复平面上的点集用阴影表示为图中的( A )[解析] 由题可知⎩⎪⎨⎪⎧x -2y>05-2x -y≥0,可行域如A 所示,故选A.6.若复数z 1=sin2θ+icosθ,z 2=cosθ+i 3sinθ(θ∈R),z 1=z 2,则θ等于( D )A .kπ(k∈Z)B .2kπ+π3(k ∈Z)C .2kπ±π6(k ∈Z)D .2kπ+π6(k ∈Z)[解析] 由复数相等的定义可知,⎩⎨⎧sin2θ=cosθ,cosθ=3sinθ.∴cosθ=32,sinθ=12.∴θ=π6+2kπ,k ∈Z ,故选D. 二、填空题7.方程(2x 2-3x -2)+(x 2-5x +6)i =0的实数解x =2.[解析] 方程可化为⎩⎪⎨⎪⎧2x 2-3x -2=0,x 2-5x +6=0.解得x =2.8.(2019·江苏卷,2改编)已知复数a -2+(a +2)i 为纯虚数,其中i 为虚数单位,则实数a 的值是2.[解析] a -2+(a +2)i 为纯虚数, ∴实部为0且虚部不为0,故a =2. 三、解答题9.实数m 分别取什么数值时,复数z =(m 2+5m +6)+(m 2-2m -15)i 是: (1)对应点在x 轴上方;(2)对应点在直线x +y +5=0上.[解析] (1)由m 2-2m -15>0,得知m<-3或m>5时,z 的对应点在x 轴上方; (2)由(m 2+5m +6)+(m 2-2m -15)+5=0,得知: m =-3-414或m =-3+414,z 的对应点在直线x +y +5=0上.10.(2019·会宁期中)设复数z =(m 2-2m -3)+(m 2+3m +2)i ,试求实数m 的取值,使得(1)z 是纯虚数;(2)z 对应的点位于复平面的第二象限.[解析] (1)复数是一个纯虚数,实部等于零而虚部不等于0由⎩⎪⎨⎪⎧m 2-2m -3=0m 2+3m +2≠0⇒⎩⎪⎨⎪⎧m =-1或m =3m≠-1且m≠-2,得m =3.(2)当复数对应的点在第二象限时,由⎩⎪⎨⎪⎧m 2-2m -3<0m 2+3m +2>0⇒⎩⎪⎨⎪⎧-1<m<3m>-1或m<-2,得-1<m <3.B 级 素养提升一、选择题1.已知复数z 1=m +(4-m 2)i(m ∈R),z 2=2cosθ+(λ+3sinθ)i(λ,θ∈R),并且z 1=z 2,则λ的取值范围为( D )A .-7≤λ≤916B .916≤λ≤7 C .-1≤λ≤1D .-916≤λ≤7[解析] 由z 1=z 2,得⎩⎪⎨⎪⎧m =2cosθ,4-m 2=λ+3sinθ,消去m ,得λ=4sin 2θ-3sinθ =4(sinθ-38)2-916.由于-1≤sinθ≤1,故-916≤λ≤7.2.(2019·哈尔滨高二检测)若复数z =(sinθ-35)+(cosθ-45)i(θ∈R)是纯虚数,则tan(θ-π4)的值为( A )A .-7B .-17C .7D .-7或-17[解析] 因为复数z 是纯虚数,所以满足实部为零且虚部不为零,即⎩⎪⎨⎪⎧sinθ=35,cosθ≠45,因为sinθ=35且cosθ≠45,所以cosθ=-45,所以tanθ=-34,所以tan(θ-π4)=tanθ-11+tanθ=-34-11-34=-7.二、填空题3.若复数z =log 2(x 2-3x -3)+ilog 2(x -3)为实数,则x 的值为4. [解析] ∵复数z =log 2(x 2-3x -3)+ilog 2(x -3)为实数,∴⎩⎪⎨⎪⎧x 2-3x -3>0x -3=1,解得:x =4.4.已知复数z 1=-1+2i 、z 2=1-i 、z 3=3-2i ,它们所对应的点分别是A 、B 、C ,若O C →=x O A →+y O B →(x 、y ∈R),则x +y 的值是5.[解析] 由复数的几何意义可知, O C →=xOA →+yOB →,即3-2i =x(-1+2i)+y(1-i), ∴3-2i =(y -x)+(2x -y)i ,由复数相等可得,⎩⎪⎨⎪⎧y -x =3,2x -y =-2,解得⎩⎪⎨⎪⎧x =1,y =4.∴x +y =5. 三、解答题5.定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,如果(x +y)+(x +3)i =⎪⎪⎪⎪⎪⎪3x +2yi -y1,求实数x ,y 的值.[解析] 由定义运算⎪⎪⎪⎪⎪⎪a b c d =ad -bc ,得⎪⎪⎪⎪⎪⎪3x +2y i -y1=3x +2y +yi ,故有(x +y)+(x +3)i =3x +2y +yi. 因为x ,y 为实数,所以有⎩⎪⎨⎪⎧x +y =3x +2y ,x +3=y ,得⎩⎪⎨⎪⎧2x +y =0,x +3=y ,得x =-1,y =2.6.已知复数z 0=a +bi(a ,b ∈R),z =(a +3)+(b -2)i ,若|z 0|=2,求复数z 对应点的轨迹.[解析] 设z =x +yi(x ,y ∈R),则复数z 的对应点为P(x ,y),由题意知⎩⎪⎨⎪⎧x =a +3,y =b -2,∴⎩⎪⎨⎪⎧a =x -3,b =y +2.①∵z 0=a +bi ,|z 0|=2,∴a 2+b 2=4. 将①代入得(x -3)2+(y +2)2=4.∴点P 的轨迹是以(3,-2)为圆心,2为半径的圆.C 级 能力拔高已知z ∈C ,|z -2i|=2,当z 取何值时,|z +2-4i|分别取得最大值和最小值?并求出最大值和最小值.[解析] 解法一:如图所示,|z-2i|=2在复平面内对应点的轨迹是以(0,2)为圆心,2为半径的圆.|z+2-4i|=|z-(-2+4i)|,欲求其最大值和最小值,即在圆上求出点M,N,使得M或N到定点P(-2,4)的距离最大或最小.显然过P与圆心连线交圆于M,N两点,则M,N即为所求.不难求得M(1,1),N(-1,3),即当z=1+i时,|z+2-4i|有最大值,为32;当z=1+3i时,|z+2-4i|有最小值,为 2.解法二:如图所示,设ω=z+2-4i,则z=ω-2+4i,代入|z-2i|=2得|ω-2+2i|=2,在复平面内ω对应的点在以(2,-2)为圆心,2为半径的圆上运动.欲求|ω|的最值,即求圆上的点到原点的距离的最值.圆心与原点的连线交圆于M,N两点,则M(3,-3),N(1,-1)即为所求.当ω=3-3i,即z=1+i时,|ω|取最大值,为32;当ω=1-i,即z=-1+3i时,|ω|取最小值,为 2.第5章 §2 复数的四则运算A 级 基础巩固一、选择题1.(2019·郑州高二检测)设复数z =a +bi(a 、b ∈R),若z1+i =2-i 成立,则点P(a ,b)在( A )A .第一象限B .第二象限C .第三象限D .第四象限[解析] ∵z1+i =2-i ,∴z =(2-i)(1+i)=3+i ,∴a =3,b =1,∴点P(a ,b)在第一象限.2.设复数z 1,z 2在复平面内的对应点关于虚轴对称,z 1=2+i ,则z 1z 2=( A ) A .-5 B .5 C .-4+iD .-4-i[解析] 本题考查复数的乘法,复数的几何意义. ∵z 1=2+i ,z 1与z 2关于虚轴对称,∴z 2=-2+i , ∴z 1z 2=-1-4=-5,故选A.3.(2019·北京卷理,1)已知复数z =2+i ,则z·z =( D ) A . 3 B . 5 C .3D .5[解析] 方法1:∵ z =2+i ,∴ z =2-i ,∴ z·z =(2+i)(2-i)=5.故选D. 方法2:∵ z =2+i ,∴ z·z =|z|2=5.故选D.4.(2019·长安一中质检)设z =12+32i(i 是数单位),则z +2z 2+3z 3+4z 4+5z 5+6z 6=( C )A .6zB .6z 2C .6z -D .-6z[解析] z 2=-12+32i ,z 3=-1,z 4=-12-32i ,z 5=12-32i ,z 6=1,∴原式=(12+32i)+(-1+3i)+(-3)+(-2-23i)+(52-532i)+6=3-33i =6(12-32i)=6z -.二、填空题5.已知z 1=cos α+isin α,z 2=cos β-isin β且z 1-z 2=513+1213i ,则cos(α+β)的值为12 .[解析] ∵z 1=cos α+isin α,z 2=cos β-isin β,∴z 1-z 2=(cos α-cos β)+i(sin α+sin β)=513+1213i ,∴⎩⎪⎨⎪⎧cos α-cos β=513 ①sin α+sin β=1213②①2+②2得2-2cos(α+β)=1, 即cos(α+β)=12.6.设复数z 1、z 2在复平面内的对应点分别为A 、B ,点A 与B 关于x 轴对称,若z 1(1-i)=3-i ,则|z 2|[解析] ∵z 1(1-i)=3-i , ∴z 1=3-i 1-i =(3-i )(1+i )(1-i )(1+i )=2+i ,∵A 与B 关于x 轴对称,∴z 1与z 2互为共轭复数, ∴z 2=z -1=2-i ,∴|z 2|= 5. 三、解答题7.已知复数z =1+i ,求实数a ,b ,使得az +2b z =(a +2z)2. [解析] 因为z =1+i ,所以az +2b z =(a +2b)+(a -2b)i , (a +2z)2=(a +2)2-4+4(a +2)i =(a 2+4a)+4(a +2)i. 因为a ,b 都是实数,所以由az +2b z =(a +2z)2,得⎩⎪⎨⎪⎧a +2b =a 2+4a ,a -2b =4(a +2).两式相加,整理得a 2+6a +8=0, 解得a 1=-2,a 2=-4, 相应得b 1=-1,b 2=2,所以所求实数为a =-2,b =-1或a =-4,b =2. 8.已知z 是虚数,且z +1z 是实数,求证:1-z 1+z 是纯虚数.[证明] 设z =x +yi ,x ,y ∈R ,且y≠0.由已知得z +1z =(x +yi)+1x +yi =x +yi +x -yi x 2+y 2=(x +x x 2+y 2)+(y -yx 2+y 2)i.∵z +1z 是实数,∴y -y x 2+y2=0,即x 2+y 2=1,且x≠±1, ∴1-z 1+z =1-(x +yi )1+(x +yi )=(1-x -yi )(1+x -yi )(1+x +yi )(1+x -yi )=1-x 2-y 2-2yi 1+2x +x 2+y 2 =-y 1+x i.∵y≠0,x≠-1, ∴1-z1+z是纯虚数. B 级 素养提升一、选择题1.若z =4+3i ,则z|z|=( D ) A .1 B .-1 C .45+35i D .45-35i [解析] |z|=42+32=5,z =4-3i ,则z|z|=45-35i. 2.复数z 满足方程⎪⎪⎪⎪⎪⎪z +21+i =4,那么复数z 在复平面内的对应点Z 的轨迹是( C ) A .以(1,-1)为圆心,4为半径的圆 B .以(1,-1)为圆心,2为半径的圆 C .以(-1,1)为圆心,4为半径的圆 D .以(-1,1)为圆心,2为半径的圆[解析] ⎪⎪⎪⎪⎪⎪z +21+i =|z +(1-i)|=|z -(-1+i)|=4,设-1+i 的对应点为C(-1,1),则|ZC|=4,因此动点Z 的轨迹是以C(-1,1)为圆心,4为半径的圆,故应选C.二、填空题3.i 是虚数单位,若复数(1-2i)(a +i)是纯虚数,则实数a 的值是-2.[解析] (1-2i)(a +i)=a +2+(1-2a)i ,该复数为纯虚数,所以a +2=0,且1-2a≠0,所以a =-2.4.已知f(z)=|1+z|-z 且f(-z)=10+3i ,则复数z =5-3i. [解析] 设z =x +yi(x ,y ∈R), 则-z =-x -yi ,由f(-z)=10+3i ,得|1+(-z)|-(-z )=10+3i , |(1-x)-yi|-(-x +yi)=10+3i ,∴⎩⎨⎧(1-x )2+y 2+x =10-y =3解之得x =5,y =-3,∴所以z =5-3i. 三、解答题5.已知z 1是虚数,z 2=z 1+1z 1是实数,且-1≤z 2≤1.(1)求|z 1|的值以及z 1的实部的取值范围; (2)若ω=1-z 11+z 1,求证:ω为纯虚数.[解析] 设z 1=a +bi(a ,b ∈R ,且b≠0).(1)z 2=z 1+1z 1=a +bi +1a +bi =(a +a a 2+b 2)+(b -ba 2+b 2)i.因为z 2是实数,b≠0,于是有a 2+b 2=1,即|z 1|=1,所以z 2=2a. 由-1≤z 2≤1,得-1≤2a≤1, 解得-12≤a≤12,即z 1的实部的取值范围是[-12,12].(2)ω=1-z 11+z 1=1-a -bi1+a +bi=1-a 2-b 2-2bi (1+a )2+b 2=-b a +1i. 因为a ∈[-12,12],b≠0.所以ω为纯虚数.6.已知若z 1,z 2是非零复数,且|z 1+z 2|=|z 1-z 2|,求证:z 1z 2是纯虚数.[证明] 证法一:设z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1,b 1,a 2,b 2∈R 且a 1与b 1、a 2与b 2不同时为0), 由|z 1+z 2|=|z 1-z 2|,得a 1a 2+b 1b 2=0,于是z 1z 2=(a 1a 2+b 1b 2)+(b 1a 2-a 1b 2)i a 22+b 22=b 1a 2-a 1b 2a 22+b 22i. 因为z≠0,所以b 1a 2-a 1b 2≠0,即z 1z 2是纯虚数.证法二:将已知等式变形为|z 2||z 1z 2+1|=|z 2||z 1z 2-1|,故|z 1z 2+1|=|z 1z 2-1|,设z 1z 2=a +bi(a ,b ∈R),则有(a +1)2+b 2=(a -1)2+b 2,从而解得a =0,又z 1z 2≠0,故b≠0,所以z 1z 2为纯虚数. 证法三:将已知等式变形为|z 2||z 1z 2+1|=|z 2||z 1z 2-1|,故|z 1z 2+1|=|z 1z 2-1|,令z =z 1z 2,则原等式化为|z +1|=|z -1|,而变形后的几何意义是:表示点Z 到两定点A(1,0)、B(-1,0)的距离相等,则动点Z 的图形就是AB 的垂直平分线,即y 轴(原点除外),于是有z =ai(a ∈R ,a≠0).所以z 1z 2为纯虚数.C 级 能力拔高(2019·潍坊高二检测)已知z 为虚数,z +9z -2为实数.(1)若z -2为纯虚数,求虚数z ; (2)求|z -4|的取值范围.[解析] (1)设z =x +yi(x ,y ∈R ,y≠0), 则z -2=x -2+yi ,由z -2为纯虚数得x =2,所以z =2+yi ,则z +9z -2=2+yi +9yi =2+(y -9y )i ∈R ,得y -9y =0,y=±3,所以z =2+3i 或z =2-3i.(2)因为z +9z -2=x +yi +9x +yi -2=x +9(x -2)(x -2)2+y 2+[y -9y(x -2)2+y 2]i ∈R ,所以y -9y(x -2)2+y 2=0,因为y≠0,所以(x -2)2+y 2=9, 由(x -2)2<9得x ∈(-1,5),所以|z -4|=|x +yi -4|=(x -4)2+y 2=(x -4)2+9-(x -2)2=21-4x ∈(1,5).。
高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测北师大选修(共5张PPT)
第3页的运算 复数加、减、乘、除运算的实质是实数的加、减、乘、除的 运算,加减法是对应实、虚部相加减,而乘法类比多项式乘法, 除法类比分式的分子、分母有理化,注意 i2=-1. 在运算的过程中常用来降幂的公式有: (1)i 的乘方:i4k=1,i4k+1=i,i4k+2=-1,i4k+3=-i(k∈N+). (2)(1±i)2=±2i. (3)作复数除法运算时,有如下技巧: ab+ -baii=ab+-baiiii=aa++bbiii=i,利用此结论可使一些特殊的计 算过程简化.
高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶 段检测课件北师大选修
第1页,共5页。
第2页,共5页。
高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修 高中数学第五章数系的扩充与复数的引入章末小结知识整合与阶段检测课件北师大选修
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
高中数学 第五章 数系的扩充与复数的引入 5.2 复数的四则运算自
我小测 北师大版选修2-2
1.复平面内两点Z1和Z2分别对应于复数3+4i和5-2i,那么向量12ZZ对应的复数为
( ).
A.3+4i B.5-2i C.-2+6i D.2-6i
2.已知复数z1=3+4i,z2=t+i,且z1·2z是实数,则实数t=( ).
A.34 B.43 C.43 D.34
3.已知z1=1+2i,z2=m+(m-1)i,且两复数积z1z2的实部和虚部是相等的正数,则
m
=( ).
A.1 B.34 C.43 D.34
4.若x是纯虚数,y是实数,且2x-1+i=y-(3-y)i,则x+y等于( ).
A. 1+5i2 B.-1+5i2 C.1-5i2 D.-1-5i2
5.设复数z=1+2i,则z2-2z等于( ).
A.-3 B.3 C.-3i D.3i
6.已知1im=1-ni,其中m,n∈R,则m+ni等于( ).
A.1+2i B.1-2i C.2+i D.2-i
7.已知z=1+i,则z2-3z+6z+1的模为__________.
8.已知z=34i43i+2i,则|z|zzz=__________.
9.已知复数1i23i2i3im(m∈R)在复平面上对应的点在直线y=x上,求m的值.
10.已知z=1+i,如果221zazbzz=1-i,求实数a,b的值.
2
参考答案
1. 答案:D 解析:12ZZ=(5-2i)-(3+4i)=2-6i.
2. 答案:A 解析:∵(3+4i)(t-i)=3t-3i+4ti+4=3t+4+(4t-3)i为实数,
∴4t-3=0,∴t=34.
3. 答案:B 解析:∵(1+2i)[m+(m-1)i]=m+(m-1)i+2mi-2(m-1)=(2-m)+
(3m-1)i,
∴2-m=3m-1,∴4m=3,∴m=34.
4. 答案:D 解析:设x=ai(a≠0),
∴2ai-1+i=y-(3-y)i,
∴1,213,yay∴1,52,ya
∴x+y=-1-52i.
5. 答案:A 解析:z2-2z=(1+2i)2-2(1+2i)
=1+22i+(2i)2-2-22i=-3.
6. 答案:B 解析:∵1im=1-ni,
∴(1i)ii(1i)(1i)222mmmmm=1-ni,
∴2m=1,2m=n,∴m=2,n=1,
∴m+ni=2+i.
7. 答案:2 解析:∵2236(1i)3(1i)+612izzz
=3i(3i)(2-i)55i2i(2i)(2-i)5=1-i,
∴2361zzz=|1-i|=2.
3
8. 答案:25 解析:∵z=34i43i+2i=1+2i,
∴|z|=22125,
∴z=1-2i,|z|=221(2)5,
∴|z|z+z|z|=25.
9. 答案:解:221i23i2927i2i3i410410mmmmm,
由题意知222927410410mmmm,
解之,得m=-5±21.
10. 解:由z=1+i,得2222(1i)(1i)+b()(2)i1(1i)(1i)1izazbaabazz=(a+
2)-(a+b)i,
由已知得(a+2)-(a+b)i=1-i,
∴a+2=1,且a+b=1,
解之,得a=-1,b=2.