专题15 全等三角形

合集下载

人教版九年级中考数学 考点复习 全等三角形 专题练习

人教版九年级中考数学   考点复习   全等三角形   专题练习

人教版九年级中考数学考点复习全等三角形专题练习一.选择题(本大题共10道小题)1. 已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°2. 如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D3. 如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD4. 如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )A.AD=AEB.BE=CDC.∠ADC=∠AEBD.∠DCB=∠EBC5. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F.若∠BCE=65°,则∠CAF的度数为( )A.30°B.25°C.35°D.65°6. 在正方形网格中,∠AOB的位置如图所示,则下列各点中到∠AOB两边距离相等的点是( )A.点QB.点NC.点RD.点M7. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS8. 如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36o.连接AC、BD交于点M,连接OM.下列结论:①∠AMB=36o;②AC=BD;③OM平分∠AOD;④MO平分∠AMD其中正确的结论个数有( )个.A.4B.3C.2D.19. 下面是黑板上出示的尺规作图题需要回答横线上符号代表的内容.如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法:(1)以△为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,○长为半径画弧交EG于点D;(3)以点D为圆心,* 长为半径画弧交前弧于点F;(4)作⊕,则∠DEF即为所求作的角.A.△表示点EB.○表示PQC.*表示EDD.⊕表示射线EF10. 如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二.填空题(本大题共6道小题)11. 如图,点B 、F 、C 、E 在一条直线上,已知FB=CE,AC ∥DF,请你添加一个适当的条件 使得△ABC ≌△DEF.12. 如图,四边形ABCD 中,∠BAC =∠DAC,请补充一个条件 ,使得△ABC ≌△ADC.13. 如图,AC =AD,∠1=∠2,要使△ABC ≌△AED,应添加的条件是 .(只需写出一个条件即可)14. 如图,AC=AD,∠1=∠2,要使ABC AED ≌△△,应添加的条件是______(只需写出一个条件即可)15. 如图,点P 为定角∠AOB 的平分线上的一个定点,点M,N 分别在射线OA,OB 上(都不与点O 重合),且∠MPN 与∠AOB 互补.若∠MPN 绕着点P 转动,那么以下四个结论:①P M =PN 恒成立;②MN 的长不变;③OM+ON 的值不变;④四边形PMON 的面积不变.其中正确的为_____.(填番号)16. 如图,在△ABC 中,AB =AC,点D 在BC 上(不与点B,C 重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是 (写出一个即可).三.解答题(本大题共6道小题)17. 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.18. 如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.19. 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20. 如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21. 在Rt△ABC中,∠ACB=90°,CB=CA=22,点D是射线AB上一点,连接CD,在CD右侧作∠DCE =90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.22. 如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.。

全等三角形辅助线之截长补短和倍长中线(原题+解析)

全等三角形辅助线之截长补短和倍长中线(原题+解析)

全等三角形辅助线之截长补短与倍长中线一.填空题(共1小题)1.(2015秋?宿迁校级月考)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D到AB的距离为6,则BC的长是.二.解答题(共10小题)2.(2010秋?涵江区期末)如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.3.如图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC).4.(2013秋?藁城市校级期末)在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系请你直接写出这个数量关系,不要证明.5.已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.6.(2012秋?西城区校级期中)已知:如图,△ABC中,点D,E分别在AB,AC边上,F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,判断BD与CE 的数量关系,并证明你的结论.7.(2010秋?丰台区期末)已知:如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,且AD=AC,若∠DAC=30°,试探究BD与CD的数量关系并加以证明.8.已知点M是等边△ABD中边AB上任意一点(不与A、B重合),作∠DMN=60°,交∠DBA外角平分线于点N.(1)求证:DM=MN;(2)若点M在AB的延长线上,其余条件不变,结论“DM=MN”是否依然成立请你画出图形并证明你的结论.9.(2015春?闵行区期末)如图所示,在正方形ABCD中,M是CD的中点,E 是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.10.已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.11.(2010秋?巢湖期中)如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.全等三角形辅助线之截长补短与倍长中线参考答案与试题解析一.填空题(共1小题)1.(2015秋?宿迁校级月考)如图,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D.若BD:DC=3:2,点D到AB的距离为6,则BC的长是15.【考点】角平分线的性质.【专题】计算题.【分析】作DE⊥AB于E,如图,则DE=6,根据角平分线定理得到DC=DE=6,再由BD:DC=3:2可计算出BD=9,然后利用BC=BD+DC进行计算即可.【解答】解:作DE⊥AB于E,如图,则DE=6,∵AD平分∠BAC,∴DC=DE=6,∵BD:DC=3:2,∴BD=×6=9,∴BC=BD+DC=9+6=15.故答案为15.【点评】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等.二.解答题(共10小题)2.(2010秋?涵江区期末)如图所示,在Rt△ABC中,∠C=90°,BC=AC,AD平分∠BAC交BC于D,求证:AB=AC+CD.【考点】全等三角形的判定与性质.【专题】证明题.【分析】利用已知条件,求得∠B=∠E,∠2=∠1,AD=AD,得出△ABD≌△AED (AAS),∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.【解答】证法一:如答图所示,延长AC,到E使CE=CD,连接DE.∵∠ACB=90°,AC=BC,CE=CD,∴∠B=∠CAB=(180°﹣∠ACB)=45°,∠E=∠CDE=45°,∴∠B=∠E.∵AD平分∠BAC,∴∠1=∠2在△ABD和△AED中,,∴△ABD≌△AED(AAS).∴AE=AB.∵AE=AC+CE=AC+CD,∴AB=AC+CD.证法二:如答图所示,在AB上截取AE=AC,连接DE,∵AD平分∠BAC,∴∠1=∠2.在△ACD和△AED中,,∴△ACD≌△AED(SAS).∴∠AED=∠C=90,CD=ED,又∵AC=BC,∴∠B=45°.∴∠EDB=∠B=45°.∴DE=BE,∴CD=BE.∵AB=AE+BE,∴AB=AC+CD.【点评】本题考查了全等三角形的判定和性质;通过SAS的条件证明三角形全等,利用三角形全等得出的结论来求得三角形各边之间的关系.3.如图,AD是△ABC中BC边上的中线,求证:AD<(AB+AC).【考点】全等三角形的判定与性质;三角形三边关系.【专题】计算题.【分析】可延长AD到E,使AD=DE,连BE,则△ACD≌△EBD得BE=AC,进而在△ABE中利用三角形三边关系,证之.【解答】证明:如图延长AD至E,使AD=DE,连接BE.在△ACD和△EBD中:∴△ACD≌△EBD(SAS),∴AC=BE(全等三角形的对应边相等),在△ABE中,由三角形的三边关系可得AE<AB+BE,即2AD<AB+AC,∴AD<(AB+AC).【点评】本题主要考查全等三角形的判定及性质以及三角形的三边关系问题,能够熟练掌握.4.(2013秋?藁城市校级期末)在△ABC中,∠ACB=90°,AC=BC,直线,MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到如图1的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到如图2的位置时,求证:DE=AD﹣BE;(3)当直线MN绕点C旋转到如图3的位置时,线段DE、AD、BE之间又有什么样的数量关系请你直接写出这个数量关系,不要证明.【考点】全等三角形的判定与性质;等腰直角三角形.【专题】证明题.【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;(2)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CE﹣CD=AD ﹣BE;(3)与(1)一样可证明△ADC≌△CEB,则CD=BE,AD=CE,于是有DE=CD﹣CE=BE ﹣AD.【解答】(1)证明:∵AD⊥MN,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠BCE,在△ADC和△CEB,,∴△ADC≌△CEB(AAS),∴CD=BE,AD=CE,∴DE=CE+CD=AD+BE;(2)证明:与(1)一样可证明△ADC≌△CEB,∴CD=BE,AD=CE,∴DE=CE﹣CD=AD﹣BE;(3)解:DE=BE﹣AD.【点评】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”;全等三角形的对应边相等.5.已知△ABC中,∠A=60°,BD,CE分别平分∠ABC和∠ACB,BD、CE交于点O,试判断BE,CD,BC的数量关系,并说明理由.【考点】全等三角形的判定与性质.【分析】在CB上取点G使得CG=CD,可证△BOE≌△BOG,得BE═BG,可证△CDO≌△CGO,得CD=CG,可以求得BE+CD=BC.【解答】解:在BC上取点G使得CG=CD,∵∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣60°)=120°,∴∠BOE=∠COD=60°,∵在△COD和△COG中,,∴△CODF≌△COG(SAS),∴∠COG=∠COD=60°,∴∠BOG=120°﹣60°=60°=∠BOE,∵在△BOE和△BOG中,,∴△BOE≌△BOG(ASA),∴BE=BG,∴BE+CD=BG+CG=BC.【点评】本题考查了全等三角形的判定,考查了全等三角形对应角、对应边相等的性质,本题中求证CD=CG和BE=BG是解题的关键.6.(2012秋?西城区校级期中)已知:如图,△ABC中,点D,E分别在AB,AC边上,F是CD中点,连BF交AC于点E,∠ABE+∠CEB=180°,判断BD与CE 的数量关系,并证明你的结论.【考点】全等三角形的判定与性质.【专题】探究型.【分析】延长BF至点G,使FG=BF,连CG,证△GFC≌△BFD,∠CGF=∠FBD,CG=DB,求出∠CGF=∠CEG,推出CG=CE,即可得出答案.【解答】结论:BD=CE证明:延长BF至点G,使FG=BF,连CG,∵F为CD中点,∴CF=DF,在△GFC和△BFD中∴△GFC≌△BFD(SAS),∴∠CGF=∠FBD,CG=DB,又∵∠ABE+∠CEB=180°,∠CEG+∠CEB=180°,∴∠CGF=∠CEG,∴CG=CE,∴BD=CE.【点评】本题考查了全等三角形的性质和判定的应用.7.(2010秋?丰台区期末)已知:如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,且AD=AC,若∠DAC=30°,试探究BD与CD的数量关系并加以证明.【考点】正方形的性质;全等三角形的判定与性质;等腰三角形的性质.【专题】探究型.【分析】作BE⊥BC,AE⊥AC,两线相交于点E,则四边形AEBC是正方形,由∠DAC=30°,得∠DAE=60°,由AD=AC,得AD=AE,所以,三角形AED是等边三角形,可得∠AED=60°,∠DEB=30°,所以,△ADC≌△EDB,可得BD=CD;【解答】解:BD=CD.证明:作BE⊥BC,AE⊥AC,两线相交于点E,∵△ABC是等腰直角三角形,即AC=BC,∴四边形AEBC是正方形,∵∠DAC=30°,∴∠DAE=60°,∵AD=AC,∴AD=AE,∴△AED是等边三角形,∴∠AED=60°,∴∠DEB=30°,在△ADC和△EDB中,∴△ADC≌△EDB(SAS),∴BD=CD.【点评】本题主要考查了等腰直角三角形的性质、等边三角形的性质和全等三角形的判定与性质,作辅助线构建正方形,通过证明三角形全等得出线段相等,是解答本题的基本思路.8.已知点M是等边△ABD中边AB上任意一点(不与A、B重合),作∠DMN=60°,交∠DBA外角平分线于点N.(1)求证:DM=MN;(2)若点M在AB的延长线上,其余条件不变,结论“DM=MN”是否依然成立请你画出图形并证明你的结论.【考点】全等三角形的判定与性质;等边三角形的性质.【分析】(1)在AD上截取AF=AM,证明△DFM≌△MBN即可;(2)在AD的延长线上截取AF=AM,证明△DFM≌△MBN即可.【解答】证明:(1)如图1,在AD上截取AF=AM,∵△ABD是等边三角形,∴△AMF是等边三角形,∴DF=MB,∠DFM=120°,∵BN是∠DBA外角平分线,∴∠MBN=120°,∴∠DFM=∠MBN,∵∠DMN=60°,∴∠BMN+∠AMD=120°,∴∠A=60°,∴∠FDM+∠AMD=120°,∴∠FDM=∠BMN,在△FDM和△BMN中,,∴△FDM≌△BMN(ASA),∴DM=MN.(2)点M在AB的延长线上,如图2所示,在AD的延长线上截取AF=AM,∵△ABD是等边三角形,∴△AMF是等边三角形,∴DF=MB,∠DFM=60°,∵BN是∠DBA外角平分线,∴∠MBN=60°,∴∠DFM=∠MBN,∵∠BMN=∠AMD+∠DMN,∠FDM=∠A+∠AMD,∠DMN=∠A=60°,∴∠FDM=∠BMN,在△FDM和△BMN中,,∴△FDM≌△BMN(ASA),∴DM=MN.【点评】本题主要考查了全等三角形的判定与性质以及等边三角形的性质,通过辅助线构造全等三角形是解决问题的关键.9.(2015春?闵行区期末)如图所示,在正方形ABCD中,M是CD的中点,E 是CD上一点,且∠BAE=2∠DAM.求证:AE=BC+CE.【考点】正方形的性质;全等三角形的判定与性质.【专题】证明题.【分析】延长AB到F,使BF=CE,连接EF与BC相交于点N,利用“角角边”证明△BFN和△CEN全等,根据全等三角形对应边相等可得BN=CN,EN=FN,再根据正方形的性质可得∠BAN=∠DAM,然后求出∠BAN=∠EAN,再根据等腰三角形三线合一可得AE=AF,从而得证.【解答】证明:如图,延长AB到F,使BF=CE,连接EF与BC相交于点N,在△BFN和△CEN中,,∴△BFN≌△CEN(AAS),∴BN=CN,EN=FN,又∵M是CD的中点,∴∠BAN=∠DAM,∵∠BAE=2∠DAM,∴∠BAN=∠EAN,∴AN既是△AEF的角平分线也是中线,∴AE=AF,∵AF=AB+BF,∴AE=BC+CE.【点评】本题考查了正方形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,难点在于作辅助线构造出等腰三角形和全等三角形.10.已知:如图,ABCD是正方形,∠FAD=∠FAE.求证:BE+DF=AE.【考点】全等三角形的判定与性质;正方形的性质.【专题】证明题.【分析】延长CB到G,使BG=DF,连接AG,由四边形ABCD为正方形,利用正方形的性质得到AB=AD,AB∥CD,∠D=∠ABC=90°,进而得到∠5=∠BAF=∠1+∠3,∠ABG=180°﹣∠ABC=90°,利用SAS得到三角形ABG与三角形ADG全等,利用全等三角形对应角相等得到∠G=∠5,∠1=∠2=∠4,等量代换得到∠G=∠EAG,利用等角对等边得到AE=GE,由GE=BE+BG,等量代换即可得证.【解答】解:延长CB到G,使BG=DF,连接AG,∵四边形ABCD为正方形,∴AB=AD,AB∥CD,∠D=∠ABC=90°,∴∠5=∠BAF=∠1+∠3,∠ABG=180°﹣∠ABC=90°,在△ABG和△ADG中,,∴△ABG≌△ADF(SAS),∴∠G=∠5,∠1=∠2=∠4,∴∠G=∠5=∠1+∠3=∠4+∠3=∠EAG,∴AE=GE=BE+GB=BE+DF.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.11.(2010秋?巢湖期中)如图,CE、CB分别是△ABC、△ADC的中线,且AB=AC.求证:CD=2CE.【考点】全等三角形的判定与性质.【专题】证明题.【分析】延长CE到F,使CE=EF,连接FB,由△AEC≌△BEF得出对应的边角相等,进而求证△CBF≌△CBD,即可得出结论.【解答】证明:延长CE到F,使EF=CE,连接FB.∵CE是△ABC的中线,∴AE=EB,又∵∠AEC=∠BEF,∴△AEC≌△BEF,(SAS)∴∠A=∠EBF,AC=FB.∵AB=AC,∴∠ABC=∠ACB,∴∠CBD=∠A+∠ACB=∠EBF+∠ABC=∠CBF;∵CB是△ADC的中线,∴AB=BD,又∵AB=AC,AC=FB,∴FB=BD,又CB=CB,∴△CBF≌△CBD(SAS),∴CD=CF=CE+EF=2CE.【点评】本题考查了全等三角形的判定及性质,等腰三角形的性质.解决此题的关键是通过延长中线构造全等三角形.考点卡片1.三角形三边关系(1)三角形三边关系定理:三角形两边之和大于第三边.(2)在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.(3)三角形的两边差小于第三边.(4)在涉及三角形的边长或周长的计算时,注意最后要用三边关系去检验,这是一个隐藏的定时炸弹,容易忽略.2.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.3.角平分线的性质角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE4.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.5.等边三角形的性质(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.在等边三角形中,腰和底、顶角和底角是相对而言的.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.6.等腰直角三角形(1)两条直角边相等的直角三角形叫做等腰直角三角形.(2)等腰直角三角形是一种特殊的三角形,具有所有三角形的性质,还具备等腰三角形和直角三角形的所有性质.即:两个锐角都是45°,斜边上中线、角平分线、斜边上的高,三线合一,等腰直角三角形斜边上的高为外接圆的半径R,而高又为内切圆的直径(因为等腰直角三角形的两个小角均为45°,高又垂直于斜边,所以两个小三角形均为等腰直角三角形,则两腰相等);(3)若设等腰直角三角形内切圆的半径r=1,则外接圆的半径R=2+1,所以r:R=1:2+1.7.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.。

全等三角形手拉手模型-初中数学模型与解题方法专题训练(学生版+解析版)

全等三角形手拉手模型-初中数学模型与解题方法专题训练(学生版+解析版)

全等三角形手拉手模型一、单选题1.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1B.2C.3D.42.如图,AB=AD,AC=AE,∠DAB=∠CAE=50°,以下四个结论:①△ADC≌△ABE;②CD=BE;③∠DOB=50°;④点A在∠DOE的平分线上,其中结论正确的个数是()A.1B.2C.3D.43.如图,已知△ABC与△CDE都是等边三角形,点B、C、D在同一条直线上,AD与BE相交于点G,BE与AC相交于点F,AD与CE相交于点H,则下列结论①△ACD≌△BCE ②∠AGB=60° ③BF=AH④△CFH是等边三角形 ⑤连CG,则∠BGC=∠DGC.其中正确的个数是()A.2B.3C.4D.54.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM,下列结论:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正确的个数为()A.4B.3C.2D.15.如图,A,B,E三点在同一直线上,△ABC,△CDE都是等边三角形,连接AD,BE,OC:下列结论中正确的是()①△ACD≌△BCE;②△CPQ是等边三角形;③OC平分∠AOE;④△BPO≌△EDO.A.①②B.①②③C.①②④D.①②③④6.如图,在直线AC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD交于点H,AE与DB交于点G,BE与CD交于点F,下列结论:①AE=CD;②∠AHD=60°;③△AGB≌△DFB;④BH平分∠GBF;⑤GF∥AC;⑥点H是线段DC的中点.正确的有()A.6个B.5个C.4个D.3个7.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中,正确的结论有()①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四边形BCDE=12BD•CE;⑤BC2+DE2=BE2+CD2.A.1个B.2个C.3个D.4个8.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.①B.①②C.①②③D.①②④9.如图,点C是线段AE上一动点(不与A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,有以下5个结论:①AD =BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中一定成立的结论有( )个A.1B.2C.3D.410.如图,正△ABC和正△CDE中,B、C、D共线,且BC=3CD,连接AD和BE相交于点F,以下结论中正确的有( )个①∠AFB=60° ②连接FC,则CF平分∠BFD ③BF=3DF ④BF=AF+FCA.4B.3C.2D.1二、填空题11.如图,△ABD、△CDE是两个等边三角形,连接BC、BE.若∠DBC=30°,BD=6,BC=8,则BE=.12.如图,点B、C、E在同一条直线上,△ABC与△CDE都是等边三角形,下列结论:①AE=BD;②△DGC≌△EFC;③线段AE和BD所夹锐角为80°;④FG∥BE.其中正确的是.(填序号)13.如图,△ABC和△ECD都是等腰直角三角形,CA=CB,CE=CD,△ABC的顶点A在△ECD的斜边DE上,连接BD,有下列结论:①AE=BD;②∠DAB=∠BCD;③ED⊥DB;④AE2+AD2=2AC2;其中正确的结论有(填序号)14.如图,∠DAB=∠EAC=600,AB=AD,AC=AE,BE和CD相交于O,AB和CD相交于P,则∠DOE的度数是°.15.已知:如图,正方形ABCD中,对角线AC和BD相交于点O,E,F分别是边AD、CD上的点,若AE=4cm,CF=3cm,且OE⊥OF,则EF的长为cm.16.如图,在Rt△ABC中,∠ABC=90°,AB=BC,点D为三角形右侧外一点.且∠BDC=45°.连接AD,若△ACD的面积为98,则线段CD的长度为.17.如图,△ABC是边长为5的等边三角形,BD=CD,∠BDC=120°.E、F分别在AB、AC上,且∠EDF=60°,则三角形AEF的周长为.18.在锐角三角形ABC中,AH是边BC的高,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC.其中正确的是.19.如图,CA=CB,CD=CE,∠ACB=∠DCE=50°,AD、BE交于点H,连接CH,则∠CHE=.20.在△ABC中,∠ACB=90°,∠B=60°,AB=4,点D是直线BC上一动点,连接AD,在直线AD的右侧作等边ΔADE,连接CE,当线段CE的长度最小时,线段CD的长度为.三、解答题21.如图所示,△ABC和△ADE都是等边三角形,且点B、A、E在同一直线上,连接BD交AC于M,连接CE交AD于N,连接MN.(1)求证:BD=CE;(2)求证:△ABM≌△ACN;(3)求证:△AMN是等边三角形.22.如图,在△ABC中,∠C=90°,AC=BC,点O是AB中点,∠MON=90°,将∠MON绕点O旋转,∠MON的两边分别与射线AC、CB交于点D、E.(1)当∠MON转动至如图一所示的位置时,连接CO,求证:△COD≅△BOE;(2)当∠MON转动至如图二所示的位置时,线段CD、CE、AC之间有怎样的数量关系?请说明理由.23.在△ABC中,AB=AC,点D是直线BC上一点,连接AD,以AD为边向右作△ADE,使得AD=AE,∠DAE=∠BAC,连接CE.(1)①如图1,求证:△ABD≌△ACE;②当点D在BC边上时,请直接写出△ABC,△ACD,△ACE的面积(S△ABC,S△ACD,S△ACE)所满足的关系;(2)当点D在BC的延长线上时,试探究△ABC,△ACD,△ACE的面积(S△ABC,S△ACD,S△ACE)所满足的关系,并说明理由.24.在△ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),把线路AD绕着点A逆时针旋转至AE(即AD=AE),使得∠DAE=∠BAC,连接DB、CE.(1)如图1,点D在线段BC上,如果∠BAC=90°,则∠BCE=度.(2)如图2,当点D在线段BC上,如果∠BAC=60°,则∠BCE=度.(3)如图3,设∠BAC=α,∠BCE=β,当点D在线段BC上移动时,α,β的数量关系是什么?请说明理由.(4)设∠BAC=α,∠BCE=β,当点D在直线BC上移动时,请直接写出α,β的数量关系,不用证明.25.在△AEB和△DEC中,AC、BD相交于点P,AE、BD相交于点O,AE=BE,DE=CE,∠AEB=∠DEC.(1)求证:AC=BD;(2)求证:∠APB=∠AEB.26.如图1,B、C、D三点在一条直线上,AD与BE交于点O,△ABC和△ECD是等边三角形.(1)求证:△ACD≌△BCE;(2)求∠BOD的度数;(3)如图2,若B、C、D三点不在一条直线上,∠BOD的度数是否发生改变?(填“改变”或“不改变”)27.如图,已知四边形ABCD是正方形,对角线AC、BD相交于O,设E、F分别是AD、AB上的点,若∠EOF=90°,DO=4,求四边形AEOF的面积.28.(1)如图1,△ABC与△CDE均为等腰直角三角形,∠ACB=∠DCE=90°,猜想并证明:线段AE、BD的数量关系和位置关系.(2)在(1)的条件下,若点A,E,D在同一直线上,CM为△DCE中DE边上的高,请判断∠ADB的度数及线段CM,AD,BD之间的数量关系,并说明理由.29.已知在△ABC中,AB=AC,过点B引一条射线BM,D是BM上一点【问题解决】(1)如图1,若∠ABC=60°,射线BM在∠ABC内部,∠ADB=60°,求证:∠BDC=60°,小明同学展示的做法是:在BM上取一点E使得AE=AD,通过已知的条件,从而求得∠BDC的度数,请你帮助小明写出证明过程;【类比探究】(2)如图2,已知∠ABC=∠ADB=30°.①当射线BM在∠ABC内,求∠BDC的度数②当射线BM在BC下方,如图3所示,请问∠BDC的度数会变化吗?若不变,请说明理由,若改变,请求出∠BDC的度数;30.如图,D为△ABC内一点,AB=AC,∠BAC=50°,将AD绕着点A顺时针旋转50°能与线段AE重合.(1)求证:EB=DC;(2)若∠ADC=125°,求∠BED的度数.31.如图,△ABC是一个锐角三角形,分别以AB、AC为边向外作等边三角形△ABD、△ACE,连接BE、CD交于点F,连接AF.(1)求证:△ABE≌△ADC;(2)求∠EFC的度数;(3)求证:AF平分∠DFE.32.【问题发现】(1)如图1,△ABC和ΔADE均为等边三角形,点B,D,E在同一直线上,连接CE,容易发现:①∠BEC的度数为;②线段BD、CE之间的数量关系为;【类比探究】(2)如图2,△ABC和ΔADE均为等腰直角三角形,∠BAC=∠DAE=90°,点B,D,E在同一直线上,连接CE,试判断∠BEC的度数以及线段BE、CE、DE之间的数量关系,并说明理由;【问题解决】(3)如图3,∠AOB=∠ACB=90°,OA=4,OB=8,AC=BC,则OC2的值为.全等三角形手拉手模型一、单选题1.如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则CH的长是()A.1B.2C.3D.4【答案】A【详解】∵AD⊥BC,CE⊥AB,∴∠ADB=∠AEH=90°,∵∠AHE=∠CHD,∴∠BAD=∠BCE,∵在△HEA和△BEC中,∠BAD=∠BCE,∠AEH=∠BEC=90°,EH=EB,∴△HEA≌△BEC(AAS),∴AE=EC=4,则CH=EC-EH=AE-EH=4-3=1.故选A.2.如图,AB=AD,AC=AE,∠DAB=∠CAE=50°,以下四个结论:①△ADC≌△ABE;②CD=BE;③∠DOB=50°;④点A在∠DOE的平分线上,其中结论正确的个数是()A.1B.2C.3D.4【答案】D【详解】∵∠DAB=∠CAE∴∠DAB+∠BAC=∠CAE+∠BAC∴∠DAC=∠EAB∵AB=AD,AC=AE∴△ADC≌△ABE∴CD=BE,故①②正确;∵△ADC≌△ABE∴∠ADC=∠ABE设AB与CD交于G点,∵∠AGD=∠BGC∴∠DOB=∠DAB=50°,故③正确;过点A作AF⊥CD于F点,过点A作AH⊥BE于H点,则AF、AH分别是△ADC与△ABE边上的高∵△ADC≌△ABE∴AF=AH∴点A在∠DOE的平分线上,④正确故选D.3.如图,已知△ABC与△CDE都是等边三角形,点B、C、D在同一条直线上,AD与BE相交于点G,BE与AC相交于点F,AD与CE相交于点H,则下列结论①△ACD≌△BCE ②∠AGB=60° ③BF=AH④△CFH是等边三角形 ⑤连CG,则∠BGC=∠DGC.其中正确的个数是()A.2B.3C.4D.5【答案】D【详解】试题分析:∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,∵BC=AC,∠BCE=∠ACD,CE=CD,∴△BCE≌△ACD(SAS);故①正确;∵△BCE≌△ACD,∴∠CBF=∠CAH.∵∠BFC=∠AFG,∴∠AGB=∠ACB=60°,故②正确;在△BCF和△ACH中,∠CBF=∠CAH,BC=AC,∠BCF=∠ACH,∴△BCF≌△ACH(ASA),∴CF=CH,BF=AH;故③正确;∵CF=CH,∠ACH=60°,∴△CFH是等边三角形;故④正确;连接CG,过C点作CM⊥BE,作CN⊥AD,∵△BCE≌△ACD,CM⊥BE,CN⊥AD,∴CM=CN,∴GC平分∠BGD,∴∠BGC=∠DGC,故⑤正确.故选:D.4.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM,下列结论:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正确的个数为()A.4B.3C.2D.1【答案】A【详解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正确;过点O作OE⊥AC于点E,OF⊥BD于点F,BD与OA相交于点H,如图所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正确;所以正确的个数有4个;故选A.5.如图,A,B,E三点在同一直线上,△ABC,△CDE都是等边三角形,连接AD,BE,OC:下列结论中正确的是()①△ACD≌△BCE;②△CPQ是等边三角形;③OC平分∠AOE;④△BPO≌△EDO.A.①②B.①②③C.①②④D.①②③④【答案】B【详解】∵△ABC,△CDE都是等边三角形,∴CA=CB,CD=CE,∠ACB=∠ECD=60°,∴∠ACB+∠PCQ=∠ECD+∠PCQ,∠PCD=60°,∴∠ACD=∠BCE,∴△ACD≌△BCE,∴①的说法是正确的;∵△ACD≌△BCE,∴∠PDC=∠QEC,∵∠PCD=∠QCE=60°,CD=CE,∴△PCD≌△QCE,∴PC=QC,∴△CPQ是等边三角形;∴②的说法是正确的;∵△PCD≌△QCE,∴PD=QE,S△PCD=S△QCE,过点C作CG⊥PD,垂足为G,CH⊥QE,垂足为H,∴1 2PD•CG=12QE•CE,∴CG=CH,∴OC平分∠AOE,∴③的说法是正确的;无法证明△BPO≌△EDO.∴④的说法是错误的;故答案为①②③,故选B.6.如图,在直线AC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD交于点H,AE与DB交于点G,BE与CD交于点F,下列结论:①AE=CD;②∠AHD=60°;③△AGB≌△DFB;④BH平分)∠GBF;⑤GF∥AC;⑥点H是线段DC的中点.正确的有(A.6个B.5个C.4个D.3个【答案】C【详解】连接GF,过点B作BM⊥AE于M,BN⊥CD于N∵△ABD,△BCE都是等边三角形,∴∠ABD=∠EBC=60°,BA=BE,BE=BC,∴∠ABE=∠DBC,在△ABE和△DBC中,BA=BD∠ABE=∠DBCBE=BC∴△ABE≌△DBC(SAS),∴AE=CD,故①正确;∵△ABE≌△DBC,∴∠BAE=∠BDC,∵∠AGB=∠DGH,∴∠AHD=∠ABG=60°,故②正确;在△AGB和△DFB中,∠BAG=∠BDF;∴△AGB≌△DFB(ASA),故③正确;AB=DB∠ABG=∠DBF=60°∵△AGB≌△DFB,∴BG=BF,∵∠GBF=60°,∴△BGF是等边三角形,∴∠FGB=∠ABD=60°,∴FG∥AC,故⑤正确;∵△ABE≌△DBC,BM⊥AE,BN⊥CD,∴BM=BN,∴BH平分∠AHC,但不一定平分∠GBF,故④错误;根据题意,无法判断DH=CH,故⑥错误.故选:C.7.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,连接CE交AD于点F,连接BD交CE于点G,连接BE.下列结论中,正确的结论有()①CE=BD;②△ADC是等腰直角三角形;③∠ADB=∠AEB;④S四边形BCDE=12BD•CE;⑤BC2+DE2=BE2+CD2.A.1个B.2个C.3个D.4个【答案】C【详解】解:∵,△ABC和△ADE都是等腰直角三角形,∴AB=AC,AD=AE,∵∠BAD=∠BAC+∠CAD=90°+∠CAD,∠CAE=∠DAE+∠CAD=90°+∠CAD,∴∠BAD=∠CAE,∴△ABD≌△ACE(SAS),∴CE=BD,∠ABD=∠ACE,故①正确;∴∠BCG+∠CBG=∠ACB+∠ABC=90°,在△BCG中,∠BGC=180°-(∠BCG+∠CBG)=180°-90°=90°,∴BD⊥CE,∴S四边形BCDE=S△BCE+S△DCE=12CE·BG+12CE·DG=12BD•CE,故④正确;由勾股定理,在Rt△BCG中,BC2=BG2+CG2,在Rt△DEG中,DE2=DG2+EG2,∴BC2+DE2=BG2+CG2+DG2+EG2,在Rt△BGE中,BE2=BG2+EG2,在Rt△CDG中,CD2=CG2+DG2,∴BE2+CD2=BG2+CG2+DG2+EG2,∴BC2+DE2=BE2+CD2,故⑤正确;从题干信息没有给出AC=AD, 所以只有AE∥CD时,∠DAE=∠ADC=90°,无法说明AE∥CD,更不能说明CD=AD, 故②错误;∵△ABD≌△ACE,∴∠ADB=∠AEC,∵条件不足以证明△CAE≌△BAE,∴∠AEC与∠AEB相等无法证明,∴∠ADB=∠AEB不一定成立,故③错误;综上所述,正确的结论有①④⑤共3个.故选:C.8.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.)其中正确的个数为(A.①B.①②C.①②③D.①②④【答案】D【详解】解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在ΔAOC和ΔBOD中,OA=OB∠AOC=∠BODOC=OD∴ΔAOC≅ΔBOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;所示:作OG⊥MC于G,OH⊥MB于H,如图2则∠OGC=∠OHD=90°,在ΔOCG和ΔODH中,∠OCA=ODB∠OGC=∠OHDOC=OD∴ΔOCG≅ΔODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM∵ΔAOC≅ΔBOD,∴∠COM=∠BOM∵MO平分∠BMC,∴∠CMO=∠BMO,在ΔCOM和ΔBOM中,∠COM=BOMOM=OM∠CMO=∠BMOΔCOM≅ΔBOM,∴OB=OC,∵OA=OB∴OA=OC与OA>OC矛盾,∴③错误;综上所述,正确的是①②④;故选:D.9.如图,点C是线段AE上一动点(不与A,E重合),在AE同侧分别作等边三角形ABC和等边三角形CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ,有以下5个结论:①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.其中一定成立的结论有( )个A.1B.2C.3D.4【答案】D【详解】①∵等边△ABC和等边△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60∘,∴∠ACD=∠BCE,在△ACD和△BCE中,AC=BC,∠ACD=∠BCE,DC=CE,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;③∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°-60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,∠CAD=∠CBE,AC=BC,∠ACB=∠BCQ=60°,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正确;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60∘,∴∠ACB=∠CPQ,∴PQ∥AE;故②正确;④∵AD=BE,AP=BQ,∴AD-AP=BE-BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠QE,则DP≠DE,故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正确;综上所述,正确的结论有:①②③⑤,错误的结论只有④,故选D.10.如图,正△ABC和正△CDE中,B、C、D共线,且BC=3CD,连接AD和BE相交于点F,以下结论中正确的有( )个①∠AFB=60° ②连接FC,则CF平分∠BFD ③BF=3DF ④BF=AF+FCA.4B.3C.2D.1【答案】A【详解】解:①∵△ABC和△CDE均为等边三角形,∴∠ACB=∠ECD=60°,AC=BC,EC=DC,∴∠ACB+∠ACE=∠ECD+∠ACE,∴∠BCE=∠ACD,在△BCE和△ACD中,BC=AC∠BCE=∠ACDEC=DC∴△BCE≌△ACD SAS,∴∠CBE=∠CAD,∵∠AFB=∠CBE+∠CDA,∠ACB=∠CDA+∠CAD,∴∠AFB=∠ACB=60°,故①正确;②如图所示,作CM⊥BE于M点,CN⊥AD于N点,则∠CME=∠CND=90°,∵△BCE≌△ACD,∴∠CEM=∠CDN,在△CEM和△CDN中,∠CME=∠CND∠CEM=∠CDNCE=CD∴△CEM≌△CDN AAS,∴CM=CN,∴CF平分∠BFD,故②正确;③如图所示,作FP⊥BD于P点,∵S△BCF=12BF∙CM=12BC∙FP,S△DCF=12DF∙CN=12CD∙FP,∴S△BCFS△DCF=12BF∙CM12DF∙CN=12BC∙FP12CD∙FP,∵CM=CN,∴整理得:BFDF =BC CD,∵BC=3CD,∴BF DF =3CDCD=3,∴BF=3DF,故③正确;④如图所示,在AD上取点Q,使得FC=FQ,∵∠AFB=∠ACB=60°,CF平分∠BFD,∴∠BFD=120°,∠CFD=12∠BFD=60°,∴△FCQ为等边三角形,∴∠FCQ=60°,CF=CQ,∵∠ACB =60°,∴∠ACB +∠ACF =∠FCQ +∠ACF ,∴∠BCF =∠ACQ ,在△BCF 和△ACQ 中,BC =AC∠BCF =∠ACQCF =CQ∴△BCF ≌△ACQ SAS ,∴BF =AQ ,∵AQ =AF +FQ ,FQ =FC ,∴BF =AF +FC ,故④正确;综上,①②③④均正确;故选:A.二、填空题11.如图,△ABD 、△CDE 是两个等边三角形,连接BC 、BE .若∠DBC =30°,BD =6,BC =8,则BE =.【答案】BE =10【详解】如图,连接AC ,∵△ABD 、△CDE 是两个等边三角形,∴AB =BD =AD =2,CD =DE ,∠ABD =∠ADB =∠CDE =60,∴∠ADB +∠BDC =∠CDE +∠BDC ,∴∠ADC =∠BDE ,在△ACD 与△BDE 中AD =BD∠ADC =∠BDE CD =DE,∴△ACD ≌△BED (SAS ),∴AC =BE ,∵∠DBC =30°,∴∠ABC =∠ABD +∠DBC =60°+30°=90°,在Rt △ABC 中,AB =6,BC =8,∴AC =AB 2+BC 2=62+82=10,∴BE =10,故答案为:10.12.如图,点B 、C 、E 在同一条直线上,△ABC 与△CDE 都是等边三角形,下列结论:①AE =BD ;②△DGC ≌△EFC ;③线段AE 和BD 所夹锐角为80°;④FG ∥BE .其中正确的是.(填序号)【答案】①②④【详解】解:如图,记AE 与BD 的交点为H ,∵△ABC 与△CDE 都是等边三角形,∴AC =BC ,CD =CE ,∠BCA =∠DCE =60°∵点B 、C 、E 在同一条直线上,∴∠ACD =60°,∴∠BCD =∠ACE =120°在△BCD 和△ACE 中,BC =AC∠BCD =∠ACECD =CE∴△BCD ≌△ACE ,∴BD =AE , 所以结论①正确;∵△BCD ≌△ACE ,∴∠BDC =∠CEA ,∵∠AHB =∠DBE +∠BEA =∠DBE +∠BDC =180°-∠BCD =60°,所以③错误;在△GCD 和△FCE 中,∠GCD =∠DCECE =CD ∠CDB =∠CEA,∴△GCD ≌△FCE ,∴所以②正确;∵△GCD ≌△FCE ,∵CG =CF ,∠ACD =60°,∴∠GFC =60,又∵∠DCE =60°,∴∠GFC =∠DCE ,∴GF ∥BC ,所以④正确.故答案为:①②④.13.如图,△ABC 和△ECD都是等腰直角三角形,CA =CB ,CE =CD ,△ABC 的顶点A 在△ECD 的斜边DE 上,连接BD ,有下列结论:①AE =BD ;②∠DAB =∠BCD ;③ED ⊥DB ;④AE 2+AD 2=2AC 2;其中正确的结论有(填序号)【答案】①②③④【详解】解:∵△ABC 和△ECD 都是等腰直角三角形,∴∠ECD =∠ACB ,∴∠ECD -∠ACD =∠ACB -∠ACD ,即:∠ECA =∠DCB ,∵CA =CB ,CE =CD ,∴△ACE ≌△BCD SAS ,∴AE =BD ,故①正确;由三角形外角定理,∠DAC =∠E +∠ECA ,∵∠DAC =∠DAB +∠BAC ,∴∠E +∠ECA =∠DAB +∠BAC ,∵∠E =∠BAC =45°,∴∠ECA =∠DAB ,∵∠ECA =∠DCB ,∴∠DAB =∠BCD ,故②正确;∵△ACE ≌△BCD ,∴∠E =∠CDB =45°,∵∠BDE =∠CDA +∠CDB ,∴∠BDE =45°+45°=90°,即:ED ⊥DB ,故③正确;∵∠BDE =90°,∴在Rt △ABD 中,AD 2+BD 2=AB 2,∵△ABC 为等腰直角三角形,∴AB 2=AC 2+BC 2=2AC 2,∴AD 2+BD 2=2AC 2,∵AE =BD ,∴AD 2+AE 2=2AC 2,故④正确;故答案为:①②③④.14.如图,∠DAB =∠EAC=600,AB =AD,AC =AE ,BE 和CD 相交于O ,AB 和CD 相交于P ,则∠DOE 的度数是°.【答案】120【详解】如图所示:∵∠DAB =∠EAC =60°,∴∠DAB +∠BAC =∠BAC +∠EAC ,∴∠DAC =∠EAB ,在△ADC 和△AEB 中,AD =AB∠DAC =∠EAB AC =AE,∴△ADC ≌△ABE (SAS ),∴∠E =∠ACD ,又∵∠AFE =∠OFC ,∴∠EAF =∠COF =60°,∴∠DOE =120°.故答案是:120.15.已知:如图,正方形ABCD 中,对角线AC 和BD 相交于点O ,E ,F 分别是边AD 、CD 上的点,若AE =4cm ,CF =3cm ,且OE ⊥OF ,则EF 的长为cm .【答案】5【详解】解:连接EF ,∵OD =OC ,∵OE ⊥OF∴∠EOD +∠FOD =90°∵正方形ABCD∴∠COF +∠DOF =90°∴∠EOD =∠FOC而∠ODE =∠OCF =45°∴△OFC ≌△OED ,∴OE =OF ,CF =DE =3cm ,则AE =DF =4,根据勾股定理得到EF =CE 2+CF 2=32+42=5cm .故答案为:5.16.如图,在Rt △ABC 中,∠ABC =90°,AB =BC ,点D 为三角形右侧外一点.且∠BDC =45°.连接AD ,若△ACD 的面积为98,则线段CD 的长度为.【答案】32【详解】解:过点B 作BE ⊥BD ,交DC 的延长线于点E ,连接AE ,如图所示:∵∠ABC=90°,∴∠ABE+∠EBC=∠EBC+∠CBD=90°,∴∠ABE=∠CBD,∵∠BDC=45°,∠EBD=90°,∴△EBD是等腰直角三角形,∴∠BDC=∠BED=45°,BE=BD,∵AB=BC,∴△BCD≌△BAE(SAS),∴∠BDC=∠BEA=45°,AE=CD,∴∠AED=∠AEB+∠BED=90°,∵S△ACD=12CD⋅AE=98,∴CD2=94,∴CD=32;故答案为3 2.17.如图,△ABC是边长为5的等边三角形,BD=CD,∠BDC=120°.E、F分别在AB、AC上,且∠EDF=60°,则三角形AEF的周长为.【答案】10【详解】解:延长AB到N,使BN=CF,连接DN,∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵BD=CD,∠BDC=120°,∴∠DBC=∠DCB=30°,∴∠ACD=∠ABD=30°+60°=90°=∠NBD,∵在△NBD和△FCD中,BD=DC∠NBD=∠FCDBN=CF,∴△NBD≌△FCD(SAS),∴DN=DF,∠NDB=∠FDC,∵∠BDC=120°,∠EDF=60°,∴∠EDB+∠FDC=60°,∴∠EDB+∠BDN=60°,即∠EDF=∠EDN,在△EDN和△EDF中,DE=DE∠EDF=∠EDNDN=DF,∴△EDN≌△EDF(SAS),∴EF=EN=BE+BN=BE+CF,即BE+CF=EF.∵△ABC是边长为5的等边三角形,∴AB=AC=5,∵BE+CF=EF,∴△AEF的周长为:AE+EF+AF=AE+EB+FC+AF=AB+AC=10,故答案为:10.18.在锐角三角形ABC中,AH是边BC的高,分别以AB,AC为边向外作正方形ABDE和正方形ACFG,连接CE,BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE;②BG⊥CE;③AM是△AEG的中线;④∠EAM=∠ABC.其中正确的是.【答案】①②③④【详解】解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,∴∠BAE+∠BAC=∠CAG+∠BAC,即∠CAE=∠BAG,∴△ABG≌△AEC(SAS),∴BG=CE,故①正确;,设BG、CE相交于点N,AC、BG相交于点K,如图1∵△ABG≌△AEC,∴∠ACE=∠AGB,∵∠AKG=∠NKC,∴∠CNG=∠CAG=90°,∴BG⊥CE,故②正确;,过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2∵AH⊥BC,∴∠ABH+∠BAH=90°,∵∠BAE=90°,∴∠EAP+∠BAH=90°,∴∠ABH=∠EAP,即∠EAM=∠ABC,故④正确;∵∠AHB=∠P=90°,AB=AE,∴△ABH≌△EAP(AAS),∴EP=AH,同理可得GQ=AH,∴EP=GQ,∵在△EPM和△GQM中,∠P=∠MQG=90°,∠EMP=∠GMQEP=GQ∴△EPM≌△GQM(AAS),∴EM=GM,∴AM 是△AEG 的中线,故③正确.综上所述,①②③④结论都正确.故答案为:①②③④.19.如图,CA =CB ,CD =CE ,∠ACB =∠DCE =50°,AD 、BE 交于点H ,连接CH ,则∠CHE =.【答案】65°【详解】解:如图,∵∠ACB =∠DCE ,∴∠ACD =∠BCE ,在ΔACD 和ΔBCE 中,CA =CB∠ACD =∠BCECD =CE∴ΔACD ≅ΔBCE (SAS );过点C 作CM ⊥AD 于M ,CN ⊥BE 于N ,∵ΔACD ≅ΔBCE ,∴∠CAM =∠CBN ,在ΔACM 和ΔBCN 中,∠CAM =∠CBN∠AMC =∠BNC =90°AC =BC∴ΔACM ≅ΔBCN ,∴CM =CN ,在Rt ΔCMH 与Rt ΔCNH 中CM =CN CH =CH∴Rt ΔCMH ≅Rt ΔCNH (HL ),∴∠MCH =∠NCH ,∴CH 平分∠AHE ;∵ΔACD ≅ΔBCE ,∴∠CAD =∠CBE ,∵∠AFC =∠BFH ,∴∠AHB =∠ACB =50°,∴∠AHE =180°-50°=130°,∴∠CHE =12∠AHE =12×130°=65°,故答案为:65°.20.在△ABC 中,∠ACB =90°,∠B =60°,AB =4,点D 是直线BC 上一动点,连接AD ,在直线AD 的右侧作等边ΔADE ,连接CE ,当线段CE 的长度最小时,线段CD 的长度为.【答案】3【详解】解:在AC 的左侧作等边三角形ACF ,连接CE 、BF 、FD 、CF ,∵∠ACB =90°,∠B =60°,则∠BAC =30°,则∠FAB =∠FAC -∠BAC =60°-30°=30°,故点C 、F 关于AB 对称,则∠ABF =∠ABC =60°,BF =BC =12AB =12×4=2,∵△AFC ,△ADE 均为等边三角形,∴∠FAD +∠DAC =60°,∠DAC +∠EAC =60°,AF =AC ,AD =AE ,∴∠FAD =∠EAC ,∴ΔADF ≅ΔAEC (SAS ),∴DF =EC ,当DF ⊥BC 时,DF 最小,由∠ABC =∠ABF =60°,BC =BF =2,∴∠FBD =60°,∠DFB =30°,故BD =12BF =12×2=1,故CD 的长度为BD +CB =1+2=3,故答案为:3.三、解答题21.如图所示,△ABC 和△ADE 都是等边三角形,且点B 、A 、E 在同一直线上,连接BD 交AC 于M ,连接CE 交AD 于N ,连接MN .(1)求证:BD =CE ;(2)求证:△ABM ≌△ACN ;(3)求证:△AMN 是等边三角形.解:(1)∵△ABC 和△ADE 都是等边三角形,∴AB =AC ,AD =AE ,∠BAC =∠DAE =60°,∴∠BAD =∠CAE .在△ABD 和△ACE 中,AB =AC∠BAD =∠CAEAD =AE∴△ABD ≌△ACE (SAS ),∴BD =CE .(2)由(1)知△ABD ≌△ACE ,∴∠ABM =∠ACN .∵点B 、A 、E 在同一直线上,且∠BAC =∠DAE =60°,∴∠CAN =60°=∠BAC .在△ABM 和△ACN 中,∠BAM =∠CANAB =AC ∠ABM =∠ACN;∴△ABM ≌△ACN (ASA ).(3)由(2)知△ABM ≌△ACN ,∴AM =AN ,∵∠CAN =60°,∴△AMN 是等边三角形.22.如图,在△ABC 中,∠C =90°,AC =BC ,点O 是AB 中点,∠MON =90°,将∠MON 绕点O 旋转,∠MON 的两边分别与射线AC 、CB 交于点D 、E.(1)当∠MON 转动至如图一所示的位置时,连接CO ,求证:△COD ≅△BOE ;(2)当∠MON 转动至如图二所示的位置时,线段CD 、CE 、AC 之间有怎样的数量关系?请说明理由.【详解】(1)证明:∵AC =BC ,∠C =90°,AO =OB ,∴OC ⊥AB ,OC =AO =OB ,∴∠OCD =∠B =45°,∵∠MON =∠COB =90°,∴∠DOC =∠EOB ,在△COD 和△BOE 中,∠OCD =∠BOC =OB ∠OCD =∠BOE,∴△COD ≅△BOE ASA .(2)解:CE -CD =AC .理由:连接OC.∵AC =BC ,∠C =90°,AO =OB ,∴OC ⊥AB ,OC =AO =OB ,∴∠OCD =∠B =45°,∴∠DOC =∠CBE =135°,∵∠MON =∠COB =90°,∴∠DOC =∠EOB ,在△COD 和△BOE 中,∠OCD =∠BOC =OB ∠OCD =∠BOE,∴△COD ≅△BOE ASA ,∴CD =BE ,∴CE -CD =CE -BE =BC =AC .23.在△ABC 中,AB =AC ,点D 是直线BC 上一点,连接AD ,以AD 为边向右作△ADE ,使得AD =AE ,∠DAE =∠BAC ,连接CE.(1)①如图1,求证:△ABD ≌△ACE ;②当点D 在BC 边上时,请直接写出△ABC ,△ACD ,△ACE 的面积(S △ABC ,S △ACD ,S △ACE )所满足的关系;(2)当点D 在BC 的延长线上时,试探究△ABC ,△ACD ,△ACE 的面积(S △ABC ,S △ACD ,S △ACE )所满足的关系,并说明理由.【详解】(1)证明:①∵∠BAC =∠DAE ,∴∠BAC -∠CAD =∠DAE -∠CAD ,即∠BAD =∠CAE .在△ABD 和△ACE 中,AB =AC∠BAD =∠CAE AD =AE。

2021年九年级中考数学 专题训练:全等三角形(含答案)

2021年九年级中考数学 专题训练:全等三角形(含答案)

2021中考数学专题训练:全等三角形一、选择题1. 如图,已知AB=DE,∠B=∠E,为了直接用“ASA”说明△ABC≌△DEF,则需要添加的条件是()A.BC=EF B.∠A=∠DC.∠C=∠F D.AC=DF2. 如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画∠HDE=∠A,∠GED=∠B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS4. 如图,一块三角形玻璃碎成了4块,现在要到玻璃店去配一块与原来的三角形玻璃完全一样的玻璃,那么最省事的办法是带哪块玻璃碎片去玻璃店()A.①B.②C.③D.④5. 如图,P为OC上一点,PM⊥OA,PN⊥OB,垂足分别为M,N,PM=PN,∠BOC=30°,则∠AOB的度数为()A.30°B.45°C.60°D.50°6. 如图,点B,F,C,E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DFC.∠A=∠D D.BF=EC7. 如图,在正方形ABCD中,连接BD,点O是BD的中点.若M、N是边AD 上的两点,连接MO、NO,并分别延长交边BC于两点M′、N′,则图中的全等三角形共有()A. 2对B. 3对C. 4对D. 5对8. 如图,若AB=AC,AD=AE,∠BAC=∠DAE,则∠ABD等于()A.∠EAC B.∠ADE C.∠BAD D.∠ACE二、填空题9. 已知△ABC的三边长分别为6,7,10,△DEF的三边长分别为6,3x-2,2x-1.若这两个三角形全等,则x的值为.10. 如图,要测量河岸相对两点A,B之间的距离,从B点沿与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续向前走50米到D处,在D 处转90°沿DE方向再走17米到达E处,这时A,C,E三点在同一直线上,则A,B之间的距离为________米.11. 如图所示,已知AD∥BC,则∠1=∠2,理由是________________;又知AD =CB,AC为公共边,则△ADC≌△CBA,理由是______,则∠DCA=∠BAC,理由是__________________,则AB∥DC,理由是________________________________.12. 如图,在Rt△ABC中,∠ACB=90°,BC=2 cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F.若EF=5 cm,则AE =________cm.13. 如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.若△DBE的周长为20,则AB=________.14. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC =2,则S△ABC=.15. 如图,∠C=90°,AC=10,BC=5,AX⊥AC,点P和点Q是线段AC与射线AX上的两个动点,且AB=PQ,当AP=________时,△ABC与△APQ全等.16. 如图,P是△ABC外的一点,PD⊥AB交BA的延长线于点D,PE⊥AC于点E,PF⊥BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,∠BAC=64°,则∠BPC的度数为________.三、解答题17. 如图,已知△ACF≌△DBE,且点A,B,C,D在同一条直线上.若AD=16,BC=10,求AB的长.18. 如图,AD∥BC,AB⊥BC于点B,连接AC,过点D作DE⊥AC于点E,过点B作BF⊥AC于点F.(1)若∠ABF=63°,求∠ADE的度数;DE=BF+EF.19. 如图,AD 、BC相交于点O ,AD =BC ,∠C =∠D =90°.(1)求证:△ACB ≌△BDA ; (2)若∠ABC =35°,则∠CAO =________°.20. 如图,E为线段AB 上一点,AC ⊥AB ,DB ⊥AB ,△ACE ≌△BED.(1)试猜想线段CE 与DE 的位置关系,并证明你的结论; (2)求证:AB=AC+BD.21. (2019•黄石)如图,在ABC △中,90BAC ∠=︒,E 为边BC 上的点,且AB AE =,D 为线段BE 的中点,过点E 作EF AE ⊥,过点A 作AF BC ∥,且AF 、EF 相交于点F .(1)求证:C BAD ∠=∠; (2)求证:AC EF =.2021中考数学 专题训练:全等三角形-答案一、选择题 1. 【答案】B2. 【答案】D[解析] 由条件可知∠ADB =∠EDB =∠EDC =60°,且∠DEB =∠DEC =90°,∴∠C =30°.3. 【答案】A4. 【答案】D[解析] 第①块只保留了原三角形的一个角和部分边,根据这块玻璃碎片不能配一块与原来完全一样的玻璃;第②③块只保留了原三角形的部分边,根据这两块玻璃碎片中的任一块均不能配一块与原来完全一样的玻璃;第④块玻璃碎片不仅保留了原来三角形的两个角,还保留了一条完整的边,则可以根据“ASA”来配一块完全一样的玻璃.最省事的方法是带④去.5. 【答案】C[解析] ∵点P 在OC 上,PM ⊥OA ,PN ⊥OB ,PM =PN ,∴OC 是∠AOB 的平分线.∵∠BOC =30°,∴∠AOB =60°.6. 【答案】C[解析] 选项A 中添加AB =DE 可用“AAS”进行判定,故本选项不符合题意;选项B 中添加AC =DF 可用“AAS”进行判定,故本选项不符合题意; 选项C 中添加∠A =∠D 不能判定△ABC ≌△DEF ,故本选项符合题意; 选项D 中添加BF =EC 可得出BC =EF ,然后可用“ASA”进行判定,故本选项不符合题意. 故选C.7. 【答案】C【解析】由题意可知,△ABD ≌△CBD ,△MON ≌△M ′ON ′,△DON ≌△BON ′,△DOM ≌△BOM ′共4对.8. 【答案】D[解析] ∵∠BAC =∠DAE ,∴∠BAC -∠DAC =∠DAE -∠DAC ,即∠BAD =∠CAE.在△ABD 和△ACE 中,⎩⎨⎧AB =AC ,∠BAD =∠CAE ,AD =AE ,∴△ABD ≌△ACE(SAS).∴∠ABD =∠ACE.二、填空题9. 【答案】4 [解析] ∵△ABC 的三边长分别为6,7,10,△DEF 的三边长分别为6,3x-2,2x-1,这两个三角形全等,∴3x-2=10,2x-1=7,解得x=4;还可以是3x-2=7,2x-1=10,这种情况不成立.10. 【答案】17[解析] 在△ABC 和△EDC 中,⎩⎨⎧∠ABC =∠EDC =90°,BC =DC ,∠ACB =∠ECD , ∴△ABC ≌△EDC(ASA). ∴AB =ED =17米.11. 【答案】两直线平行,内错角相等SAS 全等三角形的对应角相等 内错角相等,两直线平行12. 【答案】3[解析] ∵∠ACB =90°,∴∠ECF +∠BCD =90°.∵CD ⊥AB ,∴∠BCD +∠B =90°. ∴∠ECF =∠B.在△ABC 和△FCE 中,⎩⎨⎧∠B =∠ECF ,BC =CE ,∠ACB =∠FEC ,∴△ABC ≌△FCE(ASA).∴AC =FE. ∵AE =AC -CE ,BC =2 cm ,EF =5 cm , ∴AE =5-2=3(cm).13. 【答案】20[解析] 由角平分线的性质可得CD =DE.易证Rt △ACD ≌Rt △AED ,则AC =AE ,DE +DB =CD +DB =BC =AC =AE ,故DE +DB +EB =AE +EB =AB.14. 【答案】7[解析] 过点P 作PF ⊥BC 于点F ,PG ⊥AB 于点G ,连接AP .∵△ABC 的两条外角平分线BP ,CP 相交于点P ,∴PF=PG=PE=2.∵S △BPC =2,∴BC ·2=2,解得BC=2.∵△ABC 的周长为11,∴AC+AB=11-2=9.∴S △ABC =S △ACP +S △ABP -S △BPC =AC ·PE+AB ·PG-S △BPC =×9×2-2=7.15. 【答案】5或10 [解析] ∵AX ⊥AC ,∴∠PAQ =90°.∴∠C =∠PAQ =90°.分两种情况:①当AP =BC =5时, 在Rt △ABC 和Rt △QPA 中,⎩⎨⎧AB =QP ,BC =PA ,∴Rt △ABC ≌Rt △QPA(HL); ②当AP =CA =10时,在Rt △ABC 和Rt △PQA 中,⎩⎨⎧AB =PQ ,AC =PA ,∴Rt △ABC ≌Rt △PQA(HL).综上所述,当AP =5或10时,△ABC 与△APQ 全等.16. 【答案】32°[解析] ∵PD =PE =PF ,PD ⊥AB 交BA 的延长线于点D ,PE ⊥AC于点E ,PF ⊥BC 交BC 的延长线于点F , ∴CP 平分∠ACF ,BP 平分∠ABC. ∴∠PCF =12∠ACF ,∠PBF =12∠ABC.∴∠BPC =∠PCF -∠PBF =12(∠ACF -∠ABC)=12∠BAC =32°.三、解答题17. 【答案】解:∵△ACF ≌△DBE ,∴AC=DB.∴AC-BC=DB-BC ,即AB=CD. ∵AD=16,BC=10, ∴AB=CD=(AD-BC )=3.18. 【答案】解:(1)∵AD ∥BC ,AB ⊥BC , ∴∠ABC =∠BAD =90°.∵DE ⊥AC ,BF ⊥AC , ∴∠BFA =∠AED =90°.∴∠ABF +∠BAF =∠BAF +∠DAE =90°. ∴∠DAE =∠ABF =63°.∴∠ADE =27°.(2)证明:由(1)得∠DAE =∠ABF ,∠AED =∠BFA =90°.在△DAE 和△ABF 中,⎩⎨⎧∠DAE =∠ABF ,∠AED =∠BFA ,AD =BA ,∴△DAE ≌△ABF(AAS). ∴AE =BF ,DE =AF.∴DE =AF =AE +EF =BF +EF.19. 【答案】(1)证明:在Rt △ACB 和Rt △BDA 中, ⎩⎨⎧BC =AD AB =BA,(3分) ∴Rt △ACB ≌△Rt △BDA(HL ). (2)20.(6分)【解法提示】∵∠ABC =35°,∴∠CAB =90°-35°=55°,由(1)知∠DAB =∠ABC =35°,∴∠CAO =∠CAB -∠DAB =20°.20. 【答案】解:(1)CE ⊥DE.证明:∵AC ⊥AB ,DB ⊥AB ,∴∠A=∠B=90°.∴∠C+∠CEA=90°. ∵△ACE ≌△BED , ∴∠C=∠DEB. ∴∠CEA+∠DEB=90°. ∴∠CED=180°-90°=90°. ∴CE ⊥DE.(2)证明:∵△ACE ≌△BED ,∴AC=BE ,AE=BD. ∴AB=BE+AE=AC+BD.21. 【答案】(1)如图,∵AB AE =,∴ABE △是等腰三角形, 又∵D 为BE 的中点,∴AD BE ⊥, 在Rt ABC △和Rt DBA △中,∵B 为公共角,90BAC BDA ∠=∠=︒, ∴C BAD ∠=∠.(2)∵AF BC ∥,∴EAF AEB ∠=∠, ∵AB AE =,∴ABE AEB ∠=∠, ∴EAF ABC ∠=∠,又∵90BAC AEF ∠=∠=∠︒, ∴BAC AEF △≌△, ∴AC EF =.。

全等三角形的判定精选练习题分SSSSASAASASAHL分专题

全等三角形的判定精选练习题分SSSSASAASASAHL分专题

全等三角形的判定(SSS)1、如图1,AB=AD,CB=CD,∠B=30°,∠BAD=46°,则∠ACD的度数是()A。

120°B.125°C。

127° D。

104°2、如图2,线段AD与BC交于点O,且AC=BD,AD=BC,•则下面的结论中不正确的是( )A.△ABC≌△BAD B。

∠CAB=∠DBA C.OB=OC D。

∠C=∠D3、在△ABC和△A1B1C1中,已知AB=A1B1,BC=B1C1,则补充条件____________,可得到△ABC≌△A1B1C1.4、如图3,AB=CD,BF=DE,E、F是AC上两点,且AE=CF.欲证∠B=∠D,可先运用等式的性质证明AF=________,再用“SSS”证明______≌_______得到结论。

5、如图,已知AB=CD,AC=BD,求证:∠A=∠D.6、如图,AC与BD交于点O,AD=CB,E、F是BD上两点,且AE=CF,DE=BF.请推导下列结论:⑴∠D=∠B;⑵AE∥CF.7、已知如图,A、E、F、C四点共线,BF=DE,AB=CD.⑴请你添加一个条件,使△DEC≌△BFA;⑵在⑴的基础上,求证:DE∥BF.全等三角形的判定(SAS)1、如图1,AB∥CD,AB=CD,BE=DF,则图中有多少对全等三角形( )A.3 B。

4 C.5 D。

6CBA 2、如图2,AB=AC ,AD=A E,欲证△A BD ≌△A CE ,可补充条件( ) A 。

∠1=∠2B .∠B=∠C C.∠D=∠ED 。

∠BAE=∠C AD 3、如图3,AD=B C,要得到△AB D和△CD B全等,可以添加的条件是( )A .AB∥CD B。

AD ∥B CC .∠A=∠C D.∠ABC =∠CDA4、如图4,AB 与CD 交于点O ,O A=OC ,OD =OB ,∠A OD =________,•根据_________可得到△AOD ≌△COB ,从而可以得到AD=_________.5、如图5,已知△ABC 中,AB=AC ,A D平分∠BAC ,请补充完整过程说明△A BD≌△ACD 的理由。

2021中考数学 全等三角形 专题训练(含答案)

2021中考数学 全等三角形 专题训练(含答案)

2021中考数学全等三角形专题训练一、选择题1. 如图,要用“SAS”证明△ABC≌△ADE,若已知AB=AD,AC=AE,则还需添加条件()A.∠B=∠D B.∠C=∠EC.∠1=∠2 D.∠3=∠42. 如图所示,∠C=∠D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.∠ABC=∠ABD D.∠BAC=∠BAD3. 下列三角形中全等的是()A.①②B.②③C.③④D.①④4. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画∠HDE=∠A,∠GED=∠B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS5. 如图,点B,E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是()A.BC=FD,AC=EDB.∠A=∠DEF,AC=EDC.AC=ED,AB=EFD.∠A=∠DEF,BC=FD6. 如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,且左边的滑梯与地面的夹角∠ABC=35°,则右边的滑梯与地面的夹角∠DFE等于()A.60°B.55°C.65°D.35°7. 如图,平面上到两两相交的三条直线a,b,c的距离相等的点一共有()A.4个B.3个C.2个D.1个8. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误二、填空题9. 如图,△ABC≌△ADE,BC的延长线交DE于点G,∠CAB=54°,∠DAC=16°,则∠DGB=°.10. 如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是__________(只需写出一个条件).11. 要测量河岸相对两点A,B之间的距离,已知AB垂直于河岸BF,先在BF 上取两点C,D,使CD=CB,再过点D作BF的垂线段DE,使点A,C,E在一条直线上,如图,测出DE=20米,则AB的长是________米.12. 如图,D为Rt△ABC中斜边BC上的一点,且BD=AB,过点D作BC的垂线,交AC于点E.若AE=12 cm,则DE的长为cm.13. 如图,要测量河岸相对两点A,B之间的距离,从B点沿与AB成90°角方向,向前走50米到C处立一根标杆,然后方向不变继续向前走50米到D处,在D 处转90°沿DE方向再走17米到达E处,这时A,C,E三点在同一直线上,则A,B之间的距离为________米.14. 如图,在△ABC中,∠ACB=120°,BC=4,D为AB的中点,DC⊥BC,则△ABC 的面积是.15. 如图,在Rt△ABC中,∠C=90°,E为AB的中点,D为AC上一点,BF∥AC,交DE的延长线于点F,AC=6,BC=5,则四边形FBCD周长的最小值是.三、解答题16. 已知:如图,点C,F在AD上,AF=DC,∠B=∠E,∠A=∠D.求证:AB =DE.17. 已知,如图,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D为AB边上一点.(1)求证:△ACE ≌△BCD ; (2)求证:2CD 2=AD 2+DB 2.18. 如图,A ,B两点分别在射线OM ,ON 上,点C 在∠MON 的内部且CA =CB ,CD ⊥OM ,CE ⊥ON ,垂足分别为D ,E ,且AD =BE . (1)求证:OC 平分∠MON ;(2)如果AO =10,BO =4,求OD 的长.2021中考数学 全等三角形 专题训练-答案一、选择题1. 【答案】C[解析] 还需添加条件∠1=∠2.理由:∵∠1=∠2,∴∠1+∠EAC =∠2+∠EAC ,即∠BAC =∠DAE. 在△ABC 和△ADE 中,⎩⎨⎧AB =AD ,∠BAC =∠DAE ,AC =AE ,∴△ABC ≌△ADE(SAS).2. 【答案】A3. 【答案】A[解析] ①②符合证明三角形全等的判定方法“SAS”.③④中相等的角所对的边不相等,所以不可能全等.故选A.4. 【答案】A5. 【答案】C[解析] A .添加BC=FD ,AC=ED ,可利用“SAS”判定△ABC ≌△EFD ;B .添加∠A=∠DEF ,AC=ED ,可利用“ASA”判定△ABC ≌△EFD ; C .添加AC=ED ,AB=EF ,不能判定△ABC ≌△EFD ;D .添加∠A=∠DEF ,BC=FD ,可利用“AAS”判定△ABC ≌△EFD.6. 【答案】B [解析] 在Rt △ABC 和Rt △DEF 中,⎩⎨⎧BC =EF ,AC =DF ,∴Rt △ABC ≌Rt △DEF(HL). ∴∠DEF =∠ABC =35°. ∴∠DFE =90°-35°=55°.7. 【答案】A[解析] 如图,到三条直线a ,b ,c 的距离相等的点一共有4个.8. 【答案】A[解析] AB=b ,AB 是斜边,小惠作的斜边长是b 符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.二、填空题9. 【答案】70 [解析] ∵△ABC ≌△ADE ,∴∠B=∠D.∵∠GFD=∠AFB ,∴∠DGB=∠F AB.∵∠F AB=∠DAC+∠CAB=70°,∴∠DGB=70°.10. 【答案】答案不唯一,如CE =CB [解析] 由∠1=∠2,可得∠DCE =∠ACB ,又∵CD =CA ,∴添加CE =CB ,可根据“SAS”判定两个三角形全等.11. 【答案】2012. 【答案】12[解析] 如图,连接BE.∵D 为Rt △ABC 中斜边BC 上的一点,过点D 作BC 的垂线,交AC 于点E ,∴∠A=∠BDE=90°. 在Rt △DBE 和Rt △ABE 中,∴Rt △DBE ≌Rt △ABE (HL).∴DE=AE.∵AE=12 cm ,∴DE=12 cm .13. 【答案】17[解析] 在△ABC 和△EDC 中,⎩⎨⎧∠ABC =∠EDC =90°,BC =DC ,∠ACB =∠ECD ,∴△ABC ≌△EDC(ASA). ∴AB =ED =17米.14. 【答案】8[解析]∵DC ⊥BC ,∴∠BCD=90°. ∵∠ACB=120°, ∴∠ACD=30°.延长CD 到H 使DH=CD , ∵D 为AB 的中点, ∴AD=BD.在△ADH与△BDC中,∴△ADH ≌△BDC (SAS), ∴AH=BC=4,∠H=∠BCD=90°. ∵∠ACH=30°, ∴CH=AH=4,∴CD=2,∴△ABC 的面积=2S △BCD =2××4×2=8.15. 【答案】16 [解析] ∵BF ∥AC ,∴∠EBF=∠EAD. 在△BFE 和△ADE 中,∴△BFE ≌△ADE (ASA).∴BF=AD.∴BF+FD+CD+BC=AD+CD+FD+BC=AC+BC+FD=11+FD. ∵当FD ⊥AC 时,FD 最短,此时FD=BC=5, ∴四边形FBCD 周长的最小值为5+11=16.三、解答题16. 【答案】证明:∵AF =DC ,∴AC =DF.在△ABC 和△DEF 中,⎩⎨⎧∠A =∠D ,∠B =∠E ,AC =DF ,∴△ABC ≌△DEF(AAS).∴AB =DE.17. 【答案】13证明:(1)∵△ACB 和△ECD 都是等腰直角三角形,∴CD =CE ,AC =BC ,∠ECD =∠ACB =90°,∴∠ECD -∠ACD =∠ACB -∠ACD ,即∠ACE =∠BCD ,(1分) 在△ACE 与△BCD 中,⎩⎨⎧EC =DC∠ACE =∠BCD AC =BC,(3分) ∴△ACE ≌△BCD(SAS ).(4分) (2)∵△ACE ≌△BCD ,∴AE =BD ,∠EAC =∠B =45°,(6分) ∴∠EAD =∠EAC +∠CAD =90°, 在Rt △EAD 中,ED 2=AD 2+AE 2, ∴ED 2=AD 2+BD 2,(8分) 又ED 2=EC 2+CD 2=2CD 2, ∴2CD 2=AD 2+DB 2.(10分)18. 【答案】解:(1)证明:∵CD ⊥OM ,CE ⊥ON , ∴∠CDA =∠CEB =90°.在Rt △ACD 与Rt △BCE 中,⎩⎨⎧CA =CB ,AD =BE ,∴Rt △ACD ≌Rt △BCE(HL). ∴CD =CE.又∵CD ⊥OM ,CE ⊥ON ,∴OC 平分∠MON. (2)在Rt △ODC 与Rt △OEC 中,⎩⎨⎧CD =CE ,OC =OC ,∴Rt △ODC ≌Rt △OEC. ∴OD =OE. 设BE =x.∵BO =4,∴OE =OD =4+x. ∵AD =BE =x ,∴AO =OD +AD =4+2x =10. ∴x =3.∴OD =4+3=7.。

2021年中考数学专题复习:全等三角形(含答案)

2020-2021中考专题复习:全等三角形一、选择题1. 如图,要用“HL”判定Rt△ABC和Rt△A′B′C′全等,所需的条件是()A.AC=A′C′,BC=B′C′B.∠A=∠A′,AB=A′B′C.AC=A′C′,AB=A′B′D.∠B=∠B′,BC=B′C′2. 如图所示,AC,BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于点E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个3. 如图,点E,F在AC上,AD=BC,DF=BE,要使△ADF≌△CBE,还需要添加一个条件是()A.∠A=∠C B.∠D=∠BC.AD∥BC D.DF∥BE4. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC5. 如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()图12-1-10A.2B.3C.5D.2.56. 如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D7. 如图,在等腰直角△ABC中,∠C=90°,点O是AB的中点,且AB=6,将一块直角三角板的直角顶点放在点O处,始终保持该直角三角板的两直角边分别与AC、BC相交,交点分别为D、E,则CD+CE等于()A. 2B. 3C. 2D. 68. 如图,点G在AB的延长线上,∠GBC,∠BAC的平分线相交于点F,BE⊥CF 于点H.若∠AFB=40°,则∠BCF的度数为()A.40°B.50°C.55°D.60°二、填空题9. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=________.10. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是(只填一个即可).11. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH≌△CEB.12. 如图,已知CD=CA,∠1=∠2,要使△ECD≌△BCA,需添加的条件是__________(只需写出一个条件).13. 在平面直角坐标系xOy中,已知点A,B的坐标分别为(2,0),(2,4),若以A,B,P为顶点的三角形与△ABO全等,则点P的坐标为________________________.14. 如图,AB∥CD,点P到AB,BD,CD的距离相等,则∠BPD的度数为________.15. 如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB,垂足为E.若△DBE的周长为20,则AB=________.16. 如图,P是△ABC外的一点,PD⊥AB交BA的延长线于点D,PE⊥AC于点E,PF⊥BC交BC的延长线于点F,连接PB,PC.若PD=PE=PF,∠BAC=64°,则∠BPC的度数为________.三、解答题17. 如图,AB=AD,BC=DC,点E在AC上.(1)求证:AC平分∠BAD;(2)求证:BE=DE.18. 如图,在△ABC中,D是BC边上一点,AB=DB,BE平分∠ABC,交AC边于点E,连接DE.(1)求证:△ABE≌△DBE;(2)若∠A=100°,∠C=50°,求∠AEB的度数.19. 如图,沿AC方向开山修路,为了加快施工进度,要在山的另一面同时施工,工人师傅在AC上取一点B,在小山外取一点D,连接BD并延长,使DF=BD,过点F作AB的平行线FM,连接MD并延长,在延长线上取一点E,使DE=DM,在点E开工就能使A,C,E三点成一条直线,你知道其中的道理吗?20. 观察与类比(1)如图①,在△ABC中,∠ACB=90°.点D在△ABC外,连接AD,作DE⊥AB于点E,交BC于点F,AD=AB,AE=AC,连接AF.求证:DF=BC +CF;(2)如图②,AB=AD,AC=AE,∠ACB=∠AED=90°,延长BC交DE于点F,写出DF,BC,CF之间的数量关系,并证明你的结论.21. 如图,已知AP∥BC,∠P AB的平分线与∠CBA的平分线相交于点E,过点E 的直线分别交AP,BC于点D,C.求证:AD+BC=AB.22. 已知:在等边△ABC中,D、E分别是AC、BC上的点,且∠BAE=∠CBD<60°,DH⊥AB,垂足为点H.(1)如图①,当点D、E分别在边AC、BC上时,求证:△ABE≌△BCD;(2)如图②,当点D、E分别在AC、CB延长线上时,探究线段AC、AH、BE的数量关系;(3)在(2)的条件下,如图③,作EK∥BD交射线AC于点K,连接HK,交BC于点G,交BD于点P,当AC=6,BE=2时,求线段BP的长.2020-2021中考专题复习:全等三角形-答案一、选择题1. 【答案】C2. 【答案】D[解析] 与已知三角形全等的三角形有△DCB,△BAD,△DCE,△CDA.3. 【答案】B[解析] 在△ADF和△CBE中,由AD=BC,∠D=∠B,DF=BE,根据两边和它们的夹角分别相等的两个三角形全等,可以得到△ADF≌△CBE.故选B.4. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.5. 【答案】B[解析] ∵△ABE≌△ACF,AB=5,∴AC=AB=5.∵AE=2,∴EC=AC-AE=5-2=3.6. 【答案】C7. 【答案】B【解析】如解图,连接OC,由已知条件易得∠A=∠OCE,CO=AO,∠DOE=∠COA,∴∠DOE-∠COD=∠COA-∠COD,即∠AOD=∠COE,∴△AOD≌△COE(ASA),∴AD=CE,进而得CD+CE=CD+AD=AC=22AB=3,故选B.8. 【答案】B[解析] 如图,过点F分别作FZ⊥AE于点Z,FY⊥CB于点Y,FW⊥AB于点W.∵AF平分∠BAC,FZ⊥AE,FW⊥AB,∴FZ=FW.同理FW=FY.∴FZ=FY.又∵FZ⊥AE,FY⊥CB,∴∠FCZ=∠FCY.由∠AFB=40°,易得∠ACB=80°.∴∠ZCY=100°.∴∠BCF=50°.二、填空题9. 【答案】120°【解析】由于△ABC≌△A′B′C′,∴∠C=∠C′=24°,在△ABC 中,∠B=180°-24°-36°=120°.10. 【答案】AB=DE或∠A=∠D或∠ACB=∠DFE或AC∥DF[解析]已知条件已经具有一边一角对应相等,需要添加的条件要么是夹已知角的边,构造SAS全等,要么添加另外的任一组角构造ASA或AAS,或者间接添加可以证明这些结论的条件即可.11. 【答案】AH=CB(符合要求即可)【解析】∵AD⊥BC,CE⊥AB,垂足分别为点D、E,∴∠BEC=∠AEC=90°,在Rt△AEH中,∠EAH=90°-∠AHE,在Rt△HDC中,∠ECB=90°-∠DHC,∵∠AHE=∠DHC,∴∠EAH=∠ECB,∴根据AAS添加AH=CB或EH=EB;根据ASA添加AE=CE.可证△AEH≌△CEB.故答案为:AH=CB或EH=EB或AE=CE均可.12. 【答案】答案不唯一,如CE=CB[解析] 由∠1=∠2,可得∠DCE=∠ACB,又∵CD=CA,∴添加CE=CB,可根据“SAS”判定两个三角形全等.13. 【答案】(4,0)或(4,4)或(0,4)14. 【答案】90°[解析] ∵点P到AB,BD,CD的距离相等,∴BP,DP分别平分∠ABD,∠BDC.∵AB∥CD,∴∠ABD+∠BDC=180°.∴∠PBD+∠PDB=90°.故∠BPD=90°.15. 【答案】20[解析] 由角平分线的性质可得CD=DE.易证Rt△ACD≌Rt△AED,则AC=AE,DE+DB=CD+DB=BC=AC=AE,故DE+DB+EB =AE+EB=AB.16. 【答案】32°[解析] ∵PD=PE=PF,PD⊥AB交BA的延长线于点D,PE⊥AC 于点E,PF⊥BC交BC的延长线于点F,∴CP平分∠ACF,BP平分∠ABC.∴∠PCF=12∠ACF,∠PBF=12∠ABC.∴∠BPC=∠PCF-∠PBF=12(∠ACF-∠ABC)=12∠BAC=32°.三、解答题17. 【答案】证明:(1)在△ABC与△ADC中,∴△ABC≌△ADC(SSS),∴∠BAC=∠DAC ,即AC 平分∠BAD. (2)由(1)知∠BAE=∠DAE. 在△BAE 与△DAE 中,∴△BAE ≌△DAE (SAS), ∴BE=DE.18. 【答案】解:(1)证明:∵BE 平分∠ABC , ∴∠ABE=∠DBE , 在△ABE 和△DBE 中,∴△ABE ≌△DBE (SAS). (2)∵∠A=100°,∠C=50°, ∴∠ABC=30°, ∵BE 平分∠ABC ,∴∠ABE=∠DBE=∠ABC=15°,在△ABE 中,∠AEB=180°-∠A -∠ABE=180°-100°-15°=65°.19. 【答案】解:在△BDE 和△FDM 中,⎩⎨⎧BD =FD ,∠BDE =∠FDM ,DE =DM ,∴△BDE ≌△FDM(SAS). ∴∠BEM =∠FME.∴BE ∥MF. 又∵AB ∥MF ,∴A ,C ,E 三点在一条直线上.20. 【答案】解:(1)证明:∵DE ⊥AB ,∠ACB =90°, ∴∠AED =∠AEF =∠ACB =90°.在Rt △ACF 和Rt △AEF 中,⎩⎨⎧AC =AE ,AF =AF ,∴Rt △ACF ≌Rt △AEF(HL).∴CF =EF. 在Rt △ADE 和Rt △ABC 中,⎩⎨⎧AD =AB ,AE =AC ,∴Rt △ADE ≌Rt △ABC(HL). ∴DE =BC. ∵DF =DE +EF , ∴DF =BC +CF. (2)BC =CF +DF. 证明:如图,连接AF.在Rt △ABC 和Rt △ADE 中, ⎩⎨⎧AB =AD ,AC =AE ,∴Rt △ABC ≌Rt △ADE(HL). ∴BC =DE.∵∠ACB =90°,∴∠ACF =90°=∠AED. 在Rt △ACF 和 Rt △AEF 中,⎩⎨⎧AC =AE ,AF =AF ,∴Rt △ACF ≌△AEF(HL). ∴CF =EF.∵DE =EF +DF ,∴BC =CF +DF.21. 【答案】证明:如图,在AB 上截取AF =AD ,连接EF.∵AE 平分∠PAB ,∴∠DAE =∠FAE.在△DAE 和△FAE 中,⎩⎨⎧AD =AF ,∠DAE =∠FAE ,AE =AE ,∴△DAE ≌△FAE(SAS).∴∠AFE =∠ADE.∵AD ∥BC ,∴∠ADE +∠C =180°.又∵∠AFE +∠EFB =180°,∴∠EFB =∠C.∵BE 平分∠ABC ,∴∠EBF =∠EBC.在△BEF 和△BEC 中,⎩⎨⎧∠EFB =∠C ,∠EBF =∠EBC ,BE =BE ,∴△BEF ≌△BEC(AAS).∴BF =BC.∴AD +BC =AF +BF =AB.22. 【答案】(1)证明:∵△ABC 为等边三角形,∴∠ABC =∠C =∠CAB =60°,AB =BC ,在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA);(2)解:∵△ABC 为等边三角形,∴∠ABC =∠CAB =60°,AB =BC ,∴∠ABE =∠BCD =180°-60°=120°.∴在△ABE 和△BCD 中,⎩⎨⎧∠BAE =∠CBDAB =BC∠ABE =∠BCD, ∴△ABE ≌△BCD (ASA),∴BE =CD .∵DH ⊥AB ,∴∠DHA =90°,∵∠CAB =60°,∴∠ADH =30°,∴AD =2AH ,∴AC =AD -CD =2AH -BE ;(3)解:如解图,作DS ⊥BC 延长线于点S ,作HM ∥AC 交BC 于点M ,解图∵AC =6,BE =2,∴由(2)得AH =4,BH =2,与(1)同理可得BE =CD =2,CE =8,∵∠SCD =∠ACB =60°,∴∠CDS =30°,∴CS =1,SD =3,BS =7,∵BD 2=BS 2+SD 2=72+(3)2,∴BD =213,∵EK ∥BD ,∴△CBD ∽△CEK ,∴CB CE =CD CK =BD EK ,∴CK =CD ·CE CB =2×86=83,EK =CE ·BD CB =8×2136=8133. ∵HM ∥AC ,∴∠HMB =∠ACB =60°,∴△HMB 为等边三角形,BM =BH =HM =2, CM =CB -BM =4,又∵HM ∥AC ,∴△HMG ∽△KCG ,∴HM KC =MG CG ,即382=MG 4-MG,∴MG =127,BG =267,EG =407, ∵EK ∥BD ,∴△GBP ∽△GEK ,∴BP EK =GB GE , ∴BP =261315.。

七年级数学全等三角形证明精选题

七年级数学全等三角形证明精选题先做几道基础题:1、如图(1):AD ⊥BC ,垂足为D ,BD=CD 。

求证:△ABD ≌△ACD 。

2. 如图(8):A 、B 、C 、D 四点在同一直线上,AC=DB ,BE ∥CF ,AE ∥DF 。

求证:△ABE ≌△DCF 。

3、如图(10)∠BAC=∠DAE ,∠ABD=∠ACE ,BD=CE 。

求证:AB=AC 。

(图1)D CB A F E (图8)DC B A E (图10)D CB A2.如图,在Rt△ABC中,∠ACB=90°,AC=BC,D 是斜边AB上的一点,AE⊥CD于E,BF⊥CD交CD 的延长线于F.求证:△ACE≌△CBF.3.如图,点E在△ABC外部,点D在BC边上,DE 交AC于点F,若∠1=∠2=∠3,AC=AE.试说明下列结论正确的理由:(1)∠C=∠E;(2)△ABC≌△ADE.4.如图:DF=CE,AD=BC,∠D=∠C.求证:△AED≌△BFC.5.如图,在△ABC中,AB=AC,D是BC的中点,连接AD,在AD的延长线上取一点E,连接BE,CE.△ABE 与△ACE全等吗?为什么?6.(2010•顺义区)已知:如图,AB=AC,点D是BC 的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.7.(2010•十堰)如图,△ABC中,AB=AC,BD⊥AC,CE⊥AB.求证:BD=CE.8.(2008•南宁)如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.9.(2005•新疆)在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,求证:DE=AD+BE.10.如图,AD∥BC,∠A=90°,E是AB上的一点,且AD=BE,∠1=∠2.求证:△ADE≌△BEC.11.如图,在△ABC中,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,E,F为垂足.AE=CF,求证:∠ACB=90°.12.(2002•湛江)如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就是A、B的距离的理由.13.(2010•广安)已知:如图,在矩形ABCD中,BE=CF,求证:AF=DE.14.(2005•三明)已知:如图,∠1=∠2,BD=BC.求证:∠3=∠4.15.如图,△ABC和△ADE都是等腰直角三角形,CE 与BD相交于点M,BD交AC于点N.证明:(1)BD=CE;(2)BD⊥CE.16.如图所示,△ABD,△ACE都是等边三角形,求证:CD=BE.答案与评分标准一.解答题(共16小题)1.如图,已知AB∥DE,AB=DE,AF=DC.(1)求证:△ABF≌△DEC;(2)请你找出图中还有的其他几对全等三角形.(只要直接写出结果,不要证明)考点:全等三角形的判定。

中考数学专题复习全等三角形(X模型)

中考数学专题复习全等三角形(X模型)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、填空题1.如图,已知AD是ABC的中线,E是AC上的一点,BE交AD于F,AC BF=,24DAC∠=︒,32EBC∠=︒,则ACB=∠__________.评卷人得分二、解答题2.问题背景:课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=4,AC=3,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,则得到△ADC≌△EDB,小明证明△BED≌△CAD用到的判定定理是:(用字母表示);问题解决:小明发现:解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.请写出小明解决问题的完整过程;拓展应用:以△ABC的边AB,AC为边向外作△ABE和△ACD,AB=AE,AC=AD,∠BAE=∠CAD=90°,M是BC中点,连接AM,DE.当AM=3时,求DE的长.3.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:D是BC的中点(2)如果AB=AC,试判断四边形AFBD的形状,并证明你的结论.4.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,ABC中,若8AB=,6AC=,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE AD=,请根据小明的方法思考:(1)由已知和作图能得到ADC△EDB△的理由是______.(2)求得AD的取值范围是______.【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,在ABC中,点D是BC的中点,点M在AB边上,点N在AC边上,若DM DN⊥,求证:BM CN MN+>.5.如图所示:ABC是等边三角形,D、E分别是AB及AC延长线上的一点,且BD CE=,连接DE交BC于点M.求让:MD ME=6.阅读下面材料【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图△.在△ABC中,若AB=8,AC=6,求BC边上的中线AD取值范围,小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明方法思考:(1)由已知和作图能得到△ADC△△EDB的理由是()A.SSS B.SAS C.AAS D.HL(2)由三角形三边的关系可求得AD长的取值范围是()A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【解后感悟】解题时,条件中若出现“中点”“中线”字样可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到一个三角形中.【灵活运用】如图△,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF若EF=4,7.阅读下面的题目及分析过程.已知:如图点E是BC的中点,点A在DE上,且AB DC=说明:BAE D ∠=∠分析:说明两个角相等,常用的方法是应用全等三角形或等腰三角形的性质.观察本题中说明的两个角,它们既不在同一个三角形中,而且们所在两个三角形也不全等.因此,要说明BAE D∠=∠,必须添加适当的辅助线,构造全等三角形或等腰三角形,现在提供两种添加辅助线的方法如下:如图△过点C作//CF AB,交DE的延长线于点F.如图△延长DE至点M,使ME DE=,连接BM.(1)请从以上两种辅助线中选择一种完成上题的说理过程.(2)在解决上述问题的过程中,你用到了哪种数学思想?请写出一个._______________.(3)反思应用:如图,点B是AE的中点,BC BD⊥于点B.请类比(1)中解决问题的思想方法,添加适当的辅助线,判断线段AC DE+与CD之间的大小关系,并说明理由.8.如图,在ABC中,45ABC∠=,AD,BE分别为BC,AC边上的高,连接DE,过点D 作DF DE⊥与点F,G为BE中点,连接AF,DG.(1)如图1,若点F与点G重合,求证:AF DF⊥;(2)如图2,请写出AF与DG之间的关系并证明.9.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且P A=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE△AC于E,若AB=6,求DE的长.10.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小明的方法思考:(1)由已知和作图能得到△ADC△△EDB的理由是_____.A.SSS B.SAS C.AAS D.HL(2)求得AD的取值范围是______.A.6<AD<8B.6≤AD≤8C.1<AD<7D.1≤AD≤7【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】(3)如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.求证:AC =BF.11.【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.请根据小明的方法思考:(1)由已知和作图能得到△ADC△△EDB,依据是.A.SSS B.SAS C.AAS D.HL(2)由“三角形的三边关系”可求得AD的取值范围是.解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【初步运用】如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求线段BF的长.【灵活运用】如图3,在△ABC中,△A=90°,D为BC中点,DE△DF,DE交AB于点E,DF交AC 于点F,连接EF,试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.12.如图,等边三角形ABC中,E是线段AC上一点,F是BC延长线上一点.连接BE,AF.点G是线段BE的中点,BN∥AC,BN与AG延长线交于点N.(1)若∠BAN=15°,求∠N;(2)若AE=CF,求证:2AG=AF.13.(1)【问题情境】课外兴趣小组活动时,老师提出了如下问题:如图△,在△ABC中,AD是△ABC的中线,若AB=10,AC=8,求AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:△.由已知和作图能得到△ADC△△EDB,依据是________.A.SSS B.SAS C.AAS D.ASA△.由“三角形的三边关系”可求得AD的取值范围是________.解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.(2)【学会运用】如图△,AD是△ABC的中线,点E在BC的延长线上,CE=AB, △BAC=△BCA, 求证:AE=2AD.14.如图,等边三角形ABC 中,E 是线段AC 上一点,F 是BC 延长线上一点.连接BE ,AF .点G 是线段BE 的中点,BNAC ,BN 与AG 延长线交于点N .(1)若15BAN ∠=︒,求N ∠; (2)若AE CF =,求证:2AG AF =.15.P 为等边△ABC 的边AB 上一点,Q 为BC 延长线上一点,且P A =CQ ,连PQ 交AC 边于D .(1)证明:PD =DQ .(2)如图2,过P 作PE △AC 于E ,若AB =6,求DE 的长.16.数学兴趣小组在活动时,老师提出了这样一个问题:如图1,在ABC 中,AB 8=,AC 6=,D 是BC 的中点,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到E ,使DE AD =,请补充完整证明“ADC △EDB ”的推理过程.()1求证:ADC △EDB证明:延长AD 到点E ,使DE AD = 在ADC 和EDB 中AD ED(=已作),ADC EDB(∠∠=______),CD BD(=中点定义),ADC ∴△EDB(______),()2探究得出AD 的取值范围是______;【感悟】解题时,条件中若出现“中点”“中线”等字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中. 【问题解决】()3如图2,ABC 中,B 90∠=,AB 2=,AD 是ABC 的中线,CE BC ⊥,CE 4=,且ADE90∠=,求AE 的长.17.如图,阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E 是BC 的中点,点A 在DE 上,且△BAE=△CDE . 求证:AB=CD . 分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要要证AB=CD ,必须添加适当的辅助线,构造全等三角形或等腰三18.如图,点P为等边△ABC的边AB上一点,Q为BC延长线上一点,AP=CQ,PQ交AC于D,(1)求证:DP=DQ;(2)过P作PE△AC于E,若BC=4,求DE的长.19.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,E是BC的中点,点A在DE上,且∠BAE=∠CDE.求证:AB=CD.分析:证明两条线段相等,常用的一般方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等.因此,要证AB=CD,必须添加适当的辅助线,构造全等三角形或等腰三角形.现给出如下三种添加辅助线的方法,请任意选择其中一种,对原题进行证明.参考答案:1.100°【解析】【分析】延长AD到M,使得DM=AD,连接BM,证△BDM△△CDA(SAS),得BM=AC=BF,△M=△DAC=24°,△C=△DBM,再证△BFM是等腰三角形,求出△MBF的度数,即可解决问题.【详解】解:如图,延长AD到M,使得DM=AD,连接BM,如图所示:在△BDM和△CDA中,DM DABDM CDABD CD=⎧⎪∠=∠⎨⎪=⎩,△△BDM△△CDA(SAS),△BM=AC=BF,△M=△DAC=24°,△C=△DBM,△BF=AC,△BF=BM,△△M=△BFM=24°,△△MBF=180°-△M-△BFM=132°,△△EBC=32°,△△DBM=△MBF-△EBC=100°,△△C=△DBM=100°,故答案为:100°.【点睛】本题考查全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.2.问题背景:SAS;问题解决:完整过程见解析;拓展应用:DE=6.【解析】【分析】问题背景:先判断出BD=CD,由对顶角相等△BDE=△CDA,进而得出△ADC△△EDB (SAS);问题解决:先证明△ADC△△EDB(SAS),得出BE=AC=3,最后用三角形三边关系即可得出结论;拓展应用:如图2,延长AM到N,使得MN=AM,连接BN,同(1)的方法得出△BMN△△CMA(SAS),则BN=AC,进而判断出△ABN=△EAD,进而判断出△ABN△△EAD,得出AN=ED,即可求解.【详解】问题背景:如图1,延长AD到点E,使DE=AD,连接BE,△AD是△ABC的中线,△BD=CD,在△ADC和△EDB中,AD EDCDA BDECD BD=⎧⎪∠=∠⎨⎪=⎩,△△ADC△△EDB(SAS),故答案为:SAS;问题解决:如图1,延长AD到点E,使DE=AD,连接BE,△AD是△ABC的中线,△BD=CD,AD EDCDA BDECD BD=⎧⎪∠=∠⎨⎪=⎩,△△ADC△△EDB(SAS),△BE=AC,在△ABE中,AB﹣BE<AE<AB+BE,△AB=4,AC=3,△4﹣3<AE<4+3,即1<AE<7,△DE=AD,△AD=12AE,△12<AD<72;拓展应用:如图2,延长AM到N,使得MN=AM,连接BN,由问题背景知,△BMN△△CMA(SAS),△BN=AC,△CAM=△BNM,△AC//BN,△AC=AD,△BN=AD,△AC//BN,△△BAC+△ABN=180°,△△BAE=△CAD=90°,△△BAC+△EAD=180°,在△ABN 和△EAD 中,AB EA ABN EAD BN AD =⎧⎪∠=∠⎨⎪=⎩,△△ABN △△EAD (SAS ),△AN =DE ,△MN =AM ,△DE =AN =2AM ,△AM =3,△DE =6.【点睛】此题考查了全等三角形的判定和性质,平行线的判定与性质,补角的性质,掌握倍长中线法,构造全等三角形是解本题的关键.3.(1)见解析;(2)见解析.【解析】【分析】 (1)先由AF △BC ,利用平行线的性质可证△AFE =△DCE ,而E 是AD 中点,那么AE =DE ,△AEF =△DEC ,利用AAS 可证△AEF △△DEC ,那么有AF =DC ,又AF =BD ,从而有BD =CD ; (2)四边形AFBD 是矩形.由于AF 平行等于BD ,易得四边形AFBD 是平行四边形,又AB =AC ,BD =CD ,利用等腰三角形三线合一定理,可知AD △BC ,即△ADB =90°,那么可证四边形AFBD 是矩形.【详解】证明: (1)△AF △BC ,△△AFE =△DCE ,△E 是AD 的中点,△AE =DE ,△△AFE =△DCE , ∠AEF∠∠DEC ,AE =DE ,△△AEF △△DEC (AAS ),△AF =DC ,△AF =BD ,△BD =CD ,△D 是BC 的中点;(2)四边形AFBD 是矩形.理由: △AB =AC ,D 是BC 的中点,△AD △BC ,△△ADB =90°,△AF =BD ,过A 点作BC 的平行线交CE 的延长线于点F ,即AF △BC ,△四边形AFBD 是平行四边形,又△△ADB =90°,△四边形AFBD 是矩形.【点睛】本题利用了平行线的性质、全等三角形的判定和性质、等量代换、平行四边形的判定、等腰三角形三线合一定理、矩形的判定等知识.4.(1)SAS ;(2)17AD <<;(3)见解析【解析】【分析】(1)根据AD=DE ,△ADC=△BDE ,BD=DC 推出△ADC 和△EDB 全等即可;(2)根据全等得出BE=AC=6,AE=2AD ,由三角形三边关系定理得出8-6<2AD <8+6,求出即可;(3)延长ND 至点E ,使DE DN =,连接BE 、ME ,证明BED △()SAS CND △,得到BE CN =,根据三角形三边关系解答即可.【详解】(1)解:△在△ADC 和△EDB 中,AD DE ADC BDE BD CD =⎧⎪∠=∠⎨⎪=⎩,△△ADC△△EDB (SAS ),故答案为:SAS ;(2)解:△由(1)知:△ADC△△EDB ,△BE=AC=6,AE=2AD ,△在△ABE 中,AB=8,由三角形三边关系定理得:8-6<2AD <8+6,△1<AD <7,故答案为:1<AD <7.(3)证明:延长ND 至点E ,使DE DN =,连接BE 、ME ,如图所示:△点D 是BC 的中点,△BD CD =.在BED 和CND △中,DE DN BDE CDN BD CD =⎧⎪∠=∠⎨⎪=⎩, △BED △()SAS CND △,△BE CN =,△DM DN ⊥,DE DN =,△ME MN =, 在BEM △中,由三角形的三边关系得:BM BE ME +>,△BM CN MN +>.【点睛】本题是三角形综合题,主要考查了三角形的中线,三角形的三边关系定理,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.5.见详解【解析】【分析】过点D作DE△AC,交BC于点E,根据等边三角形和平行线的性质得△MDE=△MEC,DE=CE,从而证明∆EMD≅∆CME,进而即可得到结论.【详解】过点D作DE△AC,交BC于点E,△ABC是等边三角形,△△B=△ACB=60°,△DE△AC,△△DEB=△ACB=60°,△MDE=△MEC,△BDE是等边三角形,△BD=DE,△BD CE=,△DE=CE,又△△EMD=△CME,△∆EMD≅∆CME,△MD ME=.【点睛】本题主要考查等边三角形的性质和判定定理以及全等三角形的判定和性质定理,添加辅助线,构造等边三角形和全等三角形,是解题的关键.6.(1)B;(2)C;应用:7.【解析】【分析】(1)由已知AD是△ABC的中线,和作图延长AD到点E,使DE=AD,CD=BD,△ADC=△EDB, AD=DE得到△ADC△△EDB(SAS) 即可,(2) 由△ADC△△EDB,则BE=AC=6,AE=2AD,AB=8,在ΔABE中,AB-BE<AE<AB+BE,即则2<2AD<14即可,【灵活运用】延长AD到G,使DG=AD,连接BG,由(1)知△ADC△△GDB,BG=AC=AE+EC=7△G=△DAC可以判定BG△AC,由△BFG=△AFE,得ΔGBF△ΔAEF,由性质BG BF AE EF.【详解】(1)由已知AD是△ABC的中线,和作图延长AD到点E,使DE=AD,CD=BD,△ADC=△EDB, AD=DE得到△ADC△△EDB(SAS)故选择:B,(2) 由△ADC△△EDB,则BE=AC=6,AE=2AD,AB=8,在ΔABE中,AB-BE<AE<AB+BE,即AB-BE=8-6=2,AB+BE=14,则2<2AD<14,1<AD<7故选择:C,灵活运用延长AD到G,使DG=AD,连接BG,由(1)知△ADC△△GDB,BG=AC=AE+EC=7,△G=△DAC,BG△AC,△BFG=△AFE,ΔGBF△ΔAEF,BG BF AE EF=, 744BF =, BF=7.【点睛】本题考查中线加倍问题,由中线加倍,利用SAS 推出三角形全等,把问题转化为三角形中的问题,用三角形的三边关系,确定取值范围,由△ADC △△GDB ,△G=△DAC 可以判定BG△AC ,由△BFG=△AFE ,得ΔGBF△ΔAEF ,用相似三角形的性质解决问题. 7.(1)采用第一种方法,证明见解析(2)转化思想(3)AC+DE >CD ,证明见解析 【解析】【分析】(1)过点C 作//CF AB ,证明得到△ABE△△FCE ,得到BAE F ∠=∠,再根据AB DC =得到D F =∠∠,故可得到BAE D ∠=∠;(2)此题用到了转化思想;(3)过点E 作//EF AC ,证明得到△ABC△△EBF ,得到AC=EF,连接DF,利用等腰三角形三线合一得到CD=DF ,再根据三角形的三边关系得到EF DE +与DF 之间的大小关系即可求解.【详解】(1)采用第一种方法,过点C 作//CF AB ,交DE 的延长线于点F .△//CF AB△B ECF ∠=∠,BAE CFE ∠=∠又E 点是BC 中点,△BE=CE△△ABE△△FCE(AAS)△BAE F∠=∠,AB=CF,A,E,F在同一直线上,△AB DC=△D F=∠∠△BAED∠=∠;(2)此题用到了转化思想;故答案为:转化思想;(3)如图,过点E作//EF AC,同(1)理得到△ABC△△EBF,△AC=EF,BC=BF连接DF△BC BD⊥△△CDF是等腰三角形△CD=DF,在△DEF中,EF DE+>DF故AC+DE>CD.【点睛】此题主要考查全等三角形的判定与性质,解题的关键是熟知全等三角形的判定方法及等腰三角形的性质.8.(1)详见解析;(2)AF=2DG,且AF△DG,证明详见解析.【解析】【分析】(1) 利用条件先△DAE△△DBF,从而得出△FDE是等腰直角三角形,再证明△AEF是等腰直角三角形,即可.(2) 延长DG至点M,使GM=DG,交AF于点H,连接BM,先证明△BGM△△EGD,再证明△BDM△△DAF即可推出.【详解】解:(1)证明:设BE与AD交于点H..如图,△AD,BE分别为BC,AC边上的高,△△BEA=△ADB=90°.△△ABC=45°,△△ABD是等腰直角三角形.△AD=BD.△△AHE=△BHD,△△DAC=△DBH.△△ADB=△FDE=90°,△△ADE=△BDF.△△DAE△△DBF.△BF=AE,DF=DE.△△FDE是等腰直角三角形.△△DFE=45°.△G为BE中点,△AE=EF.△△AEF是等腰直角三角形.△△AFE=45°.△△AFD=90°,即AF△DF.(2)AF=2DG,且AF△DG.理由:延长DG至点M,使GM=DG,交AF于点H,连接BM,△点G为BE的中点,BG=GE.△△BGM△EGD,△△BGM△△EGD.△△MBE=△FED=45°,BM=DE.△△MBE=△EFD,BM=DF.△△DAC=△DBE,△△MBD=△MBE+△DBE=45°+△DBE.△△EFD=45°=△DBE+△BDF,△△BDF=45°-△DBE.△△ADE=△BDF,△△ADF=90°-△BDF=45°+△DBE=△MBD.△BD=AD,△△BDM△△DAF.△DM=AF=2DG,△FAD=△BDM.△△BDM+△MDA=90°,△△MDA+△FAD=90°.△△AHD=90°.△AF△DG.△AF=2DG,且AF△DG本题考查三角形全等的判定和性质,关键在于灵活运用性质.9.(1)证明见解析;(2)DE=3.【解析】【分析】(1)过点P作PF△BC交AC于点F;证出△APF也是等边三角形,得出AP=PF=AF=CQ,由AAS证明△PDF△△QDC,得出对应边相等即可;(2)过P作PF△BC交AC于F.同(1)由AAS证明△PFD△△QCD,得出对应边相等FD=CD,证出AE+CD=DE12=AC,即可得出结果.【详解】(1)如图1所示,点P作PF△BC交AC于点F.△△ABC是等边三角形,△△APF也是等边三角形,AP=PF=AF=CQ.△PF△BC,△△PFD=△DCQ.在△PDF和△QDC中,PDF QDCDFP QCDPF QC∠=∠⎧⎪∠=∠⎨⎪=⎩,△△PDF△△QDC(AAS),△PD=DQ;(2)如图2所示,过P作PF△BC交AC于F.△PF△BC,△ABC是等边三角形,△△PFD=△QCD,△APF是等边三角形,△AP=PF=AF.△PE△AC,△AE=EF.△AP=PF,AP=CQ,△PF=CQ.在△PFD和△QCD中,PDF QDCDFP QCDPF QC∠=∠⎧⎪∠=∠⎨⎪=⎩,△△PFD△△QCD(AAS),△FD=CD.△AE =EF ,△EF +FD =AE +CD ,△AE +CD =DE 12=AC . △AC =6,△DE =3.【点睛】本题考查等边三角形的判定与性质、全等三角形的判定(AAS )与性质、平行线的性质,熟练掌握等边三角形的性质,解题的关键是掌握等边三角形的判定与性质、全等三角形的判定(AAS )与性质、平行线的性质,熟练掌握等边三角形的性质.10.(1)B ;(2)C ;(3)证明见解析.【解析】【分析】(1)根据AD =DE ,△ADC =△BDE ,BD =DC 推出△ADC 和△EDB 全等即可;(2)根据全等得出BE =AC =6,AE =2AD ,由三角形三边关系定理得出8﹣6<2AD <8+6,求出即可;(3)延长AD 到M ,使AD =DM ,连接BM ,根据SAS 证△ADC△△MDB ,推出BM =AC ,△CAD =△M ,根据AE =EF ,推出△CAD =△AFE =△BFD ,求出△BFD =△M ,根据等腰三角形的性质求出即可.【详解】(1)解:在△ADC 和△EDB 中AD DE ADC BDE BD CD =⎧⎪∠=∠⎨⎪=⎩,△△ADC△△EDB(SAS),故选B ;(2)解:如图:△由(1)知:△ADC△△EDB,△BE=AC=6,AE=2AD,△在△ABE中,AB=8,由三角形三边关系定理得:8﹣6<2AD<8+6,△1<AD<7,故选C.(3)延长AD到M,使AD=DM,连接BM,△AD是△ABC中线,△CD=BD,△在△ADC和△MDB中DC DBADC MDBDA DM=⎧⎪∠=∠⎨⎪=⎩△△ADC△△MDB,△BM=AC,△CAD=△M,△AE=EF,△△CAD=△AFE,△△AFE =△BFD ,△△BFD =△CAD =△M ,△BF =BM =AC ,即AC =BF.【点睛】本题考查了三角形的中线,三角形的三边关系定理,等腰三角形性质和判定,全等三角形的性质和判定等知识点,主要考查学生运用定理进行推理的能力.11.(1)B ;(2)2<AD <10;【初步运用】BF =5;【灵活运用】BE 2+CF 2=EF 2,理由见解析【解析】【分析】(1)根据全等三角形的判定定理解答;(2)根据三角形的三边关系计算;初步运用 延长AD 到M ,使AD =DM ,连接BM ,证明△ADC △△MDB ,根据全等三角形的性质解答;灵活运用 延长ED 到点G ,使DG =ED ,连结GF ,GC ,证明△DBE △△DCG ,得到BE =CG ,根据勾股定理解答.【详解】解:(1)在△ADC 和△EDB 中,BD=CD BDE=CDA ED=AD ⎧⎪∠∠⎨⎪⎩, △△ADC△△EDB (SAS ),故选B ;(2)△△ADC△△EDB ,△EB=AC=8,在△ABE 中,AB ﹣BE <AE <AB+BE ,△2<AD <10,故答案为2<AD <10;【初步运用】延长AD 到M ,使AD =DM ,连接BM ,△AE =EF .EF =3,△AC =5,△AD 是△ABC 中线,△CD =BD ,△在△ADC 和△MDB 中,BD=CD BDM=CDA DM=DA ⎧⎪∠∠⎨⎪⎩, △△ADC △△MDB ,△BM =AC ,△CAD =△M ,△AE =EF ,△△CAD =△AFE ,△△AFE =△BFD ,△△BFD =△CAD =△M ,△BF =BM =AC ,即BF =5;【灵活运用】线段BE 、CF 、EF 之间的等量关系为:BE 2+CF 2=EF 2.证明:如图3,延长ED 到点G ,使DG =ED ,连结GF ,GC ,△ED △DF ,△EF =GF ,△D 是BC 的中点,△BD =CD ,在△BDE 和△CDG 中, ED=GD BDE=CDG BD=CD ⎧⎪∠∠⎨⎪⎩,△△BDE△△CDG(SAS),△BE=CG,△△A=90°,△△B+△ACB=90°,△△BDE△△CDG,EF=GF,△BE=CG,△B=△GCD,△△GCD+△ACB=90°,即△GCF=90°,△Rt△CFG中,CF2+GC2=GF2,△BE2+CF2=EF2.【点睛】本题考查全等三角形的判定和性质、三角形三边关系以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.12.(1)45°;(2)见解析【解析】【分析】(1)由等边三角形的性质可知∠ABC=∠ACB=60°,由平行线的性质可知∠NBC=60°,进一步求出∠ABN=120°,再由三角形内角和定理即可求出∠N的度数;(2)先证△NBG≌△AEG,得到AG=NG,AE=BN,再证△ABN≌△ACF,即可推出AF =2AG.【详解】解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵AC∥BN,∴∠NBC=∠ACB=60°,∴∠ABN=∠ABC+∠NBC=120°,∴在△ABN中,∠N=180°﹣∠ABN﹣∠BAN=180°﹣120°﹣15°=45°;(2)∵AC∥BN,∴∠N=∠GAE,∠NBG=∠AEG,又∵点G是线段BE的中点,∴BG=EG,∴△NBG≌△AEG(AAS),∴AG=NG,AE=BN,∵AE=CF,∴BN=CF,∵∠ACB=60°,∴∠ACF=180°﹣∠ACB=120°,∴∠ABN=∠ACF,又∵AB=AC,∴△ABN≌△ACF(SAS),∴AF=AN,AN,∵AG=NG=12∴AF=2AG.【点睛】本题考查了等边三角形的性质,平行线的性质,三角形内角和定理,全等三角形的判定与性质等,解题的关键是能够熟练运用全等三角形的判定与性质.13.(1)△.B;△. 1<AD<9;(2)证明见解析.【解析】【分析】(1)△.根据全等三角形的判定定理解答;△.根据三角形的三边关系定理可得AB−BE<AE<AB+BE,结合BE=AC可确定AE的取值范围,易得AD的取值范围;(2)首先延长AD至M,使DM=AD,先证明△ABD△△MCD,进而得出MC=AB,△B =△MCD,即可得出△ACM=△ACE,再证明△ACM△△ACE,即可证明结论.【详解】解:(1)△.在△ADC和△EDB中,BD CDBDE CDA DE AD⎧⎪∠∠⎨⎪⎩===,△△ADC△△EDB(SAS),故选B;△.△△ADC△△EDB,△BE=AC,△AB−BE<AE<AB+BE,△AB− AC<AE<AB+AC,即2<AE<18,△1<AD<9,故答案为1<AD<9;(2)延长AD至M,使DM=AD,△AD是△ABC的中线,△BD=CD,在△ABD和△MCD中,BD CDADB MDC AD DM⎧⎪∠∠⎨⎪⎩===,△△ABD△△MCD(SAS),△MC=AB,△B=△MCD,△AB=CE,△CM=CE,△△BAC=△BCA,△△B+△BAC=△ACB+△MCD,即△ACE=△ACM,在△ACE和△ACM中,AC ACACE ACM CM CE⎧⎪∠∠⎨⎪⎩===,△△ACM△△ACE(SAS),△AE=AM,△AM=2AD,△AE=2AD.【点睛】本题考查的是三角形三边关系以及全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理利用倍长中线得出辅助线是解题关键.14.(1)45°;(2)见解析【解析】【分析】(1)由等边三角形的性质可知△ABC=△ACB=60°,由平行线的性质可知△NBC=60°,进一步求出△ABN=120°,再由三角形内角和定理即可求出△N的度数;(2)先证△NBG△△AEG,得到AG=NG,AE=BN,再证△ABN△△ACF,即可推出AF=2AG.【详解】(1)△△ABC是等边三角形,△△ABC=△ACB=60°,△AC△BN,△△NBC=△ACB=60°,△△ABN=△ABC+△NBC=120°,△在△ABN中,△N=180°-△ABN-△BAN=180°-120°-15°=45°;(2)△AC△BN,△△N=△GAE,△NBG=△AEG,又△点G是线段BE的中点,△BG=EG,△△NBG△△AEG(AAS),△AG=NG,AE=BN,△AE=CF,△BN=CF,△△ACB=60°,△△ACF=180°-△ACB=120°,△△ABN=△ACF,又△AB=AC,△△ABN△△ACF(SAS),△AF=AN,△AG=NG=12AN,△AF=2AG.【点睛】考查了等边三角形的性质,平行线的性质,三角形内角和定理,全等三角形的判定与性质等,解题的关键是能够熟练运用全等三角形的判定与性质.15.(1)证明见解析;(2)DE=3.【解析】【分析】(1)过点P作PF△BC交AC于点F;证出△APF也是等边三角形,得出AP=PF=AF=CQ,由AAS证明△PDF△△QDC,得出对应边相等即可;(2)过P作PF△BC交AC于F.同(1)由AAS证明△PFD△△QCD,得出对应边相等FD=CD,证出AE+CD=DE12=AC,即可得出结果.【详解】(1)如图1所示,点P作PF△BC交AC于点F.△△ABC是等边三角形,△△APF也是等边三角形,AP=PF=AF=CQ.△PF△BC,△△PFD=△DCQ.在△PDF和△QDC中,PDF QDCDFP QCDPF QC∠∠∠∠=⎧⎪=⎨⎪=⎩,△△PDF△△QDC(AAS),△PD=DQ;(2)如图2所示,过P作PF△BC交AC于F.△PF△BC,△ABC是等边三角形,△△PFD=△QCD,△APF是等边三角形,△AP=PF=AF.△PE△AC,△AE=EF.△AP=PF,AP=CQ,△PF=CQ.在△PFD和△QCD中,PDF QDCDFP QCDPF QC∠∠∠∠=⎧⎪=⎨⎪=⎩,△△PFD△△QCD(AAS),△FD=CD.△AE=EF,△EF+FD=AE+CD,△AE+CD=DE 1 2=AC.△AC=6,△DE=3.【点睛】本题考查了等边三角形的判定与性质、等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.16.()1见解析;()21<AD<7;()3AE=6.【解析】【分析】(1)延长AD到点E,使DE=AD,根据SAS定理证明△ADC△△EDB;(2)根据全等三角形的性质、三角形的三边关系计算;(3)延长AD交EC的延长线于F,证明△ABD△△FCD,根据全等三角形的性质解答.【详解】()1延长AD到点E,使DE AD=,在ADC和EDB中,AD ED(=已作),ADC EDB(∠∠=对顶角相等),CD BD(=中点定义),ADC∴△()EDB SAS,故答案为对顶角相等,SAS ;()2ADC △EDB ,BE AC 6∴==,86AE 86-<<+,1AD 7∴<<,故答案为1AD 7<<;()3延长AD 交EC 的延长线于F ,AB BC ⊥,EF BC ⊥,ABD FCD ∠∠∴=,在ABD 和FCD 中,ABD FCD BD CDADB FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ABD ∴△FCD , CF AB 2∴==,AD DF =,ADE 90∠=,AE EF ∴=,EF CE CF CE AB 426=+=+=+=,AE 6∴=.【点睛】本题考查了三角形的三边关系定理和全等三角形的性质和判定,解题关键是熟记全等三角形的判定条件.17.见解析【解析】【详解】试题分析:方法一:如图1中,作BF△DE于点F,CG△DE于点G,先证明△BFE△△CGE,得BF=CG,再证明△ABF△△DCG即可.方法二如图2中,:作CF△AB,交DE的延长线于点F,先证明CF=CD,再证明△ABE△△FCE即可.证明:方法一:如图1中,作BF△DE于点F,CG△DE于点G.△△F=△CGE=90°,在△BFE和△CGE中,,△△BFE△△CGE .△BF=CG.在△ABF和△DCG中,,△△ABF△△DCG.△AB=CD.方法二如图2中,:作CF△AB,交DE的延长线于点F.△△F=△BAE.又△△ABE=△D,△△F=△D.△CF=CD.在△ABE和△FCE中,,△△ABE△△FCE.△AB=CF.△AB=CD.18.(1)详见解析(2)ED=2【解析】【分析】(1)过P作PF△BQ,可得△APF为等边三角形,所以AP=PF,再证△DCQ△△DFP,即可得PD=DQ;(2)根据等腰三角形三线合一的性质可得AE=EF,根据全等三角形对应边相等可得FD =CD,然后求出2DE=AC,代入数据进行计算即可得解.(1)证明:如图,过点P作PF△BC,则△DPF=△Q,△△ABC为等边三角形,△△APF是等边三角形,△AP=PF,又△AP=CQ,△PF=CQ,在△DPF和△DQC中,DPF QPDF QDCPF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,△△DPF△△DQC(AAS),△DP=DQ;(2)△△P AF为等边三角形,PE△AC,可得AE=EF,由(1)知,△DPF△△DQC△FD=CD,△AC=AE+EF+FD+CD,△AC=2EF+2FD=2(EF+FD)=2ED,△AC=BC=4,△2ED=4,△ED=2.【点睛】本题考查了等边三角形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,作辅助线构造出等边三角形和全等三角形是解题的关键,也是本题的难点.19.【解析】【详解】试题分析:方法一:作BF△DE于点F,CG△DE于点G,△△F=△CGE=90°.又△△BEF=△CEG,BE=CE,△△BFE△△CGE.△BF=CG.在△ABF和△DCG中,△△F=△DGC=90°,△BAE=△CDE,BF=CG,△△ABF△△DCG.△AB=CD.方法二:作CF△AB,交DE的延长线于点F,△△F=△BAE.又△△ABE=△D,△△F=△D.△CF=CD.△△F=△BAE,△AEB=△FEC,BE=CE,△△ABE△△FCE.△AB=CF.△AB=CD.方法三:延长DE至点F,使EF=DE,又△BE=CE,△BEF=△CED,△△BEF△△CED.△BF=CD,△D=△F.又△△BAE=△D,△△BAE=△F.△AB=BF.△AB=CD.考点:1.全等三角形的判定与性质;2.阅读理解.。

全等三角形之手拉手模型专题练习

全等三角形之手拉手模型专题练习30道1.如图1,△ABE是等腰三角形,AB=AE,∠BAE=45°,过点B作BC⊥AE于点C,在BC上截取CD=CE,连接AD、DE并延长AD交BE于点P;(1)求证:AD=BE;(2)试说明AD平分∠BAE;(3)如图2,将△CDE绕着点C旋转一定的角度,那么AD与BE的位置关系是否发生变化,说明理由.2.已知:等腰△ABC中,AB=AC,点D是直线AC上一动点,点E在BD的延长线上,且AB=AE,∠CAE 的角平分线所在的直线交BE于F,连结CF.(1)如图1,当点D在线段AC上时,求证:∠ABE=∠ACF;(2)如图2,当∠ABC=60°且点D在线段AC上时,求证:AF+EF=FB.(提示:将线段FB拆分成两部分)(3)①如图3,当∠ABC=45°其点D在线段AC上时,线段AF、EF、FB仍有(2)中的结论吗?若有,加以证明;若没有,则有怎样的数量关系,直接写出答案即可.②如图4,当∠ABC=45°且点D在CA的延长线时,请你按题意将图形补充完成.并直接写出线段AF、EF、FB的数量关系.3.如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAE的度数;(3)求证:CD=2BF+DE.4.在△ABC中,∠BAC=90°,AB=AC.(1)如图1,若A,B两点的坐标分别是A(0,4),B(﹣2,0),求C点的坐标;(2)如图2,作∠ABC的角平分线BD,交AC于点D,过C点作CE⊥BD于点E,求证:CE= BD;(3)如图3,点P是射线BA上A点右边一动点,以CP为斜边作等腰直角△CPF,其中∠F=90°,点Q 为∠FPC与∠PFC的角平分线的交点,当点P运动时,点Q是否恒在射线BD上?若在,请证明;若不在,请说明理由.5.在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°(1)如图1,当点A、C、D在同一条直线上时,AC=12,EC=5①求证:AF⊥BD ②求AF的长度;(2)如图2,当点A、C、D不在同一条直线上时,求证:AF⊥BD;(3)如图3,在(2)的条件下,连接CF并延长CF交AD于点G,∠AFG是一个固定的值吗?若是,求出∠AFG的度数;若不是,请说明理由6.在数学探究课上,老师出示了这样的探究问题,请你一起来探究:已知:C是线段AB所在平面内任意一点,分别以AC,BC为边,在AB同侧作等边三角形ACE和BCD,联结AD,BE交于点P.(1)如图1,当点C在线段AB上移动时,线段AD与BE的数量关系是:________.(2)如图2,当点C在直线AB外,且∠ACB<120°,上面的结论是否还成立?若成立请证明,不成立说明理由.(3)在(2)的条件下,∠APE的大小是否随着∠ACB的大小的变化而发生变化,若变化,写出变化规律,若不变,请求出∠APE的度数.7.综合题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题15 全等三角形 例题与求解 【例1】考查下列命题: ①全等三角形的对应边上的中线、高、角平分线对应相等; ②两边和其中一边上的中线(或第三边上的中线)对应相等的两个三角形全等; ③两角和其中一角的角平分线(或第三角的角平分线)对应相等的两个三角形全等; ④两边和其中一边上的高(或第三边上高)对应相等的两个三角形全等. 其中正确命题的个数有( ) A.4个 B.3个 C.2个 D.1个

【例2】如图,已知BD、CE是△ABC的高,点P在BD的延长线上,BP=AC,点Q在CE上,CQ=AB. 求证:(1)AP=AQ;(2)AP⊥AQ.

【例3】如图,已知为AD为△ABC的中线,求证:AD<1()2ABAC. 【例4】如图,已知AC∥BD,EA、EB分别平分∠CAB、∠DBA,CD过点E. 求证:AB=AC+BD.

QABC

DEO

P

ABCD

ABCDE【例5】如图1,CD是经过∠BCA顶点C的一条直线,CA=CB,E,F分别是直线CD上两点,且∠BEC=∠CFA=∠. (1)若直线CD经过∠BCA内部,且E,F在射线CD上,请解决下面两个问题: ①如图2,若∠BCA=90°,∠=90°,则BE____CF,EF____BEAF(填“>”、“<”或“=”); ②如图3,若0°<∠BCA<180°,请添加一个关于∠与∠BCA关系的条件____,使①中的两个结论仍然成立,并证明这两个结论; (2)如图4,若直线CD经过∠BCA的外部,∠=∠BCA,请提出EF,BE、AF三条线段数量关系的合理猜想(不要求证明).

【例6】如图,在四边形ABCD中,∠ACB=∠BAD=105°,∠ABC=∠ADC=45°. 求证:CD=AB.

能力训练 A级 1.如图,在△ABC中,∠C=90°,BC=40,AD是∠BAC的平分线交BC于D,且DC︰DB=3︰5,则点D到AB的距离是____.

ABCDE

F

图1 ABCDEF图2 ABCEF图3 DABCDEF图4

AB

CD 2.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过B,C作经过点A的直线的垂线BD,CE,若BD=3cm,CE=4cm,则DE=____. 3.如图,△ABE和△ACF分别是以△ABC的边AB、AC为边的形外的等腰直角三角形,CE和BF相交于O,则∠EOB=____. 4.如图,四边形ABCD中,对角线AC与BD相交于点E,若AC平分∠DAB,且AB=AE,AC=

AD.有如下四个结论:①AC⊥BD;②BC=DE;③∠DBC=12∠DAB;④△ABE是等边三角形.请写出正确结论的序号____.(把你认为正确结论的序号都填上) 5.如图,点E在△ABC外部,点D在BC边上,DE交AC于F,若∠1=∠2=∠3,AC=AE,则( ) A.△ABD≌△AFD B.△AFE≌△ADC C.△AFE≌△DFC D.△ABC≌△ADE

6.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E.若AB=6cm,则△DEB的周长为( ) A.5cm B.6cm C.7cm D.8cm 7.如图,从下列四个条件:①BC=B'C;②AC=A′C;③∠A′CA=∠B′CB;④AB=A′B′中,任取三个为题设,余下的一个为结论,则最多可以构成的正确命题的个数是( ) A.1个 B.2个 C.3个 D.4个 8.如图1,在锐角△ABC中,AD⊥BC于D,BE⊥AC于E,AD与BE交于F,且BF=AC. (1)求证:ED平分∠FEC; (2)如图2,若△ABC中,∠C为钝角,其他条件不变,(1)中结论是否仍然成立?若不成立,请说明理由;若成立,请给予证明.

ABCD第1题 ABCDE第2题 ABCEFO第3题 ABCDE第4题

第5题 ABCDEF321ABCDE第6题 ABCBA第7题 9.在等腰Rt△AOB和等腰Rt△DOC中,∠AOB=∠DOC=90°,连AD,M为AD中点,连OM. (1)如图1,请写出OM与BC的关系,并说明理由; (2)将图1中的△COD旋转至图2的位置,其他条件不变,(1)中结论是否成立?请说明理由.

10.如图,已知∠1=∠2,EF⊥AD于P,交BC延长线于M. 求证:∠M=1()2ACBB.

11.如图,已知△ABC中,∠A=60°,BE,CD分别平分∠ABC,∠ACB,P为BE,CD的交点. 求证:BD+CE=BC.

ABCD

EF

图1 ABDEFC图2

ABCDMO图1 ABCDM

O

图2

ABCDEP

ABCD

EF

MP

2112.如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA. (1)求证:DE平分∠BDC; (2)若点M在DE上,且DC=DM,求证:ME=BD.

B级 1.在△ABC中,高AD和BE交于H点,且BH=AC,则∠ABC=____. 2.在△ABC中,AD为BC边上的中线,若AB=5,AC=3,则AD的取值范围是____.

3.如图,在△ABC中,AB>AC,AD是角平分线,P是AD上任意一点,在ABAC与BPPC两式中,较大的一个是____. 4.如图,已知AB∥CD,AC∥DB,AD与BC交于O,AE⊥BC于E,DF⊥BC于F,那么图中全等的三角形有( ) A.5对 B.6对 C.7对 D.8对 5.如图,AD是△ABC的中线,E,F分别在AB,AC上,且DE⊥DF,则( ) A.BE+CF>EF B.BE+CF=EF C.BE+CF<EF D.BE+CF与的大小关系不确定

6.如果两个三角形的两条边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角( ) A.相等 B.不相等 C.互余 D.互补或相等

7.如图,在△ABE和△ACD中,给出以下四个论断:①AB=AC;②AD=AE;③AM=AN;④AD⊥DC,AE⊥BE.以其中三个论断为题设,填入下面的“已知”栏中,一个论断为结论,填入下面的“求证”栏中,使之组成一个真命题,并写出证明过程. 已知:___________________. 求证:___________________.

ABC第2题 DABCPD第3题 ABCDEFO第4题 第5题 ABCD

EF

ABCDEM 8.如图,在四边形ABCD中,AC平分∠BAD,过C作CE⊥AB于E,并且AE=1()2ABAD,求

∠ABC+∠ADC的度数.

9.在四边形ABCD中,已知AB=a,AD=6,且BC=DC,对角线AC平分∠BAD,问a与b的大小符合什么条件时,有∠B+∠D=180°,请画出图形并证明你的结论.

10.如图,在△ABC中,∠ABC=60°,AD,CE:分别平分∠BAC,∠ACB. 求证:AC=AE+CD.

11.如图,在Rt△ABC中,∠B=90°,AP,CQ分别平分∠BAC,∠BCA.AP交CQ于I,连PQ. 求证:IACACPQSS四边形为定值.

QAB

CIP

ABCDE

MN

ABCDE

ABCD

EO12.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD丄MN于O,BE⊥MN于E. (1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE; (2)当直线MN绕点C旋转到图2的位置时,求证:DE=ADBE; (3)当直线MN绕点C旋转到图3的位置时,试问:DE,AD,BE有怎样的等量关系?请写出这个等 量关系,并加以证明.

13.CD是经过∠BCA顶点C的一条直线,CA=CB,E,F分别是直线CD上两点,且∠BEC=∠CFA=∠. (1)若直线CD经过∠BCA内部,且E,F在射线CD上,请解决下面两个问题: ①如图1,若∠BCA=90°,∠=90°,则BE____CF,EF____BEAF(填“>”、“<”或“=”); ②如图2,若0°<∠BCA<180°,请添加一个关于∠与∠BCA关系的条件____,使①中的两个结论仍然成立,并证明这两个结论; (2)如图3,若直线CD经过∠BCA的外部,∠=∠BCA,请提出EF,BE、AF三条线段数量关系的合理猜想(不要求证明).

AB

CDEM

N

图1 ABCMN图3 DEABCMN图2 D

E

ABCDEF

图1 ABCEF图2 DABCDEF图3

相关文档
最新文档