2023年荆州数学中考卷子
湖北省2023年数学中考试题及答案

湖北省2023年数学中考试题及答案第一题
某商场举行“买100送10”的促销活动。
小明买了550元的商品,请问小明需要支付多少钱?
A. 550元
B. 540元
C. 520元
D. 510元
答案:B. 540元
第二题
某学校有120名学生,其中男生占学生总数的40%。
女生有多
少人?
A. 48人
B. 52人
C. 60人
D. 72人
答案:C. 60人
第三题
一个圆形花坛的直径为8米,小明要在花坛周围围上一圈石子,每块石子的直径为0.3米。
小明最少需要准备多少块石子?
A. 84块
B. 88块
C. 92块
D. 96块
答案:D. 96块
第四题
某书店的图书总数为5000本,其中科技类图书占总数的20%。
请问科技类图书有多少本?
A. 1000本
B. 1500本
C. 2000本
D. 2500本
答案:C. 2000本
第五题
小明的父亲想给他买一个三角形的游泳池,池子的底边长为5米,高度为4米。
请问这个游泳池的面积是多少平方米?
A. 12平方米
B. 15平方米
C. 20平方米
D. 24平方米
答案:B. 15平方米
第六题
某班级共有30名学生,其中男生占班级人数的40%。
请问男生有多少人?
A. 10人
B. 12人
C. 15人
D. 18人
答案:D. 18人
以上为湖北省2023年数学中考试题及答案。
荆州市2021年中考数学试卷及答案(Word解析版)

湖北省荆州市2021年中考数学试卷一、选择题〔本大题共10小题,每题只有唯一正确答案.每题3分,共30分〕1.〔3分〕〔2021•荆州〕假设□×〔﹣2〕=1,那么□内填一个实数应该是〔〕A.B.2C.﹣2 D.﹣考点:有理数的乘法分析:根据乘积是1的两个数互为倒数解答.解答:解:∵﹣×〔﹣2〕=1,∴□内填一个实数应该是﹣.应选D.点评:此题考查了有理数的乘法,是根底题,注意利用了倒数的定义.2.〔3分〕〔2021•荆州〕以下运算正确的选项是〔〕A.3﹣1=﹣3 B.=±3 C.〔ab2〕3=a3b6D.a6÷a2=a3考点:同底数幂的除法;算术平方根;幂的乘方与积的乘方;负整数指数幂分析:运用负整数指数幂的法那么运算,开平方的方法,同底数幂的除法以及幂的乘方计算.解答:解:A、3﹣1=≠3a,故A选项错误;B、=3≠±3,故B选项错误;C、〔ab2〕3=a3b6故C选项正确;D、a6÷a2=a4≠a3,故D选项错误.应选:C.点评:此题考查了负整数指数幂的运算,开平方,同底数幂的除法以及幂的乘方等知识,解题要注意细心.3.〔3分〕〔2021•荆州〕如图,AB∥ED,AG平分∠BAC,∠ECF=70°,那么∠FAG的度数是〔〕A.155°B.145°C.110°D.35°考点:平行线的性质.分析:首先,由平行线的性质得到∠BAC=∠ECF=70°;然后利用邻补角的定义、角平分线的定义来求∠FAG的度数.解答:解:如图,∵AB∥ED,∠ECF=70°,∴∠BAC=∠ECF=70°,∴∠FAB=180°﹣∠BAC=110°.又∵AG平分∠BAC,∴∠BAG=∠BAC=35°,∴∠FAG=∠FAB+∠BAG=145°.应选:B.点评:此题考查了平行线的性质.根据“两直线平行,内错角相等〞求得∠BAC的度数是解题的难点.4.〔3分〕〔2021•荆州〕将抛物线y=x2﹣6x+5向上平移2个单位长度,再向右平移1个单位长度后,得到的抛物线解析式是〔〕A.y=〔x﹣4〕2﹣6 B.y=〔x﹣4〕2﹣2 C.y=〔x﹣2〕2﹣2 D.y=〔x﹣1〕2﹣3考点:二次函数图象与几何变换.专题:几何变换.分析:先把y=x2﹣6x+5配成顶点式,得到抛物线的顶点坐标为〔3,﹣4〕,再把点〔3,﹣4〕向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为〔4,﹣2〕,然后根据顶点式写出平移后的抛物线解析式.解答:解:y=x2﹣6x+5=〔x﹣3〕2﹣4,即抛物线的顶点坐标为〔3,﹣4〕,把点〔3,﹣4〕向上平移2个单位长度,再向右平移1个单位长度得到点的坐标为〔4,﹣2〕,所以平移后得到的抛物线解析式为y=〔x﹣4〕2﹣2.应选B.点评:此题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.5.〔3分〕〔2021•荆州〕α是一元二次方程x2﹣x﹣1=0较大的根,那么下面对α的估计正确的选项是〔〕A.0<α<1 B.1<α<1.5 C.1.5<α<2 D.2<α<3考点:解一元二次方程-公式法;估算无理数的大小.分析:先求出方程的解,再求出的范围,最后即可得出答案.解答:解:解方程x2﹣x﹣1=0得:x=,∵a是方程x2﹣x﹣1=0较大的根,∴a=,∵2<<3,∴3<1+<4,∴<<2,应选C.点评:此题考查了解一元二次方程,估算无理数的大小的应用,题目是一道比拟典型的题目,难度适中.6.〔3分〕〔2021•荆州〕如图,AB是半圆O的直径,D,E是半圆上任意两点,连结AD,DE,AE与BD相交于点C,要使△ADC与△ABD相似,可以添加一个条件.以下添加的条件其中错误的选项是〔〕A.∠ACD=∠DAB B.A D=DE C.A D2=BD•CD D.A D•AB=AC•BD考点:相似三角形的判定;圆周角定理.分析:由∠ADC=∠ADB,根据有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似,即可求得答案;注意排除法在解选择题中的应用.解答:解:如图,∠ADC=∠ADB,A、∵∠ACD=∠DAB,∴△ADC∽△BDA,故本选项正确;B、∵AD=DE,∴=,∴∠DAE=∠B,∴△ADC∽△BDA,故本选项正确;C、∵AD2=BD•CD,∴AD:BD=CD:AD,∴△ADC∽△BDA,故本选项正确;D、∵AD•AB=AC•BD,∴AD:BD=AC:AB,但∠ADC=∠ADB不是公共角,故本选项错误.应选D.点评:此题考查了相似三角形的判定以及圆周角定理.此题难度适中,注意掌握数形结合思想的应用.7.〔3分〕〔2021•荆州〕如图,直线y1=x+b与y2=kx﹣1相交于点P,点P的横坐标为﹣1,那么关于x的不等式x+b>kx﹣1的解集在数轴上表示正确的选项是〔〕A.B.C.D.考点:一次函数与一元一次不等式;在数轴上表示不等式的解集.专题:数形结合.分析:观察函数图象得到当x>﹣1时,函数y=x+b的图象都在y=kx﹣1的图象上方,所以不等式x+b>kx﹣1的解集为x>﹣1,然后根据用数轴表示不等式解集的方法对各选项进行判断.解答:解:当x>﹣1时,x+b>kx﹣1,即不等式x+b>kx﹣1的解集为x>﹣1.应选A.点评:此题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=ax+b的值大于〔或小于〕0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上〔或下〕方局部所有的点的横坐标所构成的集合.也考查了在数轴上表示不等式的解集.8.〔3分〕〔2021•荆州〕点P〔1﹣2a,a﹣2〕关于原点的对称点在第一象限内,且a为整数,那么关于x的分式方程=2的解是〔〕A.5B.1C.3D.不能确定考点:解分式方程;关于原点对称的点的坐标.专题:计算题.分析:根据P关于原点对称点在第一象限,得到P横纵坐标都小于0,求出a的范围,确定出a的值,代入方程计算即可求出解.解答:解:∵点P〔1﹣2a,a﹣2〕关于原点的对称点在第一象限内,且a为整数,∴,解得:<a<2,即a=1,当a=1时,所求方程化为=2,去分母得:x+1=2x﹣2,解得:x=3,经检验x=3是分式方程的解,那么方程的解为3.应选C点评:此题考查了解分式方程,解分式方程的根本思想是“转化思想〞,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.〔3分〕〔2021•荆州〕如图,在第1个△A1BC中,∠B=30°,A1B=CB;在边A1B上任取一点D,延长CA1到A2,使A1A2=A1D,得到第2个△A1A2D;在边A2D上任取一点E,延长A1A2到A3,使A2A3=A2E,得到第3个△A2A3E,…按此做法继续下去,那么第n个三角形中以A n为顶点的内角度数是〔〕A.〔〕n•75°B.〔〕n﹣1•65°C.〔〕n﹣1•75°D.〔〕n•85°考点:等腰三角形的性质.专题:规律型.分析:先根据等腰三角形的性质求出∠BA1C的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律即可得出第n个三角形中以A n为顶点的内角度数.解答:解:∵在△CBA1中,∠B=30°,A1B=CB,∴∠BA1C==75°,∵A1A2=A1D,∠BA1C是△A1A2D的外角,∴∠DA2A1=∠BA1C=×75°;同理可得,∠EA3A2=〔〕2×75°,∠FA4A3=〔〕3×75°,∴第n个三角形中以A n为顶点的内角度数是〔〕n﹣1×75°.应选:C.点评:此题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA2A1,∠EA3A2及∠FA4A3的度数,找出规律是解答此题的关键.10.〔3分〕〔2021•荆州〕如图,圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,那么这圈金属丝的周长最小为〔〕A.4dm B.2dm C.2dm D.4dm考点:平面展开-最短路径问题.分析:要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短〞得出结果,在求线段长时,根据勾股定理计算即可.解答:解:如图,把圆柱的侧面展开,得到矩形,那么那么这圈金属丝的周长最小为2AC 的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=2,∴这圈金属丝的周长最小为2AC=4cm.应选A.点评:此题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,此题就是把圆柱的侧面展开成矩形,“化曲面为平面〞,用勾股定理解决.二、填空题〔本大题共8小题,每题3分,共24分〕11.〔3分〕〔2021•荆州〕化减×﹣4××〔1﹣〕0的结果是.考点:二次根式的混合运算;零指数幂.专题:计算题.分析:先把各二次根式化为最简二次根式,再根据二次根式的乘法法那么和零指数幂的意义计算得到原式=2﹣,然后合并即可.解答:解:原式=2×﹣4××1=2﹣=.故答案为.点评:此题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.也考查了零指数幂.12.〔3分〕〔2021•荆州〕假设﹣2x m﹣n y2与3x4y2m+n是同类项,那么m﹣3n的立方根是2.考点:立方根;合并同类项;解二元一次方程组.分析:根据同类项的定义可以得到m,n的值,继而求出m﹣3n的立方根.解答:解:假设﹣2x m﹣n y2与3x4y2m+n是同类项,∴,解方程得:.∴m﹣3n=2﹣3×〔﹣2〕=8.8的立方根是2.故答案为2.点评:此题考查了同类项的概念以及立方根的求法,解体的关键是根据定义求出对应m、n 的值.13.〔3分〕〔2021•荆州〕如图,正方形OABC与正方形ODEF是位似图形,点O为位似中心,相似比为1:,点A的坐标为〔0,1〕,那么点E的坐标是〔,〕.考点:位似变换;坐标与图形性质.分析:由题意可得OA:OD=1:,又由点A的坐标为〔1,0〕,即可求得OD的长,又由正方形的性质,即可求得E点的坐标.解答:解:∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1:,∴OA:OD=1:,∵点A的坐标为〔1,0〕,即OA=1,∴OD=,∵四边形ODEF是正方形,∴DE=OD=.∴E点的坐标为:〔,〕.故答案为:〔,〕.点评:此题考查了位似变换的性质与正方形的性质.此题比拟简单,注意理解位似变换与相似比的定义是解此题的关键.14.〔3分〕〔2021•荆州〕我们知道,无限循环小数都可以转化为分数.例如:将转化为分数时,可设=x,那么x=0.3+x,解得x=,即=.仿此方法,将化成分数是.考点:一元一次方程的应用.分析:设x=,那么x=0.4545…①,根据等式性质得:100x=45.4545…②,再由②﹣①得方程100x﹣x=45,解方程即可.解答:解:设x=,那么x=0.4545…①,根据等式性质得:100x=45.4545…②,由②﹣①得:100x﹣x=45.4545…﹣0.4545…,即:100x﹣x=45,解方程得:x=.故答案为.点评:此题主要考查了一元一次方程的应用,关键是正确理解题意,看懂例题的解题方法.15.〔3分〕〔2021•荆州〕如图,电路图上有四个开关A、B、C、D和一个小灯泡,闭合开关D或同时闭合开关A、B、C都可使小灯泡发光,那么任意闭合其中两个开关,小灯泡发光的概率是.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与小灯泡发光的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有12种等可能的结果,现任意闭合其中两个开关,那么小灯泡发光的有6种情况,∴小灯泡发光的概率为:=.故答案为:.点评:此题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.16.〔3分〕〔2021•荆州〕如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影局部是一个以格点为顶点的正方形〔简称格点正方形〕.假设再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,那么这个格点正方形的作法共有4种.考点:利用旋转设计图案;利用轴对称设计图案.分析:利用轴对称图形以及中心对称图形的性质与定义,进而得出符合题意的答案.解答:解:如下图:这个格点正方形的作法共有4种.故答案为:4.点评:此题主要考查了利用轴对称以及旋转设计图案,正确把握中心对称以及轴对称图形的定义是解题关键.17.〔3分〕〔2021•荆州〕如图,在▱ABCD中,以点A为圆心,AB的长为半径的圆恰好与CD相切于点C,交AD于点E,延长BA与⊙A相交于点F.假设的长为,那么图中阴影局部的面积为.考点:切线的性质;平行四边形的性质;弧长的计算;扇形面积的计算.分析:求图中阴影局部的面积,就要从图中分析阴影局部的面积是由哪几局部组成的.很显然图中阴影局部的面积=△ACD的面积﹣扇形ACE的面积,然后按各图形的面积公式计算即可.解答:解:连接AC,∵DC是⊙A的切线,∴AC⊥CD,又∵AB=AC=CD,∴△ACD是等腰直角三角形,∴∠CAD=45°,又∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CAD=∠ACB=45°,又∵AB=AC,∴∠ACB=∠B=45°,∴∠CAD=45°,∴∠CAD=45°,∵的长为,∴,解得:r=2,∴S阴影=S△ACD﹣S扇形ACD=.故答案为:.点评:此题主要考查了扇形的面积计算方法,不规那么图形的面积通常转化为规那么图形的面积的和差.18.〔3分〕〔2021•荆州〕如图,点A是双曲线y=在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y=〔k<0〕上运动,那么k的值是﹣6.考点:反比例函数图象上点的坐标特征;等边三角形的性质;相似三角形的判定与性质;特殊角的三角函数值.专题:动点型.分析:连接OC,易证AO⊥OC,OC=OA.由∠AOC=90°想到构造K型相似,过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,可证△AEO∽△OFC.从而得到OF=AE,FC=EO..设点A坐标为〔a,b〕那么ab=2,可得FC•OF=6.设点C坐标为〔x,y〕,从而有FC•OF=﹣xy=﹣6,即k=xy=﹣6.解答:解:∵双曲线y=关于原点对称,∴点A与点B关于原点对称.∴OA=OB.连接OC,如下图.∵△ABC是等边三角形,OA=OB,∴OC⊥AB.∠BAC=60°.∴tan∠OAC==.∴OC=OA.过点A作AE⊥y轴,垂足为E,过点C作CF⊥y轴,垂足为F,∵AE⊥OE,CF⊥OF,OC⊥OA,∴∠AEO=∠FOC,∠AOE=90°﹣∠FOC=∠OCF.∴△AEO∽△OFC.∴==.∵OC=OA,∴OF=AE,FC=EO.设点A坐标为〔a,b〕,∵点A在第一象限,∴AE=a,OE=b.∴OF=AE=a,FC=EO=b.∵点A在双曲线y=上,∴ab=2.∴FC•OF=b•a=3ab=6设点C坐标为〔x,y〕,∵点C在第四象限,∴FC=x,OF=﹣y.∴FC•OF=x•〔﹣y〕=﹣xy=6.∴xy=﹣6.∵点C在双曲线y=上,∴k=xy=﹣6.故答案为:﹣6.点评:此题考查了等边三角形的性质、反比例函数的性质、相似三角形的判定与性质、点与坐标之间的关系、特殊角的三角函数值等知识,有一定的难度.由∠AOC=90°联想到构造K型相似是解答此题的关键.三、解答题〔本大题共7题,共66分〕19.〔7分〕〔2021•荆州〕先化简,再求值:〔〕÷,其中a,b满足+|b﹣|=0.考点:分式的化简求值;非负数的性质:绝对值;非负数的性质:算术平方根.专题:计算题.分析:原式括号中两项通分并利用同分母分式的减法法那么计算,同时利用除法法那么变形,约分得到最简结果,利用非负数的性质求出a与b的值,代入计算即可求出值.解答:解:原式=[﹣]•=•=,∵+|b﹣|=0,∴,解得:a=﹣1,b=,那么原式=﹣.点评:此题考查了分式的化简求值,以及非负数的性质,熟练掌握运算法那么是解此题的关键.20.〔8分〕〔2021•荆州〕如图①,正方形ABCD的边AB,AD分别在等腰直角△AEF的腰AE,AF上,点C在△AEF内,那么有DF=BE〔不必证明〕.将正方形ABCD绕点A逆时针旋转一定角度α〔0°<α<90°〕后,连结BE,DF.请在图②中用实线补全图形,这时DF=BE还成立吗?请说明理由.考点:全等三角形的判定与性质;等腰直角三角形;正方形的性质.分析:根据旋转角求出∠FAD=∠EAB,然后利用“边角边〞证明△ABE和△ADF全等,根据全等三角形对应边相等可得BE=DF.解答:解:DF=BE还成立;理由:∵正方形ABCD绕点A逆时针旋转一定角度α,∴∠FAD=∠EAB,在△ADF与△ABE中∴△ADF≌△ABE〔SAS〕∴DF=BE.点评:此题考查了旋转的性质,正方形的性质,等腰直角三角形的性质,全等三角形的判定与性质,熟记各性质求出三角形全等是解题的关键.21.〔8分〕〔2021•荆州〕钓鱼岛自古以来就是中国的领土.如图,我国甲、乙两艘海监执法船某天在钓鱼岛附近海域巡航,某一时刻这两艘船分别位于钓鱼岛正西方向的A处和正东方向的B处,这时两船同时接到立即赶往C处海域巡查的任务,并测得C处位于A处北偏东59°方向、位于B处北偏西44°方向.假设甲、乙两船分别沿AC,BC方向航行,其平均速度分别是20海里/小时,18海里/小时,试估算哪艘船先赶到C处.〔参考数据:cos59°≈0.52,sin46°≈0.72〕考点:解直角三角形的应用-方向角问题.分析:作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,分别在Rt△ACD中,和在Rt△BCD中,用a表示出AC和BC,然后除以速度即可求得时间,比拟即可确定答案解答:解:如图,作CD⊥AB于点D,由题意得:∠ACD=59°,∠DCB=44°,设CD的长为a海里,∵在Rt△ACD中,=cos∠ACD,∴AC==≈1.92a;∵在Rt△BCD中,=cos∠BCD,∴BC==≈1.39a;∵其平均速度分别是20海里/小时,18海里/小时,∴1.92a÷20=0.096a.1.39a÷18=0.077a,∵a>0,∴0.096a>0.077a,∴乙先到达.点评:此题考查了解直角三角形的应用,解决此题的关键在于设出未知数a,使得运算更加方便,难度中等.22.〔9分〕〔2021•荆州〕我市某中学七、八年级各选派10名选手参加学校举办的“爱我荆门〞知识竞赛,计分采用10分制,选手得分均为整数,成绩到达6分或6分以上为合格,到达9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率七年级6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%〔1〕请依据图表中的数据,求a,b的值;〔2〕直接写出表中的m,n的值;〔3〕有人说七年级的合格率、优秀率均高于八年级,所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.考点:条形统计图;统计表;加权平均数;中位数;方差.专题:计算题.分析:〔1〕根据题中数据求出a与b的值即可;〔2〕根据〔1〕a与b的值,确定出m与n的值即可;〔3〕从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.解答:解:〔1〕根据题意得:a=5,b=1;〔2〕七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;优秀率为==20%,即n=20%;〔3〕八年级平均分高于七年级,方差小于七年级,成绩比拟稳定,故八年级队比七年级队成绩好.点评:此题考查了条形统计图,扇形统计图,以及中位数,平均数,以及方差,弄清题意是解此题的关键.23.〔10分〕〔2021•荆州〕我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200元/台.经过市场销售后发现:在一个月内,当售价是400元/台时,可售出200台,且售价每降低10元,就可多售出50台.假设供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售任务.〔1〕试确定月销售量y〔台〕与售价x〔元/台〕之间的函数关系式;并求出自变量x的取值范围;〔2〕当售价x〔元/台〕定为多少时,商场每月销售这种空气净化器所获得的利润w〔元〕最大?最大利润是多少?考点:二次函数的应用.分析:〔1〕根据题中条件销售价每降低10元,月销售量就可多售出50千克,即可列出函数关系式;根据供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台的销售即可求出x的取值.〔2〕用x表示y,然后再用x来表示出w,根据函数关系式,即可求出最大w;解答:解:〔1〕根据题中条件销售价每降低10元,月销售量就可多售出50千克,那么月销售量y〔台〕与售价x〔元/台〕之间的函数关系式:y=200+50×,化简得:y=﹣5x+2200;供货商规定这种空气净化器售价不能低于300元/台,代理销售商每月要完成不低于450台,那么,解得:300≤x≤350.∴y与x之间的函数关系式为:y=﹣5x+2200〔300≤x≤350〕;〔2〕W=〔x﹣200〕〔﹣5x+2200〕,整理得:W=﹣5〔x﹣320〕2+72000.∵x=320在300≤x≤350内,∴当x=320时,最大值为72000,即售价定为320元/台时,商场每月销售这种空气净化器所获得的利润w最大,最大利润是72000元.点评:此题主要考查对于一次函数的应用和掌握,而且还应用到将函数变形求函数极值的知识.24.〔12分〕〔2021•荆州〕:函数y=ax2﹣〔3a+1〕x+2a+1〔a为常数〕.〔1〕假设该函数图象与坐标轴只有两个交点,求a的值;〔2〕假设该函数图象是开口向上的抛物线,与x轴相交于点A〔x1,0〕,B〔x2,0〕两点,与y轴相交于点C,且x2﹣x1=2.①求抛物线的解析式;②作点A关于y轴的对称点D,连结BC,DC,求sin∠DCB的值.考点:二次函数综合题.分析:〔1〕根据a取值的不同,有三种情形,需要分类讨论,防止漏解.〔2〕①函数与x轴相交于点A〔x1,0〕,B〔x2,0〕两点,那么x1,x2,满足y=0时,方程的根与系数关系.因为x2﹣x1=2,那么可平方,用x1+x2,x1x2表示,那么得关于a的方程,可求,并得抛物线解析式.②解析式那么可得A,B,C,D坐标,求sin∠DCB,须作垂线构造直角三角形,结论易得.解答:解:〔1〕函数y=ax2﹣〔3a+1〕x+2a+1〔a为常数〕,假设a=0,那么y=﹣x+1,与坐标轴有两个交点〔0,1〕,〔1,0〕;假设a≠0且图象过原点时,2a+1=0,a=﹣,有两个交点〔0,0〕,〔1,0〕;假设a≠0且图象与x轴只有一个交点时,令y=0有:△=〔3a+1〕2﹣4a〔2a+1〕=0,解得a=﹣1,有两个交点〔0,﹣1〕,〔1,0〕.综上得:a=0或﹣或﹣1时,函数图象与坐标轴有两个交点.〔2〕①∵函数与x轴相交于点A〔x1,0〕,B〔x2,0〕两点,∴x1,x2为ax2﹣〔3a+1〕x+2a+1=0的两个根,∴x1+x2=,x1x2=,∵x2﹣x1=2,∴4=〔x2﹣x1〕2=〔x1+x2〕2﹣4x1x2=〔〕2﹣4•,解得a=﹣〔函数开口向上,a>0,舍去〕,或a=1,∴y=x2﹣4x+3.②∵函数y=x2﹣4x+3与x轴相交于点A〔x1,0〕,B〔x2,0〕两点,与y轴相交于点C,且x1<x2,∴A〔1,0〕,B〔3,0〕,C〔0,3〕,∵D为A关于y轴的对称点,∴D〔﹣1,0〕.根据题意画图,如图1,过点D作DE⊥CB于E,∵OC=3,OB=3,OC⊥OB,∴△OCB为等腰直角三角形,∴∠CBO=45°,∴△EDB为等腰直角三角形,设DE=x,那么EB=x,∵DB=4,∴x2+x2=42,∴x=2,即DE=2.在Rt△COD中,∵DO=1,CO=3,∴CD==,∴sin∠DCB==.点评:此题考查了二次函数图象交点性质、韦达定理、特殊三角形及三角函数等知识,题目考法新颖,但内容常规根底,是一道非常值得考生练习的题目.25.〔12分〕〔2021•荆州〕如图①,:在矩形ABCD的边AD上有一点O,OA=,以O 为圆心,OA长为半径作圆,交AD于M,恰好与BD相切于H,过H作弦HP∥AB,弦HP=3.假设点E是CD边上一动点〔点E与C,D不重合〕,过E作直线EF∥BD交BC于F,再把△CEF沿着动直线EF对折,点C的对应点为G.设CE=x,△EFG与矩形ABCD 重叠局部的面积为S.〔1〕求证:四边形ABHP是菱形;〔2〕问△EFG的直角顶点G能落在⊙O上吗?假设能,求出此时x的值;假设不能,请说明理由;〔3〕求S与x之间的函数关系式,并直接写出FG与⊙O相切时,S的值.考点:圆的综合题;含30度角的直角三角形;菱形的判定;矩形的性质;垂径定理;切线的性质;切线长定理;轴对称的性质;特殊角的三角函数值.专题:压轴题.分析:〔1〕连接OH,可以求出∠HOD=60°,∠HDO=30°,从而可以求出AB=3,由HP∥AB,HP=3可证到四边形ABHP是平行四边形,再根据切线长定理可得BA=BH,即可证到四边形ABHP是菱形.〔2〕当点G落到AD上时,可以证到点G与点M重合,可求出x=2.〔3〕当0≤x≤2时,如图①,S=S△EGF,只需求出FG,就可得到S与x之间的函数关系式;当2<x≤3时,如图④,S=S△GEF﹣S△SGR,只需求出SG、RG,就可得到S与x之间的函数关系式.当FG与⊙O相切时,如图⑤,易得FK=AB=3,KQ=AQ﹣AK=2﹣2+x.再由FK=KQ即可求出x,从而求出S.解答:解:〔1〕证明:连接OH,如图①所示.∵四边形ABCD是矩形,∴∠ADC=∠BAD=90°,BC=AD,AB=CD.∵HP∥AB,∴∠ANH+∠BAD=180°.∴∠ANH=90°.∴HN=PN=HP=.∵OH=OA=,∴sin∠HON==.∴∠HON=60°∵BD与⊙O相切于点H,∴OH⊥BD.∴∠HDO=30°.∴OD=2.∴AD=3.∴BC=3.∵∠BAD=90°,∠BDA=30°.∴tan∠BDA===.∴AB=3.∵HP=3,∴AB=HP.∵AB∥HP,∴四边形ABHP是平行四边形.∵∠BAD=90°,AM是⊙O的直径,∴BA与⊙O相切于点A.∵BD与⊙O相切于点H,∴BA=BH.∴平行四边形ABHP是菱形.〔2〕△EFG的直角顶点G能落在⊙O上.如图②所示,点G落到AD上.∵EF∥BD,∴∠FEC=∠CDB.∵∠CDB=90°﹣30°=60°,∴∠CEF=60°.由折叠可得:∠GEF=∠CEF=60°.∴∠GED=60°.∵CE=x,∴GE=CE=x.ED=DC﹣CE=3﹣x.∴cos∠GED===.∴x=2.∴GE=2,ED=1.∴GD=.∴OG=AD﹣AO﹣GD=3﹣﹣=.∴OG=OM.∴点G与点M重合.此时△EFG的直角顶点G落在⊙O上,对应的x的值为2.∴当△EFG的直角顶点G落在⊙O上时,对应的x的值为2.〔3〕①如图①,在Rt△EGF中,tan∠FEG===.∴FG=x.∴S=GE•FG=x•x=x2.②如图③,ED=3﹣x,RE=2ED=6﹣2x,GR=GE﹣ER=x﹣〔6﹣2x〕=3x﹣6.∵tan∠SRG===,∴SG=〔x﹣2〕.∴S△SGR=SG•RG=•〔x﹣2〕•〔3x﹣6〕.=〔x﹣2〕2.∵S△GEF=x2,∴S=S△GEF﹣S△SGR=x2﹣〔x﹣2〕2.=﹣x2+6x﹣6.综上所述:当0≤x≤2时,S=x2;当2<x≤3时,S=﹣x2+6x﹣6.当FG与⊙O相切于点T时,延长FG交AD于点Q,过点F作FK⊥AD,垂足为K,如图④所示.∵四边形ABCD是矩形,∴BC∥AD,∠ABC=∠BAD=90°∴∠AQF=∠CFG=60°.∵OT=,∴OQ=2.∴AQ=+2.∵∠FKA=∠ABC=∠BAD=90°,∴四边形ABFK是矩形.∴FK=AB=3,AK=BF=3﹣x.∴KQ=AQ﹣AK=〔+2〕﹣〔3﹣x〕=2﹣2+x.在Rt△FKQ中,tan∠FQK==.∴FK=QK.∴3=〔2﹣2+x〕.解得:x=3﹣.∵0≤3﹣≤2,∴S=x2=×〔3﹣〕2=﹣6.∴FG与⊙O相切时,S的值为﹣6.点评:此题考查了矩形的性质、菱形的性质、切线的性质、切线长定理、垂径定理、轴对称性质、特殊角的三角函数值、30°角所对的直角边等于斜边的一半、等腰三角形的性质等知识,综合性非常强.。
初中毕业升学考试(湖北荆州卷)数学(解析版)(初三)中考真卷.doc

初中毕业升学考试(湖北荆州卷)数学(解析版)(初三)中考真卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)【题文】比0小1的有理数是()A.﹣1 B.1 C.0 D.2【答案】A【解析】试题分析:直接利用有理数的加减运算得出答案.由题意可得:0﹣1=﹣1,故比0小1的有理数是:﹣1.考点:有理数的加减运算【题文】下列运算正确的是()A.m6÷m2=m3 B.3m2﹣2m2=m2 C.(3m2)3=9m6 D. m•2m2=m2 【答案】B【解析】试题分析:分别利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则、单项式乘以单项式运算法则分别分析得出答案.A、m6÷m2=m4,故此选项错误;B、3m2﹣2m2=m2,正确;C、(3m2)3=27m6,故此选项错误;D、m•2m2=m3,故此选项错误;考点:(1)同底数幂的除法运算;(2)合并同类项;(3)积的乘方运算;(4)单项式乘以单项式【题文】如图,AB∥CD,射线AE交CD于点F,若∠1=125°,则∠2的度数是()A. 55°B. 65°C. 75°D. 85°【答案】B【解析】试题分析:根据两直线平行,同旁内角互补可求出∠AFD的度数,然后根据对顶角相等求出∠2的度数.∵AB∥CD,∴∠1+∠F=180°,∵∠1=115°,∴∠AFD=65°,∵∠2和∠AFD是对顶角,∴∠2=∠AFD=65°考点:平行线的性质【题文】我市气象部门测得某周内七天的日温差数据如下:4,6,6,5,7,6,8(单位:℃),这组数据评卷人得分的平均数和众数分别是()A.7,6 B.6,5 C.5,6 D.6,6【答案】D【解析】试题分析:根据众数定义确定众数;应用加权平均数计算这组数据的平均数.平均数为: =6,数据6出现了3次,最多,故众数为6考点:(1)加权平均数;(2)众数【题文】互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为()A. 120元B. 100元C. 80元D. 60元【答案】C【解析】试题分析:设该商品的进价为x元/件,根据“标价=(进价+利润)÷折扣”即可列出关于x的一元一次方程,解方程即可得出结论.设该商品的进价为x元/件,依题意得:(x+20)÷=200,解得:x=80.∴该商品的进价为80元/件.考点:一元一次方程的应用【题文】如图,过⊙O外一点P引⊙O的两条切线PA、PB,切点分别是A、B,OP交⊙O于点C,点D是优弧上不与点A、点C重合的一个动点,连接AD、CD,若∠APB=80°,则∠ADC的度数是()A.15° B.20° C.25° D.30°【答案】C【解析】试题分析:根据四边形的内角和,可得∠BOA,根据等弧所对的圆周角相等,根据圆周角定理,可得答案.如图,由四边形的内角和定理,得:∠BOA=360°﹣90°﹣90°﹣80°=100°,由=,得:∠AOC=∠BOC=50°.由圆周角定理,得:∠ADC=∠AOC=25°考点:(1)切线的性质;(2)圆周角定理【题文】如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B. C. D.【答案】D【解析】试题分析:先根据勾股定理的逆定理判断出△ABC的形状,再由锐角三角函数的定义即可得出结论.∵由图可知,AC2=22+42=20,BC2=12+22=5,AB2l∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB ,∵∠C=90°,∴3∠CAD=90°,∴∠CAD=30°,∵AD平分∠CAB,DE⊥AB,CD⊥AC,∴CD=DE=BD,∵BC=3,∴CD=DE=1考点:线段垂直平分线的性质【题文】如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案.若第n个图案中有2017个白色纸片,则n的值为()A. 671B. 672C. 673D. 674【答案】B【解析】试题分析:将已知三个图案中白色纸片数拆分,得出规律:每增加一个黑色纸片时,相应增加3个白色纸片;据此可得第n个图案中白色纸片数,从而可得关于n的方程,解方程可得.∵第1个图案中白色纸片有4=1+1×3张;第2个图案中白色纸片有7=1+2×3张;第3个图案中白色纸片有10=1+3×3张;…∴第n个图案中白色纸片有1+n×3=3n+1(张),根据题意得:3n+1=2017,解得:n=672点:图形的变化问题【题文】如图,在Rt△AOB中,两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,将△AOB绕点B逆时针旋转90°后得到△A′O′B.若反比例函数的图象恰好经过斜边A′B的中点C,S△ABO=4,tan ∠BAO=2,则k的值为()A.3 B.4 C.6 D.8【答案】C【解析】试题分析:先根据S△ABO=4,tan∠BAO=2求出AO、BO的长度,再根据点C为斜边A′B的中点,求出点C 的坐标,点C的横纵坐标之积即为k值.设点C坐标为(x,y),作CD⊥BO′交边BO′于点D,∵tan∠BAO=2,∴=2,∵S△ABO=•AO•BO=4,∴AO=2,BO=4,∵△ABO≌△A′O′B,∴AO=A′0′=2,BO=BO′=4,∵点C为斜边A′B的中点,CD⊥BO′,∴CD=A′0′=1,BD=BO′=2,∴x=BO﹣CD=4﹣1=3,y=BD=2,∴k=x•y=3•2=6.考点:反比例函数图象上点的坐标特征【题文】将二次三项式x2+4x+5化成(x+p)2+q的形式应为.【答案】(x+2)2+1【解析】试题分析:直接利用完全平方公式将原式进行配方得出答案.x2+4x+5=x2+4x+4+1=(x+2)2+1.考点:配方法的应用【题文】当a=﹣1时,代数式的值是.【答案】【解析】试题分析:根据已知条件先求出a+b和a﹣b的值,再把要求的式子进行化简,然后代值计算即可.∵a=﹣1,∴a+b=+1+﹣1=2,a﹣b=+1﹣+1=2,∴===;考点:(1)完全平方公式;(2)平方差公式;(3)分式的化简【题文】若12xm﹣1y2与3xyn+1是同类项,点P(m,n)在双曲线上,则a的值为.【答案】3【解析】试题分析:先根据同类项的定义求出m、n的值,故可得出P点坐标,代入反比例函数的解析式即可得出结论.∵12xm﹣1y2与3xyn+1是同类项,∴m﹣1=1,n+1=2,解得m=2,n=1,∴P(2,1).∵点P(m,n)在双曲线上,∴a﹣1=2,解得a=3.考点:反比例函数图象上点的坐标特点【题文】若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k的图象不经过第象限.【答案】一【解析】试题分析:首先确定点M所处的象限,然后确定k的符号,从而确定一次函数所经过的象限,得到答案.∵点M(k﹣1,k+1)关于y轴的对称点在第四象限内,∴点M(k﹣1,k+1)位于第三象限,∴k﹣1<0且k+1<0,解得:k<﹣1,∴y=(k﹣1)x+k经过第二、三、四象限,不经过第一象限考点:一次函数的性质【题文】全球最大的关公塑像矗立在荆州古城东门外.如图,张三同学在东门城墙上C处测得塑像底部B 处的俯角为18°48′,测得塑像顶部A处的仰角为45°,点D在观测点C正下方城墙底的地面上,若CD=10米,则此塑像的高AB约为米(参考数据:tan78°12′≈4.8).【答案】58【解析】试题分析:直接利用锐角三角函数关系得出EC的长,进而得出AE的长,进而得出答案.如图所示:由题意可得:CE⊥AB于点E,BE=DC,∵∠ECB=18°48′,∴∠EBC=78°12′,则tan78°12′===4.8,解得:EC=48(m),∵∠AEC=45°,则AE=EC,且BE=DC=10m,∴此塑像的高AB约为:AE+EB=58(米).考点:解直角三角形的应用【题文】如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据计算这个几何体的表面积为 cm2.【答案】4π【解析】试题分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状,确定圆锥的母线长和底面半径,从而确定其表面积.由主视图和左视图为三角形判断出是锥体,由俯视图是圆形可判断出这个几何体应该是圆锥;根据三视图知:该圆锥的母线长为3cm,底面半径为1cm,故表面积=πrl+πr2=π×1×3+π×12=4πcm2.考点:三视图【题文】请用割补法作图,将一个锐角三角形经过一次或两次分割后,重新拼成一个与原三角形面积相等的平行四边形(只要求用一种方法画出图形,把相等的线段作相同的标记).【答案】答案见解析【解析】试题分析:沿AB的中点E和BC的中点F剪开,然后拼接成平行四边形即可.如图所示.AE=BE,DE=EF,AD=CF.考点:图形的剪拼【题文】若函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,则a的值为.【答案】﹣1或2或1【解析】试题分析:直接利用抛物线与x轴相交,b2﹣4ac=0,进而解方程得出答案.函数y=(a﹣1)x2﹣4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2﹣4ac=16﹣4(a﹣1)×2a=0,解得:a1=﹣1,a2=2,当函数为一次函数时,a﹣1=0,解得:a=1考点:抛物线与x轴的交点【题文】计算:.【答案】5【解析】试题分析:直接利用绝对值的性质以及特殊角的三角函数值、负整数指数幂的性质、二次根式的性质、零指数幂的性质化简,进而求出答案.试题解析:原式=+3×2﹣2×﹣1=+6﹣﹣1=5.考点:实数的运算【题文】为了弘扬荆州优秀传统文化,某中学举办了荆州文化知识大赛,其规则是:每位参赛选手回答100道选择题,答对一题得1分,不答或错答不得分、不扣分,赛后对全体参赛选手的答题情况进行了相关统计,整理并绘制成如下图表:请根据以图表信息,解答下列问题:(1)表中m= ,n= ;(2)补全频数分布直方图;(3)全体参赛选手成绩的中位数落在第几组;(4)若得分在80分以上(含80分)的选手可获奖,记者从所有参赛选手中随机采访1人,求这名选手恰好是获奖者的概率.【答案】(1)m=120;n=0.2;(2)答案见解析;(3)第一组;(4)0.55【解析】试题分析:(1)根据表格可以求得全体参赛选手的人数,从而可以求得m的值,n的值;(1)根据(1)中的m的值,可以将补全频数分布直方图;(3)根据表格可以求得全体参赛选手成绩的中位数落在第几组;(4)根据表格中的数据可以求得这名选手恰好是获奖者的概率.试题解析:(1)由表格可得,全体参赛的选手人数有:30÷0.1=300,则m=300×0.4=120,n=60÷300=0.2,(2)补全的频数分布直方图如图所示,(3)∵35+45=75,75+60=135,135+120=255,∴全体参赛选手成绩的中位数落在80≤x<90这一组;(4)由题意可得:,即这名选手恰好是获奖者的概率是0.55.考点:(1)频数分布直方图;(2)频数分布表;(3)中位数;(4)概率公式【题文】如图,将一张直角三角形ABC纸片沿斜边AB上的中线CD剪开,得到△ACD,再将△ACD沿DB方向平移到△A′C′D′的位置,若平移开始后点D′未到达点B时,A′C′交CD于E,D′C′交CB于点F,连接EF,当四边形EDD′F为菱形时,试探究△A′DE的形状,并判断△A′DE与△EFC′是否全等?请说明理由.【答案】△A′DE是等腰三角形;证明过程见解析.【解析】试题分析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.先证明CD=DA=DB ,得到∠DAC=∠DCA,由AC∥A′C′即可得到∠DA′E=∠DEA′由此即可判断△DA′E的形状.由EF∥AB推出∠CEF=∠EA′D,∠EFC=∠A′D′C=∠A′DE,再根据A′D=DE=EF即可证明.试题解析:当四边形EDD′F为菱形时,△A′DE是等腰三角形,△A′DE≌△EFC′.理由:∵△BCA是直角三角形,∠ACB=90°,AD=DB,∴CD=DA=DB,∴∠DAC=∠DCA,∵A′C∥AC,∴∠DA′E=∠A,∠DEA′=∠DCA,∴∠DA′E=∠DEA′,∴DA′=DE,∴△A′DE是等腰三角形.∵四边形DEFD′是菱形,∴EF=DE=DA′,EF∥DD′,∴∠CEF=∠DA′E,∠EFC=∠CD′A′,∵CD∥C′D′,∴∠A′DE=∠A′D′C=∠EFC,在△A′DE和△EFC′中,,∴△A′DE≌△EFC′.考点:1.菱形的性质;2.全等三角形的判定;3.平移的性质.【题文】为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.【答案】(1)y=6.4x+32;(2)137元.【解析】试题分析:(1)利用得到系数法求解析式,列出方程组解答即可;(2)根据所需费用为W=A种树苗的费用+B种树苗的费用,即可解答.试题解析:(1)设y与x的函数关系式为:y=kx+b,把(20,160),(40,288)代入y=kx+b得:解得:∴y=6.4x+32.(2)∵B种苗的数量不超过35棵,但不少于A种苗的数量,∴∴22.5≤x≤35,设总费用为W元,则W=6.4x+32+7(45﹣x)=﹣0.6x+347,∵k=﹣0.6,∴y随x的增大而减小,∴当x=35时,W总费用最低,W最低=﹣0.6×35+347=137(元).考点:一次函数的应用【题文】如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作CD∥OF交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=,求EF的长和半径OA的长.【答案】(1)证明过程见解析;(2)EF=2-;OA=2.【解析】试题分析:(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AOB=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE=AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.试题解析:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.考点:(1)切线的判定;(2)平行四边形的性质;(3)直角三角形的性质;(4)等边三角形的判定和性质【题文】已知在关于x的分式方程①和一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0②中,k、m、n 均为实数,方程①的根为非负数.(1)求k的取值范围;(2)当方程②有两个整数根x1、x2,k为整数,且k=m+2,n=1时,求方程②的整数根;(3)当方程②有两个实数根x1、x2,满足x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k),且k为负整数时,试判断|m|≤2是否成立?请说明理由.【答案】(1)k≥﹣1且k≠1且k≠2;(2)x=0、1、2、3;(3)不成立;理由见解析.【解析】试题分析:(1)先解出分式方程①的解,根据分式的意义和方程①的根为非负数得出k的取值;(2)先把k=m+2,n=1代入方程②化简,由方程②有两个整数实根得△是完全平方数,列等式得出关于m的等式,由根与系数的关系和两个整数根x1、x2得出m=1和﹣1,分别代入方程后解出即可;(3)根据(1)中k 的取值和k为负整数得出k=﹣1,化简已知所给的等式,并将两根和与积代入计算求出m的值,做出判断.试题解析:(1)∵关于x的分式方程的根为非负数,∴x≥0且x≠1,又∵x=≥0,且≠1,∴解得k≥﹣1且k≠1,又∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0中2﹣k≠0,∴k≠2,综上可得:k≥﹣1且k≠1且k≠2;(2)∵一元二次方程(2﹣k)x2+3mx+(3﹣k)n=0有两个整数根x1、x2,且k=m+2,n=1时,∴把k=m+2,n=1代入原方程得:﹣mx2+3mx+(1﹣m)=0,即:mx2﹣3mx+m﹣1=0,∴△≥0,即△=(﹣3m)2﹣4m(m﹣1),且m≠0,∴△=9m2﹣4m(m﹣1)=m(5m+4),∵x1、x2是整数,k、m都是整数,∵x1+x2=3,x1•x2==1﹣,∴1﹣为整数,∴m=1或﹣1,∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0, x2﹣3x=0,x(x﹣3)=0, x1=0,x2=3;把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0, x2﹣3x+2=0,(x﹣1)(x﹣2)=0, x1=1,x2=2;(3)|m|≤2不成立,理由是:由(1)知:k≥﹣1且k≠1且k≠2,∵k是负整数,∴k=﹣1,(2﹣k)x2+3mx+(3﹣k)n=0且方程有两个实数根x1、x2,∴x1+x2=﹣==﹣m,x1x2==,x1(x1﹣k)+x2(x2﹣k)=(x1﹣k)(x2﹣k), x12﹣x1k+x22﹣x2k=x1x2﹣x1k﹣x2k+k2,x12+x22═x1x2+k2,(x1+x2)2﹣2x1x2﹣x1x2=k2,(x1+x2)2﹣3x1x2=k2,(﹣m)2﹣3×=(﹣1)2, m2﹣4=1, m2=5, m=±,∴|m|≤2不成立.考点:一元二次方程的根与系数的关系【题文】阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=-x+4.问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线经过B、C两点,顶点D在正方形内部.(1)直接写出点D(m,n)所有的特征线;(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?【答案】(1)x=m,y=n,yl∵抛物线解析式为,∴y=(x﹣m)2+m+1,∵四边形OABC是正方形,且D点为正方形的对称轴,D(m,n),∴B(2m,2m),∴(2m﹣m)2+n=2m,将n=m+1带入得到m=2,n=3;∴D(2,3),∴抛物线解析式为y=(x﹣2)2+3 (3)如图,当点A′在平行于y轴的D点的特征线时,根据题意可得,D(2,3),∴OA′=OA=4,OM=2,∴∠A′OM=60°,∴∠A′OP=∠AOP=30°,∴MN==,∴抛物线需要向下平移的距离=3﹣=.当点A′在平行于x轴的D点的特征线时,∵顶点落在OP上,∴A′与D重合,∴A′(2,3),设P(4,c)(c>0),由折叠有,PD=PA,∴=c,∴c=,∴P(4,)∴直线OP解析式为y=,∴N(2,),∴抛物线需要向下平移的距离=3﹣=,抛物线向下平移或距离,其顶点落在OP上.考点(1)折叠的性质;(2)正方形的性质;(3)特征线的理解。
湖北省荆州市2021-2023三年中考数学真题分类汇编-01选择题知识点分类(含答案)

湖北省荆州市2021-2023三年中考数学真题分类汇编-01选择题知识点分类一.无理数(共2小题)1.(2023•荆州)在实数﹣1,,,3.14中,无理数是( )A.﹣1B.C.D.3.14 2.(2021•荆州)在实数﹣1,0,,中,无理数是( )A.﹣1B.0C.D.二.实数与数轴(共1小题)3.(2022•荆州)实数a,b,c,d在数轴上对应点的位置如图,其中有一对互为相反数,它们是( )A.a与d B.b与d C.c与d D.a与c三.估算无理数的大小(共1小题)4.(2023•荆州)已知k=(+)•(﹣),则与k最接近的整数为( )A.2B.3C.4D.5四.合并同类项(共1小题)5.(2022•荆州)化简a﹣2a的结果是( )A.﹣a B.a C.3a D.0五.规律型:图形的变化类(共1小题)6.(2022•荆州)如图,已知矩形ABCD的边长分别为a,b,进行如下操作:第一次,顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1;第二次,顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2;…如此反复操作下去,则第n次操作后,得到四边形A n B n∁n D n的面积是( )A.B.C.D.六.同底数幂的除法(共1小题)7.(2023•荆州)下列各式运算正确的是( )A.3a2b3﹣2a2b3=a2b3B.a2•a3=a6C.a6÷a2=a3D.(a2)3=a5七.单项式乘单项式(共1小题)8.(2021•荆州)若等式2a2•a+□=3a3成立,则□填写单项式可以是( )A.a B.a2C.a3D.a4八.由实际问题抽象出二元一次方程组(共1小题)9.(2023•荆州)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还余4.5尺;将绳子对折再量木条,木条余1尺,问木条长多少尺?若设木条长x尺,绳子长y尺,则可列方程组为( )A.B.C.D.九.根的判别式(共2小题)10.(2022•荆州)关于x的方程x2﹣3kx﹣2=0实数根的情况,下列判断正确的是( )A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.有一个实数根11.(2021•荆州)定义新运算“※”:对于实数m,n,p,q.有[m,p]※[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22.若关于x的方程[x2+1,x]※[5﹣2k,k]=0有两个实数根,则k的取值范围是( )A.k<且k≠0B.k C.k且k≠0D.k≥一十.由实际问题抽象出分式方程(共1小题)12.(2022•荆州)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min到达基地,求甲、乙的速度.设甲的速度为3xkm/h,则依题意可列方程为( )A.+=B.+20=C.﹣=D.﹣=20一十一.一次函数图象上点的坐标特征(共1小题)13.(2023•荆州)如图,直线y=﹣x+3分别与x轴,y轴交于点A,B,将△OAB绕着点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标是( )A.(2,5)B.(3,5)C.(5,2)D.(,2)一十二.反比例函数与一次函数的交点问题(共2小题)14.(2022•荆州)如图是同一直角坐标系中函数y1=2x和y2=的图象.观察图象可得不等式2x>的解集为( )A.﹣1<x<1B.x<﹣1或x>1C.x<﹣1或0<x<1D.﹣1<x<0或x>115.(2021•荆州)已知:如图,直线y1=kx+1与双曲线y2=在第一象限交于点P(1,t),与x轴、y轴分别交于A,B两点,则下列结论错误的是( )A.t=2B.△AOB是等腰直角三角形C.k=1D.当x>1时,y2>y1一十三.反比例函数的应用(共1小题)16.(2023•荆州)已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系(I=).下列反映电流I与电阻R之间函数关系的图象大致是( )A.B.C.D.一十四.平行线的性质(共1小题)17.(2023•荆州)如图所示的“箭头”图形中,AB∥CD,∠B=∠D=80°,∠E=∠F=47°,则图中∠G的度数是( )A.80°B.76°C.66°D.56°一十五.平行线的判定与性质(共1小题)18.(2021•荆州)阅读下列材料,其①~④步中数学依据错误的是( )如图:已知直线b∥c,a⊥b,求证:a⊥c.证明:①∵a⊥b(已知)∴∠1=90°(垂直的定义)②又∵b∥c(已知)∴∠1=∠2(同位角相等,两直线平行)③∴∠2=∠1=90°(等量代换)④∴a⊥c(垂直的定义)A.①B.②C.③D.④一十六.等腰三角形的性质(共1小题)19.(2022•荆州)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是( )A.60°B.70°C.80°D.90°一十七.垂径定理的应用(共1小题)20.(2023•荆州)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D.若AC=300m,BD=150m,则的长为( )A.300πm B.200πm C.150πm D.100πm一十八.圆周角定理(共1小题)21.(2021•荆州)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA 的延长线上,若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y 轴正半轴于点E,连接DE,BE,则∠BED的度数是( )A.15°B.22.5°C.30°D.45°一十九.扇形面积的计算(共2小题)22.(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是( )A.﹣B.2﹣πC.D.﹣23.(2021•荆州)如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC长为半径画,点P为菱形内一点,连接PA,PB,PC.当△BPC为等腰直角三角形时,图中阴影部分的面积为( )A.B.C.2πD.二十.作图—复杂作图(共1小题)24.(2021•荆州)如图,在△ABC中,AB=AC,∠A=40°,点D,P分别是图中所作直线和射线与AB,CD的交点.根据图中尺规作图痕迹推断,以下结论错误的是( )A.AD=CD B.∠ABP=∠CBP C.∠BPC=115°D.∠PBC=∠A二十一.关于x轴、y轴对称的点的坐标(共1小题)25.(2021•荆州)若点P(a+1,2﹣2a)关于x轴的对称点在第四象限,则a的取值范围在数轴上表示为( )A.B.C.D.二十二.锐角三角函数的定义(共1小题)26.(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是( )A.B.C.D.3二十三.简单组合体的三视图(共2小题)27.(2023•荆州)观察如图所示的几何体,下列关于其三视图的说法正确的是( )A.主视图既是中心对称图形,又是轴对称图形B.左视图既是中心对称图形,又是轴对称图形C.俯视图既是中心对称图形,又是轴对称图形D.主视图、左视图、俯视图都是中心对称图形28.(2021•荆州)如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是( )A.B.C.D.二十四.方差(共1小题)29.(2022•荆州)从班上13名排球队员中,挑选7名个头高的参加校排球比赛.若这13名队员的身高各不相同,其中队员小明想知道自己能否入选,只需知道这13名队员身高数据的( )A.平均数B.中位数C.最大值D.方差二十五.统计量的选择(共1小题)30.(2023•荆州)为评估一种水稻的种植效果,选了10块地作试验田.这10块地的亩产量(单位:kg)分别为x1,x2,…,x10,下面给出的统计量中可以用来评估这种水稻亩产量稳定程度的是( )A.这组数据的平均数B.这组数据的方差C.这组数据的众数D.这组数据的中位数湖北省荆州市2021-2023三年中考数学真题分类汇编-01选择题知识点分类参考答案与试题解析一.无理数(共2小题)1.(2023•荆州)在实数﹣1,,,3.14中,无理数是( )A.﹣1B.C.D.3.14【答案】B【解答】解:实数﹣1,,,3.14中,无理数是,故选:B.2.(2021•荆州)在实数﹣1,0,,中,无理数是( )A.﹣1B.0C.D.【答案】D【解答】解:选项A、B:∵﹣1、0是整数,∴﹣1、0是有理数,∴选项A、B不符合题意;选项C:∵是分数,∴是有理数,∴选项C不符合题意;选项D:∵是无限不循环的小数,∴是无理数,∴选项D符合题意.故选:D.二.实数与数轴(共1小题)3.(2022•荆州)实数a,b,c,d在数轴上对应点的位置如图,其中有一对互为相反数,它们是( )A.a与d B.b与d C.c与d D.a与c【答案】C【解答】解:∵c<0,d>0,|c|=|d|,∴c,d互为相反数,故选:C.三.估算无理数的大小(共1小题)4.(2023•荆州)已知k =(+)•(﹣),则与k 最接近的整数为( )A .2B .3C .4D .5【答案】B【解答】解:∵k =(+)•(﹣)=×2=2,而1.4<<1.5,∴2.8<2<3,∴与k 最接近的整数,3,故选:B .四.合并同类项(共1小题)5.(2022•荆州)化简a ﹣2a 的结果是( )A .﹣a B .aC .3aD .0【答案】A【解答】解:a ﹣2a =(1﹣2)a =﹣a .故选:A .五.规律型:图形的变化类(共1小题)6.(2022•荆州)如图,已知矩形ABCD 的边长分别为a ,b ,进行如下操作:第一次,顺次连接矩形ABCD 各边的中点,得到四边形A 1B 1C 1D 1;第二次,顺次连接四边形A 1B 1C 1D 1各边的中点,得到四边形A 2B 2C 2D 2;…如此反复操作下去,则第n 次操作后,得到四边形A n B n ∁n D n 的面积是( )A .B .C .D .【答案】A【解答】解:如图,连接A 1C 1,D 1B 1,∵顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1,∴四边形A1BCC1是矩形,∴A1C1=BC,A1C1∥BC,同理,B1D1=AB,B1D1∥AB,∴A1C1⊥B1D1,∴S1=ab,∵顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2,∴C2D2=C1,A2D2=B1D1,∴S2=C1×B1D1=ab,……依此可得S n=,故选:A.六.同底数幂的除法(共1小题)7.(2023•荆州)下列各式运算正确的是( )A.3a2b3﹣2a2b3=a2b3B.a2•a3=a6C.a6÷a2=a3D.(a2)3=a5【答案】A【解答】解:∵3a2b3﹣2a2b3=a2b3,∴选项A运算正确,符合题意;∵a2•a3=a5,∴选项B运算错误,不符合题意;∵a6÷a2=a4,∴选项C运算错误,不符合题意;∵(a2)3=a6,∴选项D运算错误,不符合题意.故选:A.七.单项式乘单项式(共1小题)8.(2021•荆州)若等式2a2•a+□=3a3成立,则□填写单项式可以是( )A.a B.a2C.a3D.a4【答案】C【解答】解:∵等式2a2•a+□=3a3成立,∴2a3+□=3a3,∴□填写单项式可以是:3a3﹣2a3=a3.故选:C.八.由实际问题抽象出二元一次方程组(共1小题)9.(2023•荆州)我国古代数学名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”意思是:用一根绳子去量一根木条,绳子还余4.5尺;将绳子对折再量木条,木条余1尺,问木条长多少尺?若设木条长x尺,绳子长y尺,则可列方程组为( )A.B.C.D.【答案】A【解答】解:设木条长x尺,绳子长y尺,所列方程组为:.故选:A.九.根的判别式(共2小题)10.(2022•荆州)关于x的方程x2﹣3kx﹣2=0实数根的情况,下列判断正确的是( )A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.有一个实数根【答案】B【解答】解:∵关于x的方程x2﹣3kx﹣2=0根的判别式Δ=(﹣3k)2﹣4×1×(﹣2)=9k2+8>0,∴x2﹣3kx﹣2=0有两个不相等实数根,故选:B.11.(2021•荆州)定义新运算“※”:对于实数m,n,p,q.有[m,p]※[q,n]=mn+pq,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22.若关于x的方程[x2+1,x]※[5﹣2k,k]=0有两个实数根,则k的取值范围是( )A.k<且k≠0B.k C.k且k≠0D.k≥【答案】C【解答】解:根据题意得k(x2+1)+(5﹣2k)x=0,整理得kx2+(5﹣2k)x+k=0,因为方程有两个实数解,所以k≠0且Δ=(5﹣2k)2﹣4k2≥0,解得k≤且k≠0.故选:C.一十.由实际问题抽象出分式方程(共1小题)12.(2022•荆州)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min到达基地,求甲、乙的速度.设甲的速度为3xkm/h,则依题意可列方程为( )A.+=B.+20=C.﹣=D.﹣=20【答案】A【解答】解:由题意可知,甲的速度为3xkm/h,则乙的速度为4xkm/h,+=,即+=,故选:A.一十一.一次函数图象上点的坐标特征(共1小题)13.(2023•荆州)如图,直线y=﹣x+3分别与x轴,y轴交于点A,B,将△OAB绕着点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标是( )A.(2,5)B.(3,5)C.(5,2)D.(,2)【答案】C【解答】解:当x=0时,y=﹣x+3=3,则B点坐标为(0,3);当y=0时,﹣x+3=0,解得x=2,则A点坐标为(2,0),则OA=2,OB=3,∵△AOB绕点A顺时针旋转90°后得到△ACD,∴∠OAC=90°,∠ACD=∠AOB=90°,AC=AO=2,CD=OB=3,即AC⊥x轴,CD∥x轴,∴点D的坐标为(5,2).故选:C.一十二.反比例函数与一次函数的交点问题(共2小题)14.(2022•荆州)如图是同一直角坐标系中函数y1=2x和y2=的图象.观察图象可得不等式2x>的解集为( )A.﹣1<x<1B.x<﹣1或x>1C.x<﹣1或0<x<1D.﹣1<x<0或x>1【答案】D【解答】解:由图象,函数y1=2x和y2=的交点横坐标为﹣1,1,∴当﹣1<x<0或x>1时,y1>y2,即2x>,故选:D.15.(2021•荆州)已知:如图,直线y1=kx+1与双曲线y2=在第一象限交于点P(1,t),与x轴、y轴分别交于A,B两点,则下列结论错误的是( )A.t=2B.△AOB是等腰直角三角形C.k=1D.当x>1时,y2>y1【答案】D【解答】解:∵点P(1,t)在双曲线y2=上,∴t==2,正确;∴A选项不符合题意;∴P(1,2).∵P(1,2)在直线y1=kx+1上,∴2=k+1.∴k=1,正确;∴C选项不符合题意;∴直线AB的解析式为y=x+1令x=0,则y=1,∴B(0,1).∴OB=1.令y=0,则x=﹣1,∴A(﹣1,0).∴OA=1.∴OA=OB.∴△OAB为等腰直角三角形,正确;∴B选项不符合题意;由图象可知,当x>1时,y1>y2.∴D选项不正确,符合题意.故选:D.一十三.反比例函数的应用(共1小题)16.(2023•荆州)已知蓄电池的电压U为定值,使用蓄电池时,电流I(单位:A)与电阻R (单位:Ω)是反比例函数关系(I=).下列反映电流I与电阻R之间函数关系的图象大致是( )A.B.C.D.【答案】D【解答】解:∵电流I(单位:A)与电阻R(单位:Ω)是反比例函数关系(I=),R、I均大于0,∴反映电流I与电阻R之间函数关系的图象大致是D选项,故选:D.一十四.平行线的性质(共1小题)17.(2023•荆州)如图所示的“箭头”图形中,AB∥CD,∠B=∠D=80°,∠E=∠F=47°,则图中∠G的度数是( )A.80°B.76°C.66°D.56°【答案】C【解答】解:延长AB交EG于M,延长CD交FG于N,过G作GK∥AB,∵AB∥CD,∴GK∥CD,∴∠KGM=∠EMB,∠KGN=∠DNF,∴∠KGM+∠KGN=∠EMB+∠DNF,∴∠EGF=∠EMB+∠DNF,∵∠ABE=80°,∠E=47°,∴∠EMB=∠ABE﹣∠E=33°,同理:∠DNF=33°,∴∠EGF=∠EMB+∠DNF=33°+33°=66°.故选:C.一十五.平行线的判定与性质(共1小题)18.(2021•荆州)阅读下列材料,其①~④步中数学依据错误的是( )如图:已知直线b∥c,a⊥b,求证:a⊥c.证明:①∵a⊥b(已知)∴∠1=90°(垂直的定义)②又∵b∥c(已知)∴∠1=∠2(同位角相等,两直线平行)③∴∠2=∠1=90°(等量代换)④∴a⊥c(垂直的定义)A.①B.②C.③D.④【答案】B【解答】证明:①∵a⊥b(已知),∴∠1=90°(垂直的定义),②又∵b∥c(已知),∴∠1=∠2(两直线平行,同位角相等),③∴∠2=∠1=90°(等量代换),∴a⊥c(垂直的定义),①~④步中数学依据错误的是②,故选:B.一十六.等腰三角形的性质(共1小题)19.(2022•荆州)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是( )A.60°B.70°C.80°D.90°【答案】B【解答】解:过点C作CD∥l1,如图,∵l1∥l2,∴l1∥l2∥CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=40°,∴∠ACB=(180°﹣∠BAC)=70°,∴∠1+∠2=70°.故选:B.一十七.垂径定理的应用(共1小题)20.(2023•荆州)如图,一条公路的转弯处是一段圆弧(),点O是这段弧所在圆的圆心,B为上一点,OB⊥AC于D.若AC=300m,BD=150m,则的长为( )A.300πm B.200πm C.150πm D.100πm【答案】B【解答】解:如图所示:∵OB⊥AC,∴AD=AC=150m,∠AOC=2AOB,在Rt△AOD中,∵AD2+OD2=OA2,OA=OB,∴AD2+(OA﹣BD)2=OA2,∴+(OA﹣150)22=OA2,解得:OA=300m,∴sin∠AOB==,∴∠AOB=60°,∴∠AOC=120°,∴的长==200πm.故选:B.一十八.圆周角定理(共1小题)21.(2021•荆州)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA 的延长线上,若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y 轴正半轴于点E,连接DE,BE,则∠BED的度数是( )A.15°B.22.5°C.30°D.45°【答案】C【解答】解:如图,连接OB,∵A(2,0),D(4,0),矩形OABC,∴OA=2,OD=4=OB,∴sin∠OBA==,∴∠OBA=30°,∴∠BOD=90°﹣30°=60°,∴∠BED=∠BOD=×60°=30°,故选:C.一十九.扇形面积的计算(共2小题)22.(2022•荆州)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是( )A.﹣B.2﹣πC.D.﹣【答案】D【解答】解:由题意,以A为圆心、一定的长为半径画弧,恰好与BC边相切,设切点为F,连接AF,则AF⊥BC.在等边△ABC中,AB=AC=BC=2,∠BAC=60°,∴CF=BF=1.在Rt△ACF中,AF==,∴S阴影=S△ABC﹣S扇形ADE=×2×﹣=﹣,故选:D.23.(2021•荆州)如图,在菱形ABCD中,∠D=60°,AB=2,以B为圆心、BC长为半径画,点P为菱形内一点,连接PA,PB,PC.当△BPC为等腰直角三角形时,图中阴影部分的面积为( )A.B.C.2πD.【答案】A【解答】解:连接AC,延长AP,交BC于E,在菱形ABCD中,∠D=60°,AB=2,∴∠ABC=∠D=60°,AB=BC=2,∴△ABC是等边三角形,∴AB=AC,在△APB和△APC中,,∴△APB≌△APC(SSS),∴∠PAB=∠PAC,∴AE⊥BC,BE=CE=1,∵△BPC为等腰直角三角形,∴PE=BC=1,在Rt△ABE中,AE=AB=,∴AP=﹣1,∴S阴影=S扇形ABC﹣S△PAB﹣S△PBC=﹣(﹣1)×1﹣=π﹣,故选:A.二十.作图—复杂作图(共1小题)24.(2021•荆州)如图,在△ABC中,AB=AC,∠A=40°,点D,P分别是图中所作直线和射线与AB,CD的交点.根据图中尺规作图痕迹推断,以下结论错误的是( )A.AD=CD B.∠ABP=∠CBP C.∠BPC=115°D.∠PBC=∠A 【答案】D【解答】解:由作图可知,点D在AC的垂直平分线上,∴DA=DC,故选项A正确,∴∠A=∠ACD=40°,由作图可知,BP平分∠ABC,∴∠ABP=∠CBP,故选项B正确,∵AB=AC,∠A=40°,∴∠ABC=∠ACB=(180°﹣40°)=70°,∵∠PBC=∠ABC=35°,∠PCB=∠ACB﹣∠ACD=30°,∴∠BPC=180°﹣35°﹣30°=115°,故选项C正确,若∠PBC=∠A,则∠A=36°,显然不符合题意.故选:D.二十一.关于x轴、y轴对称的点的坐标(共1小题)25.(2021•荆州)若点P(a+1,2﹣2a)关于x轴的对称点在第四象限,则a的取值范围在数轴上表示为( )A.B.C.D.【答案】C【解答】解:∵点P(a+1,2﹣2a)关于x轴的对称点在第四象限,∴点P在第一象限,∴,解得:﹣1<a<1,在数轴上表示为:,故选:C.二十二.锐角三角函数的定义(共1小题)26.(2022•荆州)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP的值是( )A.B.C.D.3【答案】C【解答】解:如图,过点P作PQ⊥x轴于点Q,∵OP∥AB,∴△OCP∽△BCA,∴CP:AC=OC:BC=1:2,∵∠AOC=∠AQP=90°,∴CO∥PQ,∴OQ:AO=CP:AC=1:2,∵P(1,1),∴PQ=OQ=1,∴AO=2,∴tan∠OAP===.故选:C.二十三.简单组合体的三视图(共2小题)27.(2023•荆州)观察如图所示的几何体,下列关于其三视图的说法正确的是( )A.主视图既是中心对称图形,又是轴对称图形B.左视图既是中心对称图形,又是轴对称图形C.俯视图既是中心对称图形,又是轴对称图形D.主视图、左视图、俯视图都是中心对称图形【答案】C【解答】解:该几何体的主视图是轴对称图形,不是中心对称图形,A选项不符合题意;该几何体的左视图是轴对称图形,不是中心对称图形,B选项不符合题意;该几何体的俯视图是中心对称图形,又是轴对称图形,C选项符合题意;主视图和左视图是轴对称图形,不是中心对称图形,D选项不符合题意;故选:C.28.(2021•荆州)如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是( )A.B.C.D.【答案】A【解答】解:从上边看,是一个矩形,矩形的内部有一个与矩形两边相切的圆.故选:A.二十四.方差(共1小题)29.(2022•荆州)从班上13名排球队员中,挑选7名个头高的参加校排球比赛.若这13名队员的身高各不相同,其中队员小明想知道自己能否入选,只需知道这13名队员身高数据的( )A.平均数B.中位数C.最大值D.方差【答案】B【解答】解:共有13名排球队员,挑选7名个头高的参加校排球比赛,所以小明需要知道自己是否入选.我们把所有同学的身高按大小顺序排列,第7名学生的身高是这组数据的中位数,所以小明知道这组数据的中位数,才能知道自己是否入选.故选:B.二十五.统计量的选择(共1小题)30.(2023•荆州)为评估一种水稻的种植效果,选了10块地作试验田.这10块地的亩产量(单位:kg)分别为x1,x2,…,x10,下面给出的统计量中可以用来评估这种水稻亩产量稳定程度的是( )A.这组数据的平均数B.这组数据的方差C.这组数据的众数D.这组数据的中位数【答案】B【解答】解:标准差,方差能反映数据的波动程度,故选:B.。
2023年中考数学真题分项汇编(全国通用):圆的有关计算与证明(共50题)(原卷版)

专题25圆的有关计算与证明(50题)一、单选题1.(2023·新疆·统考中考真题)如图,在O中,若30ACB,6OA,则扇形OAB(阴影部分)的面积是
()
A.12B.6C.4D.22.(2023·江苏连云港·统考中考真题)如图,矩形ABCD内接于O,分别以ABBCCDAD、、、为直径向外作半圆.若4,5ABBC,则阴影部分的面积是()
A.41204B.4120
2C.20D.20
3.(2023·湖北荆州·统考中考真题)如图,一条公路的转弯处是一段圆弧(AC),点O是这段弧所在圆的
圆心,B为AC上一点,OBAC于D.若3003mAC,150mBD,则AC的长为()
A.300mB.200mC.150mD.1003m4.(2023·山东滨州·统考中考真题)如图,某玩具品牌的标志由半径为1cm的三个等圆构成,且三个等圆123,,OOOeee相互经过彼此的圆心,则图中三个阴影部分的面积之和为()
A.21cm4B.21cm3C.21cm
2
D.2cm
5.(2023·四川达州·统考中考真题)如图,四边形ABCD是边长为12的正方形,曲线11112
DABCDA是由多
段90的圆心角的圆心为C,半径为1CB;11CD的圆心为D,半径为
11111111,DCDAABBCCD、、、的圆心依次
为ABCD、、、循环,则20232023AB的长是()
A.40452B.2023C.20234D.2022
6.(2023·四川广安·统考中考真题)如图,在等腰直角ABC中,90,22ACBACBC,以点A为圆心,AC为半径画弧,交AB于点E,以点B为圆心,BC为半径画弧,交AB于点F,则图中阴影部分的面积是()
A.π2B.2π2C.2π4D.4π47.(2023·江苏苏州·统考中考真题)如图,AB是半圆O的直径,点,CD在半圆上,CDDB,连接,,OCCAOD,
2023-2024学年湖北省荆州市荆州区荆南中学九年级(上)期中数学试卷+答案解析

2023-2024学年湖北省荆州市荆州区荆南中学九年级(上)期中数学试卷一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列图形中,是中心对称的图形有()①正方形;②长方形;③等边三角形;④线段;⑤平行四边形.A.5个 B.2个C.3个D.4个2.若是一元二次方程的一个根,则b 的值是()A.2B.C. D.43.若抛物线的顶点在x 轴的负半轴上,则b 的值为()A. B.C. D.4.若点,,都是二次函数的图象上的点,则()A.B.C.D.5.如图直角梯形ABCD 中,,,,,将CD 以D 为中心逆时针旋转至ED ,连AE 、CE ,则的面积是()A.1B.2C.3D.不能确定6.如图所示,将一个含角的直角三角板ABC 绕点A 旋转,使得点B ,A ,在同一直线上,则三角板ABC 旋转的度数是()A. B. C. D.7.如图,在平面直角坐标系中,平行于x 轴的直线,与二次函数,分别交于A 、B 和C 、D ,若,则a 为()A.4B.C.2D.8.若,为抛物线与x轴相交的两交点的横坐标,则的值为()A. B. C. D.9.在平面直角坐标系中,已知函数,,设函数,,的图象与x轴的交点个数分别为,,,则()A.,,B.,,C.,,D.,,10.二次函数的部分图象如图,图象过点,对称轴为直线,下列结论:①;②;③;④;⑤当时,y的值随x值的增大而增大.其中正确的结论有()A.2个B.3个C.4个D.5个二、填空题:本题共6小题,每小题3分,共18分。
11.函数中,当x______时,y随x的增大而减小.12.如图,绕点B旋转后到达处,若,,则______,______.13.二次函数的最大值是__________.14.已知关于x的一元二次方程没有实数根,即实数c的取值范围是______.15.关于x的一元二次方程有一个解是0,则m的值为______.16.若点在x轴上,则点关于原点对称的点的坐标为______.三、解答题:本题共8小题,共72分。
2023年湖北省数学中考试题汇编——图形的性质(含答案)
2023年湖北省数学中考试题汇编——图形的性质一、选择题(本大题共18小题在每小题列出的选项中,选出符合题目的一项)1.(2023·湖北省宜昌市)“争创全国文明典范城市,让文明成为宜昌人民的内在气质和城市的亮丽名片”.如图,是一个正方体的平面展开图,把展开图折叠成正方体后,“城”字对面的字是( )A. 文B. 明C. 典D. 范2. (2023·湖北省宜昌市)我国古代数学的许多创新与发明都曾在世界上有重要影响.下列图形“杨辉三角”“中国七巧板”“刘微割圆术”“赵爽弦图”中,中心对称图形是( )A. B. C. D.3.(2023·湖北省鄂州市)如图,直线AB//CD,GE⊥EF于点E.若∠BGE=60°,则∠EFD的度数是( )A. 60°B. 30°C. 40°D. 70°4.(2023·湖北省荆州市)如图所示的“箭头”图形中,AB//CD,∠B=∠D=80°,∠E=∠F=47°,则图中∠G的度数是( )A. 80°B. 76°C. 66°D. 56°5.(2023·湖北省随州市)如图,直线l1//l2,直线l与l1,l2相交,若图中∠1=60°,则∠2为( )A. 30°B. 60°C. 120°D. 150°6.(2023·湖北省宜昌市)如图,小颖按如下方式操作直尺和含30°角的三角尺,依次画出了直线a,b,c.如果∠1=70°,则∠2的度数为( )A. 110°B. 70°C. 40°D. 30°7.(2023·湖北省黄冈市)如图,Rt△ABC的直角顶点A在直线a上,斜边BC在直线b上,若a//b,∠1=55°,则∠2=( )A. 55°B. 45°C. 35°D. 25°8.(2023·湖北省十堰市)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE,BC=CE,过点O作OF⊥AC于点F,延长FO交BE于点G,若DE=3,EG=2,则AB的长为( )A. 43B. 7C. 8D. 459.(2023·湖北省黄冈市)如图,矩形ABCD中,AB=3,BC=4,以点B为圆心,适当长为半径画弧,分别交BC,BD于点E,F,再分别EF长为半径画弧交于点P,作射线BP,过点以点E,F为圆心,大于12C作BP的垂线分别交BD,AD于点M,N,则CN的长为( )A. 10B. 11C. 23D. 410. (2023·湖北省随州市)如图,在▱ABCD中,分别以B,D为圆心,BD的长为半径画弧,两弧相交于点M,N,过M,N两点作直大于12线交BD于点O,交AD,BC于点E,F,下列结论不正确的是( )A. AE =CFB. DE =BFC. OE =OFD. DE =DC11.(2023·湖北省鄂州市)如图,在△ABC 中,∠ABC =90°,∠ACB =30°,AB =4,点O 为BC 的中点,以O 为圆心,OB 长为半径作半圆,交AC 于点D ,则图中阴影部分的面积是( )A. 5 3― 33π B. 5 3―4π C. 5 3―2π D. 10 3―2π12. (2023·湖北省武汉市)如图,在四边形ABCD 中,AB // CD ,AD ⊥AB ,以D 为圆心,AD 为半径的弧恰好与BC 相切,切点为E.若AB CD =13,则sin C 的值是( )A. 23B. 53 C. 34 D. 7413.(2023·全国)如图,在△ABC 中,∠ABC =90°,AB =3,BC =4,点D 在边AC 上,且BD 平分△ABC 的周长,则BD 的长是( )A. 5B. 6C. 655D. 3 6414. (2023·湖北省荆州市)如图,一条公路的转弯处是一段圆弧(AC ),点O 是这段弧所在圆的圆心,B 为AC 上一点,OB ⊥AC 于D.若AC =300 3m ,BD =150m ,则AC 的长为( )A. 300πmB. 200πmC. 150πmD. 100 3πm15.(2023·湖北省十堰市)如图,将四根木条用钉子钉成一个矩形框架ABCD ,然后向左扭动框架,观察所得四边形的变化,下面判断错误的是( )A. 四边形ABCD 由矩形变为平行四边形B. 对角线BD 的长度减小C. 四边形ABCD 的面积不变D. 四边形ABCD 的周长不变16.(2023·全国)如图,在3×3的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中的圆弧为格点△ABC 外接圆的一部分,小正方形边长为1,图中阴影部分的面积为( )A. 52π―74 B. 52π―72 C. 54π―74 D. 54π―7217.(2023·湖北省十堰市)如图,已知点C 为圆锥母线SB 的中点,AB 为底面圆的直径,SB =6,AB =4,一只蚂蚁沿着圆锥的侧面从A 点爬到C 点,则蚂蚁爬行的最短路程为( )A. 5B. 3 3C. 3 2D. 6 318. (2023·湖北省宜昌市)如图,OA ,OB ,OC 都是⊙O 的半径,AC ,OB 交于点D.若AD =CD =8,OD =6,则BD 的长为( )A. 5B. 4C. 3D. 2二、填空题(本大题共8小题)19.(2023·湖北省荆州市)如图,∠AOB=60°,点C在OB上,OC=23,P为∠AOB内一点.根据图中尺规作图痕迹推断,点P到OA的距离为______ .20. (2023·湖北省武汉市)如图,DE平分等边△ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是.21. (2023·湖北省武汉市)如图,DE平分等边△ABC的面积,折叠△BDE得到△FDE,AC分别与DF,EF相交于G,H两点.若DG=m,EH=n,用含m,n的式子表示GH的长是______ .22. (2023·湖北省荆州市)如图,CD为Rt△ABC斜边AB上的中线,E为AC的中点.若AC=8,CD=5,则DE=______ .23. (2023·湖北省宜昌市)如图,小宇将一张平行四边形纸片折叠,使点A落在长边CD上的点A 处,并得到折痕DE,小宇测得长边CD=8,则四边形A′EBC的周长为______ .24. (2023·湖北省十堰市)如图,在菱形ABCD中,点E,F,G,H分别是AB,BC,CD,AD 上的点,且BE=BF=CG=AH,若菱形的面积等于24,BD=8,则EF+GH=______ .25. (2023·全国)如图,在△ABC中,∠ACB=70°,△ABC的内切圆⊙O与AB,BC分别相切于点D,E,连接DE,AO的延长线交DE于点F,则∠AFD=______ .26.(2023·湖北省随州市)如图,在⊙O中,OA⊥BC,∠AOB=60°,则∠ADC的度数为______ .三、解答题(本大题共7小题,解答应写出文字说明,证明过程或演算步骤)27. (2023·湖北省武汉市)如图,在四边形ABCD中,AD // BC,∠B=∠D,点E在BA的延长线上,连接CE.(1)求证:∠E=∠ECD;(2)若∠E=60°,CE平分∠BCD,直接写出△BCE的形状.28. (2023·湖北省鄂州市)如图,AB为⊙O的直径,E为⊙O上一点,点C为EB的中点,过点C作CD⊥AE,交AE的延长线于点D,延长DC交AB的延长线于点F.(1)求证:CD是⊙O的切线;(2)若DE=1,DC=2,求⊙O的半径长.29. (2023·湖北)如图,等腰△ABC内接于⊙O,AB=AC,BD是边AC上的中线,过点C作AB的平行线交BD 的延长线于点E,BE交⊙O于点F,连接AE,FC.(1)求证:AE为⊙O的切线;(2)若⊙O的半径为5,BC=6,求FC的长.30. (2023·湖北)如图,将边长为3的正方形ABCD沿直线EF折叠,使点B的对应点M落在边AD上(点M不与点A,D重合),点C落在点N处,MN与CD交于点P,折痕分别与边AB,CD交于点E,F,连接BM.(1)求证:∠AMB=∠BMP;(2)若DP=1,求MD的长.31. (2023·湖北省随州市)如图,AB是⊙O的直径,点E,C在⊙O上,点C是BE的中点,AE垂直于过C点的直线DC,垂足为D,AB的延长线交直线DC于点F.(1)求证:DC是⊙O的切线;(2)若AE=2,sin∠AFD=1,3①求⊙O的半径;②求线段DE的长.32. (2023·湖北省黄冈市)如图,△ABC中,以AB为直径的⊙O交BC于点D,DE是⊙O的切线,且DE⊥AC,垂足为E,延长CA交⊙O于点F.(1)求证:AB=AC;(2)若AE=3,DE=6,求AF的长.33. (2023·湖北省鄂州市)如图,点E是矩形ABCD的边BC上的一点,且AE=AD.(1)尺规作图(请用2B铅笔):作∠DAE的平分线AF,交BC的延长线于点F,连接DF.(保留作图痕迹,不写作法);(2)试判断四边形AEFD的形状,并说明理由.1.【答案】B【解析】解:∵正方体的表面展开图,相对的面之间一定隔着一个小正方形,且没有公共边和公共顶点,∴“城”字对面的字是“明”.故选:B.根据正方体的平面展开图的特点,相对的两个面中间一定隔着一个小正方形,且没有公共边和公共顶点,即“对面无临点”,依此来找相对面.本题主要考查了正方体相对两个面上的文字,熟练掌握正方体的表面展开图的特点是解题的关键.2.【答案】D【解析】解:选项A、B、C都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项D能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:D.根据中心对称图形的概念判断.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.本题考查的是中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与自身重合.3.【答案】B【解析】解:过点E作直线HI//AB.∵AB//CD,AB//HI,∴CD//HI.∴∠BGE=∠GEH=60°,∴∠HEF=∠GEF―∠GEH=90°―60°=30°.∴∠EFD=∠HEF=30°.故选:B.过点E作AB的平行线,利用平行线的性质即可求解.本题考查了垂线及平行线的性质,正确作出辅助线是解决本题的关键.4.【答案】C【解析】解:延长AB交EG于M,延长CD交FG于N,过G作GK//AB,∵AB//CD,∴GK//CD,∴∠KGM=∠EMB,∠KGN=∠DNF,∴∠KGM+∠KGN=∠EMB+∠DNF,∴∠EGF=∠EMB+∠DNF,∵∠ABE=80°,∠E=47°,∴∠EMB=∠ABE―∠E=33°,同理:∠DNF=33°,∴∠EGF=∠EMB+∠DNF=33°+33°=66°.故选:C.延长AB交EG于M,延长CD交FG于N,过G作GK//AB,得到GK//CD,推出∠KGM=∠EMB,∠KGN=∠DNF,得到∠EGF=∠EMB+∠DNF,由三角形外角的性质得到∠EMB=33°,∠DNF=33°,即可求出∠EGF的度数.本题考查平行线的性质,三角形外角的性质,关键是通过作辅助线,由平行线的性质,得到∠EGF=∠EMB+∠DNF,由三角形外角的性质求出∠EMB、∠DNF的度数,即可解决问题.5.【答案】C【解析】解:∵直线l1//l2,∠1=60°,∴∠2=180°―∠1=180°―60°=120°.故选:C.直接根据平行线的性质即可得出结论.本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解题的关键.6.【答案】C【解析】解:如图,由题意得,∠4=30°,a//b,∴∠3=∠1=70°,∵∠3=∠4+∠5=70°,∴∠5=40°,∴∠2=∠5=40°,故选:C.根据平行线的性质得到∠3=∠1=70°,三角形的外角的性质得到∠3=∠4+∠5=70°,由∠2=∠5即可解答.本题考查了平行线的性质,对顶角的性质,三角形外角定理,掌握平行线的性质是解题关键.7.【答案】C【解析】解:∵a//b,∠1=55°,∴∠ABC=∠1=55°,∵∠BAC=90°,∴∠2=180°―∠ABC―∠BAC=35°.故选:C.由平行线的性质可得∠ABC=∠1=55°,再由三角形的内角和即可求∠2.本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,内错角相等.8.【答案】B【解析】解:在△AEB和△DEC中,∠A=∠DAE=ED,∠AEB=∠DEC∴△AEB≌△DEC(ASA),∴EB=EC,∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°,如图,作BM⊥AC于点M,∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,∵AE=ED=3,∴CF =AF =4,∴AC =8,EC =5,∴BC =5,∵∠BCM =60°,∴∠MBC =30°,∴CM =52,BM =3CM =532,∴AM =AC ―CM =112,∴AB = AM 2+BM 2 (112)2+(5 32)2=7.故选:B .首先得出△AEB≌△DEC ,进而得出△EBC 为等边三角形,由已知得出EF ,BC 的长,进而得出CM ,BM 的长,再求出AM 的长,再由勾股定理求出AB 的长.此题主要考查了三角形的外接圆与外心,全等三角形的判定与性质,等边三角形的性质,勾股定理,含30度角的直角三角形,垂径定理等知识,得出CM ,BM 的长是解题关键.9.【答案】A【解析】解:如图,设BP 交CD 与点J ,过点J 作JK ⊥BD 于点K .∵四边形ABCD 是矩形,∴AB =CD =3,∠BCD =90°,∵CN ⊥BM ,∴∠CMB =∠CDN =90°,∴∠CBM +∠BCM =90°,∠BCM +∠DCN =90°,∴∠CBM =∠DCN ,∴△BMC∽△CDN ,∴BM CD =BC CN,∴BM ⋅CN =CD ⋅CB =3×4=12,∵∠BCD =90°,CD =3,BC =4,∴BD=CD2+BC2=32+42=5,由作图可知BP平分∠CBD,∵JK⊥BD,JC⊥BC,∴JK=JC,∵S△BCD=S△BDJ+S△BCJ,∴1 2×3×4=12×5×JK+12×4×JC,∴JC=KJ=43,∴BJ=CB2+JC2=42+(43)2=4103,∵cos∠CBJ=BMCB =BCBJ,∴BM4=44103,∴BM=6105,∵CN⋅BM=12,∴CN=10.故选:A.如图,设BP交CD与点J,过点J作JK⊥BD于点K.首先利用相似三角形的性质证明CN⋅BM=12,再想办法求出BM,可得结论.本题考查作图―基本作图,矩形的性质,角平分线的性质定理,勾股定理,相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.10.【答案】D【解析】解:根据作图可知:EF垂直平分BD,∴BO=DO,∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴∠EDO=∠FBO,∵∠BOF=∠DOE,∴△BOF≌△DOE(ASA),∴BF=DE,OE=OF,故B,C正确;无法证明DE=CD,故D错误;故选:D.根据作图可知:EF垂直平分BD,根据线段垂直平分线的性质得到BO=DO,根据平行四边形的性质得到AD=BC,AD//BC,根据全等三角形的性质得到BF=DE,OE=OF,故B,C正确;无法证明DE=CD,故D错误.本题考查了作图―基本作图,垂直平分线的性质,尺规作图,菱形的判定与性质,全等三角形的判定与性质以及勾股定理等知识,掌握菱形的判定与性质是解答本题的关键.11.【答案】C【解析】解:连接OD.在△ABC中,∠ABC=90°,∠ACB=30°,AB=4,∴BC=3AB=43,∴OC=OD=OB=23,∴∠DOB=2∠C=60°,∴S阴=S△ACB―S△COD―S扇形ODB=12×4×43―12×23×23×32―60π⋅(23)2360=83―33―2π=53―2π.故选:C.连接OD.解直角三角形求出∠DOB=60°,BC=43,再根据S阴=S△ACB―S△COD―S扇形ODB,求解即可.本题考查扇形的面积,解直角三角形,勾股定理等知识,解题的关键是学会利用分割法求阴影部分的面积.12.【答案】B【解析】【分析】过点C,作CF⊥AB交AB的延长线于点F,连接DE,根据圆的基本性质以及切线的性质,分别利用勾股定理找到DE和CD的关系,再根据sin C=DEDC求解即可.本题考查圆的切线的判定与性质,解直角三角形,以及锐角三角函数等,综合性较强,熟练运用圆的相关性质以及切线的性质等是解题关键.【解答】解:如图所示,过点C,作CF⊥AB交AB的延长线于点F,连接DE∵AD⊥AB,AB//CD,∴∠FAD=∠ADC=∠F=90∘,∴四边形ADCF为矩形,AF=DC,AD=FC,∴AB为⊙D的切线,由题意得BE为⊙D的切线,∴DE⊥BC,AB=BE,∵AB CD =13,∴设AB=BE=a,CD=3a,CE=x,则BF=AF―AB=CD―AB=2a,BC=BE+CE=a+x,在Rt△DEC中,DE2=CD2―CE2=9a2―x2,在Rt△BFC中,FC2=BC2―BF2=(a+x)2―(2a)2,∵DE=DA=FC,∴9a2―x2=(a+x)2―(2a)2,解得:x=2a或x=―3a(不合题意,合去),∴CE=2a,∴DE=CD2―CE2=9a2―4a2=5a,∴sin C=DEDC =5a3a=53,故选B.13.【答案】C【解析】解:在△ABC 中,∠ABC =90°,AB =3,BC =4,∴AC = AB 2+BC 2=5,∴△ABC 的周长=3+4+5=12,∵BD 平分△ABC 的周长,∴AB +AD =BC +CD =6,∴AD =3,CD =2,过D 作DE ⊥BC 于E ,∴AB//DE ,∴△CDE∽△CAB ,∴DE AB =CD AC =CE CB ,∴DE 3=25=CE 4,∴DE =65,CE =85,∴BE =125,∴BD = BE 2+DE 2= (125)2+(65)2=6 55,故选:C .根据勾股定理得到AC = AB 2+BC 2=5,求得△ABC 的周长=3+4+5=12,得到AD =3,CD =2,过D 作DE ⊥BC 于E ,根据相似三角形的性质得到DE =65,CE =85,根据勾股定理即可得到结论.本题考查了勾股定理,相似三角形的判定和性质,正确地作出辅助线是解题的关键.14.【答案】B【解析】解:如图所示:∵OB⊥AC,∴AD=12AC=1503m,∠AOC=2AOB,在Rt△AOD中,∵AD2+OD2=OA2,OA=OB,∴AD2+(OA―BD)2=OA2,∴(1503)2+(OA―150)2²=OA2,解得:OA=300m,∴sin∠AOB=ADOA =32,∴∠AOB=60°,∴∠AOC=120°,∴AC的长=120×300π180=200πm.故选:B.先根据垂径定理求出AD的长,由题意得OD=OA―BD,在Rt△AOD中利用勾股定理即可求出OA 的值,然后再利用三角比计算出AC所对的圆心角的度数,由弧长公式求出AC的长即可.本题考查的是垂径定理,勾股定理及弧长的计算公式,根据垂径定理得出AD的长,再由勾股定理求出半径是解答此题的关键,同时要熟记圆弧长度的计算公式.15.【答案】C【解析】解:左扭动矩形框架ABCD,只改变四边形的形状,四边形变成平行四边形,A不符合题意;此时对角线BD减小,对角线AC增大,B不合题意.BC边上的高减小,故面积变小,C符合题意,四边形的四条边不变,故周长不变,D不符合题意.故选:C.由题意可知左扭动矩形框架ABCD,四边形变成平行四边形,四边形的四条边不变,故周长不变,对角线BD减小,但是BC边上的高减小,故面积变小,故选C.本题考查矩形的性质和平行四边形的性质,熟悉性质是解题关键.16.【答案】D【解析】解:如图:作AB的垂直平分线MN,作BC的垂直平分线PQ,设MN与PQ相交于点O,连接OA,OB,OC,则点O是△ABC外接圆的圆心,由题意得:OA2=12+22=5,OC2=12+22=5,AC2=12+32=10,∴OA2+OC2=AC2,∴△AOC是直角三角形,∴∠AOC=90°,∵AO=OC=5,∴图中阴影部分的面积=扇形AOC的面积―△AOC的面积―△ABC的面积=90π×(5)2360―12OA⋅OC―12AB⋅1=5π4―12×5×5―12×2×1=5π4―52―1=5π4―72,故选:D.作AB的垂直平分线MN,作BC的垂直平分线PQ,设MN与PQ相交于点O,连接OA,OB,OC,则点O是△ABC外接圆的圆心,先根据勾股定理的逆定理证明△AOC是直角三角形,从而可得∠AOC=90°,然后根据图中阴影部分的面积=扇形AOC的面积―△AOC的面积―△ABC的面积,进行计算即可解答.本题考查了三角形的外接圆与外心,扇形面积的计算,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.17.【答案】B【解析】解:由题意知,底面圆的直径AB=4,故底面周长等于4π,设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得4π=nπ×6,180解得n=120°,所以展开图中∠ASC=120°÷2=60°,因为半径SA=SB,∠ASB=60°,故三角形SAB为等边三角形,又∵C为SB的中点,所以AC⊥SB,在直角三角形SAC中,SA=6,SC=3,根据勾股定理求得AC=33,所以蚂蚁爬行的最短距离为33.故选:B.要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.本题考查了平面展开―最短路径问题,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面周长,扇形的半径等于圆锥的母线长.本题就是把圆锥的侧面展开成扇形,“化曲面为平面”,用勾股定理解决.18.【答案】B【解析】解:∵AD=CD=8,∴OB⊥AC,在Rt△AOD中,OA=AD2+OD2=82+62=10,∴OB=10,∴BD=10―6=4.故选:B.根据垂径定理得OB⊥AC,在根据勾股定理得OA=AD2+OD2=82+62=10,即可求出答案.本题考查了垂径定理和勾股定理,由垂径定理得OB⊥AC是解题的关键.19.【答案】1【解析】解:由作图知PE 垂直平分OC ,PO 平分∠AOB ,∴OE =12OC =12×2 3= 3,∠PEO =90°,∵∠AOB =60°,∴∠POE =∠AOP =12∠AOB =30°,∴EP =OE ×tan30°=3× 33=1,∵CO 平分∠AOB ,∴点P 到OA 的距离=PE =1.故答案为:1.由作图知PE 垂直平分OC ,CO 平分∠AOB ,根据线段垂直平分线的性质得到OE =12OC =12×2 3= 3,∠PEO =90°,根据角平分线的定义得到∠POD =∠AOC =12∠AOB =30°,根据三角函数的定义得到EP =OE ×tan30°= 3× 33=1,根据角平分线的性质即可得到结论.此题主要考查了作图―基本作图.以及角平分线的性质,关键是掌握角平分线的性质.20.【答案】 m 2+n 2【解析】【分析】先根据折叠的性质可得S △BDE =S △FDE ,∠F =∠B =60∘,从而可得S △FHG =S △ADG +S ΔCHE ,再根据相似三角形的判定可证△ADG∽△FHG ,△CHE∽△FHG ,根据相似三角形的性质可得S △ADG S △FHG=(DG GH )2=m2GH 2,S △CHE S △FHG =(EH GH )2=n2GH 2,然后将两个等式相加即可得.本题考查了等边三角形的性质、折叠的性质、相似三角形的判定与性质等知识点,,熟练掌握相似三角形的判定与性质是解题关键.【解答】解:∵△ABC 是等边三角形,∴∠A =∠B =∠C =60∘,∵折叠△BDE 得到△FDE ,∴△BDE≌△FDE ,∴S△BDE=S△FDE,∠F=∠B=60∘=∠A=∠C,∵DE平分等边△ABC的面积,∴S梯形ACDE=S△BDE=S△FDE,∴S△FHG=S△ADG+SΔCHE,又∵∠AGD=∠FGH,∠CHE=∠FHG,∴△ADG∽△FHG,△CHE∽△FHG,∴S△ADG S△FHG =(DGGH)2=m2GH2,S△CHES△FHG=(EHGH)2=n2GH2,∴S△ADG S△FHG +S△CHES△FHG=m2+n2GH2=S△ADG+S△CHES△FHG=1,∴GH2=m2+n2,解得GH=m2+n2,GH=―m2+n2(不符合题意,舍去),故答案为m2+n2.21.【答案】m2+n2【解析】解:∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∵折叠△BDE得到△FDE,∴△BDE≌△FDE,∴S△BDE=S△FDE,∠F=∠B=60°=∠A=∠C,∵DE平分等边△ABC的面积,∴图形ACED的面积=S△BDE=S△FDE,∴S△FHG=S△ADG+S△CHE,∵∠AGD=∠FGH,∠CHE=∠FHG,∴△ADG∽△FHG,△CHE∽△FHG,∴S△ADG S△FHG =(DGGH)2=m2GH2,S△CHES△FHG=(EHGH)2=n2GH2,∴S△ADG S△FHG +S△CHES△FHG=m2+n2GH2=S△ADG+S△CHES△FHG=1,∴GH2=m2+n2,解得GH=m2+n2或GH=―m2+n2(不合题意舍去),故答案为:m2+n2.根据等边三角形的性质得到∠A=∠B=∠C=60°,根据折叠的性质得到△BDE≌△FDE,根据已知条件得到图形ACED的面积=S△BDE=S△FDE,求得S△FHG=S△ADG+S△CHE,根据相似三角形的判定和性质定理即可得到结论.本题考查了等边三角形的性质,折叠的性质,相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键.22.【答案】3【解析】解:∵CD为Rt△ABC斜边AB上的中线,CD=5,∴AB=2CD=10,∵∠ACB=90°,AC=8,∴BC=AB2―AC2=6,∵E为AC的中点,∴AE=CE,∴DE是△ABC的中位线,BC=3,∴DE=12故答案为:3.根据直角三角形斜边上的中线的性质得到AB=2CD=10,根据勾股定理得到BC=AB2―AC2 =6,根据三角形中位线定理即可得到结论.本题考查了直角三角形斜边上的中线,勾股定理,三角形中位线定理,熟练掌握直角三角形的性质是解题的关键.23.【答案】16【解析】解:∵四边形ABCD是平行四边形,∴AB//CD,∠AED=∠A′ED,由折叠得∠ADE=∠A′DE,AD=A′D,AE=A′E,∴∠ADE=∠AED,∴AD=AE,∴AD=AE=A′D=A′E,∴AB―BE=CD―A′D,∴A′C=BE,∴四边形A′EBC是平行四边形,∴四边形A′EBC的周长=2(A′C+A′E)=2(A′C+A′D)=2CD=16.故答案为:16.可证∠ADE=∠AED,得到AD=AE,再证四边形A′EBC是平行四边形,可得四边形A′EBC的周长=2(A′C+A′E),即可求解.本题主要考查了平行四边形的性质和判定,折叠的性质,掌握相关的判定方法及性质是解决问题的关键.24.【答案】6【解析】解:连接AC交BD于点O,∵四边形ABCD是菱形,∴AC⊥BD,AB=BC=CD=AD,∵菱形的面积等于24,BD=8,∴AC⋅BD2=24,∴AC=6,∵BE=BF,∴∠BEF=∠BFE=180°―∠EBF,∵BA=BC,∴∠BAC=∠BCA=180°―∠ABC,∴∠BEF=∠BAC,∴EF//AC,∴△BEF∽△BAC,∴EF AC =BEBA,∵BA=DA,∴EF AC =BEAD,同理可证△DHG∽△DAC,∴GH AC =DHDA,∴EF AC +GHAC=BEAD+DHAD,即EF+GHAC =BE+DHAD=AH+DHAD=ADAD=1,∴EF+GH=AC=6,故答案为:6.连接AC交BD于点O,先根据菱形的面积公式计算出对角线AC的长,再证△BEF∽△BAC,得出EFAC=BEBA ,同理可证△DHG∽△DAC,得出GHAC=DHDA,两式相加,即可求出EF+GH的值.本题考查了菱形的性质,相似三角形的判定与性质,求出EF+GH=AC是此题的关键.25.【答案】35°【解析】解:连接OD,OE,OB,OB交ED于点G,∵∠ACB=70°,∴∠CAB+∠CBA=110°,∵点O为△ABC的内切圆的圆心,∴∠OAB+∠OBA=55°,∴∠AOB=125°,∵OE=OD,BD=BE,∴OB垂直平分DE,∴∠OGE=90°,∴∠AFD=∠AOB―∠OGF=125°―90°=35°,故答案为:35°.根据内切圆的定义和切线长定理,可以计算出∠AOB的度数和∠OGF的度数,然后即可计算出∠AFD 的度数.本题考查三角形内切圆、切线长定理,解答本题的关键是明确题意,利用数形结合的思想解答.26.【答案】30°∵OA⊥BC,∴AC=AB,∴∠AOC=∠AOB=60°,∠AOC=30°,∴∠ADC=12故答案为:30°.连接OC,根据垂径定理及圆心角、弧、弦的关系求得∠AOC的度数,然后根据同弧所对的圆周角等于圆心角的一半即可求得答案.本题考查圆的有关性质的应用,结合已知条件求得∠AOC的度数是解题的关键.27.【答案】(1)证明:∵AD // BC,∴∠EAD=∠B.∵∠B=∠D,∴∠EAD=∠D.∴BE // CD,∴∠E=∠ECD.(2)等边三角形.【解析】(1)因为AD // BC,所以∠EAD=∠B,因为∠B=∠D,所以利用等量代换得到∠EAD=∠D,所以BE // CD,即可得证;(2)因为CE平分∠BCD,所以∠BCE=∠ECD,又因为∠E=∠ECD,推出∠E=∠BCE,∠E=60°,所以说明△BCE是等边三角形.本题考查了平行线的判定和性质,以及角平分线的定义和等边三角形的判定.∵点C为EB的中点,∴EC=BC,∴∠EAC=∠BAC,∵OA=OC,∴∠BAC=∠OCA,∴∠EAC=∠OCA,∴AE//OC,∴∠ADC=∠OCF,∵CD⊥AE,∴∠ADC=90°,∴∠OCF=90°,即OC⊥DF,又OC为⊙O的半径,∴CD是⊙O的切线;(2)解:连接CE,BC,由(1)知CD是⊙O的切线,∴CD2=DE⋅AD,∵DE=1,DC=2,∴AD=4,在Rt△ADC中,由勾股定理得AC=AD2+CD2=42+22=25,在Rt△DCE中,由勾股定理得CE=CD2+DE2=22+12=5,∵点C是EB的中点,∴EC=BC,∴EC=BC=5,∵AB为⊙O的直径,∴∠ACB=90°,由勾股定理得AB=AC2+BC2=(25)2+(5)2=5,∴⊙O的半径长是2.5.【解析】(1)连接OC,由等弧所对的圆周角相等得出∠EAC=∠BAC,根据同圆的半径相等得出∠BAC=∠OCA,于是有∠EAC=∠OCA,可得出AE//OC,再根据CD⊥AE,即可得出OC⊥DF,从而问题得证;(2)连接CE,BC,先根据切割线定理求出AD的长,然后由勾股定理求出AC、CE的长,再根据等弧所对的弦相等得出BC=CE,在Rt△ACB中根据勾股定理求出AB的长,即可求出⊙O的半径.本题考查了切线的判定与性质,圆周角定理的推论,勾股定理,弧、弦之间的关系定理,熟练掌握这些定理是解题的关键.29.【答案】(1)证明,∵AB//CE,∴∠ABD=∠CED,∠BAD=∠ECD,又∵AD=CD,∴△ABD≌△CED( AAS),∴AB=CE.∴四边形ABCE是平行四边形.∴AE//BC.作AH⊥BC于H.∵AB =AC ,∴AH 为BC 的垂直平分线.∴点O 在AH 上.∴AH ⊥AE .即OA ⊥AE ,又点A 在⊙O 上,∴AE 为⊙O 的切线;(2)解:过点D 作DM ⊥BC 于M ,连接OB ,∵AH 为BC 的垂直平分线,∴BH =HC =12BC =3,∴OH = OB 2―BH 2= 52―32=4,∴AH =OA +OH =5+4=9,∴AB =AC = AH 2+CH 2= 92+32=3 10,∴CD =12AC =3210,∵AH ⊥BC ,DM ⊥BC ,∴DM//AH∴△CMD∽△CHA ,又AD =CD ,∴DM AH=CM CH =CD CA =12,∴MH =12HC =32,DM =12AH =92,∴BM =BH +MH =3+32=92,∴BD = BM 2+DM 2= (92)2+(92)2=92 2,∵∠CFD =∠BAD ,∠FDC =∠ADB ,∴△FCD∽△ABD ,∴FC AB =CD BD,∴FC 3 10=32 10922,∴FC =5 2.【解析】(1)证明△ABD≌△CED(AAS),得出AB =CE ,则四边形ABCE 是平行四边形,AE//BC ,作AH ⊥BC 于H.得出AH 为BC 的垂直平分线,则OA ⊥AE ,又点A 在⊙O 上,即可得证;(2)过点D 作DM ⊥BC 于M ,连接OB ,垂径定理得出BH =HC =12BC =3,勾股定理得OH =4,进而可得AH ,勾股定理求得AB ,证明DM//AH ,可得△CMD∽△CHA ,根据相似三角形的性质得出MH ,DM ,然后求得BM ,勾股定理求得BD ,证明△FCD∽△ABD ,根据相似三角形的性质即可求解.本题考查了切线的判定,垂径定理,相似三角形的性质与判定,熟练掌握相似三角形的性质与判定是解题的关键.30.【答案】(1)证明:点B 、M 关于线段EF 对称,由翻折的性质可知:∠MBC =∠BMP ,∵ABCD 是正方形,∴AD//BC ,∴∠MBC =∠AMB ,∴∠AMB =∠BMP(等量代换).(2)解:设MD =x ,则AM =3―x ,设AE =y ,则EM =EB =3―y .在Rt △AEM 中,AE 2+AM 2=EM 2,∴y 2+(3―x )2=(3―y )2,∴y =―16x 2+x.即AE =―16x 2+x .∵∠ABC =∠EMN =90°,∴∠AME +∠DMP =90°,又∵∠AEM +∠AME =90°,∴∠AEM =∠DMP ,∠A =∠D ,∴△AEM∽△DMP .∴DP AM =MD AE ,13―x =x ―16x 2+x ,整理得:56x 2=2x ,∴x =125.∴MD =125. 【解析】(1)利用平行线内错角相等和翻折前后对应角相等,等量代换即可证明;(2)利用相似列出关系式DP AM =MD AE,利用边的关系代入到关系式可求出.本题考查了翻折的性质以及相似三角的判定,勾股定理的应用,掌握一线三垂直的相似是本题突破的关键.31.【答案】(1)证明:连接OC ,∵AD ⊥DF ,∴∠D =90°,∵点C 是BE 的中点,∴CE =CB ,∴∠DAC =∠CAB ,∴OA =OC ,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AD//OC,∴∠OCF=∠D=90°,∵OC是⊙O的半径,∴DC是⊙O的切线;(2)解:①过点O作OG⊥AE,垂足为G,∴AG=EG=12AE=1,∵OG⊥AD,∴∠AGO=∠DGO=90°,∵∠D=∠AGO=90°,∴OG//DF,∴∠AFD=∠AOG,∵sin∠AFD=13,∴sin∠AOG=sin∠AFD=13,在Rt△AGO中,AO=AGsin∠AOG =113=3,∴⊙O的半径为3;②∵∠OCF=90°,∴∠OCD=180°―∠OCF=90°,∵∠OGE=∠D=90°,∴四边形OGDC是矩形,∴OC=DG=3,∵GE=1,∴DE=DG―GE=3―1=2,∴线段DE的长为2.【解析】(1)连接OC,根据垂直定义可得∠D=90°,根据已知易得CE=CB,从而利用等弧所对的圆周角相等可得∠DAC=∠CAB,然后利用等腰三角形的性质可得∠CAB=∠OCA,从而可得∠DAC=∠OCA,进而可得AD//OC,最后利用平行线的性质可得∠OCF=∠D=90°,即可解答;(2)①过点O作OG⊥AE,垂足为G,根据垂径定理可得AG=EG=1,再根据垂直定义可得∠AGO=∠DGO=90°,从而可得∠D=∠AGO=90°,进而可得OG//DF,然后利用平行线的性质可,最后在Rt△AGO中,利用锐角三角函数的得∠AFD=∠AOG,从而可得sin∠AOG=sin∠AFD=13定义进行计算即可解答;②根据平角定义可得∠OCD=90°,从而可得四边形OGDC是矩形,然后利用矩形的性质可得OC=DG=3,从而利用线段的和差关系进行计算,即可解答.本题考查了切线的判定与性质,圆周角定理,垂径定理,解直角三角形,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.32.【答案】(1)证明:连接OD,∵DE是⊙O的切线,∴半径OD⊥DE,∵DE⊥AC,∴OD//AC,∴∠C=∠ODB,∵OD=OB,∴∠B=∠ODB,∴∠B=∠C,∴AB=AC;(2)解:连接DF,DA,∵∠F=∠B,∠B=∠C,∴∠F=∠C,∴DF=DC,∵DE⊥CF,∴FE=EC,∵AB是圆的直径,∴∠ADB=90°,∴∠ADC=90°,∠ADE+∠CDE=90°,∵DE⊥AC,∴∠C+∠CDE=90°,∴∠C=∠ADE,∵∠AED=∠CDE=90°,∴△DAE∽△CDE,∴DE:CE=AE:DE,∵AE=3,DE=6,∴6:CE=3:6,∴CE=12,∴EF=EC=12,∴AF=EF―AE=12―3=9.【解析】(1)连接OD,由切线的性质得到半径OD⊥DE,又DE⊥AC,因此OD//AC,推出∠C=∠ODB,由等腰三角形的性质得到∠B=∠ODB,故∠B=∠C,即可证明AB=AC;(2)连接DF,DA,由圆周角定理得到∠F=∠B,而∠B=∠C,得到∠F=∠C,推出DF=DC,因此CE=FE,由△DAE∽△CDE,得到DE:CE=AE:DE,即可求出CE=12,于是得到AF=EF―AE=12―3=9.本题考查切线的性质,圆周角定理,相似三角形的判定和性质,等腰三角形的判定和性质,关键是由切线的性质推出OD//AC;由等腰三角形的性质得到EF=CE,由△DAE∽△CDE,求出CE的长.33.【答案】解:(1)如图所示;(2)∵四边形ABCD是矩形,∴AD//BF,∴∠DAF=∠AFC,∵AF平分∠DAE,∴∠DAF=∠FAE,∴∠FAE=∠AFC,∴EA=EF,∵AE=AD,∴AD=EF,∴四边形ABCD是平行四边形,∵AE=AD,∴四边形ABCD是菱形.【解析】(1)按作角的平分线步骤作图即可;(2)根据四边相等的四边形是菱形进行判断即可.本题考查了作图―复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了矩形的性质.。
2022年湖北省荆州市中考数学试卷和答案解析
2022年湖北省荆州市中考数学试卷和答案解析一、选择题(本大题共有10个小题,每小题3分,共30分)1.(3分)化简a﹣2a的结果是()A.﹣a B.a C.3a D.02.(3分)实数a,b,c,d在数轴上对应点的位置如图,其中有一对互为相反数,它们是()A.a与d B.b与d C.c与d D.a与c 3.(3分)如图,直线l1∥l2,AB=AC,∠BAC=40°,则∠1+∠2的度数是()A.60°B.70°C.80°D.90°4.(3分)从班上13名排球队员中,挑选7名个头高的参加校排球比赛.若这13名队员的身高各不相同,其中队员小明想知道自己能否入选,只需知道这13名队员身高数据的()A.平均数B.中位数C.最大值D.方差5.(3分)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km和10km的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min到达基地,求甲、乙的速度.设甲的速度为3xkm/h,则依题意可列方程为()A.+=B.+20=C.﹣=D.﹣=206.(3分)如图是同一直角坐标系中函数y1=2x和y2=的图象.观察图象可得不等式2x>的解集为()A.﹣1<x<1B.x<﹣1或x>1C.x<﹣1或0<x<1D.﹣1<x<0或x>17.(3分)关于x的方程x2﹣3kx﹣2=0实数根的情况,下列判断正确的是()A.有两个相等实数根B.有两个不相等实数根C.没有实数根D.有一个实数根8.(3分)如图,以边长为2的等边△ABC顶点A为圆心、一定的长为半径画弧,恰好与BC边相切,分别交AB,AC于D,E,则图中阴影部分的面积是()A.﹣B.2﹣πC.D.﹣9.(3分)如图,在平面直角坐标系中,点A,B分别在x轴负半轴和y轴正半轴上,点C在OB上,OC:BC=1:2,连接AC,过点O作OP∥AB交AC的延长线于P.若P(1,1),则tan∠OAP 的值是()A.B.C.D.310.(3分)如图,已知矩形ABCD的边长分别为a,b,进行如下操作:第一次,顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1;第二次,顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2;…如此反复操作下去,则第n次操作后,得到四边形A n B n∁n D n的面积是()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)一元二次方程x2﹣4x+3=0配方为(x﹣2)2=k,则k 的值是.12.(3分)如图,点E,F分别在▱ABCD的边AB,CD的延长线上,连接EF,分别交AD,BC于G,H.添加一个条件使△AEG ≌△CFH,这个条件可以是.(只需写一种情况)13.(3分)若3﹣的整数部分为a,小数部分为b,则代数式(2+a)•b的值是.14.(3分)如图,在Rt△ABC中,∠ACB=90°,通过尺规作图得到的直线MN分别交AB,AC于D,E,连接CD.若CE=AE =1,则CD=.15.(3分)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为cm(玻璃瓶厚度忽略不计).16.(3分)规定;两个函数y1,y2的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数y1=2x+2与y2=﹣2x+2的图象关于y轴对称,则这两个函数互为“Y函数”.若函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为.三、参考答案题(本大题共有8个小题,共72分)17.(8分)已知方程组的解满足2kx﹣3y<5,求k的取值范围.18.(8分)先化简,再求值:(﹣)÷,其中a =()﹣1,b=(﹣2022)0.19.(8分)为弘扬荆州传统文化,我市将举办中小学生“知荆州、爱荆州、兴荆州”知识竞赛活动.某校举办选拔赛后,随机抽取了部分学生的成绩,按成绩(百分制)分为A,B,C,D四个等级,并绘制了如下不完整的统计图表.人数等级成绩(x)A90<xm≤100B80<x24≤90C70<x14≤80D x≤7010根据图表信息,回答下列问题:(1)表中m=;扇形统计图中,B等级所占百分比是,C等级对应的扇形圆心角为度;(2)若全校有1400人参加了此次选拔赛,则估计其中成绩为A 等级的共有人;(3)若全校成绩为100分的学生有甲、乙、丙、丁4人,学校将从这4人中随机选出2人参加市级竞赛.请通过列表或画树状图,求甲、乙两人至少有1人被选中的概率.20.(8分)如图,在10×10的正方形网格中,小正方形的顶点称为格点,顶点均在格点上的图形称为格点图形,图中△ABC为格点三角形.请按要求作图,不需证明.(1)在图1中,作出与△ABC全等的所有格点三角形,要求所作格点三角形与△ABC有一条公共边,且不与△ABC重叠;(2)在图2中,作出以BC为对角线的所有格点菱形.21.(8分)荆州城徽“金凤腾飞”立于古城东门外.如图,某校学生测量其高AB(含底座),先在点C处用测角仪测得其顶端A的仰角为32°,再由点C向城徽走6.6m到E处,测得顶端A的仰角为45°.已知B,E,C三点在同一直线上,测角仪离地面的高度CD=EF=1.5m,求城徽的高AB.(参考数据:sin32°≈0.530,cos32°≈0.848,tan32°≈0.625).22.(10分)小华同学学习函数知识后,对函数通过列表、描点、连线,画出了如图1所示的图象.x…﹣4﹣3﹣2﹣1﹣﹣﹣01234…y…12410﹣4﹣2﹣﹣1…请根据图象参考答案:(1)【观察发现】①写出函数的两条性质:;;②若函数图象上的两点(x1,y1),(x2,y2)满足x1+x2=0,则y1+y2=0一定成立吗?.(填“一定”或“不一定”)(2)【延伸探究】如图2,将过A(﹣1,4),B(4,﹣1)两点的直线向下平移n个单位长度后,得到直线l与函数y=﹣(x≤﹣1)的图象交于点P,连接PA,PB.①求当n=3时,直线l的解析式和△PAB的面积;②直接用含n的代数式表示△PAB的面积.23.(10分)某企业投入60万元(只计入第一年成本)生产某种产品,按网上订单生产并销售(生产量等于销售量).经测算,该产品网上每年的销售量y(万件)与售价x(元/件)之间满足函数关系式y=24﹣x,第一年除60万元外其他成本为8元/件.(1)求该产品第一年的利润w(万元)与售价x之间的函数关系式;(2)该产品第一年利润为4万元,第二年将它全部作为技改资金再次投入(只计入第二年成本)后,其他成本下降2元/件.①求该产品第一年的售价;②若第二年售价不高于第一年,销售量不超过13万件,则第二年利润最少是多少万元?24.(12分)如图1,在矩形ABCD中,AB=4,AD=3,点O是边AB上一个动点(不与点A重合),连接OD,将△OAD沿OD折叠,得到△OED;再以O为圆心,OA的长为半径作半圆,交射线AB于G,连接AE并延长交射线BC于F,连接EG,设OA =x.(1)求证:DE是半圆O的切线:(2)当点E落在BD上时,求x的值;(3)当点E落在BD下方时,设△AGE与△AFB面积的比值为y,确定y与x之间的函数关系式;(4)直接写出:当半圆O与△BCD的边有两个交点时,x的取值范围.参考答案与解析一、选择题(本大题共有10个小题,每小题3分,共30分)1.【参考答案】解:a﹣2a=(1﹣2)a=﹣a.故选:A.【解析】本题主要考查合并同类项,参考答案的关键是对合并同类项的法则的掌握.2.【参考答案】解:∵c<0,d>0,|c|=|d|,∴c,d互为相反数,故选:C.【解析】本题考查了相反数,实数与数轴,掌握相反数的两个点位于原点的两侧,且到原点的距离相等是解题的关键.3.【参考答案】解:过点C作CD∥l1,如图,∵l1∥l2,∴l1∥l2∥CD,∴∠1=∠BCD,∠2=∠ACD,∴∠1+∠2=∠BCD+∠ACD=∠ACB,∵AB=AC,∴∠ACB=∠ABC,∵∠BAC=40°,∴∠ACB=(180°﹣∠BAC)=70°,∴∠1+∠2=70°.故选:B.【解析】本题主要考查等腰三角形的性质,平行线的性质,参考答案的关键是由平行线的性质得∠1+∠2=∠ACB.4.【参考答案】解:共有13名排球队员,挑选7名个头高的参加校排球比赛,所以小明需要知道自己是否入选.我们把所有同学的身高按大小顺序排列,第7名学生的身高是这组数据的中位数,所以小明知道这组数据的中位数,才能知道自己是否入选.故选:B.【解析】本题考查了用中位数的意义解决实际问题.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.5.【参考答案】解:由题意可知,甲的速度为3xkm/h,则乙的速度为4xkm/h,+=,即+=,故选:A.【解析】本题考查由实际问题抽象出分式方程,参考答案本题的关键是明确题意,列出相应的分式方程.6.【参考答案】解:由图象,函数y1=2x和y2=的交点横坐标为﹣1,1,∴当﹣1<x<0或x>1时,y1>y2,即2x>,故选:D.【解析】本题主要考查一次函数和反比例函数的应用,掌握一次函数和反比例函数图象的性质,利用数形结合思想解题是关键.7.【参考答案】解:∵关于x的方程x2﹣3kx﹣2=0根的判别式Δ=(﹣3k)2﹣4×1×(﹣2)=9k2+8>0,∴x2﹣3kx﹣2=0有两个不相等实数根,故选:B.【解析】本题考查一元二次方程根的判别式,一元二次方程ax2+bx+c=0(a≠0)的根与Δ=b2﹣4ac有如下关系:①当Δ>0时,方程有两个不相等的实数根;②当Δ=0时,方程有两个相等的实数根;③当Δ<0时,方程无实数根.上面的结论反过来也成立.8.【参考答案】解:由题意,以A为圆心、一定的长为半径画弧,恰好与BC边相切,设切点为F,连接AF,则AF⊥BC.在等边△ABC中,AB=AC=BC=2,∠BAC=60°,∴CF=BF=1.在Rt△ACF中,AF==,∴S阴影=S△ABC﹣S扇形ADE=×2×﹣=﹣,故选:D.【解析】本题主要考查了等边三角形的性质,求扇形面积,理解切线的性质,将阴影部分的面积转化为三角形的面积﹣扇形的面积是解题的关键.9.【参考答案】解:如图,过点P作PQ⊥x轴于点Q,∵OP∥AB,∴∠CAB=∠CPO,∠ABC=∠COP,∴△OCP∽△BCA,∴CP:AC=OC:BC=1:2,∵∠AOC=∠AQP=90°,∴CO∥PQ,∴OQ:AO=CP:AC=1:2,∵P(1,1),∴PQ=OQ=1,∴AO=2,∴tan∠OAP===.故选:C.【解析】本题考查了相似三角形的判定与性质,锐角三角函数的定义,根据平行线分线段成比例定理得到OQ:AO=CP:AC=1:2是解题的关键.10.【参考答案】解:如图,连接A1C1,D1B1,∵顺次连接矩形ABCD各边的中点,得到四边形A1B1C1D1,∴四边形A1BCC1是矩形,∴A1C1=BC,A1C1∥BC,同理,B1D1=AB,B1D1∥AB,∴A1C1⊥B1D1,∴S1=ab,∵顺次连接四边形A1B1C1D1各边的中点,得到四边形A2B2C2D2,∴C2D2=C1,A2D2=B1D1,∴S2=C1×B1D1=ab,……依此可得S n=,故选:A.【解析】本题主要考查了矩形的性质,三角形中位线定理等知识,通过计算S1、S2发现规律是解决问题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11.【参考答案】解:∵x2﹣4x+3=0,∴x2﹣4x=﹣3,∴x2﹣4x+4=﹣3+4,∴(x﹣2)2=1,∵一元二次方程x2﹣4x+3=0配方为(x﹣2)2=k,∴k=1,故答案为:1.【解析】本题考查解一元二次方程—配方法,参考答案本题的关键是明确题意,会用配方法将方程变形.12.【参考答案】解:添加BE=DF.∵四边形ABCD是平行四边形,∴AB∥CD,∠A=∠C,AB=CD,∴∠E=∠F,∵BE=DF,∴BE+AB=CD+DF,即AE=CF,在△AEG和△CFH中,,∴△AEG≌△CFH(ASA).故答案为:BE=DF(答案不唯一).【解析】本题考查了平行四边形的性质,全等三角形的判定,平行线的性质,熟练掌握平行四边形的性质是解题的关键.13.【参考答案】解:∵1<<2,∴1<3﹣<2,∵若3﹣的整数部分为a,小数部分为b,∴a=1,b=3﹣﹣1=2﹣,∴(2+a)•b=(2+)(2﹣)=2,故答案为:2.【解析】本题考查了估算无理数的大小的应用,解题的关键是求出a、b的值.14.【参考答案】解:如图,连接BE,∵CE=AE=1,∴AE=3,AC=4,而根据作图可知MN为AB的垂直平分线,∴AE=BE=3,在Rt△ECB中,BC==2,∴AB==2,∵CD为直角三角形ABC斜边上的中线,∴CD=AB=.故答案为:.【解析】本题主要考查了直角三角形的斜边上的中线的性质,同时也利用勾股定理进行计算.15.【参考答案】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),由垂径定理得:AM=DM=AD=6(cm),在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,即62+(12﹣r)2=r2,解得:r=7.5,即球的半径为7.5cm,故答案为:7.5.【解析】本题考查了垂径定理的应用以及勾股定理的应用等知识,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.16.【参考答案】解:∵函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的“Y函数”图象与x轴只有一个交点,∴函数y=kx2+2(k﹣1)x+k﹣3(k为常数)的图象与x轴也只有一个交点,当k=0时,函数解析为y=﹣2x﹣3,它的“Y函数”解析式为y =2x﹣3,它们的图象与x轴只有一个交点,当k≠0时,此函数是二次函数,∵它们的图象与x轴都只有一个交点,∴它们的顶点分别在x轴上,∴=0,解得:k=﹣1,∴原函数的解析式为y=﹣x2﹣4x﹣4=﹣(x+2)2,∴它的“Y函数”解析式为y=﹣(x﹣2)2=﹣x2+4x﹣4,综上,“Y函数”的解析式为y=2x﹣3或y=﹣x2+4x﹣4,故答案为:y=2x﹣3或y=﹣x2+4x﹣4.【解析】本题考查了新定义,利用待定系数法求一次函数及二次函数的解析式,理解题意,利用分类讨论的思想是解题是关键.三、参考答案题(本大题共有8个小题,共72分)17.【参考答案】解:①+②得:2x=4,∴x=2,①﹣②得:2y=2,∴y=1,代入2kx﹣3y<5得:4k﹣3<5,∴k<2.答:k的取值范围为:k<2.【解析】本题考查了解二元一次方程组,解一元一次不等式,解二元一次方程组的基本思路是消元,把二元方程转化为一元是解题的关键.18.【参考答案】解:原式=[﹣]•=•﹣•=﹣==,∵a=()﹣1=3,b=(﹣2022)0=1,∴原式==.【解析】本题考查分式化简求值,解题的关键是掌握分式基本性质,将分式通分和约分.19.【参考答案】解:(1)抽取的学生人数为:10÷=60(人),∴m=60﹣24﹣14﹣10=12,扇形统计图中,B等级所占百分比是:24÷60×100%=40%,C 等级对应的扇形圆心角为:360°×=84°,故答案为:12,40%,84;(2)估计其中成绩为A等级的共有:1400×=280(人),故答案为:280;(3)画树状图如下:共有12种等可能的结果,其中甲、乙两人至少有1人被选中的结果有10种,∴甲、乙两人至少有1人被选中的概率为=.【解析】本题考查的是用树状图法求概率以及统计表和扇形统计图等知识.树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.【参考答案】解:(1)如图1中,△ABD1,△ABD2,△ACD3,△ACD4,△CBD5即为所求;(2)如图2中,菱形ABDC,菱形BECF即为所求.【解析】本题考查作图﹣复杂作图,全等三角形的判定,菱形的判定和性质等知识,解题的关键是掌握全等三角形的判定,菱形的判定,属于中考常考题型.21.【参考答案】解:延长DF交AB于点G,则∠AGF=90°,DF=CE=6.6米,CD=EF=BG=1.5米,设FG=x米,∴DG=FG+DF=(x+6.6)米,在Rt△AGF中,∠AFG=45°,∴AG=FG•tan45°=x(米),在Rt△AGD中,∠ADG=32°,∴tan32°==≈0.625,∴x=11,经检验:x=11是原方程的根,∴AB=AG+BG=11+1.5=12.5(米),∴城徽的高AB约为12.5米.【解析】本题考查了解直角三角形的应用﹣仰角俯角问题,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.22.【参考答案】解:(1)①由图象知:函数有最大值为4,当x>0时,y随x的增大而增大(答案不唯一);故答案为:函数有最大值为4,当x>0时,y随x的增大而增大(答案不唯一);②假设x1=﹣,则y1=1,∵x1+x2=0,∴x2=,∴y2=﹣8,∴y1+y2=0不一定成立,故答案为:不一定;(2)①设直线AB的解析式为y=kx+b,则,解得,∴直线AB的解析式为y=﹣x+3,当n=3时,直线l的解析式为y=﹣x+3﹣3=﹣x,设直线AB与y轴交于C,则△PAB的面积=△AOB的面积,∴S△AOB=S△AOC+S△BOC===,∴△PAB的面积为;②设直线l与y轴交于D,∵l∥AB,∴△PAB的面积=△ABD的面积,由题意知,CD=n,∴S△ABD=S△ACD+S△BCD==.∴△PAB的面积为.【解析】本题是反比例函数综合题,主要考查了函数图象的性质,待定系数法求函数解析式,平移的性质,三角形的面积等知识,利用平行线进行等面积转化是解题的关键.23.【参考答案】解:(1)根据题意得:w=(x﹣8)(24﹣x)﹣60=﹣x2+32x﹣252;(2)①∵该产品第一年利润为4万元,∴4=﹣x2+32x﹣252,解得:x=16,答:该产品第一年的售价是16元.②∵第二年产品售价不超过第一年的售价,销售量不超过13万件,∴,解得11≤x≤16,设第二年利润是w'万元,w'=(x﹣6)(24﹣x)﹣4=﹣x2+30x﹣148,∵抛物线开口向下,对称轴为直线x=15,又11≤x≤16,∴x=11时,w'有最小值,最小值为(11﹣6)×(24﹣11)﹣4=61(万元),答:第二年的利润至少为61万元.【解析】本题考查二次函数的应用、一元二次方程的应用等知识,解题的关键是理解题意,学会构建方程或函数解决问题,属于中考常考题型.24.【参考答案】(1)证明:∵四边形ABCD是矩形,∴∠DAO=90°,∵将△OAD沿OD折叠,得到△OED,∴∠OED=∠DAO=90°,∴OE⊥DE,∵OE是半径,∴DE是⊙O的切线;(2)解:如图2中,当点E落在BD上时,在Rt△ADB中,∠DAB=90°,AD=3,AB=4,∴BD===5,∵S△ADB=S△ADO+S△BDO,∴×3×4=×3×x+×5×x,∴x=.(3)解:图2中,当点E落在BD上时,∵DA=DE,OA=OE,∴OD垂直平分线段AE,∵•AD•AO=•DO•AJ,∴AJ=,∴AE=2AJ=,∵AG是直径,∴∠AEG=∠ABF=90°,∵∠EAG=∠BAF,∴△AEG∽△ABF,∴y==()2==(0<x<);(4)当⊙O与CD相切时,x=3,当⊙O经过点C时,x2=(4﹣x)2+32,∴x=,观察图象可知,当<x<3或<x≤4时,半圆O与△BCD的边有两个交点.【解析】本题属于圆综合题,考查了矩形的性质,切线的判定,相似三角形的判定和性质,勾股定理等知识,解题的关键是学会利用面积法解决问题,学会寻找特殊位置解决问题,属于中考压轴题.。
2021年湖北省荆州市中考数学试卷(附答案详解)
2021年湖北省荆州市中考数学试卷一、选择题(本大题共10小题,共30.0分)1.(2021·湖北省荆州市·历年真题)在实数−1,0,1,√2中,无理数是()2D. √2A. −1B. 0C. 122.(2021·湖北省荆州市·历年真题)如图是由一个圆柱和一个长方体组成的几何体,则该几何体的俯视图是()A.B.C.D.3.(2021·湖北省荆州市·历年真题)若等式2a2⋅a+□=3a3成立,则□填写单项式可以是()A. aB. a2C. a3D. a44.(2021·湖北省荆州市·历年真题)阅读下列材料,其①~④步中数学依据错误的是()如图:已知直线b//c,a⊥b,求证:a⊥c.证明:①∵a⊥b(已知)∴∠1=90°(垂直的定义)②又∵b//c(已知)∴∠1=∠2(同位角相等,两直线平行)③∴∠2=∠1=90°(等量代换)④∴a⊥c(垂直的定义)A. ①B. ②C. ③D. ④5.(2021·湖北省荆州市·历年真题)若点P(a+1,2−2a)关于x轴的对称点在第四象限,则a的取值范围在数轴上表示为()A. B.C. D.6.(2021·湖北省荆州市·历年真题)已知:如图,直线y1=kx+1与双曲线y2=2在第一象限交于点xP(1,t),与x轴、y轴分别交于A,B两点,则下列结论错误的是()A. t=2B. △AOB是等腰直角三角形C. k=1D. 当x>1时,y2>y17.(2021·湖北省荆州市·历年真题)如图,矩形OABC的边OA,OC分别在x轴、y轴的正半轴上,点D在OA的延长线上,若A(2,0),D(4,0),以O为圆心、OD长为半径的弧经过点B,交y轴正半轴于点E,连接DE,BE,则∠BED的度数是()A. 15°B. 22.5°C. 30°D. 45°8.(2021·湖北省荆州市·历年真题)如图,在△ABC中,AB=AC,∠A=40°,点D,P分别是图中所作直线和射线与AB,CD的交点.根据图中尺规作图痕迹推断,以下结论错误的是()A. AD=CDB. ∠ABP=∠CBPC. ∠BPC=115°D. ∠PBC=∠A9. (2021·湖北省荆州市·历年真题)如图,在菱形ABCD 中,∠D =60°,AB =2,以B 为圆心、BC 长为半径画AC⏜,点P 为菱形内一点,连接PA ,PB ,PC.当△BPC 为等腰直角三角形时,图中阴影部分的面积为( )A. 23π−√3+12B. 23π−√3−12C. 2πD. 2π−√3−1210. (2021·湖北省荆州市·历年真题)定义新运算“※”:对于实数m ,n ,p ,q.有[m,p]※[q,n]=mn +pq ,其中等式右边是通常的加法和乘法运算,例如:[2,3]※[4,5]=2×5+3×4=22.若关于x 的方程[x 2+1,x]※[5−2k,k]=0有两个实数根,则k 的取值范围是( )A. k <54且k ≠0B. k ≤54C. k ≤54且k ≠0D. k ≥54二、填空题(本大题共6小题,共18.0分)11. (2021·湖北省荆州市·历年真题)已知:a =(12)−1+(−√3)0,b =(√3+√2)(√3−√2),则√a +b = ______ .12. (2021·湖北省荆州市·历年真题)有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是______ .13. (2021·湖北省荆州市·历年真题)如图,AB 是⊙O 的直径,AC 是⊙O 的弦,OD ⊥AC 于D ,连接OC ,过点D 作DF//OC 交AB 于F ,过点B 的切线交AC 的延长线于E.若AD =4,DF =52,则BE = ______ .14. (2021·湖北省荆州市·历年真题)如图1是一台手机支架,图2是其侧面示意图,AB ,BC 可分别绕点A ,B 转动,测量知BC =8cm ,AB =16cm.当AB ,BC 转动到∠BAE =60°,∠ABC =50°时,点C 到AE 的距离为______ cm.(结果保留小数点后一位,参考数据:sin70°≈0.94,√3≈1.73)15.(2021·湖北省荆州市·历年真题)若关于x的方程2x+mx−2+x−12−x=3的解是正数,则m的取值范围为______ .16.(2021·湖北省荆州市·历年真题)如图,过反比例函数y=kx(k>0,x>0)图象上的四点P1,P2,P3,P4分别作x轴的垂线,垂足分别为A1,A2,A3,A4,再过P1,P2,P3,P4分别作y轴,P1A1,P2A2,P3A3的垂线,构造了四个相邻的矩形.若这四个矩形的面积从左到右依次为S1,S2,S3,S4,OA1=A1A2=A2A3=A3A4,则S1与S4的数量关系为______ .三、解答题(本大题共8小题,共72.0分)17.(2021·湖北省荆州市·历年真题)先化简,再求值:a2+2a+1a2−a ÷(1+2a−1),其中a=2√3.18.(2021·湖北省荆州市·历年真题)已知:a是不等式5(a−2)+8<6(a−1)+7的最小整数解,请用配方法解关于x的方程x2+2ax+a+1=0.19.(2021·湖北省荆州市·历年真题)如图,在5×5的正方形网格图形中,小正方形的边长都为1,线段ED与AD的端点都在网格小正方形的顶点(称为格点)上.请在网格图形中画图:(1)以线段AD为边画正方形ABCD,再以线段DE为斜边画等腰直角三角形DEF,其中顶点F在正方形ABCD外;(2)在(1)中所画图形基础上,以点B为其中一个顶点画一个新正方形,使新正方形的面积为正方形ABCD和△DEF面积之和,其它顶点也在格点上.20.(2021·湖北省荆州市·历年真题)高尔基说:“书,是人类进步的阶梯.”阅读可以启智增慧,拓展视野,…为了解学生寒假阅读情况,开学初学校进行了问卷调查,并对部分学生假期(24天)的阅读总时间作了随机抽样分析.设被抽样的每位同学寒假阅读的总时间为t(小时),阅读总时间分为四个类别:A(0≤t<12),B(12≤t<24),C(24≤t<36),D(t≥36),将分类结果制成两幅统计图(尚不完整).根据以上信息,回答下列问题:(1)本次抽样的样本容量为______ ;(2)补全条形统计图;(3)扇形统计图中a的值为______ ,圆心角β的度数为______ ;(4)若该校有2000名学生,估计寒假阅读的总时间少于24小时的学生有多少名?对这些学生用一句话提一条阅读方面的建议.21.(2021·湖北省荆州市·历年真题)小爱同学学习二次函数后,对函数y=−(|x|−1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:______ ;②方程−(|x|−1)2=−1的解为:______ ;③若方程−(|x|−1)2=a有四个实数根,则a的取值范围是______ .(2)延伸思考:将函数y=−(|x|−1)2的图象经过怎样的平移可得到函数y1=−(|x−2|−1)2+3的图象?写出平移过程,并直接写出当2<y1≤3时,自变量x的取值范围.22.(2021·湖北省荆州市·历年真题)小美打算买一束百合和康乃馨组合的鲜花,在“母亲节”祝福妈妈.已知买2支百合和1支康乃馨共需花费14元,3支康乃馨的价格比2支百合的价格多2元.(1)求买一支康乃馨和一支百合各需多少元?(2)小美准备买康乃馨和百合共11支,且百合不少于2支.设买这束鲜花所需费用为w元,康乃馨有x支,求w与x之间的函数关系式,并设计一种使费用最少的买花方案,写出最少费用.23.(2021·湖北省荆州市·历年真题)在矩形ABCD中,AB=2,AD=4,F是对角线AC上不与点A,C重合的一点,过F作FE⊥AD于E,将△AEF沿EF翻折得到△GEF,点G在射线AD上,连接CG.(1)如图1,若点A的对称点G落在AD上,∠FGC=90°,延长GF交AB于H,连接CH.①求证:△CDG∽△GAH;②求tan∠GHC.(2)如图2,若点A的对称点G落在AD延长线上,∠GCF=90°,判断△GCF与△AEF是否全等,并说明理由.24.(2021·湖北省荆州市·历年真题)已知:直线y=−x+1与x轴、y轴分别交于A,B两点,点C为直线AB上一动点,连接OC,∠AOC为锐角,在OC上方以OC为边作正方形OCDE,连接BE,设BE=t.(1)如图1,当点C在线段AB上时,判断BE与AB的位置关系,并说明理由;(2)直接写出点E的坐标(用含t的式子表示);(3)若tan∠AOC=k,经过点A的抛物线y=ax2+bx+c(a<0)顶点为P,且有6a+3b+2c=0,△POA的面积为12k ,当t=√22时,求抛物线的解析式.答案和解析1.【答案】D【知识点】无理数、算术平方根【解析】解:选项A、B:∵−1、0是整数,∴−1、0是有理数,∴选项A、B不符合题意;选项C:∵12是分数,∴12是有理数,∴选项C不符合题意;选项D:∵√2是无限不循环的小数,∴√2是无理数,∴选项D符合题意.故选:D.根据有理数(包括整数和分数)和无理数(无限不循环的小数)的定义判断即可.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001……,等有这样规律的数.2.【答案】A【知识点】简单组合体的三视图【解析】解:从上边看,是一个矩形,矩形的内部有一个与矩形两边相切的圆.故选:A.根据俯视图是从上边看得到的图形,可得答案.本题考查了简单组合体的三视图,解题时要注意俯视图是从上边看得到的图形.3.【答案】C【知识点】单项式乘单项式【解析】解:∵等式2a2⋅a+□=3a3成立,∴2a3+□=3a3,∴□填写单项式可以是:3a3−2a3=a3.故选:C.直接利用单项式乘单项式以及合并同类项法则计算得出答案.此题主要考查了单项式乘单项式以及合并同类项,正确掌握单项式乘单项式运算法则是解题关键.4.【答案】B【知识点】平行线的判定与性质【解析】证明:①∵a⊥b(已知),∴∠1=90°(垂直的定义),②又∵b//c(已知),∴∠1=∠2(两直线平行,同位角相等),③∴∠2=∠1=90°(等量代换),∴a⊥c(垂直的定义),①~④步中数学依据错误的是②,故选:B.根据垂直的定义得到∠1=90°,再根据两直线平行,同位角相等得到∠2=90°,即可判定a⊥c.此题考查了平行线的判定与性质,熟记平行线的判定定理与性质定理是解题的关键.5.【答案】C【知识点】在数轴上表示不等式的解集、一元一次不等式组的解法、轴对称中的坐标变化【解析】解:∵点P(a+1,2−2a)关于x轴的对称点在第四象限,∴点P在第一象限,∴{a+1>02−2a>0,解得:−1<a<1,在数轴上表示为:,故选:C.由P点关于x轴的对称点在第四象限,得出不等式组,求出不等式组的解集,即可得出选项.本题考查了关于x轴、y轴对称的点的坐标,解一元一次不等式组,在数轴上表示不等式组的解集的应用,能根据题意得出不等式组是解此题的关键.6.【答案】D【知识点】一次函数与反比例函数综合【解析】解:∵点P(1,t)在双曲线y2=2上,x=2,正确;∴t=21∴A选项不符合题意;∴P(1,2).∵P(1,2)在直线y1=kx+1上,∴2=k+1.∴k=1,正确;∴C选项不符合题意;∴直线AB的解析式为y=x+1令x=0,则y=1,∴B(0,1).∴OB=1.令y=0,则x=−1,∴A(−1,0).∴OA=1.∴OA=OB.∴△OAB为等腰直角三角形,正确;∴B选项不符合题意;由图像可知,当x>1时,y1>y2.∴D选项不正确,符合题意.故选:D.利用待定系数法求得t,k,利用直线的解析式求得A,B的坐标,可得线段OA,OB的长度,利用图象可以判断函数值的大小.本题主要考查了一次函数的图象与反比例函数图象的交点问题,待定系数法,数形结合.利用待定系数法求得函数的解析式是解题的关键.7.【答案】C【知识点】坐标与图形性质、矩形的性质、圆周角定理【解析】解:如图,连接OB,∵A(2,0),D(4,0),矩形OABC,∴OA=2,OD=4=OB,∴∠OBA=30°,∴∠BOD=90°−30°=60°,∴∠BED=12∠BOD=12×60°=30°,故选:C.连接OB,根据直角三角形的边角关系可求出∠BOC=30°,进而求出∠BOD=60°最后再由圆周角定理得出答案.本题考查圆周角定理及其推论,直角三角形的边角关系,掌握圆周角定理及其推论是解决问题的前提.8.【答案】D【知识点】尺规作图与一般作图、等腰三角形的性质【解析】解:由作图可知,点D在AC的垂直平分线上,∴DA=DC,故选项A正确,∴∠A=∠ACD=40°,由作图可知,BP平分∠ABC,∴∠ABP=∠CBP,故选项B正确,∵AB=AC,∠A=40°,∴∠ABC=∠ACB=12(180°−40°)=70°,∵∠PBC=12∠ABC=35°,∠PCB=∠ACB−∠ACD=30°,∴∠BPC=180°−35°−30°=115°,故选项C正确,若∠PBC=∠A,则∠A=36°,显然不符合题意.故选:D.利用线段的垂直平分线的性质,角平分线的定义,三角形内角和定理一一判断即可.本题考查等腰三角形的性质,线段的垂直平分线的性质,角平分线的定义,三角形内角和定理等知识,解题的关键是读懂图象信息,属于中考常考题型.9.【答案】A【知识点】菱形的性质、等腰直角三角形、扇形面积的计算、勾股定理、圆周角定理、等边三角形的判定与性质【解析】解:连接AC,延长AP,交BC于E,在菱形ABCD中,∠D=60°,AB=2,∴∠ABC=∠D=60°,AB=BC=2,∴△ABC是等边三角形,∴AB=AC,在△APB和△APC中,{AB=AC AP=AP PB=PC,∴△APB≌△APC(SSS),∴∠PAB=∠PAC,∴AE⊥BC,BE=CE=1,∵△BPC为等腰直角三角形,∴PE=12BC=1,在Rt△ABE中,AE=√32AB=√3,∴AP=√3−1,∴S阴影=S扇形ABC−S△PAB−S△PBC=60π×22360−12(√3−1)×1−12×2×1=23π−√3+12,故选:A.连接AC,延长AP,交BC于E,根据菱形的性质得出△ABC是等边三角形,进而通过三角形全等证得AE⊥BC,从而求得AE、PE,利用S阴影=S扇形ABC−S△PAB−S△PBC即可求得.本题考查了扇形的面积,菱形的性质,等边三角形的判定和性质,求得PA、PE是解题的关键.10.【答案】C【知识点】实数的运算、根的判别式【解析】解:根据题意得k(x2+1)+(5−2k)x=0,整理得kx2+(5−2k)x+k=0,因为方程有两个实数解,所以k≠0且△=(5−2k)2−4k2≥0,解得k≤54且k≠0.故选:C.先根据新定理得到k(x2+1)+(5−2k)x=0,再整理为一般式,接着根据一元二次方程的定义和判别式的意义得到k≠0且△=(5−2k)2−4k2≥0,然后解不等式即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.把有新定义运算的方程化为一元二次方程的一般式是解决问题的关键.11.【答案】2【知识点】负整数指数幂、平方差公式、零指数幂、二次根式的化简求值【解析】解:∵a=(12)−1+(−√3)0=2+1=3,b=(√3+√2)(√3−√2)=3−2=1,∴√a+b=√3+1=√4=2,故答案为:2.先计算出a,b的值,然后代入所求式子即可求得相应的值.本题考查二次根式的化简求值、平方差公式、零指数幂、负整数指数幂,解答本题的关键是明确它们各自的计算方法.12.【答案】14【知识点】概率公式【解析】解:由题意得,共有2×4=8种等可能情况,其中能打开锁的情况有2种,故一次打开锁的概率为28=14,故答案为:14.随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.本题考查了概率,熟练运用概率公式计算是解题的关键.13.【答案】152【知识点】勾股定理、垂径定理、切线的性质【解析】解:∵OD⊥AC,AD=4,∴AD=DC=4,∵DF//OC,DF=52,∴OC=2DF=5,在Rt△COD中,OD=√OC2−CD2=3,∵BE是⊙O的切线,∴AB⊥BE,∵OD⊥AD,∴∠ADO=∠ABE,∵∠OAD=∠EAB,∴△AOD∽△AEB,∴ODBE =ADAB,即3BE=410,解得:BE=152,故答案为:152.根据垂径定理得到AD=DC,根据三角形中位线定理求出OC,根据勾股定理求出OD,证明△AOD∽△AEB,根据相似三角形的性质列出比例式,计算即可.本题考查的是切线的性质、相似三角形的判定和性质、勾股定理的应用、垂径定理的应用,掌握圆的切线垂直于经过切点的半径是解题的关键.14.【答案】6.3【知识点】解直角三角形的应用【解析】解:如图,过点B、C分别作AE的垂线,垂足分别为M、N,过点C作CD⊥BM,垂足为D,在Rt△ABM中,∵∠BAE=60°,AB=16,∴BM=sin60°⋅AB=√32×16=8√3(cm),∠ABM=90°−60°=30°,在Rt△BCD中,∵∠DBC=∠ABC−∠ABM=50°−30°=20°,∴∠BCD=90°−20°=70°,又∵BC=8,∴BD=sin70°×8≈0.94×8=7.52(cm),∴CN=DM=BM−BD=8√3−7.52≈6.3(cm),即点C到AE的距离约为6.3cm,故答案为:6.3.通过作垂线构造直角三角形,在在Rt△ABM中,求出BM,在Rt△BCD中,求出BD,即可求出CN,从而解决问题.本题考查解直角三角形,构造直角三角形,利用直角三角形的边角关系是解决问题的关键.15.【答案】m>−7且m≠−3【知识点】一元一次不等式的解法、分式方程的解【解析】解:原方程左右两边同时乘以(x−2),得:2x+m−(x−1)=3(x−2),解得:x=m+72,∵原方程的解为正数且x≠2,∴{m+72>0 m+72≠2,解得:m>−7且m≠−3,故答案为:m>−7且m≠−3.先解分式方程,根据分式方程的解为正数和分式方程无意义的情况,即可得出m的取值范围.本题主要考查解分式方程和一元一次不等式,熟知解分式方程的方法是解题的关键.16.【答案】S1=4S4【知识点】反比例函数图象上点的坐标特征、矩形的性质、反比例函数系数k的几何意义【解析】解:∵过双曲线上任意一点、向坐标轴作垂线所围成的矩形面积S是个定值,OA1=A1A2=A2A3=A3A4,∴S1=k,S2=12k,S3=13k,S4=14k,∴S1=4S4.故答案为:S1=4S4.过双曲线上任意一点、向坐标轴作垂线所围成的矩形面积S是个定值,S=k,由OA1=A1A2=A2A3=A3A4,得出S1=k,S2=12k,S3=13k,S4=14k,即可得出S1=4S4.此题考查反比例函数y=kx(k≠0)中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|;这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义.17.【答案】解:a2+2a+1a2−a ÷(1+2a−1)=(a+1)2a(a−1)÷a−1+2a−1=(a+1)2a(a−1)⋅a−1a+1=a+1a,当a=2√3时,原式=√3+12√3=6+√36.【知识点】分式的化简求值【解析】根据分式的加法和除法可以化简题目中的式子,然后将a的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.18.【答案】解:解不等式5(a−2)+8<6(a−1)+7,得a>−3,∴最小整数解为−2,将a=−2代入方程x2+2ax+a+1=0,得x2−4x−1=0,配方,得(x−2)2=5.直接开平方,得x−2=±√5.解得x1=2+√5,x2=2−√5.【知识点】解一元二次方程-配方法、一元一次不等式的整数解【解析】解不等式5(a−2)+8<6(a−1)+7,得a>−3,所以最小整数解为−2,于是将a=−2代入方程x2−4x−1=0.利用配方法解方程即可.本题主要考查了配方法解一元二次方程和一元一次不等式的整数解.配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.19.【答案】解:(1)如图,正方形ABCD,△DEF即为所求.(2)如图,正方形BKFG即为所求.【知识点】等腰直角三角形、尺规作图与一般作图、勾股定理、正方形的判定、勾股定理的逆定理【解析】(1)根据正方形,等腰直角三角形的定义画出图形即可.(2)画出边长为√10的正方形即可.本题考查作图−应用与设计作图,等腰直角三角形的性质,正方形的性质,勾股定理以及逆定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.20.【答案】60 20 144°【知识点】扇形统计图、总体、个体、样本、样本容量、用样本估计总体、条形统计图、频数(率)分布直方图=60(人),【解析】解:(1)本次抽样的人数为610%∴样本容量为60,故答案为60;(2)C组的人数为40%×60=24(人),统计图如下:×100%=20%,(3)A组所占的百分比为1260∴a的值为20,β=40%×360°=144°,故答案为20,144°;×100%=50%,(4)总时间少于24小时的学生的百分比为12+1860∴全校寒假阅读的总时间少于24小时的学生有2000×50%=1000(名),建议:读书是人类文明进步的阶梯,建议每天读书至少1小时.(1)根据D组的人数和百分比即可求出样本容量;(2)根据C组所占的百分比即可求出C组的人数;(3)根据A组的人数即可求出A组所占的百分比,根据C组所占的百分比即可求出对应的圆心角;(4)先算出低于24小时的学生的百分比,在估算出全校低于24小时的学生的人数.本题主要考查统计图形的应用,能看懂统计图是关键,一般求总量所用的公式是一个已知分量除以它所占的百分比,第一问基本都是求总量,所以要记住,估算的公式是总人数乘以满足要求的人数所占的百分比,这两种问题中考比较爱考,记住公式,平时要多加练习.21.【答案】函数关于y轴对称x=−2或x=0或x=2−1<a<0【知识点】二次函数的性质、二次函数图象上点的坐标特征、二次函数图象与几何变换【解析】解:(1)观察探究:①该函数的一条性质为:函数关于y轴对称;②方程−(|x|−1)2=−1的解为:x=−2或x=0或x=2;③若方程−(|x|−1)2=a有四个实数根,则a的取值范围是−1<a<0.故答案为函数关于y轴对称;x=−2或x=0或x=2;−1<a<0.(2)将函数y=−(|x|−1)2的图象向右平移2个单位,向上平移3个单位可得到函数y1=−(|x−2|−1)2+3的图象,当2<y1≤3时,自变量x的取值范围是0<x<4.(1)根据图象即可求得;(2)根据“上加下减”的平移规律,画出函数y1=−(|x−2|−1)2+3的图象,根据图象即可得到结论.本题主要考查了二次函数图象与几何变换,二次函数图象和性质,数形结合是解题的关键.22.【答案】解:(1)设买一支康乃馨需x 元,买一支百合需y 元,则根据题意得:{x +2y =143x −2y =2, 解得:{x =4y =5, 答:买一支康乃馨需4元,买一支百合需5元;(2)根据题意得:w =4x +5(11−x)=−x +55,∵百合不少于2支,∴11−x ≥2,解得:x ≤9,∵−1<0,∴w 随x 的增大而减小,∴当x =9时,w 最小,即买9支康乃馨,买11−9=2支百合费用最少,w min =−9+55=46(元),答:w 与x 之间的函数关系式:w =−x +55,买9支康乃馨,买2支百合费用最少,最少费用为46元.【知识点】一元一次不等式的应用、一次函数的应用【解析】(1)设买一支康乃馨需x 元,买一支百合需y 元,根据题意列方程组求解即可;(2)根据康乃馨和百合的费用之和列出函数关系式,然后根据函数的性质和百合不少于2支求函数的最小值即可.本题主要考查一次函数的性质和二元一次方程组的应用,关键是利用题意写出函数关系式.23.【答案】(1)如图1,①证明:∵四边形ABCD 是矩形,∴∠D =∠GAH =90°,∴∠DCG +∠DGC =90°,∵∠FGC =90°,∴∠AGH +∠DGC =90°,∴∠DCG =∠AGH ,∴△CDG∽△GAH .②由翻折得∠EGF =∠EAF ,第21页,共23页 ∴∠AGH =∠DAC =∠DCG ,∵CD =AB =2,AD =4, ∴DG CD =AH AG =CD AD =tan∠DAC =24=12, ∴DG =12CD =12×2=1, ∴GA =4−1=3,∵△CDG∽△GAH ,∴CG GH =CD GA ,∴tan∠GHC =CGGH =CD GA =23. (2)不全等,理由如下:∵AD =4,CD =2,∴AC =√42+22=2√5,∵∠GCF =90°,∴CG AC =tan∠DAC =12,∴CG =12AC =12×2√5=√5,∴AG =√(2√5)2+(√5)2=5,∴EA =12AG =52, ∴EF =EA ⋅tan∠DAC =52×12=54, ∴AF =√(52)2+(54)2=5√54, ∴CF =2√5−5√54=3√54,∵∠GCF =∠AEF =90°,而CG ≠EA ,CF ≠EF ,∴△GCF 与△AEF 不全等.【知识点】相似形综合【解析】(1)①由矩形的性质和同角的余角相等证明△CDG 与△GAH 的两组对应角相等,从而证明△CDG∽△GAH ;②由翻折得∠AGB =∠DAC =∠DCG ,而tan∠DAC =12,可求出DG 的长,进而求出GA 的长,由tan∠GHC 即∠GHC 的对边与邻边的比恰好等于相似三角形△CDG 与△GAH 的一组对应边的比,由此可求出tan∠GHC 的值;(2)△GCF与△AEF都是直角三角形,由tan∠DAC=12可分别求出CG、AG、AE、EF、AF、CF的长,再由直角边的比不相等判断△GCF与△AEF不全等.此题重点考查矩形的性质、相似三角形的判定与性质、全等三角形的判定、勾股定理、二次根式的化简等知识与方法,特别是第(2)题,使用计算说理的方法判定三角形不全等,内容和方法新颖独到,是很好的考题.24.【答案】解:(1)直线y=−x+1与x轴、y轴分别交于A,B两点,则点A、B的坐标分别为(1,0)、(0,1),则∠OBA=∠OAB=45°,∵∠AOC+∠BOC=90°,∠BOC+∠BOE=90°,∴∠AOC=∠BOE,∵AO=BO,OC=OE,∴△OAC≌△OBE(SAS),∴∠OBE=∠OAC=45°,AC=BE=t,∴∠EBA=∠EBO+∠OBA=∠OAC+∠OBA=45°+45°=90°,∴BE⊥AB;(2)过点E作EH⊥OB于点H,∵∠EBH=45°,∴BH=EH=√22BE=√22t,故点E的坐标为(−√22t,1−√22t);(3)如上图,过点C作CN⊥OA于点N,当t=√22时,即AC=t=√22,则CN=AN=√22t=12,则ON=OA−NA=1−12=CN,第22页,共23页第23页,共23页 故tan∠AOC =CN ON =1=k ,∵△POA 的面积=12×AO ×y P =12×1×y P =12k =12,解得y P =1=c −b 24a ①,∵抛物线过点A(1,0),故a +b +c =0②,而6a +3b +2c =0③,联立①②③并解得{a =−1b =4c =−3,故抛物线的表达式为y =−x 2+4x −3.【知识点】二次函数综合【解析】(1)证明△OAC≌△OBE(SAS),则∠OBE =∠OAC =45°,进而求解;(2)∠EBH =45°,则BH =EH =√22BE =√22t ,即可求解; (3)由△POA 的面积=12×AO ×y P =12×1×y P =12k =12,求出y P =1=c −b 24a ,而抛物线过点A(1,0),故a +b +c =0,进而求解.本题是二次函数综合题,主要考查了一次函数的性质、正方形的性质、三角形全等、解直角三角形、面积的计算等,其中(1),确定△OAC≌△OBE 是解题的关键.。
初中数学练习题 2023年湖北省荆州市沙市区中考数学调研试卷(5月份)
(VIP&校本题库)2023年湖北省荆州市沙市区中考数学调研试卷(5月份)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个选项是正确的,把正确选项前的字母填涂在答题卷相应位置上.A.B.C.D.1.(3分)誉为全国第三大露天碑林的“浯溪碑林”,摩崖上铭刻着500多方古今名家碑文,其中悬针篆文具有较高的历史意义和研究价值,下面四个悬针篆文文字明显不是轴对称图形的是( )A.2B.1C.12D.0 2.(3分)四个数0,1,2,12中,无理数的是( )√√A.x>4B.x≠4C.x≤4D.x≥43.(3分)代数式x−4中x的取值范围是( )√A.9=±3B.x2=x C.39=3D.3(−x)3=−x4.(3分)下列各式中正确的是( )√√A.23B.3C.42D.8 5.(3分)下列根式中是最简二次根式的是( )√√√√A.甲和乙B.乙和丙C.甲和丙D.只有丙6.(3分)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是( )7.(3分)下列给出的三条线段的长,能组成直角三角形的是( )二、填空题(本大题共8小题,每小题3分,共24分.把答案填在答题卷相应位置上.)A .1、2、3B .2、3、4C .5、7、9D .5、12、13A .1.4B .2C .2+1D .2.48.(3分)如图,数轴上点A 对应的数是1,点B 对应的数是2,BC ⊥AB ,垂足为B ,且BC =1,以A 为圆心,AC 为半径画弧,交数轴于点D ,则点D 表示的数为( )√√A .12B .10C .8D .69.(3分)若实数m 、n 满足等式|m -2|+n −4=0,且m 、n 恰好是等腰△ABC 的两条边的边长,则△ABC 的周长是( )√A .2B .3C .2D .1.510.(3分)如图,∠AOB =45°,点P 是∠AOB 内的定点,且OP =1,若点M 、N 分别是射线OA 、OB 上异于点O 的动点,则△PMN 周长的最小值是( )√√11.(3分)计算:25的平方根是 .12.(3分)等腰三角形的一个底角为50°,则它的顶角的度数为 .13.(3分)比较大小:-2 -3,5 2.√√√14.(3分)计算:10÷2的结果是 .√√15.(3分)化简:2a 33的结果是 .√16.(3分)如图,等腰△ABC 中,AB =AC ,AB 的垂直平分线MN 交AC 于点D ,∠DBC =15°,则∠A 的度数是 度.三、解答题(本大题共10小题,共76分.解答时应写出文字说明、证明过程或演算步骤.)17.(3分)如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,BC =32,AB =40,且BD :DC =5:3.则△ADB 的面积为 .18.(3分)已知CD 是△ABC 的边AB 上的高,若CD =3,AD =1,AB =2AC ,则BC 的长为 .√19.(8分)计算:(1)(−3)2+3−8+|3−2|(2)45−25×50√√√√√20.(8分)解方程:(1)(x +1)2=3(2)8x 3+125=021.(5分)如图,EF =BC ,DF =AC ,DA =EB .求证:∠F =∠C .22.(5分)《九章算术》是我国古代最重要的数学著作之一,在“勾股”章中记载了一道“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”翻译成数学问题是:如图所示,△ABC 中,∠ACB =90°,AC +AB =10,BC =3,求AC 的长.23.(6分)如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用三种不同的方法分别在下图中再涂黑三个空白的小正方形,使它成为轴对称图形.24.(7分)如图,E 、F 分别是等边三角形ABC 的边AB ,AC 上的点,且BE =AF ,CE 、BF 交于点P .(1)求证:CE =BF ;(2)求∠BPC 的度数.25.(8分)如图,AD 为△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .(1)若AB =AC =8,△ABC 面积为24,求DE 的长;(2)连接EF ,试判断AD 与EF 的位置关系,并证明你的结论.26.(9分)如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点.(1)猜一猜,MN 与BD 的位置关系,并证明你的结论;(2)如果∠BCD =45°,BD =2,求MN 的长.27.(10分)阅读材料:黑白双雄、纵横江湖;双剑合璧、天下无敌.这是武侠小说中的常见描述,其意是指两个人合在一起,取长补短,威力无比.在二次根式中也有这种相辅相成的“对子”.如:(2+3)(2−3)=1,(5+2)(5−2)=3,它们的积不含根号,我们说这两个二次根式互为有理化因式,其中一个是另一个的有理化因式,于是,二次根式除法可以这样理解:如:13=1×33×3=33,2+32−3=(2+3)(2+3)(2+3)(2−3)=7+43.像这样,通过分子、分母同乘以一个式子把分母中的根号化去或把根号中的分母化去,叫做分母有理化.解决问题:(1)4-7的有理化因式可以是,323分母有理化得 .(2)计算:①已知x =3+13−1,y =3−13+1,求x 2+y 2的值;②11+2+12+3+13+4+…+11999+2000.√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√√28.(10分)如图,在△ABC 中,AB =4,BC =5,AC =3,动点P 从点C 出发,沿着CB 运动,速度为每秒1个单位,到达点B 时运动停止,设运动时间为t 秒,请解答下列问题:(1)求BC 上的高;(2)当t为何值时,△ACP为等腰三角形?。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2023年荆州数学中考卷子
2023年荆州数学中考卷子
第一部分:选择题(共15题,每题2分,满分30分)
1. 下列哪个数是一个有理数?
A) √5
B) e
C) 7日
D) π/4
2. 已知函数 f(x) = 2x + 1,那么 f(-3) 的值是多少?
A) -7
B) -5
C) -3
D) 1
3. 若 4x + y = 7, 2x - y = 1,则方程组的解是:
A) x = 2,y = 1
B) x = 3,y = -2
C) x = 1,y = 2
D) x = -2,y = -3
4. 某校学生数目的三分之一是120人,那么学生的总数为:
A) 120人
B) 240人
C) 360人
D) 480人
5. 把一根长为6cm的线段分成两段,其中一段的长度是另一段长度的2倍,这两段的长度分别是:
A) 1cm,5cm
B) 2cm,4cm
C) 3cm,3cm
D) 4cm,2cm
6. 已知直角三角形的两条直角边的长度分别是3cm和4cm,那么斜边的长度是多少?
A) 5cm
B) 6cm
C) 7cm
D) 8cm
7. 如果一个几何图形既是正方形又是长方形,那么它的四个角的度数之和是多少?
A) 180度
B) 270度
C) 360度
D) 720度
8. 若正方形的边长为x,则该正方形的周长是多少?
A) 2x
B) 3x
C) 4x
D) 5x
9. 若两个数的和是-5,差是2,则这两个数分别是:
A) -3和-2
B) -4和1
C) -1和-6
D) 2和-3
10. 已知一辆汽车在1小时内行驶50千米,那么它每分钟行驶的千米数是多少?
A) 0.5千米
B) 0.8千米
C) 1千米
D) 1.2千米
11. 已知三角形的两个边长分别是6cm和8cm,那么第三边的可能长度是:
A) 7cm
B) 9cm
C) 10cm
D) 12cm
12. 已知长方体的长、宽、高分别是3cm、4cm和5cm,那么它的体积是多少?
A) 24立方厘米
B) 30立方厘米
C) 48立方厘米
D) 60立方厘米
13. 已知一个圆的半径为1cm,那么它的周长是多少?
A) πcm
B) 2πcm
C) 3πcm
D) 4πcm
14. 计算:S = 1 + (1/2) + (1/3) + (1/4) + ... + (1/10) 的值近似为:
A) 2
B) 3
C) 4
D) 5
15. 若 a:b = 2:5,且 a + b = 63,则 a 和 b 分别是多少?
A) a = 18,b = 45
B) a = 22,b = 55
C) a = 25,b = 38
D) a = 30,b = 33
第二部分:解答题(满分70分)
一、计算题(共3题,每题10分,满分30分)
1. 计算:(-4) - (-5) × 2 ÷ (-2) + 4
2. 计算:√((2 + √3) × (2 - √3))
3. 完成下列表格:
x | -2 | 0 | 2 | 4 | 6 |
y | | | | | |
根据 y = 3x + 2 的规律,填写表格中的空白部分。
二、应用题(共2题,每题20分,满分40分)
1. 已知 a:b = 2:3,b:c = 3:4,求 a:b:c 的比值。
2. 已知矩形的长是宽的3倍,周长是42cm,求矩形的长和宽。
注意事项:
1. 请将答案填写在答题卷上相应的位置,不要在试题卷上作答。
2. 答题部分请写清楚题号。
3. 禁止在试题卷上做任何标记和涂抹。
4. 考试时间为100分钟。