matlab蚁群算法代码
Matlab蚁群算法

实现蚂蚁移动和信息素挥发机制
蚂蚁移动
根据蚂蚁的移动规则和信息素值,让蚂 蚁在解空间中移动,并记录其路径。
VS
信息素挥发
模拟信息素的挥发过程,降低信息素值, 以反映信息的衰减。
迭代优化和结果
迭代优化
通过多次迭代,让蚂蚁不断寻找更好的解, 并逐渐逼近最优解。
结果输出
输出最终找到的最优解,以及算法的性能指 标,如收敛速度、最优解质量等。
05 Matlab蚁群算法的优缺点分析
优点分析
并行性
鲁棒性
全局搜索能力
易于实现
蚁群算法是一种自然启发的优 化算法,具有高度的并行性。 在Matlab中实现时,可以利用 多核处理器或GPU加速技术进 一步提高并行计算能力,从而
加快算法的收敛速度。
蚁群算法对初始参数设置不 敏感,具有较强的鲁棒性。 这意味着在Matlab实现时, 即使初始参数设置不当,算
法仍能找到较优解。
蚁群算法采用正反馈机制, 能够发现多条优质路径,具 有较强的全局搜索能力。这 有助于在Matlab中解决多峰、 离散、非线性等复杂优化问
题。
蚁群算法原理相对简单,实 现起来较为容易。在Matlab 中,可以利用现有的工具箱 或自行编写代码来实现该算
法。
缺点分析
01
计算量大
蚁群算法在解决大规模优化问题时,计算量较大,可能 导致算法运行时间较长。在Matlab实现中,可以通过优 化代码、采用并行计算等技术来降低计算量。
Matlab蚁群算法目录来自• 蚁群算法简介 • Matlab实现蚁群算法的步骤 • 蚁群算法的参数调整与优化 • Matlab蚁群算法的案例分析 • Matlab蚁群算法的优缺点分析
01 蚁群算法简介
30个智能算法matlab代码

30个智能算法matlab代码以下是30个使用MATLAB编写的智能算法的示例代码: 1. 线性回归算法:matlab.x = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];coefficients = polyfit(x, y, 1);predicted_y = polyval(coefficients, x);2. 逻辑回归算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];model = fitglm(x, y, 'Distribution', 'binomial'); predicted_y = predict(model, x);3. 支持向量机算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [1, 1, -1, -1, -1];model = fitcsvm(x', y');predicted_y = predict(model, x');4. 决策树算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitctree(x', y');predicted_y = predict(model, x');5. 随机森林算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = TreeBagger(50, x', y');predicted_y = predict(model, x');6. K均值聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];idx = kmeans(data, 2);7. DBSCAN聚类算法:matlab.x = [1, 2, 3, 10, 11, 12]; y = [1, 2, 3, 10, 11, 12]; data = [x', y'];epsilon = 2;minPts = 2;[idx, corePoints] = dbscan(data, epsilon, minPts);8. 神经网络算法:matlab.x = [1, 2, 3, 4, 5];y = [0, 0, 1, 1, 1];net = feedforwardnet(10);net = train(net, x', y');predicted_y = net(x');9. 遗传算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = gaoptimset('PlotFcns', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);10. 粒子群优化算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;options = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = particleswarm(fitnessFunction, nvars, lb, ub, options);11. 蚁群算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = antColonyOptimization(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);12. 粒子群-蚁群混合算法:matlab.distanceMatrix = [0, 2, 3; 2, 0, 4; 3, 4, 0];pheromoneMatrix = ones(3, 3);alpha = 1;beta = 1;iterations = 10;bestPath = particleAntHybrid(distanceMatrix, pheromoneMatrix, alpha, beta, iterations);13. 遗传算法-粒子群混合算法:matlab.fitnessFunction = @(x) x^2 4x + 4;nvars = 1;lb = 0;ub = 5;gaOptions = gaoptimset('PlotFcns', @gaplotbestf);psOptions = optimoptions('particleswarm', 'PlotFcn',@pswplotbestf);[x, fval] = gaParticleHybrid(fitnessFunction, nvars, lb, ub, gaOptions, psOptions);14. K近邻算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcknn(x', y');predicted_y = predict(model, x');15. 朴素贝叶斯算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; y = [0, 0, 1, 1, 1];model = fitcnb(x', y');predicted_y = predict(model, x');16. AdaBoost算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3];y = [0, 0, 1, 1, 1];model = fitensemble(x', y', 'AdaBoostM1', 100, 'Tree'); predicted_y = predict(model, x');17. 高斯混合模型算法:matlab.x = [1, 2, 3, 4, 5]';y = [0, 0, 1, 1, 1]';data = [x, y];model = fitgmdist(data, 2);idx = cluster(model, data);18. 主成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = pca(x');transformed_x = x' coefficients;19. 独立成分分析算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; coefficients = fastica(x');transformed_x = x' coefficients;20. 模糊C均值聚类算法:matlab.x = [1, 2, 3, 4, 5; 1, 2, 2, 3, 3]; options = [2, 100, 1e-5, 0];[centers, U] = fcm(x', 2, options);21. 遗传规划算法:matlab.fitnessFunction = @(x) x^2 4x + 4; nvars = 1;lb = 0;ub = 5;options = optimoptions('ga', 'PlotFcn', @gaplotbestf);[x, fval] = ga(fitnessFunction, nvars, [], [], [], [], lb, ub, [], options);22. 线性规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];lb = [0; 0];ub = [];[x, fval] = linprog(f, A, b, [], [], lb, ub);23. 整数规划算法:matlab.f = [-5; -4];A = [1, 2; 3, 1];b = [8; 6];intcon = [1, 2];[x, fval] = intlinprog(f, intcon, A, b);24. 图像分割算法:matlab.image = imread('image.jpg');grayImage = rgb2gray(image);binaryImage = imbinarize(grayImage);segmented = medfilt2(binaryImage);25. 文本分类算法:matlab.documents = ["This is a document.", "Another document.", "Yet another document."];labels = categorical(["Class 1", "Class 2", "Class 1"]);model = trainTextClassifier(documents, labels);newDocuments = ["A new document.", "Another new document."];predictedLabels = classifyText(model, newDocuments);26. 图像识别算法:matlab.image = imread('image.jpg');features = extractFeatures(image);model = trainImageClassifier(features, labels);newImage = imread('new_image.jpg');newFeatures = extractFeatures(newImage);predictedLabel = classifyImage(model, newFeatures);27. 时间序列预测算法:matlab.data = [1, 2, 3, 4, 5];model = arima(2, 1, 1);model = estimate(model, data);forecastedData = forecast(model, 5);28. 关联规则挖掘算法:matlab.data = readtable('data.csv');rules = associationRules(data, 'Support', 0.1);29. 增强学习算法:matlab.environment = rlPredefinedEnv('Pendulum');agent = rlDDPGAgent(environment);train(agent);30. 马尔可夫决策过程算法:matlab.states = [1, 2, 3];actions = [1, 2];transitionMatrix = [0.8, 0.1, 0.1; 0.2, 0.6, 0.2; 0.3, 0.3, 0.4];rewardMatrix = [1, 0, -1; -1, 1, 0; 0, -1, 1];policy = mdpPolicyIteration(transitionMatrix, rewardMatrix);以上是30个使用MATLAB编写的智能算法的示例代码,每个算法都可以根据具体的问题和数据进行相应的调整和优化。
matlab中使用ant lion optimization,alo算法

matlab中使用ant lion optimization,alo算法ANT-LION优化算法是一种基于蚁群优化算法的混合优化算法,它结合了蚁群优化算法和遗传算法的优点,能够更好地处理多峰、非线性、离散和连续等复杂优化问题。
在MATLAB 中实现ANT-LION优化算法需要使用MATLAB的Optimization Toolbox和Statistics and Machine Learning Toolbox。
下面是一个简单的ANT-LION优化算法的MATLAB实现示例:matlab复制代码% 定义目标函数fun = @(x) x(1)^2 + x(2)^2;% 定义搜索空间和参数nvars = 2; % 变量个数lb = [-10; -10]; % 变量下界ub = [10; 10]; % 变量上界pop_size = 100; % 种群规模max_iter = 500; % 最大迭代次数% 初始化种群pop = lb + (ub-lb).*rand(pop_size, nvars);% 迭代进化for iter = 1:max_iter% 计算适应度值fitness = zeros(pop_size, 1);for i = 1:pop_sizex = pop(i, :);fitness(i) = fun(x);end% 遗传操作% 选择操作:轮盘赌选择法fitness = fitness / sum(fitness);idx = randsample(1:pop_size, pop_size, true, fitness);pop = pop(idx, :);% 交叉操作:均匀交叉法for i = 1:2:pop_sizeif rand < 0.8% 交叉概率c1 = unidrnd(nvars); % 选择一个交叉点c2 = unidrnd(nvars); % 选择另一个交叉点temp = pop(i, c1:c2);pop(i, c1:c2) = pop(i+1, c1:c2);pop(i+1, c1:c2) = temp;endend% 变异的实现,此处采用扰动法for i = 1:pop_sizer = rand; % 随机数生成器if r < 0.1% 变异概率j = unidrnd(nvars); % 选择一个变异点pop(i, j) = lb(j) + (ub(j)-lb(j))*rand; % 变异操作,将变异点取值替换为随机值endendend。
蚁群优化算法原理及Matlab编程实现

蚁群优化算法原理及Matlab编程实现
蚁群算法的提出:
人工蚂蚁与真实蚂蚁的异同比较
相同点比较
不同点比较
蚁群算法的流程图
基本蚁群算法的实现步骤
(i,j)的初始化信息量τij(t) = const,其中const表示常数,且初始时刻Δτij(0) = 0。
(2)循环次数。
(3)蚂蚁的禁忌表索引号k=1。
(4)蚂蚁数目。
(5)蚂蚁个体根据状态转移概率公式计算的概率选择元素(城市)j并前进,。
其中,表示在t时刻蚂蚁k由元素(城市)i转移到元素(城市)j的状态转
重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的受重
视程度,其值越大,则该状态转移概率越接近于贪心规则;ηij(t)为启发函数,
表达式为。
式中,d ij表示相邻两个城市之间的距离。
(6)修改禁忌表指针,即选择好之后将蚂蚁移动到新的元素(城市),并把该τij(t + n) = (1 − ρ) * τij(t) + Δτij(t)
(9)若满足结束条件,即如果循环次数,则循环结束并输出程序计算结果,
]蚁群算法的matlab源程序1.蚁群算法主程序:main.m
2.蚁群算法寻找路径程序:path.m
[编辑]蚁群算法仿真结果。
可以直接运行的蚁群算法matlab版

可以直接运行的蚁群算法(matlab版)D=[0177.6320.4184.8150408230.4 156344.4256.8372120321.6177.60279.669.6188.4367.2189.6247.2303.6141.6 331.2157.6177.6320.4279.60268.8398.4147.690404.4174196.8111.6 200.4122.4184.869.6268.80195.6356.4259.2254.4373.272320.4 227.2146.4150188.4398.4195.60486308.4166.8422.4267.6 450198342408367.2147.6356.44860177.6492321.6284.4 199.2288210230.4189.690259.2308.4177.60314.4238.8226.8141.6 110.4152.4156247.2404.4254.4166.8492314.40428.4326.4 456204400.8344.4303.6174373.2422.4321.6238.8428.40362 135.6224.4296.4256.8141.6196.872267.6284.4226.8326.43620248.4 21674.4372331.2111.6320.4450199.2141.6456135.6248.4 0252174120157.6200.4227.2198288110.4204224.4216 2520220321.6177.6122.4146.4342210152.4400.8296.474.4 1742200];m=31;Alpha=1;Beta=5;Rho=0.1;NC_max=50;Q=100;n=13;m=200;NC_max=100;%n表示问题的规模(城市个数),m蚂蚁个数,NC_max最大迭代次数Eta=1./D;%Eta为启发因子,这里设为距离的倒数Tau=ones(n,n);%Tau为信息素矩阵Tabu=zeros(m,n);%存储并记录路径的生成NC=1;%迭代计数器R_best=zeros(NC_max,n);%各代最佳路线L_best=inf.*ones(NC_max,1);%各代最佳路线的长度L_ave=zeros(NC_max,1);%各代路线的平均长度while NC<=NC_max%停止条件之一:达到最大迭代次数%%第二步:将m只蚂蚁放到n个城市上Randpos=[];for i=1:(ceil(m/n))Randpos=[Randpos,randperm(n)];endTabu(:,1)=(Randpos(1,1:m))';%%第三步:m只蚂蚁按概率函数选择下一座城市,完成各自的周游for j=2:nfor i=1:mvisited=Tabu(i,1:(j-1));%已访问的城市J=zeros(1,(n-j+1));%待访问的城市P=J;%待访问城市的选择概率分布Jc=1;for k=1:nif length(find(visited==k))==0J(Jc)=k;Jc=Jc+1;endend%下面计算待选城市的概率分布for k=1:length(J)P(k)=(Tau(visited(end),J(k))^Alpha)*(Eta(visited(end),J(k))^Beta);endP=P/(sum(P));%按概率原则选取下一个城市Pcum=cumsum(P);Select=find(Pcum>=rand); to_visit=J(Select(1));Tabu(i,j)=to_visit;endendif NC>=2Tabu(1,:)=R_best(NC-1,:); end%%第四步:记录本次迭代最佳路线L=zeros(m,1);for i=1:mR=Tabu(i,:);for j=1:(n-1)L(i)=L(i)+D(R(j),R(j+1));endL(i)=L(i)+D(R(1),R(n));endL_best(NC)=min(L);pos=find(L==L_best(NC));R_best(NC,:)=Tabu(pos(1),:);L_ave(NC)=mean(L);NC=NC+1%%第五步:更新信息素Delta_Tau=zeros(n,n);for i=1:mfor j=1:(n-1)Delta_Tau(Tabu(i,j),Tabu(i,j+1))=Delta_Tau(Tabu(i,j),Tabu(i,j+1))+Q/L(i) ;endDelta_Tau(Tabu(i,n),Tabu(i,1))=Delta_Tau(Tabu(i,n),Tabu(i,1))+Q/L(i); endTau=(1-Rho).*Tau+Delta_Tau;%%第六步:禁忌表清零Tabu=zeros(m,n);end%%第七步:输出结果Pos=find(L_best==min(L_best)); Shortest_Route=R_best(Pos(1),:) Shortest_Length=L_best(Pos(1)) subplot(1,2,1) DrawRoute(C,Shortest_Route) subplot(1,2,2)plot(L_best)hold onplot(L_ave)。
基于蚁群算法的机器人路径规划MATLAB源码收藏

基于蚁群算法的机器人路径规划MA TLAB源码收藏使用网格离散化的方法对带有障碍物的环境建模,使用邻接矩阵存储该环境,使得问题转化为蚁群算法寻找最短路径。
function [ROUTES,PL,Tau]=ACASPS(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)%% ---------------------------------------------------------------% ACASP.m% 蚁群算法动态寻路算法%% ---------------------------------------------------------------% 输入参数列表% G 地形图为01矩阵,如果为1表示障碍物% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)% K 迭代次数(指蚂蚁出动多少波)% M 蚂蚁个数(每一波蚂蚁有多少个)% S 起始点(最短路径的起始点)% E 终止点(最短路径的目的点)% Alpha 表征信息素重要程度的参数% Beta 表征启发式因子重要程度的参数% Rho 信息素蒸发系数% Q 信息素增加强度系数%% 输出参数列表% ROUTES 每一代的每一只蚂蚁的爬行路线% PL 每一代的每一只蚂蚁的爬行路线长度% Tau 输出动态修正过的信息素%% --------------------变量初始化----------------------------------%loadD=G2D(G);N=size(D,1);%N表示问题的规模(象素个数)MM=size(G,1);a=1;%小方格象素的边长Ex=a*(mod(E,MM)-0.5);%终止点横坐标if Ex==-0.5Ex=MM-0.5;endEy=a*(MM+0.5-ceil(E/MM));%终止点纵坐标Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数%下面构造启发式信息矩阵for i=1:Nix=a*(mod(i,MM)-0.5);if ix==-0.5ix=MM-0.5;endiy=a*(MM+0.5-ceil(i/MM));if i~=EEta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;elseEta(1,i)=100;endendROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- for k=1:K%disp(k);for m=1:M%% 第一步:状态初始化W=S;%当前节点初始化为起始点Path=S;%爬行路线初始化PLkm=0;%爬行路线长度初始化TABUkm(S)=0;%已经在初始点了,因此要排除DD=D;%邻接矩阵初始化%% 第二步:下一步可以前往的节点DW=DD(W,:);DW1=find(DW<inf);for j=1:length(DW1)if TABUkm(DW1(j))==0endendLJD=find(DW<inf);%可选节点集Len_LJD=length(LJD);%可选节点的个数%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同while W~=E&&Len_LJD>=1%% 第三步:转轮赌法选择下一步怎么走PP=zeros(1,Len_LJD);for i=1:Len_LJDendPP=PP/(sum(PP));%建立概率分布Pcum=cumsum(PP);Select=find(Pcum>=rand);to_visit=LJD(Select(1));%下一步将要前往的节点%% 第四步:状态更新和记录Path=[Path,to_visit];%路径增加PLkm=PLkm+DD(W,to_visit);%路径长度增加W=to_visit;%蚂蚁移到下一个节点for kk=1:Nif TABUkm(kk)==0DD(W,kk)=inf;DD(kk,W)=inf;endendTABUkm(W)=0;%已访问过的节点从禁忌表中删除DW=DD(W,:);LJD=find(DW<inf);%可选节点集Len_LJD=length(LJD);%可选节点的个数end%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度ROUTES{k,m}=Path;if Path(end)==EPL(k,m)=PLkm;elsePL(k,m)=inf;endend%% 第六步:更新信息素Delta_Tau=zeros(N,N);%更新量初始化for m=1:Mif PL(k,m)<infROUT=ROUTES{k,m};TS=length(ROUT)-1;%跳数PL_km=PL(k,m);for s=1:TSx=ROUT(s);y=ROUT(s+1);Delta_Tau(x,y)=Delta_Tau(x,y)+Q/PL_km;Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;endendendTau=(1-Rho).*Tau+Delta_Tau;%信息素挥发一部分,新增加一部分end%% ---------------------------绘图--------------------------------plotif=0;%是否绘图的控制参数if plotif==1%绘收敛曲线meanPL=zeros(1,K);minPL=zeros(1,K);for i=1:KPLK=PL(i,:);Nonzero=find(PLK<inf);PLKPLK=PLK(Nonzero);meanPL(i)=mean(PLKPLK);minPL(i)=min(PLKPLK);endfigure(1)plot(minPL);hold onplot(meanPL);grid ontitle('收敛曲线(平均路径长度和最小路径长度)'); xlabel('迭代次数');ylabel('路径长度');%绘爬行图figure(2)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]);hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);hold onendendendhold onROUT=ROUTES{K,M};Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));endplot(Rx,Ry)endplotif2=0;%绘各代蚂蚁爬行图if plotif2==1figure(3)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]);hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);hold onendendendfor k=1:KPLK=PL(k,:);minPLK=min(PLK);pos=find(PLK==minPLK);m=pos(1);ROUT=ROUTES{k,m};LENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));endplot(Rx,Ry)hold onendend。
蚁群算法TSP问题应用matlab
function[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ACATSP(C,NC_max,m,Alpha,Beta,Rho ,Q)%% 主要符号说明%% C n个城市的坐标,n×2的矩阵%% NC_max 最大迭代次数%% m 蚂蚁个数%% Alpha 表征信息素重要程度的参数%% Beta 表征启发式因子重要程度的参数%% Rho 信息素蒸发系数%% Q 信息素增加强度系数%% R_best 各代最佳路线%% L_best 各代最佳路线的长度%%第一步:变量初始化n=size(C,1); %n表示问题的规模(城市个数)D=zeros(n,n); %D用来存储各个城市之间的欧式距离%%以下计算任意2个城市间的距离,存储到D中for i=1:nfor j=1:nif i~=j %若i,j不重合,即为不同城市D(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; %计算欧氏距离,任意城市i与j的距离elseD(i,j)=eps;%i=j时不计算,应该为0,但后面的启发因子要取倒数,%用eps(浮点相对精度)表示eps=2.2204e-016,一个极小的数字end %if i~=jD(j,i)=D(i,j); %对称矩阵对称TSP问题end % for j=1:nend % for i=1:nEta=1./D; %Eta为能见度因子,这里设为距离的倒数Tau=ones(n,n); %Tau为信息素矩阵默认一开始为1 一个常数Tabu=zeros(m,n); %存储并记录路径的生成第m只蚂蚁访问的第n座城市是城市xNC=1; %迭代计数器,记录迭代次数R_best=zeros(NC_max,n); %各代最佳路线假定为100代,31个城市,即从1-31-1一个线路L_best=inf.*ones(NC_max,1); %各代最佳路线的长度L_ave=zeros(NC_max,1); %各代路线的平均长度while NC<=NC_max %停止条件之一:达到最大迭代次数,停止%%第二步:将m只蚂蚁放到n个城市上Randpos=[]; %建立一个随机矩阵用以将m只蚂蚁放置到n个城市上for i=1:(ceil(m/n)) %ceil() 向上取整数,去掉小数部分,整数部分+1Randpos=[Randpos,randperm(n)]; %randperm(n),随机产生1~n的序列即得到初始城市m个endTabu(:,1)=(Randpos(1,1:m))';% Tabu(:,1)所有行的第一列,Randpos(1,1:m)’第一行的1~m列,将Randpos的第一行1~m列,%共m个元素赋给矩阵Tabu的第一列,Tabu为m*n矩阵。
蚁群算法_matlab
%蚁群算法求解中国TSP问题(48个城市)%%清空环境变量clear allclc%%导入数据load distance_48.txtcitys=distance_48;%%计算城市间互相距离n=size(citys,1);D=zeros(n,n);for i=1:nfor j=1:nif i~=jD(i,j)=sqrt(sum((citys(i,:)-citys(j,:)).^2));elseD(i,j)=1e-4;endendend%%初始化参数ticm=30;%蚂蚁数量alpha=1;%信息素重要程度因子beta=5;%启发函数重要程度因子rho=0.1;%信息素挥发因子Q=1;%常系数Eta=1./D;%启发函数Tau=ones(n,n);%信息素矩阵Table=zeros(m,n);%路径记录表iter=1;%迭代次数初值iter_max=200;%最大迭代次数Route_best=zeros(iter_max,n);%各代最佳路径Length_best=zeros(iter_max,1);%各代最佳路径的长度Length_ave=zeros(iter_max,1);%各代路径的平均长度%%迭代寻找最佳路径while iter<=iter_max%随机产生各个蚂蚁的起点城市start=zeros(m,1);for i=1:mtemp=randperm(n);%随机产生1到n的一个打乱序列start(i)=temp(1);endTable(:,1)=start;%构建解空间citys_index=1:n;%逐个蚂蚁路径选择for i=1:m%逐个城市路径选择for j=2:ntabu=Table(i,1:(j-1));%已访问城市集合(禁忌表)allow_index=~ismember(citys_index,tabu);%除去已访问的城市集合 allow=citys_index(allow_index);%待访问的城市集合P=allow;%计算城市间的转移概率for k=1:length(allow)P(k)=Tau(tabu(end),allow(k))^alpha*Eta(tabu(end),allow(k))^beta;endP=P/sum(P);%轮盘赌法选择下一个访问城市Pc=cumsum(P);target_index=find(Pc>=rand);target=allow(target_index(1));Table(i,j)=target;%确定下一个访问的城市endend%计算各个蚂蚁的路径距离Length=zeros(m,1);for i=1:mRoute=Table(i,:);%第i只蚂蚁的路径for j=1:(n-1)Length(i)=Length(i)+D(Route(j),Route(j+1));endLength(i)=Length(i)+D(Route(n),Route(1));%最后还要回到最初的城市end%计算最短路径距离及平均距离if iter==1[min_Length,min_index]=min(Length);Length_best(iter)=min_Length;Length_ave(iter)=mean(Length);Route_best(iter,:)=Table(min_index,:);else[min_Length,min_index]=min(Length);Length_best(iter)=min(Length_best(iter-1),min_Length);%iter次的最短路径距离等于当前迭代的最短路径距离与上一次迭代最短路径距离中的最小值Length_ave(iter)=mean(Length);if Length_best(iter)==min_LengthRoute_best(iter,:)=Table(min_index,:);elseRoute_best(iter,:)=Route_best((iter-1),:);endend%更新信息素Delta_Tau=zeros(n,n);%逐个蚂蚁计算for i=1:m%逐个城市计算for j=1:(n-1)Delta_Tau(Table(i,j),Table(i,j+1))=Delta_Tau(Table(i,j),Table(i,j+1))+Q /Length(i);endDelta_Tau(Table(i,n),Table(i,1))=Delta_Tau(Table(i,n),Table(i,1))+Q/Len gth(i);endTau=(1-rho)*Tau+Delta_Tau;%迭代次数加1,清空路径记录表iter=iter+1;Table=zeros(m,n);end%%结果显示[Shortest_Length,index]=min(Length_best);Shortest_Route=Route_best(index,:);disp(['最短距离:' num2str(Shortest_Length)]);disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);%%绘图figure(1)plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],[citys(Shorte st_Route,2);citys(Shortest_Route(1),2)],'o-');grid onfor i=1:size(citys,1)text(citys(i,1),citys(i,2),[' ' num2str(i)]);endtext(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点'); text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');xlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['蚁群算法优化路径(最短距离:' num2str(Shortest_Length) ')'])figure(2)plot(1:iter_max,Length_best,'b',1:iter_max,Length_ave,'r')legend('最短距离','平均距离')xlabel('迭代次数')ylabel('距离')title('各代最短距离与平均距离对比')toc。
蚁群算法MATLAB解VRP问题
蚁群算法MATLAB解VRP问题Excel exp12_3_2.xls内容:ANT_VRP函数:function [R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ANT_VRP(D,Demand,Cap,iter_max,m,Alpha,Beta,Rho,Q) %% R_best 各代最佳路线%% L_best 各代最佳路线的长度%% L_ave 各代平均距离%% Shortest_Route 最短路径%% Shortest_Length 最短路径长度%% D 城市间之间的距离矩阵,为对称矩阵%% Demand 客户需求量%% Cap 车辆最⼤载重%% iter_max 最⼤迭代次数%% m 蚂蚁个数%% Alpha 表征信息素重要程度的参数%% Beta 表征启发式因⼦重要程度的参数%% Rho 信息素蒸发系数%% Q 信息素增加强度系数n=size(D,1);T=zeros(m,2*n); %装载距离Eta=ones(m,2*n); %启发因⼦Tau=ones(n,n); %信息素Tabu=zeros(m,n); %禁忌表Route=zeros(m,2*n); %路径L=zeros(m,1); %总路程L_best=zeros(iter_max,1); %各代最佳路线长度R_best=zeros(iter_max,2*n); %各代最佳路线nC=1;while nC<=iter_max %停⽌条件Eta=zeros(m,2*n);T=zeros(m,2*n);Tabu=zeros(m,n);Route=zeros(m,2*n);L=zeros(m,1);%%%%%%==============初始化起点城市(禁忌表)====================for i=1:mCap_1=Cap; %最⼤装载量j=1;j_r=1;while Tabu(i,n)==0T=zeros(m,2*n); %装载量加载矩阵Tabu(i,1)=1; %禁忌表起点位置为1Route(i,1)=1; %路径起点位置为1visited=find(Tabu(i,:)>0); %已访问城市num_v=length(visited); %已访问城市个数J=zeros(1,(n-num_v)); %待访问城市加载表P=J; %待访问城市选择概率分布Jc=1; %待访问城市选择指针for k=1:n %城市if length(find(Tabu(i,:)==k))==0 %如果k不是已访问城市代号,就将k加⼊矩阵J中J(Jc)=k;Jc=Jc+1;endend%%%%%%%=============每只蚂蚁按照选择概率遍历所有城市==================for k=1:n-num_v %待访问城市if Cap_1-Demand(J(1,k),1)>=0 %如果车辆装载量⼤于待访问城市需求量if Route(i,j_r)==1 %如果每只蚂蚁在起点城市T(i,k)=D(1,J(1,k));P(k)=(Tau(1,J(1,k))^Alpha)*((1/T(i,k))^Beta); %概率计算公式中的分⼦else %如果每只蚂蚁在不在起点城市T(i,k)=D(Tabu(i,j),J(1,k));P(k)=(Tau(Tabu(i,visited(end)),J(1,k))^Alpha)*((1/T(i,k))^Beta); %概率计算公式中的分⼦endelse %如果车辆装载量⼩于待访问城市需求量T(i,k)=0;P(k)=0;endendif length(find(T(i,:)>0))==0 %%%当车辆装载量⼩于待访问城市时,选择起点为1Cap_1=Cap;j_r=j_r+1;Route(i,j_r)=1;L(i)=L(i)+D(1,Tabu(i,visited(end)));elseP=P/(sum(P)); %按照概率原则选取下⼀个城市Pcum=cumsum(P); %求累积概率和:cumsum([1 2 3])=1 3 6,⽬的在于使得Pcum的值总有⼤于rand的数Select=find(Pcum>rand); %按概率选取下⼀个城市:当累积概率和⼤于给定的随机数,则选择求和被加上的最后⼀个城市作为即将访问的城市 o_visit=J(1,Select(1)); %待访问城市j=j+1;j_r=j_r+1;Tabu(i,j)=o_visit; %待访问城市Route(i,j_r)=o_visit;Cap_1=Cap_1-Demand(o_visit,1); %车辆装载剩余量L(i)=L(i)+T(i,Select(1)); %路径长度endendL(i)=L(i)+D(Tabu(i,n),1); %%路径长度endL_best(nC)=min(L); %最优路径为距离最短的路径pos=find(L==min(L)); %找出最优路径对应的位置:即为哪只蚂蚁R_best(nC,:)=Route(pos(1),:); %确定最优路径对应的城市顺序L_ave(nC)=mean(L)'; %求第k次迭代的平均距离Delta_Tau=zeros(n,n); %Delta_Tau(i,j)表⽰所有蚂蚁留在第i个城市到第j个城市路径上的信息素增量L_zan=L_best(1:nC,1);post=find(L_zan==min(L_zan));Cities=find(R_best(nC,:)>0);num_R=length(Cities);for k=1:num_R-1 %建⽴了完整路径后在释放信息素Delta_Tau(R_best(nC,k),R_best(nC,k+1))=Delta_Tau(R_best(nC,k),R_best(nC,k+1))+Q/L_best(nC);endDelta_Tau(R_best(nC,num_R),1)=Delta_Tau(R_best(nC,num_R),1)+Q/L_best(nC);Tau=Rho*Tau+Delta_Tau;nC=nC+1;endShortest_Route=zeros(1,2*n); %提取最短路径Shortest_Route(1,:)=R_best(iter_max,:);Shortest_Route=Shortest_Route(Shortest_Route>0);Shortest_Route=[Shortest_Route Shortest_Route(1,1)];Shortest_Length=min(L_best); %提取最短路径长度%L_ave=mean(L_best); 求解程序:clc;clear all%% ==============提取数据==============[xdata,textdata]=xlsread('exp12_3_2.xls'); %加载20个城市的数据,数据按照表格中位置保存在Excel⽂件exp12_3_1.xls中x_label=xdata(:,2); %第⼆列为横坐标y_label=xdata(:,3); %第三列为纵坐标Demand=xdata(:,4); %第四列为需求量C=[x_label y_label]; %坐标矩阵n=size(C,1); %n表⽰节点(客户)个数%% ==============计算距离矩阵==============D=zeros(n,n); %D表⽰完全图的赋权邻接矩阵,即距离矩阵D初始化for i=1:nfor j=1:nif i~=jD(i,j)=((C(i,1)-C(j,1))^2+(C(i,2)-C(j,2))^2)^0.5; %计算两城市之间的距离elseD(i,j)=0; %i=j, 则距离为0;endD(j,i)=D(i,j); %距离矩阵为对称矩阵endendAlpha=1;Beta=5;Rho=0.75;iter_max=100;Q=10;Cap=1;m=20; %Cap为车辆最⼤载重[R_best,L_best,L_ave,Shortest_Route,Shortest_Length]=ANT_VRP(D,Demand,Cap,iter_max,m,Alpha,Beta,Rho,Q); %蚁群算法求解VRP问题通⽤函数,详见配套光盘Shortest_Route_1=Shortest_Route-1 %提取最优路线Shortest_Length %提取最短路径长度%% ==============作图==============figure(1) %作迭代收敛曲线图x=linspace(0,iter_max,iter_max);y=L_best(:,1);plot(x,y);xlabel('迭代次数'); ylabel('最短路径长度');figure(2) %作最短路径图plot([C(Shortest_Route,1)],[C(Shortest_Route,2)],'o-');grid onfor i =1:size(C,1)text(C(i,1),C(i,2),[' ' num2str(i-1)]);endxlabel('客户所在横坐标'); ylabel('客户所在纵坐标');。
蚁群算法
蚁群算法求解TSP问题的源程序及简要说明该程序试图对具有31个城市的VRP进行求解,已知的最优解为784.1,我用该程序只能优化到810左右,应该是陷入局部最优,但我不知问题出在什么地方。
请用过蚁群算法的高手指教。
蚁群算法的matlab源码,同时请指出为何不能优化到已知的最好解%%% the procedure of ant colony algorithm for VRP%% % % % % % % % % % %%initialize the parameters of ant colony algorithmsload data.txt;d=data(:,2:3);g=data(:,4);m=31; % 蚂蚁数alpha=1;belta=4;% 决定tao和miu重要性的参数lmda=0;rou=0.9; %衰减系数q0=0.95;% 概率tao0=1/(31*841.04);%初始信息素Q=1;% 蚂蚁循环一周所释放的信息素defined_phrm=15.0; % initial pheromone level valueQV=100; % 车辆容量vehicle_best=round(sum(g)/QV)+1; %所完成任务所需的最少车数V=40;% 计算两点的距离for i=1:32;for j=1:32;dist(i,j)=sqrt((d(i,1)-d(j,1))^2+(d(i,2)-d(j,2))^2);end;end;%给tao miu赋初值for i=1:32;for j=1:32;if i~=j;%s(i,j)=dist(i,1)+dist(1,j)-dist(i,j);tao(i,j)=defined_phrm;miu(i,j)=1/dist(i,j);end;end;end;for k=1:32;for k=1:32;deltao(i,j)=0;end;end;best_cost=10000;for n_gen=1:50;print_head(n_gen);for i=1:m;%best_solution=[];print_head2(i);sumload=0;cur_pos(i)=1;rn=randperm(32);n=1;nn=1;part_sol(nn)=1;%cost(n_gen,i)=0.0;n_sol=0; % 由蚂蚁产生的路径数量M_vehicle=500;t=0; %最佳路径数组的元素数为0while sumload<=QV;for k=1:length(rn);if sumload+g(rn(k))<=QV;gama(cur_pos(i),rn(k))=(sumload+g(rn(k)))/QV;A(n)=rn(k);n=n+1;end;end;fid=fopen('out_customer.txt','a+');fprintf(fid,'%s %i\t','the current position is:',cur_pos(i));fprintf(fid,'\n%s','the possible customer set is:')fprintf(fid,'\t%i\n',A);fprintf(fid,'------------------------------\n');fclose(fid);p=compute_prob(A,cur_pos(i),tao,miu,alpha,belta,gama,lmda,i);maxp=1e-8;na=length(A);for j=1:na;if p(j)>maxpmaxp=p(j);index_max=j;end;end;old_pos=cur_pos(i);if rand(1)<q0cur_pos(i)=A(index_max);elsekrnd=randperm(na);cur_pos(i)=A(krnd(1));bbb=[old_pos cur_pos(i)];ccc=[1 1];if bbb==ccc;cur_pos(i)=A(krnd(2));end;end;tao(old_pos,cur_pos(i))=taolocalupdate(tao(old_pos,cur_pos(i)),rou,tao0);%对所经弧进行局部更新sumload=sumload+g(cur_pos(i));nn=nn+1;part_sol(nn)=cur_pos(i);temp_load=sumload;if cur_pos(i)~=1;rn=setdiff(rn,cur_pos(i));n=1;A=[];end;if cur_pos(i)==1; % 如果当前点为车场,将当前路径中的已访问用户去掉后,开始产生新路径if setdiff(part_sol,1)~=[];n_sol=n_sol+1; % 表示产生的路径数,n_sol=1,2,3,..5,6...,超过5条对其费用加上车辆的派遣费用fid=fopen('out_solution.txt','a+');fprintf(fid,'%s%i%s','NO.',n_sol,'条路径是:');fprintf(fid,'%i ',part_sol);fprintf(fid,'\n');fprintf(fid,'%s','当前的用户需求量是:');fprintf(fid,'%i\n',temp_load);fprintf(fid,'------------------------------\n');fclose(fid);% 对所得路径进行路径内3-opt优化final_sol=exchange(part_sol);for nt=1:length(final_sol); % 将所有产生的路径传给一个数组temp(t+nt)=final_sol(nt);end;t=t+length(final_sol)-1;sumload=0;final_sol=setdiff(final_sol,1);rn=setdiff(rn,final_sol);part_sol=[];final_sol=[];nn=1;part_sol(nn)=cur_pos(i);A=[];n=1;end;end;if setdiff(rn,1)==[];% 产生最后一条终点不为1的路径n_sol=n_sol+1;nl=length(part_sol);part_sol(nl+1)=1;%将路径的最后1位补1% 对所得路径进行路径内3-opt优化final_sol=exchange(part_sol);for nt=1:length(final_sol); % 将所有产生的路径传给一个数组temp(t+nt)=final_sol(nt);end;cost(n_gen,i)=cost_sol(temp,dist)+M_vehicle*(n_sol-vehicle_best); %计算由蚂蚁i产生的路径总长度for ki=1:length(temp)-1;deltao(temp(ki),temp(ki+1))=deltao(temp(ki),temp(ki+1))+Q/cost(n_gen,i);end;if cost(n_gen,i)<best_cost;best_cost=cost(n_gen,i);old_cost=best_cost;best_gen=n_gen; % 产生最小费用的代数best_ant=i; %产生最小费用的蚂蚁best_solution=temp;end;if i==m; %如果所有蚂蚁均完成一次循环,,则用最佳费用所对应的路径对弧进行整体更新for ii=1:32;for jj=1:32;tao(ii,jj)=(1-rou)*tao(ii,jj);end;end;for kk=1:length(best_solution)-1;tao(best_solution(kk),best_solution(kk+1))=tao(best_solution(kk),best_solution(kk+1))+de ltao(best_solution(kk),best_solution(kk+1));end;end;fid=fopen('out_solution.txt','a+');fprintf(fid,'%s%i%s','NO.',n_sol,'路径是:');fprintf(fid,'%i ',part_sol);fprintf(fid,'\n');fprintf(fid,'%s %i\n','当前的用户需求量是:',temp_load);fprintf(fid,'%s %f\n','总费用是:',cost(n_gen,i));fprintf(fid,'------------------------------\n');fprintf(fid,'%s\n','最终路径是:');fprintf(fid,'%i-',temp);fprintf(fid,'\n');fclose(fid);temp=[];break;end;end;end;end;我现在也在研究它,希望能共同进步.建义可以看一下段海滨的关于蚁群算法的书.讲的不错,李士勇的也可以,还有一本我在图书馆见过,记不得名字了简单蚁群算法求解TSP的源程序(我帮你找的)蚁群算法是新兴的仿生算法,最初是由意大利学者Dorigo M于1991年首次提出,由于具有较强的鲁棒性,优良的分布式计算机制和易于与其它方法结合等优点,成为人工智能领域的一个研究热点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
matlab蚁群算法代码
以下是一个简单的MATLAB蚁群算法代码示例,其中使用了一个二维网格作为蚂蚁的住所,并在网格上放置了一些随机的节点作为蚂蚁的出发和目的地,每个蚂蚁沿着最短路径搜索路径从一个节点到另一个节点。
```matlab
% 定义蚂蚁的参数
num_nodes = 10; % 网格节点数
num_tasks = 100; % 任务数
num_neighbors = 50; % 蚂蚁之间的连接数
% 随机放置节点
nodes = randi(num_nodes, num_nodes);
% 创建蚂蚁的基本队列
蚂蚁_queue = queue();
% 定义蚂蚁的基本策略
def_蚂蚁_策略 = {
[set_task(i, j, k)]= {1},
[set_neighbor(i, j, k)]= {2},
[set_task(i, j, k)]= {3},
};
% 更新蚂蚁的状态
def_蚂蚁_update = {
for i = 1:num_tasks
for j = 1:num_neighbors
if get(蚂蚁_queue, -1, 1) == num_tasks
get(蚂蚁_queue, -1, 1) = set_task(i, j, k);
set(蚂蚁_queue, -1, 1) = set_neighbor(i, j, k); end
end
end
};
% 定义蚂蚁的搜索函数
function 蚂蚁_function(i, j, k, task, target) % 计算当前蚂蚁的最短路径
path = [zeros(1, num_neighbors); 1];
path(end+1, -1) = target;
path(end, num_nodes) = 1;
path = path./zeros(1, num_neighbors);
% 搜索蚂蚁的下一个节点
for j = 1:num_neighbors
if get(蚂蚁_queue, -1, j) == task
if get(蚂蚁_queue, -1, j) == target
蚂蚁_function(i, j, k, task, target)
end
end
% 计算蚂蚁的当前路径
path_function = path(1:end-1, 1:end-1);
end
% 启动蚂蚁搜索
蚂蚁_start(蚂蚁_queue);
% 计算蚂蚁的最短路径
function path_function = get_shortest_path(path_var) % 计算每个节点到目标节点的最短路径
path_var = path_function;
% 计算每个节点到每个邻居节点的最短路径
for k = 1:num_neighbors
path_var = cellfun(@(i,j) get(path_var, i, j, k), path_var);
end
% 返回所有节点的最短路径
return path_var;
```
这是一个简单的例子,可以根据具体的需求进行修改和优化。