2016年中考数学试题分项版解析(第01期)专题10 四边形
2016年湖北省武汉市中考数学试卷(含详细答案及解析)

2016年湖北省武汉市中考数学试卷一、选择题(共10小题,每小题3分,共30分)1.(3分)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间2.(3分)若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=33.(3分)下列计算中正确的是()A.a•a2=a2B.2a•a=2a2C.(2a2)2=2a4D.6a8÷3a2=2a44.(3分)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球5.(3分)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+96.(3分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b 的值是()A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣17.(3分)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A .B .C .D .8.(3分)某车间20名工人日加工零件数如表所示:45678日加工零件数人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、69.(3分)如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π B.πC.2 D.210.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)计算5+(﹣3)的结果为.12.(3分)某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为.13.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.14.(3分)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E 处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为.15.(3分)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为.16.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为.三、解答题(共8题,共72分)17.(8分)解方程:5x+2=3(x+2)18.(8分)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.19.(8分)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了名学生,其中最喜爱戏曲的有人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.20.(8分)已知反比例函数y=.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.21.(8分)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.22.(10分)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x 件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.23.(10分)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.24.(12分)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.2016年湖北省武汉市中考数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)(2016•武汉)实数的值在()A.0和1之间B.1和2之间C.2和3之间D.3和4之间【分析】直接利用估算无理数大小,正确得出接近的有理数,进而得出答案.【解答】解:∵1<<2,∴实数的值在:1和2之间.故选:B.【点评】此题主要考查了估算无理数大小,正确得出无理数接近的有理数是解题关键.2.(3分)(2016•武汉)若代数式在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3 D.x=3【分析】分式有意义时,分母x﹣3≠0,据此求得x的取值范围.【解答】解:依题意得:x﹣3≠0,解得x≠3,故选:C.【点评】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.3.(3分)(2016•武汉)下列计算中正确的是()A.a•a2=a2B.2a•a=2a2C.(2a2)2=2a4D.6a8÷3a2=2a4【分析】A、原式利用同底数幂的乘法法则计算得到结果,即可作出判断;B、原式利用单项式乘单项式法则计算得到结果,即可作出判断;C、原式利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断;D、原式利用单项式除以单项式法则计算得到结果,即可作出判断.【解答】解:A、原式=a3,错误;B、原式=2a2,正确;C、原式=4a4,错误;D、原式=2a6,错误,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.(3分)(2016•武汉)不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【分析】根据白色的只有两个,不可能摸出三个进行解答.【解答】解:A.摸出的是3个白球是不可能事件;B.摸出的是3个黑球是随机事件;C.摸出的是2个白球、1个黑球是随机事件;D.摸出的是2个黑球、1个白球是随机事件,故选:A.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)(2016•武汉)运用乘法公式计算(x+3)2的结果是()A.x2+9 B.x2﹣6x+9 C.x2+6x+9 D.x2+3x+9【分析】根据完全平方公式,即可解答.【解答】解:(x+3)2=x2+6x+9,故选:C.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.6.(3分)(2016•武汉)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是()A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣1【分析】根据关于原点对称的点的横坐标与纵坐标都互为相反数解答.【解答】解:∵点A(a,1)与点A′(5,b)关于坐标原点对称,∴a=﹣5,b=﹣1.故选D.【点评】本题考查了关于原点对称的点的坐标,两点关于原点对称,则两点的横、纵坐标都是互为相反数.7.(3分)(2016•武汉)如图是由一个圆柱体和一个长方体组成的几何体,其左视图是()A .B .C .D .【分析】找到从左面看所得到的图形即可.【解答】解:从左面可看到一个长方形和上面一个长方形.故选:A.【点评】本题考查了三视图的知识,左视图是从物体的左面看得到的视图.8.(3分)(2016•武汉)某车间20名工人日加工零件数如表所示:45678日加工零件数人数26543这些工人日加工零件数的众数、中位数、平均数分别是()A.5、6、5 B.5、5、6 C.6、5、6 D.5、6、6【分析】根据众数、平均数和中位数的定义分别进行解答即可.【解答】解:5出现了6次,出现的次数最多,则众数是5;把这些数从小到大排列,中位数第10、11个数的平均数,则中位数是=6;平均数是:=6;故选D.【点评】本题考查了众数、平均数和中位数的定义.用到的知识点:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.9.(3分)(2016•武汉)如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π B.πC.2 D.2【分析】取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,利用等腰直角三角形的性质得到AB=BC=4,则OC=AB=2,OP=AB=2,再根据等腰三角形的性质得OM⊥PC,则∠CMO=90°,于是根据圆周角定理得到点M在以OC为直径的圆上,由于点P点在A点时,M点在E点;点P点在B点时,M点在F点,则利用四边形CEOF为正方得到EF=OC=2,所以M点的路径为以EF为直径的半圆,然后根据圆的周长公式计算点M运动的路径长.【解答】解:取AB的中点O、AC的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=AB=2,OP=AB=2,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF 为正方形,EF=OC=2,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=•2π•1=π.故选B.【点评】本题考查了轨迹:点按一定规律运动所形成的图形为点运动的轨迹.解决此题的关键是利用等腰三角形的性质和圆周角定理确定M点的轨迹为以EF为直径的半圆.10.(3分)(2016•武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是()A.5 B.6 C.7 D.8【分析】由点A、B的坐标可得到AB=2,然后分类讨论:若AC=AB;若BC=AB;若CA=CB,确定C点的个数.【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).∴AB=2,①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),∵点(0,4)与直线AB共线,∴满足△ABC是等腰三角形的C点有1个;②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.故选A【点评】本题考查了等腰三角形的判定,也考查了通过坐标确定图形的性质以及分类讨论思想的运用.二、填空题(本大题共6个小题,每小题3分,共18分)11.(3分)(2016•武汉)计算5+(﹣3)的结果为2.【分析】原式利用异号两数相加的法则计算即可得到结果.【解答】解:原式=+(5﹣3)=2,故答案为:2.【点评】此题考查了有理数的加法,熟练掌握加法法则是解本题的关键.12.(3分)(2016•武汉)某市2016年初中毕业生人数约为63 000,数63 000用科学记数法表示为 6.3×104.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将63 000用科学记数法表示为6.3×104.故答案为:6.3×104.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(3分)(2016•武汉)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为.【分析】先求出5的总数,再根据概率公式即可得出结论.【解答】解:∵一个质地均匀的小正方体由6个面,其中标有数字5的有2个,∴随机投掷一次小正方体,则朝上一面的数字是5的概率==.故答案为:.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.14.(3分)(2016•武汉)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE 折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为36°.【分析】由平行四边形的性质得出∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,由三角形的外角性质求出∠AEF=72°,与三角形内角和定理求出∠AED′=108°,即可得出∠FED′的大小.【解答】解:∵四边形ABCD是平行四边形,∴∠D=∠B=52°,由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,∴∠FED′=108°﹣72°=36°;故答案为:36°.【点评】本题考查了平行四边形的性质、折叠的性质、三角形的外角性质以及三角形内角和定理;熟练掌握平行四边形的性质和折叠的性质,求出∠AEF和∠AED′是解决问题的关键.15.(3分)(2016•武汉)将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为﹣4≤b≤﹣2.【分析】先解不等式2x+b<2时,得x<;再求出函数y=2x+b沿x轴翻折后的解析式为y=﹣2x﹣b,解不等式﹣2x﹣b<2,得x>﹣;根据x满足0<x <3,得出﹣=0,=3,进而求出b的取值范围.【解答】解:∵y=2x+b,∴当y<2时,2x+b<2,解得x<;∵函数y=2x+b沿x轴翻折后的解析式为﹣y=2x+b,即y=﹣2x﹣b,∴当y<2时,﹣2x﹣b<2,解得x>﹣;∴﹣<x<,∵x满足0<x<3,∴﹣=0,=3,∴b=﹣2,b=﹣4,∴b的取值范围为﹣4≤b≤﹣2.故答案为﹣4≤b≤﹣2.【点评】本题考查了一次函数图象与几何变换,求出函数y=2x+b沿x轴翻折后的解析式是解题的关键.16.(3分)(2016•武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为2.【分析】作DM⊥BC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可.【解答】解:作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴=,∴CM=2AB=6,DM=2BC=8,∴BM=BC+CM=10,∴BD===2,故答案为:2.【点评】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD是直角三角形是解决问题的关键.三、解答题(共8题,共72分)17.(8分)(2016•武汉)解方程:5x+2=3(x+2)【分析】方程去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去括号得:5x+2=3x+6,移项合并得:2x=4,解得:x=2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.18.(8分)(2016•武汉)如图,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF,求证:AB∥DE.【分析】证明它们所在的三角形全等即可.根据等式的性质可得BC=EF.运用SSS 证明△ABC与△DEF全等.【解答】证明:∵BE=CF,∴BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF(SSS),∴∠ABC=∠DEF,∴AB∥DE.【点评】本题考查了全等三角形的性质和判定.全等三角形的判定定理有SAS,ASA,AAS,SSS,全等三角形的对应角相等.19.(8分)(2016•武汉)某学校为了解学生对新闻、体育、动画、娱乐、戏曲五类电视节目最喜爱的情况,随机调查了若干名学生,根据调查数据进行整理,绘制了如下的不完整统计图.请你根据以上的信息,回答下列问题:(1)本次共调查了50名学生,其中最喜爱戏曲的有3人;在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是72°.(2)根据以上统计分析,估计该校2000名学生中最喜爱新闻的人数.【分析】(1)由“新闻”类人数及百分比可得总人数,由总人数及“戏曲”类百分比可得其人数,求出“体育”类所占百分比,再乘以360°即可;(2)用样本中“新闻”类人数所占百分比乘以总人数2000即可.【解答】解:(1)本次共调查学生:4÷8%=50(人),最喜爱戏曲的人数为:50×6%=3(人);∵“娱乐”类人数占被调查人数的百分比为:×100%=36%,∴“体育”类人数占被调查人数的百分比为:1﹣8%﹣30%﹣36%﹣6%=20%,∴在扇形统计图中,最喜爱体育的对应扇形的圆心角大小是360°×20%=72°;故答案为:50,3,72°.(2)2000×8%=160(人),答:估计该校2000名学生中最喜爱新闻的人数约有160人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2016•武汉)已知反比例函数y=.(1)若该反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,求k的值;(2)如图,反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向左平移2个单位长度,得曲线C2,请在图中画出C2,并直接写出C1平移至C2处所扫过的面积.【分析】(1)解方程组得到kx2+4x﹣4=0,由反比例函数的图象与直线y=kx+4(k ≠0)只有一个公共点,得到△=16+16k=0,求得k=﹣1;(2)根据平移的性质即可得到结论.【解答】解:(1)解得kx2+4x﹣4=0,∵反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点,∴△=16+16k=0,∴k=﹣1;(2)如图所示,C1平移至C2处所扫过的面积=2×3=6.【点评】本题考查了反比例函数与一次函数的交点问题,平移的性质,一元二次方程根与系数的关系,知道反比例函数的图象与直线y=kx+4(k≠0)只有一个公共点时,△=0是解题的关键.21.(8分)(2016•武汉)如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BE交AC于点F,若cos∠CAD=,求的值.【分析】(1)连接OC,根据切线的性质和已知求出OC∥AD,求出∠OCA=∠CAO=∠DAC,即可得出答案;(2)连接BE、BC、OC,BE交AC于F交OC于H,根据cos∠CAD==,设AD=4a,AC=5a,则DC=EH=HB=3a,根据cos∠CAB==,求出AB、BC,再根据勾股定理求出CH,由此即可解决问题;【解答】(1)证明:连接OC,∵CD是⊙O的切线,∴CD⊥OC,又∵CD⊥AD,∴AD∥OC,∴∠CAD=∠ACO,∵OA=OC,∴∠CAO=∠ACO,∴∠CAD=∠CAO,即AC平分∠DAB;(2)解:连接BE、BC、OC,BE交AC于F交OC于H.∵AB是直径,∴∠AEB=∠DEH=∠D=∠DCH=90°,∴四边形DEHC是矩形,∴∠EHC=90°即OC⊥EB,∴DC=EH=HB,DE=HC,∵cos∠CAD==,设AD=4a,AC=5a,则DC=EH=HB=3a,∵cos∠CAB==,∴AB=a,BC=a,在RT△CHB中,CH==a,∴DE=CH=a,AE==a,∵EF∥CD,∴==.【点评】本题考查了切线的性质,平行线的性质和判定,勾股定理,圆周角定理,圆心角、弧、弦之间的关系的应用,能灵活运用知识点进行推理是解此题的关键.22.(10分)(2016•武汉)某公司计划从甲、乙两种产品中选择一种生产并销售,每年产销x件.已知产销两种产品的有关信息如表:产品每件售价(万元)每件成本(万元)每年其他费用(万元)每年最大产销量(件)甲6a20200乙201040+0.05x280其中a为常数,且3≤a≤5(1)若产销甲、乙两种产品的年利润分别为y1万元、y2万元,直接写出y1、y2与x的函数关系式;(2)分别求出产销两种产品的最大年利润;(3)为获得最大年利润,该公司应该选择产销哪种产品?请说明理由.【分析】(1)根据利润=销售数量×每件的利润即可解决问题.(2)根据一次函数的增减性,二次函数的增减性即可解决问题.(3)根据题意分三种情形分别求解即可:)①(1180﹣200a)=440,②(1180﹣200a)>440,③(1180﹣200a)<440.【解答】解:(1)y1=(6﹣a)x﹣20,(0<x≤200)y2=10x﹣40﹣0.05x2=﹣0.05x2+10x﹣40.(0<x≤80).(2)对于y1=(6﹣a)x﹣20,∵6﹣a>0,∴x=200时,y1的值最大=(1180﹣200a)万元.对于y2=﹣0.05(x﹣100)2+460,∵0<x≤80,∴x=80时,y2最大值=440万元.(3)①(1180﹣200a)=440,解得a=3.7,②(1180﹣200a)>440,解得a<3.7,③(1180﹣200a)<440,解得a>3.7,∵3≤a≤5,∴当a=3.7时,生产甲乙两种产品的利润相同.当3≤a<3.7时,生产甲产品利润比较高.当3.7<a≤5时,生产乙产品利润比较高.【点评】本题考查二次函数、一次函数的应用,解题的关键是构建函数解决实际问题中的方案问题,属于中考常考题型.23.(10分)(2016•武汉)在△ABC中,P为边AB上一点.(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;(2)若M为CP的中点,AC=2.①如图2,若∠PBM=∠ACP,AB=3,求BP的长;②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.【分析】(1)根据相似三角形的判定定理即可得到结论;(2)①取AP在中点G,连接MG,设AG=x,则PG=x,BG=3﹣x,根据三角形的中位线的性质得到MG∥AC,由平行线的性质得到∠BGM=∠A,∵∠根据相似三角形的性质得到,求得x=,即可得到结论;②过C作CH⊥AB于H,延长AB到E,使BE=BP解直角三角形得到CH=,HE=+x,根据勾股定理得到CE2=(+9+x)2根据相似三角形的性质得到CE2=EP•EA列方程即可得到结论.【解答】解:(1)∵∠ACP=∠B,∠A=∠A,∴△ACP∽△ABC,∴,∴AC2=AP•AB;(2)①取AP在中点G,连接MG,设AG=x,则PG=x,BG=3﹣x,∵M是PC的中点,∴MG∥AC,∴∠BGM=∠A,∵∠ACP=∠PBM,∴△APC∽△GMB,∴,即,∴x=,∵AB=3,∴AP=3﹣,∴PB=;②过C作CH⊥AB于H,延长AB到E,使BE=BP,设BP=x.∵∠ABC=45°,∠A=60°,∴CH=,HE=+x,∵CE2=(+(+x)2,∵PB=BE,PM=CM,∴BM∥CE,∴∠PMB=∠PCE=60°=∠A,∵∠E=∠E,∴△ECP∽△EAC,∴,∴CE2=EP•EA,∴3+3+x2+2x=2x(x++1),∴x=﹣1,∴PB=﹣1.【点评】本题考查了相似三角形的判定和性质,平行线的性质,三角形的中位线的性质,勾股定理,正确作出辅助线是解题的关键.24.(12分)(2016•武汉)抛物线y=ax2+c与x轴交于A,B两点,顶点为C,点P为抛物线上,且位于x轴下方.(1)如图1,若P(1,﹣3),B(4,0).①求该抛物线的解析式;②若D是抛物线上一点,满足∠DPO=∠POB,求点D的坐标;(2)如图2,已知直线PA,PB与y轴分别交于E、F两点.当点P运动时,是否为定值?若是,试求出该定值;若不是,请说明理由.【分析】(1)①根据待定系数法求函数解析式,可得答案;②根据平行线的判定,可得PD∥OB,根据函数值相等两点关于对称轴对称,可得D点坐标;(2)根据待定系数法,可得E、F点的坐标,根据分式的性质,可得答案.【解答】解:(1)①将P(1,﹣3),B(4,0)代入y=ax2+c,得,解得,抛物线的解析式为y=x2﹣;②如图1,当点D在OP左侧时,由∠DPO=∠POB,得DP∥OB,D与P关于y轴对称,P(1,﹣3),得D(﹣1,﹣3);当点D在OP右侧时,延长PD交x轴于点G.作PH⊥OB于点H,则OH=1,PH=3.∵∠DPO=∠POB,∴PG=OG.设OG=x,则PG=x,HG=x﹣1.在Rt△PGH中,由x2=(x﹣1)2+32,得x=5.∴点G(5,0).∴直线PG的解析式为y=x﹣解方程组得,.∵P(1,﹣3),∴D(,﹣).∴点D的坐标为(﹣1,﹣3)或(,﹣).(2)点P运动时,是定值,定值为2,理由如下:作PQ⊥AB于Q点,设P(m,am2+c),A(﹣t,0),B(t,0),则at2+c=0,c=﹣at2.∵PQ∥OF,∴,∴OF==﹣==amt+at2.同理OE=﹣amt+at2.∴OE+OF=2at2=﹣2c=2OC.∴=2.【点评】本题考查了二次函数综合题,①利用待定系数法求函数解析式;②利用函数值相等的点关于对称轴对称得出D点坐标是解题关键;(2)利用待定系数法求出E、F点坐标是解题关键.参与本试卷答题和审题的老师有:sd2011;nhx600;sks;知足长乐;sdwdmahongye;星期八;1987483819;lantin;gsls;王学峰;CJX;家有儿女;HLing;三界无我;弯弯的小河;2300680618(排名不分先后)菁优网2017年4月8日。
专题10 四边形-2017版[中考15年]广州市2002-2016年中考数学试题分项解析(解析版)
![专题10 四边形-2017版[中考15年]广州市2002-2016年中考数学试题分项解析(解析版)](https://img.taocdn.com/s3/m/90443e96a0116c175f0e48bc.png)
2017版[中考15年]广东省2002-2016年中考数学试题分项解析专题10 四边形1. (2002年广东广州2分)如图,若四边形ABCD 是半径为1cm 的⊙O 的内接正方形,则图中四个弓形(即四个阴影部分)的面积和为【 】A.()22m 2c π-B.()22m 1c π-C.()2m 2c π-D.()2m 1c π-2. (2003年广东广州3分)如图,在菱形ABCD 中,∠ABC =60°.AC =4.则BD 的长为【 】A.38B.34C.32D.8 【答案】B 。
3.(2009年广东广州3分)如图,在ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,4,则ΔCEF的周长为【】交DC的延长线于点F,BG⊥AE,垂足为G,BG=2A.8B.9.5C.10D.5【答案】A。
【考点】平行四边形的判定和性质,勾股定理,等腰三角形的判定和性质,相似三角形的判定和性质。
∴△CEF的周长=CE+CF+FE=8。
故选A。
4.(2011年广东广州3分)已知ABCD的周长为32,AB=4,则BC=【】A.4B.12C.24D.285. (2012年广东广州3分)如图,在等腰梯形ABCD中,BC∥AD,AD=5,DC=4,DE∥AB交BC于点E,且EC=3,则梯形ABCD的周长是【】A.26B.25C.21D.206. (2012年广东广州3分)在平面中,下列命题为真命题的是【】A.四边相等的四边形是正方形B.对角线相等的四边形是菱形C.四个角相等的四边形是矩形D.对角线互相垂直的四边形是平行四边形故选C。
7.(2013年广东广州3分)如图,四边形ABCD 是梯形,AD ∥BC ,CA 是∠BCD 的平分线,且AB ⊥AC ,AB=4,AD=6 ,则tan B =【 】A. B. C.1148.(2015年中考广东广州3分)下列命题中,真命题的个数有【 】 ①对角线互相平分的四边形是平行四边形 ②两组对角分别相等的四边形是平行四边形③一组对边平行,另一组对边相等的四边形是平行四边形 A.3个 B.2个 C.1个 D.0个 【答案】B考点:平行四边形的判定.1. (2002年广东广州3分)如图,在正方形ABCD 中,AO ⊥BD ,OE 、FG 、HI 都垂直于AD ,EF 、GH 、IJ 都垂直于AO ,若已知AIJ S 1∆=,则ABCD S 正方形= 。
2016年甘肃省兰州市中考数学试卷及解析

2016年甘肃省兰州市中考数学试卷及解析一、选择题:本大题共15 小题,每小题4 分,共60 分,在每小题给出的四个选项中仅有一项是符合题意的。
1.如图是由5 个大小相同的正方体组成的几何体,则该几何体的主视图是()(A)(B)(C)(D)【答案】A【解析】主视图是从正面看到的图形,从正面看有两行,上面一行最左边有一个正方形,下面一行有三个正方形,所以答案选A.2.反比例函数的图像在()(A)第一、二象限(B)第一、三象限(C)第二、三象限(D)第二、四象限【答案】B【解析】反比例函数的图象受到k的影响,当k 大于0 时,图象位于第一、三象限,当k小于0 时,图象位于第二、四象限,本题中k =2 大于0,图象位于第一、三象限,所以答案选B.3.已知△ABC ∽△DEF,若△ABC与△DEF的相似比为34,则△ABC与△DEF对应中线的比为()(A)34(B)43(C)916(D)169【答案】A【解析】根据相似三角形的性质,相似三角形的对应高线的比、对应中线的比和对应角平分线的比都等于相似比,本题中相似三角形的相似比为34,即对应中线的比为34,所以答案选A.4.在Rt △ABC中,∠C=90°,sinA=35,BC=6,则AB=()(A)4 (B)6 (C)8 (D)10 【答案】D【解析】在Rt △ABC中,sinA=BCAB=6AB=35,解得AB=10,所以答案选D.5.一元二次方程的根的情况()(A)有一个实数根(B)有两个相等的实数根(C)有两个不相等的实数根(D)没有实数根【答案】B【解析】根据题目,?==0, 判断得方程有两个相等的实数根,所以答案选B.6.如图,在△ ABC 中,DE ∥BC ,若AD DB =23,则AE EC=( ) (A )13 (B )25 (C )23 (D )35 【答案】C【解析】根据三角形一边的平行线性质定理:平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例, 得AE EC =AD DB =23,所以答案选 C. 7.如图,在⊙O 中,点 C 是 的中点,∠A =50o ,则∠BOC =( )(A )40o (B )45o (C )50o (D )60o【答案】A【解析】在△OAB 中,OA =OB ,所以∠A =∠B =50o .根据垂径定理的推论,OC 平分弦 AB 所对的弧,所以 OC 垂直平分弦 AB ,即∠BOC =90o? ∠B =40o ,所以答案选 A.8.二次函数化为 的形式,下列正确的是( )(A )y=(x+1)2+2 (B )y=(x-1)2+3(C )y=(x-2)2+2 (D )y=(x-2)2+4【答案】B【解析】在二次函数的顶点式 y =a(x-h)2+k 中,h=-2b a =-22-=1,k=244ac b a -=1644-= 3,所以答案选B.9.公园有一块正方形的空地,后来从这块空地上划出部分区域栽种鲜花(如图),原空地一边减少了 1m ,另一边减少了 2m ,剩余空地的面积为18,求原正方形空地的边长。
2016年中考数学试题分类解析汇编(第一辑)(29份)_3

2016年全国各地中考数学试题分类解析汇编(第一辑)第13章轴对称一.选择题(共20小题)1.(2016•台湾)若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.2.(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)3.(2016•巴中)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.4.(2016•深圳)下列图形中,是轴对称图形的是()A.B.C.D.5.(2016•西宁)在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.6.(2016•重庆)下列交通指示标识中,不是轴对称图形的是()A.B.C.D.7.(2016•桂林)下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形8.(2016•泸州)下列图形中不是轴对称图形的是()A.B.C.D.9.(2016•菏泽)以下微信图标不是轴对称图形的是()A .B .C .D .10.(2016•北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )A .B .C .D .11.(2016•绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有( )A .1条B .2条C .3条D .4条12.(2016•重庆)下列图形中是轴对称图形的是( )A .B .C .D .13.(2016•邵阳)下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .14.(2016•漳州)下列图案属于轴对称图形的是( )A .B .C .D .15.(2016•舟山)在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是( )A .B .C .D .16.(2016•南充)如图,直线MN 是四边形AMBN 的对称轴,点P 时直线MN 上的点,下列判断错误的是( )A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM17.(2016•河北)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上18.(2016•内江)已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定19.(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE 垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.320.(2016•邵阳)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC2016年全国各地中考数学试题分类解析汇编(第一辑)第13章轴对称参考答案与试题解析一.选择题(共20小题)1.(2016•台湾)若下列选项中的图形均为正多边形,则哪一个图形恰有4条对称轴?()A.B.C.D.【分析】直接利用轴对称图形的性质分析得出符合题意的答案.【解答】解:A、正三角形有3条对称轴,故此选项错误;B、正方形有4条对称轴,故此选项正确;C、正六边形有6条对称轴,故此选项错误;D、正八边形有8条对称轴,故此选项错误.故选:B.【点评】此题主要考查了轴对称图形,正确把握轴对称图形的定义是解题关键.2.(2016•成都)平面直角坐标系中,点P(﹣2,3)关于x轴对称的点的坐标为()A.(﹣2,﹣3)B.(2,﹣3)C.(﹣3,﹣2)D.(3,﹣2)【分析】直接利用关于x轴对称点的性质,横坐标不变,纵坐标互为相反数,进而得出答案.【解答】解:点P(﹣2,3)关于x轴对称的点的坐标为(﹣2,﹣3).故选:A.【点评】此题主要考查了关于x轴对称点的性质,正确记忆横纵坐标的关系是解题关键.3.(2016•巴中)在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是()A.B.C.D.【分析】利用轴对称图形定义判断即可.【解答】解:在一些美术字中,有的汉字是轴对称图形,下列四个汉字中,可以看作轴对称图形的是,故选D.【点评】此题考查了轴对称图形,熟练掌握轴对称图形的定义是解本题的关键.4.(2016•深圳)下列图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选B.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.(2016•西宁)在一些汉字的美术字中,有的是轴对称图形.下面四个美术字中可以看作轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;据此判断即可.【解答】解:四个汉字中只有“善”字可以看作轴对称图形,故选D.【点评】考查了轴对称图形的知识,掌握轴对称图形的意义,判断是不是轴对称图形的关键是找出对称轴,看图形沿对称轴对折后两部分能否完全重合.6.(2016•重庆)下列交通指示标识中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项正确;D、是轴对称图形,故本选项错误.故选C.【点评】本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.7.(2016•桂林)下列图形一定是轴对称图形的是()A.直角三角形B.平行四边形C.直角梯形D.正方形【分析】根据轴对称图形的概念,结合选项求解即可.【解答】解:A、直角三角形中只有等腰直角三角形为轴对称图形,本选项错误;B、平行四边形不是轴对称图形,本选项错误;C、直角梯形不是轴对称图形,本选项错误;D、正方形是轴对称图形,本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8.(2016•泸州)下列图形中不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念可知:A,B,D是轴对称图形,C不是轴对称图形,故选:C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9.(2016•菏泽)以下微信图标不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选D.【点评】本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.10.(2016•北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、是轴对称图形,故本选项错误;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.11.(2016•绍兴)我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化,窗框一部分如图2,它是一个轴对称图形,其对称轴有()A.1条B.2条C.3条D.4条【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:其对称轴有2条.故选:B.【点评】此题主要考查了轴对称图形的定义,正确把握定义是解题关键.12.(2016•重庆)下列图形中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、不是轴对称图形,不符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、是轴对称图形,对称轴有两条,符合题意.故选:D.【点评】此题主要考查了轴对称图形,确定轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.13.(2016•邵阳)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.14.(2016•漳州)下列图案属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的定义,寻找四个选项中图形的对称轴,发现只有,A有一条对称轴,由此即可得出结论.【解答】解:A、能找出一条对称轴,故A是轴对称图形;B、不能找出对称轴,故B不是轴对称图形;C、不能找出对称轴,故B不是轴对称图形;D、不能找出对称轴,故B不是轴对称图形.故选A.【点评】本题考查了轴对称图形,解题的关键是分别寻找四个选项中图形的对称轴.本题属于基础题,难度不大,解决该题型题目时,通过寻找给定图象有无对称轴来确定该图形是否是轴对称图形是关键.15.(2016•舟山)在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.【点评】本题考查的是轴对称图形的概念,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.16.(2016•南充)如图,直线MN是四边形AMBN的对称轴,点P时直线MN上的点,下列判断错误的是()A.AM=BM B.AP=BN C.∠MAP=∠MBP D.∠ANM=∠BNM【分析】根据直线MN是四边形AMBN的对称轴,得到点A与点B对应,根据轴对称的性质即可得到结论.【解答】解:∵直线MN是四边形AMBN的对称轴,∴点A与点B对应,∴AM=BM,AN=BN,∠ANM=∠BNM,∵点P时直线MN上的点,∴∠MAP=∠MBP,∴A,C,D正确,B错误,故选B.【点评】本题考查了轴对称的性质,熟练掌握轴对称的性质是解题的关键.17.(2016•河北)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.1个B.2个C.3个D.3个以上【分析】如图在OA、OB上截取OE=OF=OP,作∠MPN=60°,只要证明△PEM≌△PON 即可推出△PMN是等边三角形,由此即可对称结论.【解答】解:如图在OA、OB上截取OE=OF=OP,作∠MPN=60°.∵OP平分∠AOB,∴∠EOP=∠POF=60°,∵OP=OE=OF,∴△OPE,△OPF是等边三角形,∴EP=OP,∠EPO=∠OEP=∠PON=∠MP N=60°,∴∠EPM=∠OPN,在△PEM和△PON中,,∴△PEM≌△PON.∴PM=PN,∵∠MPN=60°,∴△POM是等边三角形,∴只要∠MPN=60°,△PMN就是等边三角形,故这样的三角形有无数个.故选D.【点评】本题考查等边三角形的判定和性质、全等三角形的判定和性质、角平分线的性质等知识,解题的关键是正确添加辅助线,构造全等三角形,属于中考常考题型.18.(2016•内江)已知等边三角形的边长为3,点P为等边三角形内任意一点,则点P到三边的距离之和为()A.B.C.D.不能确定【分析】作出图形,根据等边三角形的性质求出高AH的长,再根据三角形的面积公式求出点P到三边的距离之和等于高线的长度,从而得解.【解答】解:如图,∵等边三角形的边长为3,∴高线AH=3×=,S△AB C=B C•AH=AB•PD+BC•PE+AC•PF,∴×3•AH=×3•PD+×3•PE+×3•PF,∴PD+PE+PF=AH=,即点P到三角形三边距离之和为.故选:B.【点评】本题考查了等边三角形的性质,根据三角形的面积求点P到三边的距离之和等于等边三角形的高是解题的关键,作出图形更形象直观.19.(2016•雅安)如图所示,底边BC为2,顶角A为120°的等腰△ABC中,DE 垂直平分AB于D,则△ACE的周长为()A.2+2B.2+C.4 D.3【分析】过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.【解答】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴AE+CE=BC=2,∴△ACE的周长=AC+AE+CE=AC+BC=2+2,故选:A.【点评】本题考查了线段垂直平分线性质,三角形的内角和定理,等腰三角形的性质,含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.20.(2016•邵阳)如图所示,点D是△ABC的边AC上一点(不含端点),AD=BD,则下列结论正确的是()A.AC>BC B.AC=BC C.∠A>∠ABC D.∠A=∠ABC【分析】根据等腰三角形的两个底角相等,由AD=BD得到∠A=∠ABD,所以∠ABC >∠A,则对各C、D选项进行判断;根据大边对大角可对A、B进行判断.【解答】解:∵AD=BD,∴∠A=∠ABD,∴∠ABC>∠A,所以C选项和D选项错误;∴AC>BC,所以A选项正确;B选项错误.故选A.【点评】本题考查了等腰三角形的性质:等腰三角形的两腰相等;等腰三角形的两个底角相等;等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.。
2016年全国中考数学真题分类 正多边形、扇形和圆锥(习题解析)

2016年全国中考数学真题分类正多边形、扇形和圆锥侧面展开图一、选择题7.(3分)(2016•无锡,7,3分)已知圆锥的底面半径为4cm,母线长为6cm,则它的侧面展开图的面积等于()A.24cm2B.48cm2C.24πcm2D.12πcm2【分析】根据圆锥的侧面积=×底面圆的周长×母线长即可求解.【解答】解:底面半径为4cm,则底面周长=8πcm,侧面面积=×8π×6=24π(cm2).故选:C.【点评】本题考查了圆锥的有关计算,解题的关键是了解圆锥的有关元素与扇形的有关元素的对应关系.4.(2016台湾,4)如图,已知扇形AOB的半径为10公分,圆心角为54°,则此扇形面积为多少平方公分?()A.100π B.20π C.15π D.5π【考点】扇形面积的计算.【专题】计算题;圆的有关概念及性质.【分析】利用扇形面积公式计算即可得到结果.【答案】解:∵扇形AOB的半径为10公分,圆心角为54°,∴S==15π(平方公分),扇形AOB故选C.23.(2016台湾,23)如图,正六边形ABCDEF中,P、Q两点分别为△ACF、△CEF的内心.若AF=2,则PQ的长度为何?()A.1 B.2 C.2﹣2 D.4﹣2【考点】三角形的内切圆与内心.【分析】先判断出四边形FPCQ是筝形,再求出AC=,AF=2,CF=2AF=4,然后计算出PQ即可.【答案】解:如图,连接PF,QF,PC,QC,∵P、Q两点分别为△ACF、△CEF的内心∴四边形FPCQ是筝形,∴PQ⊥CF,∵△ACF≌△ECF,且内角是30°,60°,90°的三角形,∴AC=,AF=2,CF=2AF=4,∴PQ=2×=2+2﹣4=2﹣2.故选C.18.(2016台湾,18)如图,有一内部装有水的直圆柱形水桶,桶高20公分;另有一直圆柱形的实心铁柱,柱高30公分,直立放置于水桶底面上,水桶内的水面高度为12公分,且水桶与铁柱的底面半径比为2:1.今小贤将铁柱移至水桶外部,过程中水桶内的水量未改变,若不计水桶厚度,则水桶内的水面高度变为多少公分?()A.4.5 B.6 C.8 D.9【考点】圆柱的计算.【分析】由水桶底面半径:铁柱底面半径=2:1,得到水桶底面积:铁柱底面积=22:12=4:1,设铁柱底面积为a,水桶底面积为4a,于是得到水桶底面扣除铁柱部分的环形区域面积为4a﹣a=3a,根据原有的水量为3a×12=36a,即可得到结论.【答案】解:∵水桶底面半径:铁柱底面半径=2:1,∴水桶底面积:铁柱底面积=22:12=4:1,设铁柱底面积为a,水桶底面积为4a,则水桶底面扣除铁柱部分的环形区域面积为4a﹣a=3a,∵原有的水量为3a×12=36a,∴水桶内的水面高度变为=9(公分).故选D.二、填空题6.(2016云南,6,3分)如果圆柱的侧面展开图是相邻两边长分别为6、16π的长方形,那么这个圆柱的体积等于.【答案】144或384π14.(2016湖南常德,14,3分)如图,△ABC是⊙O的内接正三角形,⊙O的半径为3,则图中阴影部分的面积是3π.【考点】三角形的外接圆与外心;圆周角定理;扇形面积的计算.【分析】根据等边三角形性质及圆周角定理可得扇形对应的圆心角度数,再根据扇形面积公式计算可得.【答案】解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=3π,故答案为:3π.17.(2016四川眉山,17,3分)一个圆锥的侧面展开图是半径为8cm,圆心角为120°的扇形,则此圆锥的底面半径为 .【答案】8 3(2016•大庆,17,3分)如图,在矩形ABCD中,AB=5,BC=10,一圆弧过点B和点C,且与AD相切,则图中阴影部分面积为75﹣.【分析】设圆的半径为x,根据勾股定理求出x,根据扇形的面积公式、阴影部分面积为:矩形ABCD的面积﹣(扇形BOCE的面积﹣△BOC的面积)进行计算即可.【解答】解:设圆弧的圆心为O,与AD切于E,连接OE交BC于F,连接OB、OC,设圆的半径为x,则OF=x﹣5,由勾股定理得,OB2=OF2+BF2,即x2=(x﹣5)2+(5)2,解得,x=5,则∠BOF=60°,∠BOC=120°,则阴影部分面积为:矩形ABCD的面积﹣(扇形BOCE的面积﹣△BOC的面积)=10×5﹣+×10×5=75﹣,故答案为:75﹣.5. (2016湖北咸宁,15,3分)用m根火柴恰好可拼成如图1所示的a个等边三角形或如图2所示的b个正六边形,则a b=_______________.【考点】根据实际意义列出一次函数变量之间的关系式,数形结合思想.【分析】分别根据图1,求出拼成a个等边三角形用的火柴数量,即m与a之间的关系,再根据图2找到b与m之间的等量关系,最后利用m相同得出b的值.a【解答】解:由图1可知:一个等边三角形有3条边,两个等边三角形有3+2条边,∴m=1+2a,由图2可知:一个正六边形有6条边,两个正六边形有6+5条边,∴m=1+5b ,∴1+2a =1+5b∴ab =52. 故答案为:52.三、解答题22.(2016四川攀枝花,22,8分)如图,在矩形ABCD 中,点F 在边BC 上,且AF=AD ,过点D 作DE ⊥AF ,垂足为点E.(1)求证:DE=AB ;(2)以A 为圆心,AB 长为半径作圆弧交AF 于点G ,若BF=FC=1,求扇形ABG 的面积.(结果保留π)【考点】扇形面积的计算;全等三角形的判定与性质;矩形的性质.【分析】(1)根据矩形的性质得出∠B=90°,AD=BC ,AD ∥BC ,求出∠DAE=∠AFB ,∠AED=90°=∠B ,根据AAS 推出△ABF ≌△DEA 即可;(2)根据勾股定理求出AB ,解直角三角形求出∠BAF ,根据全等三角形的性质得出DE=DG=AB=,∠GDE=∠BAF=30°,根据扇形的面积公式求得求出即可.【答案】(1)证明:∵四边形ABCD 是矩形,∴∠B=90°,AD=BC ,AD ∥BC ,∴∠DAE=∠AFB ,∵DE⊥AF,∴∠AED=90°=∠B,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴DE=AB;(2)解:∵BC=AD,AD=AF,∴BC=AF,∵BF=1,∠ABF=90°,∴由勾股定理得:AB==,∴∠BAF=30°,∵△ABF≌△DEA,∴∠GDE=∠BAF=30°,DE=AB=DG=,∴扇形ABG的面积==π.21.(2016湖北宜昌,21,8分)如图,CD是⊙O的弦,AB是直径,且CD∥AB,连接AC、AD、OD,其中AC=CD,过点B的切线交CD的延长线于E.(1)求证:DA平分∠CDO;(2)若AB=12,求图中阴影部分的周长之和(参考数据:π=3.1, =1.4,=1.7).【考点】切线的性质;弧长的计算.【分析】(1)只要证明∠CDA=∠DAO,∠DAO=∠ADO即可.(2)首先证明==,再证明∠DOB=60°得△BOD是等边三角形,由此即可解决问题.【解答】证明:(1)∵CD∥AB,∴∠CDA=∠BAD,又∵OA=OD,∴∠ADO=∠BAD,∴∠ADO=∠CDA,∴DA平分∠CDO.(2)如图,连接BD,∵AB是直径,∴∠ADB=90°,∵AC=CD,∴∠CAD=∠CDA,又∵CD∥AB,∴∠CDA=∠BAD,∴∠CDA=∠BAD=∠CAD,∴==,又∵∠AOB=180°,∴∠DOB=60°,∵OD=OB,∴△DOB是等边三角形,∴BD=OB=AB=6,∵=,∴AC=BD=6,∵BE切⊙O于B,∴BE⊥AB,∴∠DBE=∠ABE﹣∠ABD=30°,∵CD∥AB,∴BE⊥CE,∴DE=BD=3,BE=BD×cos∠DBE=6×=3,∴的长==2π,∴图中阴影部分周长之和为2=4π+9+3=4×3.1+9+3×1.7=26.5.。
专题10 四边形-2017版[中考15年]上海市2002-2016年中考数学试题分项解析(解析版)
![专题10 四边形-2017版[中考15年]上海市2002-2016年中考数学试题分项解析(解析版)](https://img.taocdn.com/s3/m/aab3cdc880eb6294dd886cb8.png)
1.(上海市2006年4分)在下列命题中,真命题是【 】 A .两条对角线相等的四边形是矩形; B .两条对角线互相垂直的四边形是菱形; C .两条对角线互相平分的四边形是平行四边形; D .两条对角线互相垂直且相等的四边形是正方形。
【答案】D 。
2.(上海市2007年4分)已知四边形ABCD 中,90A B C ===∠∠∠,如果添加一个条件,即可推出该四边形是正方形,那么这个条件可以是【 】 A .90D =∠B .AB CD =C .AD BC =D .BC CD =【答案】D 。
【考点】正方形的判定。
【分析】由∠A=∠B=∠C=90°可判定为矩形,因此再添加条件:一组邻边相等,即可判定为正方形。
故选D 。
3.(上海市2011年4分)矩形ABCD 中,AB =8,BC =,点P 在边AB 上,且BP =3AP ,如果圆P 是以点P 为圆心,PD 为半径的圆,那么下列判断正确的是【 】.(A) 点B 、C 均在圆P 外; (B) 点B 在圆P 外、点C 在圆P 内; (C) 点B 在圆P 内、点C 在圆P 外; (D) 点B 、C 均在圆P 内.【答案】C。
4.(2013年上海市4分)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD是等腰梯形的是【】(A)∠BDC =∠BCD (B)∠ABC =∠DAB (C)∠ADB =∠DAC (D)∠AOB =∠BOC【答案】C。
【考点】等腰梯形的判定,平行的性质,等腰三角形的判定。
【分析】根据等腰梯形的判定,逐一作出判断:A.由∠BDC =∠BCD只能判断△BCD是等腰三角形,而不能判断梯形ABCD是等腰梯形;B.由∠ABC =∠DAB和AD∥BC,可得∠ABC =∠DAB=900,是直角梯形,而不能判断梯形ABCD是等腰梯形;5.(上海市2014年4分)如图,已知AC、BD是菱形ABCD的对角线,那么下列结论一定正确的是().(A)△ABD与△ABC的周长相等;(B)△ABD与△ABC的面积相等;(C)菱形的周长等于两条对角线之和的两倍;(D)菱形的面积等于两条对角线之积的两倍.【答案】B.【解析】1.(上海市2002年2分)已知AD是△ABC的角平分线,E、F分别是边AB、AC的中点,连结DE、DF,在不再连结其他线段的前提下,要使四边形AEDF成为菱形,还需添加一个条件,这个条件可以是▲ .【答案】AB=AC或∠B=∠C或AE=AF。
(精校版)2016年各地中考数学解析版试卷精选汇编:相交线与平行线
(直打版)2016年各地中考数学解析版试卷精选汇编:相交线与平行线(word 版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2016年各地中考数学解析版试卷精选汇编:相交线与平行线(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2016年各地中考数学解析版试卷精选汇编:相交线与平行线(word版可编辑修改)的全部内容。
相交线与平行线一、选择题1.(2016·黑龙江大庆)如图,从①∠1=∠2 ②∠C=∠D ③∠A=∠F 三个条件中选出两个作为已知条件,另一个作为结论所组成的命题中,正确命题的个数为( )A.0 B.1 C.2 D.3【考点】平行线的性质.【分析】直接利用平行线的判定与性质分别判断得出各结论的正确性.【解答】解:如图所示:当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当②∠C=∠D,故∠4=∠C,则DF∥AC,可得:∠A=∠F,即⇒③;当①∠1=∠2,则∠3=∠2,故DB∥EC,则∠D=∠4,当③∠A=∠F,故DF∥AC,则∠4=∠C,故可得:∠C=∠D,即⇒②;当③∠A=∠F,故DF∥AC,则∠4=∠C,当②∠C=∠D,则∠4=∠D,故DB∥EC,则∠2=∠3,可得:∠1=∠2,即⇒①,故正确的有3个.故选:D.【点评】此题主要考查了命题与定理,正确掌握平行线的判定与性质是解题关键.2。
(2016·湖北鄂州)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为( )A。
50° B. 40°C。
湖南省湘西州2016年中考数学试卷(解析版)
2016年湖南省湘西州中考数学试卷、填空题(共8小题,每小题4分,满分32 分) 1. ________________________ 2的相反数是 .2. _______________________________________________ 使代数式: ']有意义的x 取值范围是 .3. 四边形ABCD 是某个圆的内接四边形,若/A=100 °则/ C= _____________ .4. _______________________________________________________________________________________ 如图,直线 CD // BF ,直线AB 与CD 、EF 分别相交于点 M 、N ,若/仁30 °则/ 2= _____________________5•某地区今年参加初中毕业学业考试的九年级考生人数为 人.26•分解因式:x - 4x+4= _____________7.如图,在O O 中,圆心角/ AOB=70 °那么圆周角/ C=8如图,已知菱形ABCD 的两条对角线长分别为 AC=8和BD=6,那么,菱形ABCD 的面积为 _________________二、选择题(共10小题,每小题4分,满分40分) 9. 一组数据1 , 8, 5, 3, 3的中位数是( )A . 3B . 3.5C . 4D . 5 10.下列图形中,是轴对称图形但不是中心对称图形的是()A .平行四边形B .等腰三角形C .矩形D .正方形31000人,数据31000人用科学记数法表示为11 .下列说法错误的是(A •对角线互相平分的四边形是平行四边形B •两组对边分别相等的四边形是平行四边形C . 一组对边平行且相等的四边形是平行四边形D •一组对边相等,另一组对边平行的四边形是平行四边形12 •计算 二-〔的结果精确到0.01是(可用科学计算器计算或笔算)( A • 0.30 B • 0.31 C • 0.32 D . 0.33A • x > 1B • 1v x<2C • x 毛D .无解14 • 一个等腰三角形一边长为 4cm ,另一边长为5cm ,那么这个等腰三角形的周长是( )A • 13cmB • 14cmC . 13cm 或 14cmD .以上都不对15 •在一个不透明的口袋中装有 6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸 出一个球,摸到红球的概率为()A . 'B . .C .D . 118 .在RT △ ABC 中,/ C=90 ° BC=3cm , AC=4cm ,以点C 为圆心,以 2.5cm 为半径画圆,则O C 与直 线AB 的位置关系是()A .相交B .相切C .相离D .不能确定三、解答题(共8小题,满分78分) 19 .计算:(』莎J -3) 0- 2sin30°-匚.20 .先化简,再求值:(a+b )( a - b )- b ( a - b ),其中,a= - 2, b=1 . 21. 如图,点O 是线段AB 和线段CD 的中点. (1) 求证:△ AOD BOC ;13.不等式组f2x- 1<3| 耳+3>4'4 ' 4216 . 一次函数 y= - 2x+3的图象不经过的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限的解集是17 .如图,在 △ ABC 中,DE // BC , DB=2AD , △ ADE 的面积为1,则四边形 DBCE 的面积为((2) 求证:AD // BC .22. 如图,已知反比例函数y=—的图象与直线y= - x+b 都经过点A (1, 4),且该直线与x 轴的交点为B . (1) 求反比例函数和直线的解析式;23.某校为了了解学生家长对孩子用手机的态度问题,随机抽取了100名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这 100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如下两幅不完整的统计图.55 ................. .....(1) 若已知CD=20米,求建筑物 BC 的高度;(2) 若已知旗杆的高度 AB=5米,求建筑物BC 的高度.50 4520干涉蓊」(1)从来不管”的问卷有____________ 份,在扇形图中 严加干涉”的问卷对应的圆心角为(2) 请把条形图补充完整.(3) 若该校共有学生 2000名,请估计该校对手机问题严加干涉”的家长有多少人.24. 测量计算是日常生活中常见的问题,如图,建筑物 BC 的屋顶有一根旗杆 AB ,从地面上D 点处观测旗杆顶点A 的仰角为50°观测旗杆底部 B 点的仰角为45°(可用的参考数据:sin50 ° 0.8, tan50° 核)硝M 询问不管25. 某商店购进甲乙两种商品,甲的进货单价比乙的进货单价高20元,已知20个甲商品的进货总价与25个乙商品的进货总价相同.(1)求甲、乙每个商品的进货单价;(2)若甲、乙两种商品共进货100件,要求两种商品的进货总价不高于9000元,同时甲商品按进价提高10%后的价格销售,乙商品按进价提高25%后的价格销售,两种商品全部售完后的销售总额不低于10480元,问有哪几种进货方案?(3)在条件(2)下,并且不再考虑其他因素,若甲乙两种商品全部售完,哪种方案利润最大?最大利润是多少?226•如图,长方形OABC的OA边在x轴的正半轴上,OC在y轴的正半轴上,抛物线y=ax +bx经过点B (1,4)和点E(3,0)两点.(1)求抛物线的解析式;(2)若点D在线段OC上,且BD丄DE , BD=DE,求D点的坐标;(3)在条件(2 )下,在抛物线的对称轴上找一点M,使得△ BDM的周长为最小,并求△ BDM周长的最小值及此时点M的坐标;(4)在条件(2)下,从B点到E点这段抛物线的图象上,是否存在一个点P,使得△ PAD的面积最大?若存在,请求出△ PAD面积的最大值及此时P点的坐标;若不存在,请说明理由.2016年湖南省湘西州中考数学试卷参考答案与试题解析一、填空题(共8小题,每小题4分,满分32分)1. 2的相反数是-2 .【考点】相反数.【分析】根据相反数的定义可知.【解答】解:-2的相反数是2.【点评】主要考查相反数的定义:只有符号相反的两个数互为相反数. 0的相反数是其本身.2. 使代数式归- 1有意义的x取值范围是x昌.【考点】二次根式有意义的条件.【分析】根据二次根式有意义的条件:被开方数为非负数求解即可.【解答】解:T代数式 -.有意义,x - 1 ^0,解得:x .故答案为:x N.【点评】本题考查了二次根式有意义的条件,解答本题的关键是掌握被开方数为非负数.3. 四边形ABCD是某个圆的内接四边形,若/ A=100 °则/ C= 80° .【考点】圆内接四边形的性质.【分析】直接根据圆内接四边形的性质进行解答即可.【解答】解:•••四边ABCD是圆的内接四边形,/ A=100 °•••/ C=180 °- 100°80 °故答案为:80 °【点评】本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.4. 如图,直线CD // BF,直线AB与CD、EF分别相交于点M、N,若/仁30 °则/ 2= 30°【考点】平行线的性质.【分析】直接利用对顶角的定义得出/ DMN的度数,再利用平行线的性质得出答案.【解答】解:•••/ 仁30°•••/ DMN=30 °•/ CD // BF,•••/ 2= / DMN=30 °故答案为:30 °【点评】此题主要考查了平行线的性质,正确得出/ 2= / DMN是解题关键.5•某地区今年参加初中毕业学业考试的九年级考生人数为31000人,数据31000人用科学记数法表示为.4 .3.1 X10 人.【考点】科学记数法一表示较大的数.【分析】科学记数法的表示形式为axi0n的形式,其中1哼a|v 10, n为整数•确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值〉1时,n是正数;当原数的绝对值v 1时,n是负数.【解答】解:31000=3.1 X104,故答案为:3.1 X104.【点评】此题考查科学记数法的表示方法•科学记数法的表示形式为a X0n的形式,其中1弓a V 10, n为整数,表示时关键要正确确定a的值以及n的值.6.分解因式:x2- 4x+4= ( x- 2) 2【考点】因式分解-运用公式法.【分析】直接用完全平方公式分解即可.【解答】解:x2- 4x+4= (x - 2)2.【点评】本题主要考查利用完全平方公式分解因式•完全平方公式:(a-b)2=a2- 2ab+b2.7.如图,在O O中,圆心角/ AOB=70 °那么圆周角/ C= 35°【考点】圆周角定理;圆心角、弧、弦的关系.【分析】根据在同圆或等圆中,同弧所对的圆周角等于圆心角的一半列式计算即可得解.【解答】解:•••圆心角/ AOB=70 °•••/ C=—/ AOB=— >70°=35 °2 2故答案为:35 °【点评】本题利用了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.&如图,已知菱形ABCD的两条对角线长分别为AC=8和BD=6,那么,菱形ABCD的面积为24【考点】菱形的性质.【分析】直接根据菱形面积等于两条对角线的长度的乘积的一半进行计算即可.【解答】解:菱形的面积=,:>5^8=24,故答案为:24.【点评】本题考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;菱形是轴对称图形,它有2条对称轴,分别是两条对角线所在直线.菱形面积等于两条对角线的长度的乘积的一半.二、选择题(共10小题,每小题4分,满分40分)9.一组数据1 , 8, 5, 3, 3的中位数是()A . 3 B. 3.5 C . 4 D . 5【考点】中位数.【分析】根据中位数计算:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【解答】解:把这组数据按照从小到大的顺序排列为:1,3,3,5,8,故这组数据的中位数是3.故选: A .【点评】本题考查了中位数的定义,解题的关键是牢记定义,此题比较简单,易于掌握.10.下列图形中,是轴对称图形但不是中心对称图形的是()A •平行四边形B •等腰三角形C•矩形D •正方形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形的概念先求出图形中轴对称图形,再根据中心对称图形的概念得出其中不是中心对称的图形.【解答】解:A、平行四边形不是轴对称图形,是中心对称图形•故本选项错误;B、等腰三角形是轴对称图形,不是中心对称图形•故本选项正确.C、矩形是轴对称图形,也是中心对称图形•故本选项错误;D、正方形是轴对称图形,也是中心对称图形•故本选项错误;故选B •【点评】本题考查了中心对称图形与轴对称图形的概念,轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形,熟练掌握概念是解答此题的关键.11.下列说法错误的是()A •对角线互相平分的四边形是平行四边形B・两组对边分别相等的四边形是平行四边形C・一组对边平行且相等的四边形是平行四边形D •一组对边相等,另一组对边平行的四边形是平行四边形【考点】平行四边形的判定.【分析】根据平行四边形的判定定理进行分析即可.【解答】解:A 、两条对角线互相平分的四边形是平行四边形,故本选项说法正确; B 、 两组对边分别相等的四边形是平行四边形,故本选项说法正确; C 、 一组对边平行且相等的四边形是平行四边形,故本选项说法正确;D 、 一组对边相等,另一组对边平行的四边形不一定是平行四边形,例如:等腰梯形,故本选项说法错误; 故选:D .【点评】此题主要考查了平行四边形的判定:( 1两组对边分别平行的四边形是平行四边形.(2) 两组对边分别相等的四边形是平行四边形. (3) —组对边平行且相等的四边形是平行四边形. (4) 两组对角分别相等的四边形是平行四边形. (5) 对角线互相平分的四边形是平行四边形.12.计算 二-三的结果精确到0.01是(可用科学计算器计算或笔算)( )A . 0.30B . 0.31C . 0.32D . 0.33【考点】计算器一数的开方.【分析】首先得出 应F .732,心勺.414,进一步代入求得答案即可. 【解答】解:T 灵勺.732,占勺.414, •••占—近羽.732— 1.414=0.318 P.32. 故选:C .【点评】此题主要考查了利用计算器求数的开方运算,解题首先注意要让学生能够熟练运用计算器计算实 数的四则混合运算,同时也要求学生会根据题目要求取近似值.A . x > 1B . 1v x<2C . x 电D .无解 【考点】解一元一次不等式组.【专题】计算题;一元一次不等式 (组)及应用.【分析】分别求出不等式组中两不等式的解集,找出解集的公共部分即可.由①得:x^2,13.不等式组 px- 1<3 |x+3>4【解答】解:1<3 ①耳+3>4②的解集是由②得:x > 1 ,则不等式组的解集为 1v x 电, 故选B【点评】此题考查了解一元一次不等式组,熟练掌握运算法则是解本题的关键.14. 一个等腰三角形一边长为 4cm ,另一边长为5cm ,那么这个等腰三角形的周长是( )A . 13cmB . 14cmC . 13cm 或 14cmD .以上都不对【考点】等腰三角形的性质;三角形三边关系.【分析】分4cm 为等腰三角形的腰和 5cm 为等腰三角形的腰,先判断符合不符合三边关系,再求出周长. 【解答】解:当4cm 为等腰三角形的腰时,三角形的三边分别是 4cm , 4cm , 5cm 符合三角形的三边关系, •••周长为13cm ;当5cm 为等腰三角形的腰时,三边分别是,5cm , 5cm , 4cm ,符合三角形的三边关系, •周长为14cm , 故选C【点评】此题是等腰三角形的性质题,主要考查了等腰三角形的性质,三角形的三边关系,分类考虑是解 本题的关键.6个红球,2个绿球,这些球除颜色外无其他差别,从这个袋子中随机摸)A —B 丄C 丄D 1 .. ,1 . 一 . 【考点】概率公式.【分析】先求出总的球的个数,再根据概率公式即可得出摸到红球的概率. 【解答】解:•••袋中装有 6个红球,2个绿球, •共有8个球,•摸到红球的概率为 三斗;8 4:故选A .【点评】本题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.15.在一个不透明的口袋中装有 出一个球,摸到红球的概率为(16. —次函数y - 2x+3的图象不经过的象限是()A .第一象限B .第二象限C.第三象限D .第四象限【考点】一次函数的性质.【分析】首先确定k, k> 0,必过第二、四象限,再确定b,看与y轴交点,即可得到答案.【解答】解:••• y= - 2x+3 中,k= - 2 v 0,•••必过第二、四象限,•/ b=3,•••交y轴于正半轴.•过第一、二、四象限,不过第三象限,故选:C.【点评】此题主要考查了一次函数的性质,直线所过象限,受k,b的影响.17. 如图,在△ ABC中,DE // BC,DB=2AD,△ ADE的面积为1,则四边形DBCE的面积为()A . 3 B. 5 C. 6 D . 8【考点】相似三角形的判定与性质.【分析】根据相似三角形的判定与性质,可得△ ABC的面积,根据面积的和差,可得答案.【解答】解:由DE // BC,DB=2AD,得in 1△ ADE ABC,=:.由,△ ADE的面积为1,得S AABC得5△ABC=9 .S D BCE=S A BC- S A ADE=8,故选:D.【点评】本题考查了相似三角形的判定与性质,利用相似三角形面积的比等于相似比的平方得出S^A B C=9是解题关键.18. 在RT△ ABC中,/ C=90 ° BC=3cm , AC=4cm,以点C为圆心,以2.5cm为半径画圆,则O C与直线AB的位置关系是()A .相交B .相切C.相离D .不能确定【考点】直线与圆的位置关系.【分析】过C作CD丄AB于D,根据勾股定理求出AB,根据三角形的面积公式求出CD,得出d v r,根据直线和圆的位置关系即可得出结论.【解答】解:过C作CD丄AB于D,如图所示:•••在Rt△ ABC 中,/ C=90, AC=4 , BC=3 ,二AB= £山IK "=5,•/△ ABC 的面积= AC XBC= AB >CD ,2 2:.3>4=5CD ,••• CD=2.4 v 2.5,即 d v r,•••以2.5为半径的O C与直线AB的关系是相交;故选A.【点评】本题考查了直线和圆的位置关系,用到的知识点是勾股定理,三角形的面积公式;解此题的关键是能正确作出辅助线,并进一步求出CD的长,注意:直线和圆的位置关系有:相离,相切,相交.三、解答题(共8小题,满分78分)19•计算:(唔可三-3)0- 2sin30°- ■!.【考点】实数的运算;零指数幕;特殊角的三角函数值.【专题】计算题.【分析】根据实数的运算顺序,首先计算乘方、开方和乘法,然后从左向右依次计算,求出算式(穆五叵-3)0- 2sin30 °- 打的值是多少即可.【解答】解:(心:飞-3)0- 2sin30°-匚=1 - 2X - 22=1 - 1 - 2 =-2【点评】(1)此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时, 和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号 里面的,同级运算要按照从左到有的顺序进行•另外,有理数的运算律在实数范围内仍然适用. (2)此题还考查了零指数幕的运算,要熟练掌握,解答此题的关键是要明确: ①a °=1( a 用);②0°詞•(3)此题还考查了特殊角的三角函数值,要牢记 30° 45° 60°角的各种三角函数值.20•先化简,再求值:(a+b )( a - b )- b ( a - b ),其中,a= - 2, b=1 • 【考点】整式的混合运算一化简求值. 【专题】计算题;整式.【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把 入计算即可求出值.【解答】解:原式=a 2- b 2- ab+b 2=a 2- ab , 当 a= - 2, b=1 时,原式=4+2=6 •【点评】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.21 •如图,点O 是线段AB 和线段CD 的中点. (1) 求证:△ AOD ◎△ BOC ; (2) 求证:AD // BC •【考点】全等三角形的判定与性质. 【专题】证明题.【分析】(1)由点O 是线段AB 和线段CD 的中点可得出AO=BO , CO=DO ,结合对顶角相等,即可利 用全等三角形的判定定理( SAS )证出△ AOD BOC ;(2)结合全等三角形的性质可得出/ A= / B ,依据 内错角相等,两直线平行”即a 与b 的值代可证出结论.【解答】证明:(1)v点o是线段AB和线段CD的中点,••• AO=BO , CO=DO .r AO=BO在厶AOD和厶BOC中,有Z AOD=Z BOC,CO=DO•••△ AOD BOC ( SAS).(2)v^ AOD ◎△ BOC ,•••/ A= / B,• AD // BC.【点评】本题考查了全等三角形的判定与性质以及平行线的判定定理,解题的关键是:( 1)利用SAS证出厶AOD ◎△ BOC ; ( 2)找出/ A= / B .本题属于基础题,难度不大,解决该题型题目时,根据全等三角形的判定定理证出两三角形全等,结合全等三角形的性质找出相等的角,再依据平行线的判定定理证出两直线平行即可.22.如图,已知反比例函数y=—的图象与直线y= - x+b都经过点A (1, 4),且该直线与x轴的交点为B .(1)求反比例函数和直线的解析式;【专题】计算题.【分析】(1 )把A点坐标分别代入y=—和y= - x+b中分别求出k和b即可得到两函数解析式;x(2)利用一次函数解析式求出B点坐标,然后根据三角形面积公式求解.【解答】解:(1)把A (1, 4)代入y=—得k=1 ><4=4,X4所以反比例函数的解析式为y=;x把 A (1, 4)代入y= - x+b 得-1+b=4,解得b=5, 所以直线解析式为y= - x+5 ;(2)当 y=0 时,-x+5=0,解得 x=5,则 B (5, 0), 所以△ AOB 的面积= X5曲=10 .2【点评】本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点问题( 1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程 组无解,则两者无交点23•某校为了了解学生家长对孩子用手机的态度问题,随机抽取了 100名家长进行问卷调查,每位学生家长只有一份问卷,且每份问卷仅表明一种态度(这 100名家长的问卷真实有效),将这100份问卷进行回收整理后,绘制了如下两幅不完整的统计图.55 50 45 40 35 30 25 20(1)从来不管”的问卷有 25份,在扇形图中 严加干涉”的问卷对应的圆心角为 (2)请把条形图补充完整.(3)若该校共有学生 2000名,请估计该校对手机问题 严加干涉”的家长有多少人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)用问卷数从来不管”所占百分比即可;用严加干涉”部分占问卷总数的百分比乘以 360。
2016年江苏省南京市中考数学试卷附详细答案(原版+解析版)
2016年江苏省南京市中考数学试卷一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×1032.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)34.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,75.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.26.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=;=.8.(2分)若式子在实数范围内有意义,则x的取值范围是.9.(2分)分解因式:2a(b+c)﹣3(b+c)=.10.(2分)比较大小:﹣3.11.(2分)分式方程的解是.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2=,m=.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=°.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为cm.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.18.(7分)计算﹣.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为L/km、L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)2016年江苏省南京市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题2分,共12分,在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.(2分)为了方便市民出行,提倡低碳交通,近几年南京市大力发展公共自行车系统,根据规划,全市公共自行车总量明年将达70000辆,用科学记数法表示70000是()A.0.7×105B.7×104C.7×105D.70×103【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:70000=7×104,故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(2分)数轴上点A、B表示的数分别是5、﹣3,它们之间的距离可以表示为()A.﹣3+5 B.﹣3﹣5 C.|﹣3+5| D.|﹣3﹣5|【分析】由距离的定义和绝对值的关系容易得出结果.【解答】解:∵点A、B表示的数分别是5、﹣3,∴它们之间的距离=|﹣3﹣5|=8,故选:D.【点评】本题考查绝对值的意义、数轴上两点间的距离;理解数轴上两点间的距离与绝对值的关系是解决问题的关键.3.(2分)下列计算中,结果是a6的是()A.a2+a4B.a2•a3C.a12÷a2D.(a2)3【分析】A:根据合并同类项的方法判断即可.B:根据同底数幂的乘法法则计算即可.C:根据同底数幂的除法法则计算即可.D:幂的乘方的计算法则:(a m)n=a mn(m,n是正整数),据此判断即可.【解答】解:∵a2+a4≠a6,∴选项A的结果不是a6;∵a2•a3=a5,∴选项B的结果不是a6;∵a12÷a2=a10,∴选项C的结果不是a6;∵(a2)3=a6,∴选项D的结果是a6.故选:D.【点评】(1)此题主要考查了同底数幂的除法法则:同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2)此题还考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(3)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.(4)此题还考查了合并同类项的方法,要熟练掌握.4.(2分)下列长度的三条线段能组成钝角三角形的是()A.3,4,4 B.3,4,5 C.3,4,6 D.3,4,7【分析】在能够组成三角形的条件下,如果满足较小两边平方的和等于最大边的平方是直角三角形;满足较小两边平方的和大于最大边的平方是锐角三角形;满足较小两边平方的和小于最大边的平方是钝角三角形,依此求解即可.【解答】解:A、因为32+42>42,所以三条线段能组锐角三角形,不符合题意;B、因为32+42=52,所以三条线段能组成直角三角形,不符合题意;C、因为3+4>6,且32+42<62,所以三条线段能组成钝角三角形,符合题意;D、因为3+4=7,所以三条线段不能组成三角形,不符合题意.故选:C.【点评】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.掌握组成钝角三角形的条件是解题的关键.5.(2分)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.2【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA、OB,OG;∵六边形ABCDEF是边长为2的正六边形,∴△OAB是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×=,∴边长为2的正六边形的内切圆的半径为.故选B.【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算,记住基本概念是解题的关键,属于中考常考题型.6.(2分)若一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,则x的值为()A.1 B.6 C.1或6 D.5或6【分析】根据数据x1,x2,…x n与数据x1+a,x2+a,…,x n+a的方差相同这个结论即可解决问题.【解答】解:∵一组数据2,3,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.【点评】本题考查方差、平均数等知识,解题的关键利用结论:数据x1,x2,…x n 与数据x1+a,x2+a,…,x n+a的方差相同解决问题,属于中考常考题型.二、填空题(本大题共10小题,每小题2分,共20分,不需写出解答过程,请把答案直接填写在答题卡相应位置上)7.(2分)化简:=2;=2.【分析】根据二次根式的性质和立方根的定义化简即可.【解答】解:==2;=2.故答案为:2;2.【点评】本题考查了二次根式的性质与化简,立方根的定义,是基础题,熟记概念是解题的关键.8.(2分)若式子在实数范围内有意义,则x的取值范围是x≥1.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵式子在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.【点评】本题考查的是二次根式有意义的条件,即被开方数大于等于0.9.(2分)分解因式:2a(b+c)﹣3(b+c)=(b+c)(2a﹣3).【分析】直接提取公因式b+c即可.【解答】解:原式=(b+c)(2a﹣3),故答案为:(b+c)(2a﹣3).【点评】此题主要考查了提公因式法分解因式,关键是正确找出公因式.10.(2分)比较大小:﹣3<.【分析】先判断出﹣3与﹣2的符号,进而可得出结论.【解答】解:∵4<5<9,∴2<<3,∴﹣3<0,﹣2>0,∴﹣3<.故答案为:<.【点评】本题考查的是实数的大小比较,熟知正数与负数比较大小的法则是解答此题的关键.11.(2分)分式方程的解是3.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=3(x﹣2),去括号得:x=3x﹣6,解得:x=3,经检验x=3是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.(2分)设x1、x2是方程x2﹣4x+m=0的两个根,且x1+x2﹣x1x2=1,则x1+x2= 4,m=3.【分析】根据根与系数的关系找出x1+x2=﹣=4,x1x2==m,将其代入等式x1+x2﹣x1x2=1中得出关于m的一元一次方程,解方程即可得出m的值,从而此题得解.【解答】解:∵x1、x2是方程x2﹣4x+m=0的两个根,∴x1+x2=﹣=4,x1x2==m.∵x1+x2﹣x1x2=4﹣m=1,∴m=3.故答案为:4;3.【点评】本题考查了根与系数的关系,解题的关键是找出x1+x2=4,x1x2=m.本题属于基础题,难度不大,解决该题型题目时,根据根与系数的关系找出两根之和与两根之积是关键.13.(2分)如图,扇形OAB的圆心角为122°,C是上一点,则∠ACB=119°.【分析】在⊙O上取点D,连接AD,BD,根据圆周角定理求出∠D的度数,由圆内接四边形的性质即可得出结论.【解答】解:如图所示,在⊙O上取点D,连接AD,BD,∵∠AOB=122°,∴∠ADB=∠AOB=×122°=61°.∵四边形ADBC是圆内接四边形,∴∠ACB=180°﹣61°=119°.故答案为:119.【点评】本题考查的是圆周角定理,根据题意作出辅助线,构造出圆周角是解答此题的关键.14.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是①②③.【分析】根据全等三角形的性质得出∠AOB=∠AOD=90°,OB=OD,再根据全等三角形的判定定理得出△ABC≌△ADC,进而得出其它结论.【解答】解:∵△ABO≌△ADO,∴∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确∴BC=DC,故②正确;故答案为①②③.【点评】本题考查了全等三角形的判定和性质,掌握全等三角形的判定方法:SSS,SAS,ASA,AAS,以及HL,是解题的关键.15.(2分)如图,AB、CD相交于点O,OC=2,OD=3,AC∥BD,EF是△ODB的中位线,且EF=2,则AC的长为.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半求出DB,再根据相似三角形对应边成比例列式计算即可得解.【解答】解:∵EF是△ODB的中位线,∴DB=2EF=2×2=4,∵AC∥BD,∴△AOC∽△BOD,∴=,即=,解得AC=.故答案为:.【点评】本题考查了三角形的中位线平行于第三边并且等于第三边的一半,相似三角形的判定与性质,熟记定理与性质是解题的关键.16.(2分)如图,菱形ABCD的面积为120cm2,正方形AECF的面积为50cm2,则菱形的边长为13cm.【分析】根据正方形的面积可用对角线进行计算解答即可.【解答】解:因为正方形AECF的面积为50cm2,所以AC=cm,因为菱形ABCD的面积为120cm2,所以BD=cm,所以菱形的边长=cm.故答案为:13.【点评】此题考查正方形的性质,关键是根据正方形和菱形的面积进行解答.三、解答题(本大题共11小题,共88分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(7分)解不等式组,并写出它的整数解.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集,最后求其整数解即可.【解答】解:解不等式3x+1≤2(x+1),得:x≤1,解不等式﹣x<5x+12,得:x>﹣2,则不等式组的解集为:﹣2<x≤1,则不等式组的整数解为﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.18.(7分)计算﹣.【分析】首先进行通分运算,进而合并分子,进而化简求出答案.【解答】解:﹣=﹣==.【点评】此题主要考查了分式的加减运算,正确进行通分运算是解题关键.19.(7分)某校九年级有24个班,共1000名学生,他们参加了一次数学测试,学校统计了所有学生的成绩,得到下列统计图.(1)求该校九年级学生本次数学测试成绩的平均数;(2)下列关于本次数学测试说法正确的是()A.九年级学生成绩的众数与平均数相等B.九年级学生成绩的中位数与平均数相等C.随机抽取一个班,该班学生成绩的平均数等于九年级学生成绩的平均数D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数【分析】(1)用九年级学生的总分除以总人数即可得出答案;(2)根据条形统计图和扇形统计图不能求出众数和中位数,从而得出答案.【解答】解:(1)根据题意得:(80×1000×60%+82.5×1000×40%)÷1000=81(分),答:该校九年级学生本次数学测试成绩的平均数是81分;(2)A、根据统计图不能求出九年级学生成绩的众数,故本选项错误;B.根据统计图不能求出九年级学生成绩的中位数,故本选项错误;C.随机抽取一个班,该班学生成绩的平均数不一定等于九年级学生成绩的平均数,故本选项错误;D.随机抽取300名学生,可以用他们成绩的平均数估计九年级学生成绩的平均数,故本选项正确;故选D.【点评】本题考查了众数、平均数和中位数的定义.一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.20.(8分)我们在学完“平移、轴对称、旋转”三种图形的变化后,可以进行进一步研究,请根据示例图形,完成下表.【分析】(1)根据平移的性质即可得到结论;(2)根据轴对称的性质即可得到结论;(3)同(2);(4)由旋转的性质即可得到结论.【解答】解:(1)平移的性质:平移前后的对应线段相等且平行.所以与对应线段有关的结论为:AB=A′B′,AB∥A′B′;(2)轴对称的性质:AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.(3)轴对称的性质:轴对称图形对称轴是任何一对对应点所连线段的垂直平分线.所以与对应点有关的结论为:l垂直平分AA′.(4)OA=OA′,∠AOA′=∠BOB′.故答案为:(1)AB=A′B′,AB∥A′B′;(2)AB=A′B′;对应线段AB和A′B′所在的直线如果相交,交点在对称轴l上.;(3)l垂直平分AA′;(4)OA=OA′,∠AOA′=∠BOB′.【点评】本题考查了旋转的性质,平移的性质,轴对称的性质,余角和补角的性质,熟练掌握各性质是解题的关键.21.(8分)用两种方法证明“三角形的外角和等于360°”.如图,∠BAE、∠CBF、∠ACD是△ABC的三个外角.求证∠BAE+∠CBF+∠ACD=360°.证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.请把证法1补充完整,并用不同的方法完成证法2.【分析】证法1:根据平角的定义得到∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=540°,再根据三角形内角和定理和角的和差关系即可得到结论;证法2:要求证∠BAE+∠CBF+∠ACD=360°,根据三角形外角性质得到∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,则∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),然后根据三角形内角和定理即可得到结论.【解答】证明:证法1:∵平角等于180°,∴∠BAE+∠1+∠CBF+∠2+∠ACD+∠3=180°×3=540°,∴∠BAE+∠CBF+∠ACD=540°﹣(∠1+∠2+∠3).∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=540°﹣180°=360°.证法2:∵∠BAE=∠2+∠3,∠CBF=∠1+∠3,∠ACD=∠1+∠2,∴∠BAE+∠CBF+∠ACD=2(∠1+∠2+∠3),∵∠1+∠2+∠3=180°,∴∠BAE+∠CBF+∠ACD=360°.故答案为:平角等于180°,∠1+∠2+∠3=180°.【点评】本题考查了多边形的外角和:n边形的外角和为360°.也考查了三角形内角和定理和外角性质.22.(8分)某景区7月1日﹣7月7日一周天气预报如图,小丽打算选择这期间的一天或两天去该景区旅游,求下列事件的概率:(1)随机选择一天,恰好天气预报是晴;(2)随机选择连续的两天,恰好天气预报都是晴.【分析】(1)由天气预报是晴的有4天,直接利用概率公式求解即可求得答案;(2)首先利用列举法可得:随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,然后直接利用概率公式求解即可求得答案.【解答】解:(1)∵天气预报是晴的有4天,∴随机选择一天,恰好天气预报是晴的概率为:;(2)∵随机选择连续的两天等可能的结果有:晴晴,晴雨,雨阴,阴晴,晴晴,晴阴,∴随机选择连续的两天,恰好天气预报都是晴的概率为:=.【点评】此题考查了列举法求概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.23.(8分)如图中的折线ABC表示某汽车的耗油量y(单位:L/km)与速度x (单位:km/h)之间的函数关系(30≤x≤120),已知线段BC表示的函数关系中,该汽车的速度每增加1km/h,耗油量增加0.002L/km.(1)当速度为50km/h、100km/h时,该汽车的耗油量分别为0.13L/km、0.14 L/km.(2)求线段AB所表示的y与x之间的函数表达式.(3)速度是多少时,该汽车的耗油量最低?最低是多少?【分析】(1)和(2):先求线段AB的解析式,因为速度为50km/h的点在AB上,所以将x=50代入计算即可,速度是100km/h的点在线段BC上,可由已知中的“该汽车的速度每增加1km/h,耗油量增加0.002L/km”列式求得,也可以利用解析式求解;(3)观察图形发现,两线段的交点即为最低点,因此求两函数解析式组成的方程组的解即可.【解答】解:(1)设AB的解析式为:y=kx+b,把(30,0.15)和(60,0.12)代入y=kx+b中得:解得∴AB:y=﹣0.001x+0.18,当x=50时,y=﹣0.001×50+0.18=0.13,由线段BC上一点坐标(90,0.12)得:0.12+(100﹣90)×0.002=0.14,∴当x=100时,y=0.14,故答案为:0.13,0.14;(2)由(1)得:线段AB的解析式为:y=﹣0.001x+0.18;(3)设BC的解析式为:y=kx+b,把(90,0.12)和(100,0.14)代入y=kx+b中得:解得,∴BC:y=0.002x﹣0.06,根据题意得解得,答:速度是80km/h时,该汽车的耗油量最低,最低是0.1L/km.【点评】本题考查了一次函数的应用,正确求出两线段的解析式是解好本题的关键,因为系数为小数,计算要格外细心,容易出错;另外,此题中求最值的方法:两图象的交点,方程组的解;同时还有机地把函数和方程结合起来,是数学解题方法之一,应该熟练掌握.24.(7分)如图,在▱ABCD中,E是AD上一点,延长CE到点F,使∠FBC=∠DCE.(1)求证:∠D=∠F;(2)用直尺和圆规在AD上作出一点P,使△BPC∽△CDP(保留作图的痕迹,不写作法).【分析】(1)BF交AD于G,先利用AD∥BC得到∠FBC=∠FGE,加上∠FBC=∠DCE,所以∠FGE=∠DCE,然后根据三角形内角和定理易得∠D=∠F;(2)分别作BC和BF的垂直平分线,它们相交于点O,然后以O为圆心,OC 为半径作△BCF的外接圆⊙O,⊙O交AD于P,连结BP、CP,则根据圆周角定理得到∠F=∠BPC,而∠F=∠D,所以∠D=∠BPC,接着可证明∠PCD=∠APB=∠PBC,于是可判断△BPC∽△CDP.【解答】(1)证明:BF交AD于G,如图,∵四边形ABCD为平行四边形,∴AD∥BC,∴∠FBC=∠FGE,而∠FBC=∠DCE,∴∠FGE=∠DCE,∵∠GEF=∠DEC,∴∠D=∠F;(2)解:如图,点P为所作.【点评】本题考查了作图﹣相似变换:两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.也考查了平行四边形的性质.解决(2)小题的关键是利用圆周角定理作∠BPC=∠F.25.(9分)图中是抛物线拱桥,P处有一照明灯,水面OA宽4m,从O、A两处观测P处,仰角分别为α、β,且tanα=,tan,以O为原点,OA所在直线为x轴建立直角坐标系.(1)求点P的坐标;(2)水面上升1m,水面宽多少(取1.41,结果精确到0.1m)?【分析】(1)过点P作PH⊥OA于H,如图,设PH=3x,运用三角函数可得OH=6x,AH=2x,根据条件OA=4可求出x,即可得到点P的坐标;(2)若水面上升1m后到达BC位置,如图,运用待定系数法可求出抛物线的解析式,然后求出y=1时x的值,就可解决问题.【解答】解:(1)过点P作PH⊥OA于H,如图.设PH=3x,在Rt△OHP中,∵tanα==,∴OH=6x.在Rt△AHP中,∵tanβ==,∴AH=2x,∴OA=OH+AH=8x=4,∴x=,∴OH=3,PH=,∴点P的坐标为(3,);(2)若水面上升1m后到达BC位置,如图,过点O(0,0),A(4,0)的抛物线的解析式可设为y=ax(x﹣4),∵P(3,)在抛物线y=ax(x﹣4)上,∴3a(3﹣4)=,解得a=﹣,∴抛物线的解析式为y=﹣x(x﹣4).当y=1时,﹣x(x﹣4)=1,解得x1=2+,x2=2﹣,∴BC=(2+)﹣(2﹣)=2=2×1.41=2.82≈2.8.答:水面上升1m,水面宽约为2.8米.【点评】本题主要考查了三角函数、运用待定系数法求抛物线的解析式、解一元二次方程等知识,出现角的度数(30°、45°或60°)或角的三角函数值,通常放到直角三角形中通过解直角三角形来解决问题.26.(8分)如图,O是△ABC内一点,⊙O与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC,连接DF、EG.(1)求证:AB=AC.(2)已知AB=10,BC=12,求四边形DFGE是矩形时⊙O的半径.【分析】(1)由切线长定理可知AD=AE,易得∠ADE=∠AED,因为DE∥BC,由平行线的性质得∠ADE=∠B,∠AED=∠C,可得∠B=∠C,易得AB=AC;(2)如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,由△AOD∽△ABN得=,得到AD=r,再由△GBD∽△ABN 得=,列出方程即可解决问题.【解答】(1)证明:∵AD、AE是⊙O的切线,∴AD=AE,∴∠ADE=∠AED,∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴∠B=∠C,∴AB=AC;(2)解:如图,连接AO,交DE于点M,延长AO交BC于点N,连接OE、DG,设⊙O半径为r,∵四边形DFGE是矩形,∴∠DFG=90°,∴DG是⊙O直径,∵⊙O与AB、AC分别相切于点D、E,∴OD⊥AB,OE⊥AC,∵OD=OE,OE⊥AC,∵OD=OE.∴AN平分∠BAC,∵AB=AC,∴AN⊥BC,BN=BC=6,在RT△ABN中,AN===8,∵OD⊥AB,AN⊥BC,∴∠ADO=∠ANB=90°,∵∠OAD=∠BAN,∴△AOD∽△ABN,∴=,即=,∴AD=r,∴BD=AB﹣AD=10﹣r,∵OD⊥AB,∴∠GDB=∠ANB=90°,∵∠B=∠B,∴△GBD∽△ABN,∴=,即=,∴r=,∴四边形DFGE是矩形时⊙O的半径为.【点评】本题考查圆、切线的性质、矩形的性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是利用参数解决问题,学会用方程的思想思考问题,属于中考压轴题.27.(11分)如图,把函数y=x的图象上各点的纵坐标变为原来的2倍,横坐标不变,得到函数y=2x的图象;也可以把函数y=x的图象上各点的横坐标变为原来的倍,纵坐标不变,得到函数y=2x的图象.类似地,我们可以认识其他函数.(1)把函数y=的图象上各点的纵坐标变为原来的6倍,横坐标不变,得到函数y=的图象;也可以把函数y=的图象上各点的横坐标变为原来的6倍,纵坐标不变,得到函数y=的图象.(2)已知下列变化:①向下平移2个单位长度;②向右平移1个单位长度;③向右平移个单位长度;④纵坐标变为原来的4倍,横坐标不变;⑤横坐标变为原来的倍,纵坐标不变;⑥横坐标变为原来的2倍,纵坐标不变.(Ⅰ)函数y=x2的图象上所有的点经过④→②→①,得到函数y=4(x﹣1)2﹣2的图象;(Ⅱ)为了得到函数y=﹣(x﹣1)2﹣2的图象,可以把函数y=﹣x2的图象上所有的点D.A.①→⑤→③B.①→⑥→③C.①→②→⑥D.①→③→⑥(3)函数y=的图象可以经过怎样的变化得到函数y=﹣的图象?(写出一种即可)。
专题10四边形(第05期)2016年中考数学试题(附解析)
专题10 四边形(第05期)-2016年中考数学试题一、选择题1.(2016贵州遵义第8题)如图,在▱ABCD中,对角线AC与BD交于点O,若增加一个条件,使▱ABCD成为菱形,下列给出的条件不正确的是()A.AB=AD B.AC⊥BD C.AC=BD D.∠BAC=∠DAC【答案】C.考点:菱形的判定;平行四边形的性质.2.(2016贵州铜仁第10题)如图,正方形ABCD中,AB=6,点E在边CD上,且CE=2DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG ≌△AFG;②BG=GC;③EG=DE+BG;④AG∥CF;⑤S△FGC=3.6.其中正确结论的个数是()A.2B.3C.4D.5【答案】D .设BG =x ,则GF =x ,C =BC ﹣BG =6﹣x ,在Rt △CGE 中,GE =x +2,EC =4,CG =6﹣x ,∵222CG CE GE +=,∴222(6)4(2)x x -+=+,解得x =3,∴BG =3,CG =6﹣3=3,∴BG =CG ,所以②正确;∵EF =ED ,GB =GF ,∴GE =GF +EF =BG +DE ,所以③正确;∵GF =GC ,∴∠GFC =∠GCF ,又∵Rt △ABG ≌Rt △AFG ,∴∠AGB =∠AGF ,而∠BGF =∠GFC +∠GCF ,∴∠AGB +∠AGF =∠GFC +∠GCF ,∴∠AGB =∠GCF ,∴CF ∥AG ,所以④正确;过F 作FH ⊥DC .∵BC ⊥DH ,∴FH ∥GC ,∴△EFH ∽△EGC ,∴EH EFGC EG=,EF =DE =2,GF =3,∴EG =5,∴△EFH ∽△EGC ,∴相似比为:EH EF GC EG ==25,∴S △FGC =S △GCE ﹣S △FEC =12×3×4﹣12×4×(25×3)=3.6,所以⑤正确.故正确的有①②③④⑤,故选D .考点:翻折变换(折叠问题);全等三角形的判定与性质;正方形的性质.3.(2016浙江台州第9题)小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了( )A .1次B .2次C .3次D .4次 【答案】B . 【解析】试题分析:小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了2次;理由如下:小红把原丝巾对折1次(共2层),如果原丝巾对折后完全重合,即表明它是矩形;沿对角线对折1次,若两个三角形重合,表明一组邻边相等,因此是正方形;故选B.考点:翻折变换(折叠问题).4.(2016湖南株洲第7题)已知四边形ABCD是平行四边形,对角线AC、BD交于点O,E 是BC的中点,以下说法错误的是()A.OE=12DC B.OA=OC C.∠BOE=∠OBA D.∠OBE=∠OCE【答案】D.考点:平行四边形的性质.5.(2016广西来宾第4题)如果一个正多边形的一个外角为30°,那么这个正多边形的边数是()A.6B.11C.12D.18【答案】C.【解析】试题分析:这个正多边形的边数:360°÷30°=12,故选C.考点:多边形内角与外角.6.(2016福建莆田第5题)菱形具有而一般平行四边形不具有的性质是()A.对边相等B.对角相等C.对角线互相平分D.对角线互相垂直【答案】D.【解析】试题分析:∵菱形具有的性质:对边相等,对角相等,对角线互相平分,对角线互相垂直;平行四边形具有的性质:对边相等,对角相等,对角线互相平分;∴菱形具有而一般平行四边形不具有的性质是:对角线互相垂直.故选D.考点:菱形的性质;平行四边形的性质.7.(2016广西河池第8题)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为()A.150°B.130°C.120°D.100°【答案】C.考点:平行四边形的性质.8.(2016广西河池第11题)如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B.【解析】试题分析:∵将△ABC沿BC方向平移得到△DCE,∴AB//CD,∴四边形ABCD为平行四边形,当AC =BC 时,平行四边形ACED 是菱形.故选B . 考点:菱形的判定;平移的性质.9.(2016内蒙古通辽第7题)如图,将矩形纸片ABCD 折叠,使点B 与点D 重合,折痕为MN ,若AB =2,BC =4,那么线段MN 的长为( )A .5 B C .5D .【答案】B .考点:翻折变换(折叠问题);矩形的性质.10.(2016辽宁营口第6题)如图,矩形ABCD 的对角线交于点O ,若∠ACB =30°,AB =2,则OC 的长为( )A .2B .3C .D .4【答案】A.【解析】试题分析:在矩形ABCD中,∠ABC=90°,∵∠ACB=30°,AB=2,∴AC=2AB=2×2=4,∵四边形ABCD是矩形,∴OC=OA=12AC=2.故选A.考点:矩形的性质.11.(2016黑龙江绥化第10题)如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=4,则四边形OCED的周长为()A.4B.8C.10D.12【答案】B.考点:矩形的性质;菱形的判定与性质.12.(2016江苏盐城第7题)如图,点F在平行四边形ABCD的边AB上,射线CF交DA 的延长线于点E,在不添加辅助线的情况下,与△AEF相似的三角形有()A.0个B.1个C.2个D.3个【答案】C.【解析】试题分析:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DC,∴△AEF∽△CBF,△AEF∽△DEC,∴与△AEF相似的三角形有2个.故选C.考点:相似三角形的判定;平行四边形的性质.13.(2016内蒙古巴彦淖尔第7题)如图,E为▱ABCD的边AB延长线上的一点,且BE:A B=2:3,△BEF的面积为4,则▱ABCD的面积为()A.30B.27C.14D.32【答案】A.考点:相似三角形的判定与性质;平行四边形的性质.14.(2016四川南充第8题)如图,对折矩形纸片ABCD,使AB与DC重合得到折痕EF,将纸片展平;再一次折叠,使点D落到EF上点G处,并使折痕经过点A,展平纸片后∠DAG 的大小为()A.30°B.45°C.60°D.75°【答案】C.【解析】试题分析:如图所示:由题意可得:∠1=∠2,AN=MN,∠MGA=90°,则NG=12AM,故AN=NG,则∠2=∠4,∵EF∥AB,∴∠4=∠3,∴∠1=∠2=∠3=13×90°=30°,∴∠DAG=60°.故选C.考点:翻折变换(折叠问题).二、填空题1.(2016贵州遵义第11题)如图,正方形ABCD的边长为3,E、F分别是AB、CD上的点,且∠CFE=60°,将四边形BCFE沿EF翻折,得到B′C′FE,C′恰好落在AD边上,B′C′交AB 于点G,则GE的长是()A.4B.5C.4-D.5-【答案】C.考点:翻折变换(折叠问题);正方形的性质.2.(2016贵州铜仁第15题)将矩形ABCD纸片按如图所示的方式折叠,EF,EG为折痕,试问∠AEF+∠BEG= .【答案】90°.【解析】试题分析:由折叠的性质,得∠AEF=∠A′EF,∠BEG=∠B′EG,∴∠AEF+∠BEG =180°÷2=90°.故答案为:90°.考点:翻折变换(折叠问题).3.(2016浙江台州第15题)如图,把一个菱形绕着它的对角线的交点旋转90°,旋转前后的两个菱形构成一个“星形”(阴影部分),若菱形的一个内角为60°,边长为2,则该“星形”的面积是.【答案】6.【解析】试题分析:在图中标上字母,令AB与A′D′的交点为点E,过E作EF⊥AC于点F,如图所示.∠ED ′F =60°,∴EF =ED ′•sin ∠ED ′F =32,∴S阴影=S菱形ABCD +4S △AD ′E =12×2AO ×2BO +4×12AD ′•EF =6.故答案为:6. 考点:旋转的性质;菱形的性质.4.(2016福建泉州第12题)十边形的外角和是 °. 【答案】360. 【解析】试题分析:根据多边形的外角和等于360°即可得十边形的外角和是360°. 考点:多边形内角与外角.5.(2016福建泉州第17题)如图,在四边形ABCD 中,AB ∥DC ,E 是AD 中点,EF ⊥BC 于点F ,BC=5,EF=3.(1)若AB=DC ,则四边形ABCD 的面积S= ;(2)若AB >DC ,则此时四边形ABCD 的面积S′ S (用“>”或“=”或“<”填空).【答案】(1)15;(2)=.∵E是AD中点,∴AE=DE,又∵AB∥CD,∴∠ABE=∠P,∠A=∠PDE,在△ABE和△DPE中,∵ABE PA PDE AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE≌△DPE(AAS),∴S△ABE=S△DPE,BE=PE,∴S△BCE=S△PCE,则S四边形ABCD=S△ABE+S△CDE+S△BCE =S△PDE+S△CDE+S△BCE=S△PCE+S△BCE=2S△BCE=2×12×BC×EF=15,∴当AB>DC,则此时四边形ABCD的面积S′=S,考点:平行四边形的判定与性质.6.(2016青海第11题)如图,菱形ABCD中,对角线AC与BD相交于点O,且AC=8,BD=6,则菱形ABCD的高DH=.【答案】4.8.考点:菱形的性质.7.(2016辽宁葫芦岛第16题)如图,四边形OABC为矩形,点A,C分别在x轴和y轴上,连接AC,点B的坐标为(4,3),∠CAO的平分线与y轴相交于点D,则点D的坐标为.【答案】(0,4 3).考点:矩形的性质;坐标与图形性质.8.(2016内蒙古通辽第16题)如图,菱形ABCD的边长为2cm,∠A=120°,点E是BC边上的动点,点P是对角线BD上的动点,若使PC+PE的值最小,则这个最小值为.考点:轴对称-最短路线问题;菱形的性质;最值问题.9.(2016黑龙江绥化第20题)如图,在四边形ABCD中,对角线AC,BD相交于点E,∠DAB=∠CDB=90°,∠ABD=45°,∠DCA=30°,AB AE= .(提示:可过点A作BD的垂线)【答案】2.【解析】试题分析:过点A作AF⊥BD于点F,∵∠CDB=90°,∠1=30°,∴∠2=∠3=60°,在△AFB中,∠AFB=90°,∵∠4=45°,AB AF=BF Rt△AEF中,∠AFE=90°,∴EF=1,AE=2.故答案为:2.考点:勾股定理;含30度角的直角三角形;等腰直角三角形.10.(2016江苏盐城第18题)如图,已知菱形ABCD的边长2,∠A=60°,点E、F分别在边AB、AD上,若将△AEF沿直线EF折叠,使得点A恰好落在CD边的中点G处,则EF= ..【答案】20FH=AF•sin∠A=1.4CD=BC,∠C=60°,∴△DCB是等边三角形,∵G是CD的中点,∴BG⊥CD,∵BC=2,GC=1,∴BG=,设BE=y,则GE=2﹣y,∴222+=-,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴y y(2)EF.考点:菱形的性质;翻折变换(折叠问题).11.(2016四川南充第12题)如图,菱形ABCD的周长是8cm,AB的长是cm.【答案】2.考点:菱形的性质.12.(2016江苏常州第12题)一个多边形的每个外角都是60°,则这个多边形边数为.【答案】6.【解析】试题分析:360÷60=6.故这个多边形边数为6.故答案为:6.考点:多边形内角与外角.13.(2016江苏常州第18题)如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和正△BPC,则四边形PCDE面积的最大值是.【答案】1.【解析】试题分析:先延长EP交BC于点F,得出PF⊥BC,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积=EP×CF=a×12b=12ab,最后根据224a b+=,判断12ab的最大值即可.试题解析:延长EP交BC于点F,∵∠APB=90°,∠AOE=∠BPC=60°,∴∠EPC=150°,∴∠CPF=180°﹣150°=30°,∴PF平分∠BPC,又∵PB=PC,∴PF⊥BC,设Rt△ABP中,AP=a,BP=b,则C F=12CP=12b,224a b+=,∵△APE和△ABD都是等边三角形,∴AE=AP,AD=AB,∠EAP=∠DAB=60°,∴∠EAD=∠PAB,∴△EAD≌△PAB(SAS),∴ED=PB=CP,同理可得:△APB≌△DCB(SAS),∴EP=AP=CP,∴四边形CDEP是平行四边形,∴四边形CDEP的面积=EP×CF=a×12b=12ab,又∵222()2a b a b ab-=+-≥0,∴2ab≤224a b+=,∴12ab≤1,即四边形PCDE面积的最大值为1.故答案为:1.考点:平行四边形的判定与性质;全等三角形的判定与性质;等边三角形的性质;最值问题.14.(2016福建南平第15题)如图,正方形ABCD中,点E、F分别为AB、CD上的点,且AE=CF=13AB,点O为线段EF的中点,过点O作直线与正方形的一组对边分别交于P、Q两点,并且满足PQ=EF,则这样的直线PQ(不同于EF)有条.【答案】3.②如图2,以点A为圆心,以AE为半径画弧,交AD于P,连接PO并延长交BC于Q,则PQ=EF;③如图3,以B为圆心,以AE为半径画弧,交AB于Q,连接QO并延长交DC于点P,则PQ=EF.考点:正方形的性质;全等三角形的判定与性质;分类讨论.15.(2016重庆A 卷第18题)正方形ABCD 中,对角线AC ,BD 相交于点O ,DE 平分∠ADO 交AC 于点E ,把△ADE 沿AD 翻折,得到△ADE ′,点F 是DE 的中点,连接AF ,BF ,E ′F .若AE ABFE ′的面积是 ..∵∠NAE =∠NEA =∠MAE =∠MEA =45°,AE ∴AM =EM =EN =AN =1,∵ED 平分∠ADO ,EN ⊥DA ,EO ⊥DB ,∴EN =EO =1,AO =1,∴AB =AO =2,∴S △AEB =S △AED =S △ADE ′=11(22⨯⨯+)=1+,S △BDE =S △ADB ﹣2S △AEB =1,∵DF =EF ,∴S △EFB =12+,∴S △DEE ′=2S △ADE ﹣S △AEE ′=1,S △DFE ′=12S △DEE ′=12,∴S 四边形AEFE ′=2S △ADE ﹣S △DFE ′∴S 四边形ABFE ′=S 四边形AEFE ′+S △AEB +S △EFB .故答案为:62+.考点:正方形的性质;翻折变换(折叠问题);综合题.三、解答题1.(2016贵州遵义第24题)如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.(1)求证:C P=AQ;(2)若BP=1,PQ=AEF=45°,求矩形ABCD的面积.【答案】(1)证明见解析;(2)8.(2)证明△BEP、△AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE得出EQ=PE+PQ=由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE ﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面积.试题解析:(1)证明:∵四边形ABCD是矩形,∴∠A=∠ABC=∠C=∠ADC=90°,AB=CD,AD=BC,AB∥CD,AD∥BC,∴∠E=∠F,∵BE=DF,∴AE=CF,在△CFP和△AEQ中,∵∠C=∠A,CF=AE,∠F=∠E,∴△CFP≌△AEQ(ASA),∴CP=AQ;(2)解:∵AD∥BC,∴∠PBE=∠A=90°,∵∠AEF=45°,∴△BEP、△AEQ是等腰直角三角形,∴BE=BP=1,AQ=AE,∴PE EQ=PE+PQ==,∴AQ =AE =3,∴AB =AE ﹣BE =2,∵CP =AQ ,AD =BC ,∴DQ =BP =1,∴AD =AQ +DQ =3+1=4,∴矩形ABCD 的面积=AB •AD =2×4=8.考点:矩形的性质;全等三角形的判定与性质.2.(2016四川甘孜州第27题)如图①,AD 为等腰直角△ABC 的高,点A 和点C 分别在正方形DEFG 的边DG 和DE 上,连接BG ,AE .(1)求证:B G =AE ;(2)将正方形DEFG 绕点D 旋转,当线段EG 经过点A 时,(如图②所示)①求证:B G ⊥CE ;②设DG 与AB 交于点M ,若AG :A E =3:4,求GM MD的值.【答案】(1)证明见解析;(2)①证明见解析;②2425.(2)①如图②,先判断△DEG 为等腰直角三角形得到∠1=∠2=45°,再由△BDG ≌△ADE 得到∠3=∠2=45°,则可得∠BGE =90°,所以BG ⊥GE ;②设AG =3x ,则AE =4x ,即GE =7x ,利用等腰直角三角形的性质得DG =2GE =2x ,由(1)的结论得BG =AE =4x ,则根据勾股定理得AB =5x ,接着由△ABD 为等腰直角三角形得到∠4=45°,BD =2AB =2x ,然后证明△DBM ∽△DGB ,则利用相似比可计算出DM =7x ,所以GM =7x ,于是可计算出GM MD 的值. 试题解析:(1)证明:如图①,∵AD 为等腰直角△ABC 的高,∴AD =BD ,∵四边形DEFG为正方形,∴∠GDE=90°,DG=DE,在△BDG和△ADE中,∵BD=AD,∠BDG=∠ADE,DG=DE,∴△BDG≌△ADE,∴BG=AE;(2)①证明:如图②,∵四边形DEFG为正方形,∴△DEG为等腰直角三角形,∴∠1=∠2=45°,由(1)得△BDG≌△ADE,∴∠3=∠2=45°,∴∠1+∠3=45°+45°=90°,即∠BGE=90°,∴BG⊥GE;②设AG=3x,则AE=4x,即GE=7x,∴DGGE,∵△BDG≌△ADE,∴BG=AE=4x,在Rt△BGA中,ABx,∵△ABD为等腰直角三角形,∴∠4=45°,BDAB,∴∠3=∠4,而∠BDM=∠GDB,∴△DBM∽△DGB,∴BD:D G=DM:B D,即2:2x=DM:2x,解得DM=14x,∴GM=DG﹣DM=2xxx,∴GMMDx2425.考点:四边形综合题;综合题.3.(2016浙江台州第19题)如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.(1)求证:△PHC≌△CFP;(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.【答案】(1)证明见解析;(2)证明见解析,面积相等.【解析】试题分析:(1)由矩形的性质得出对边平行,再根据平行线的性质得出相等的角,结合全等三角形的判定定理AAS即可得出△PHC≌△CFP;试题解析:(1)∵四边形ABCD为矩形,∴AB∥CD,AD∥BC.∵PF∥AB,∴PF∥CD,∴∠CPF=∠PCH.∵PH∥AD,∴PH∥BC,∴∠PCF=∠CPH.在△PHC和△CFP中,∵∠CPF=∠PCH,PC=CP,∠PCF=∠CPH,∴△PHC≌△CFP(ASA).(2)∵四边形ABCD为矩形,∴∠D=∠B=90°.又∵EF∥AB∥CD,GH∥AD∥BC,∴四边形PEDH和四边形PFBG都是矩形.∵EF∥AB,∴∠CPF=∠CAB.在Rt△AGP中,∠AGP=90°,PG=AG•tan∠CAB.在Rt△CFP中,∠CFP=90°,CF=PF•tan∠CPF.S矩形DEPH=DE•EP=CF•EP=PF•EP•tan∠CPF;S矩形PGBF=PG•PF=AG•PF•tan∠CAB=EP•PF•tan∠CAB.∵tan∠CPF=tan∠CAB,∴S矩形DEPH=S矩形PGBF.考点:矩形的判定与性质;全等三角形的判定与性质.4.(2016浙江台州第23题)定义:有三个内角相等的四边形叫三等角四边形.(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB 的长最大,其最大值是多少?并求此时对角线AC的长.【答案】(1)60°<∠A<120°;(2)证明见解析;(3)当AD=2时,AB的长最大,最大值是5,此时AC(2)证明:∵四边形DEBF为平行四边形,∴∠E=∠F,且∠E+∠EBF=180°.∵DE=DA,DF=DC,∴∠E=∠DAE=∠F=∠DCF,∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=180°,∴∠DAB=∠DCB=∠ABC,∴四边形ABCD是三等角四边形(3)①当60°<∠A<90°时,如图1,过点D作DF∥AB,DE∥BC,∴四边形BEDF是平行四边形,∠DFC=∠B=∠DEA,∴EB=DF,DE=FB,∵∠A=∠B=∠C,∠DFC=∠B=∠DEA,∴△DAE∽△DCF,AD=DE,DC=DF=4,设AD=x,AB=y,∴AE=y﹣4,CF=4﹣x,∵△DAE∽△DCF,∴AE ADCF CD=,∴444y xx-=-,∴2144y x x=-++=21(2)54x--+,∴当x=2时,y的最大值是5,即:当AD=2时,AB的最大值为5;②当∠A=90°时,三等角四边形是正方形,∴AD=AB=CD=4;③当90°<∠A<120°时,∠D为锐角,如图2,∵AE=4﹣AB>0,∴AB<4,综上所述,当AD=2时,AB的长最大,最大值是5;此时,AE=1,如图3,过点C作CM⊥AB于M,DN⊥AB,∵DA=DE,DN⊥AB,∴AN=12AE=12,∵∠DAN=∠CBM,∠DNA=∠CMB=90°,∴△DAN∽△CBM,∴AD ANBC BM=,∴BM=1,∴AM=4,CM AC考点:四边形综合题;最值问题;二次函数的最值;分类讨论;压轴题.5.(2016湖南株洲第23题)已知正方形ABCD中,BC=3,点E、F分别是CB、CD延长线上的点,DF=BE,连接AE、AF,过点A作AH⊥ED于H点.(1)求证:△ADF≌△ABE;(2)若BE=1,求tan∠AED的值.【答案】(1)证明见解析;(2)9 13.(2)过点A作AH⊥DE于点H,根据勾股定理得到AE ED,根据三角形的面积S△AED=12AD×BA=92,S△ADE=12ED×AH=92,求得AH=1.8,由三角函数的定义即可得到结论.试题解析:(1)正方形ABCD中,∵AD=AB,∠ADC=∠ABC=90°,∴∠ADF=∠ABE=90°,在△ADF与△ABE中,∵AD=AB,∠ADF=∠ABE,DF=BE,∴△ADF≌△ABE;(2)过点A作AH⊥DE于点H,在Rt△ABE中,∵AB=BC=3,∵BE=1,∴AEED,∵S△AED=12AD×BA=92,S△ADE=12ED×AH=92,解出AH=1.8,在Rt△AHE中,EH=2.6,∴tan∠AED=AMEM=1.82.6=913.考点:正方形的性质;全等三角形的判定与性质.6.(2016广西来宾第23题)如图,在正方形ABCD中,点E(与点B、C不重合)是BC 边上一点,将线段EA绕点E顺时针旋转90°到EF,过点F作BC的垂线交BC的延长线于点G,连接CF.(1)求证:△ABE≌△EGF;(2)若AB=2,S△ABE=2S△ECF,求BE.【答案】(1)证明见解析;(2)1.(2)解:∵△ABE≌△EGF,AB=2,∴AB=EG=2,S△ABE=S△EGF,∵S△ABE=2S△ECF,∴S EGF=2S△ECF,∴EC=CG=1,∵四边形ABCD是正方形,∵BC=AB=2,∴BE=2﹣1=1.考点:正方形的性质;全等三角形的判定与性质;旋转的性质.7.(2016广西来宾第26题)如图,在矩形ABCD 中,AB =10,AD =6,点M 为AB 上的一动点,将矩形ABCD 沿某一直线对折,使点C 与点M 重合,该直线与AB (或BC )、CD (或DA )分别交于点P 、Q(1)用直尺和圆规在图甲中画出折痕所在直线(不要求写画法,但要求保留作图痕迹)(2)如果PQ 与AB 、CD 都相交,试判断△MPQ 的形状并证明你的结论;(3)设AM =x ,d 为点M 到直线PQ 的距离,2y d =,①求y 关于x 的函数解析式,并指出x 的取值范围;②当直线PQ 恰好通过点D 时,求点M 到直线PQ 的距离.【答案】(1)作图见解析;(2)△MPQ 是等腰三角形;(3(3)①作MN ⊥CD 于N ,如图2所示:则MN =AD =6,DN =AM =x ,CN =10﹣x ,在Rt △MCN 中,由勾股定理得出222(2)6(10)d x =+-,即可得出结果;②当直线PQ 恰好通过点D 时,Q 与D 重合,DM =DC =10,由勾股定理求出AM ,得出BM ,再由勾股定理求出CM ,即可得出结果.试题解析:(1)如图1所示:(2)△MPQ 是等腰三角形;理由如下:∵四边形ABCD 是矩形,∴AB ∥CD ,CD =AB =10,∴∠QCO =∠PMO ,由折叠的性质得:PQ 是CM 的垂直平分线,∴CQ =MQ ,OC =OM ,在△OCQ 和△OMP 中,∵∠QCO =∠PMO ,OC =OM ,∠COQ =∠MOP ,∴△OCQ ≌△OMP (ASA ),∴CQ =MP ,∴MP =MQ ,即△MPQ 是等腰三角形;(3)①作MN ⊥CD 于N ,如图2所示:则MN =AD =6,DN =AM =x ,CN =10﹣x ,在Rt △MCN 中,由勾股定理得:222CM MN CN =+,即222(2)6(10)d x =+-,整理得:2215344d x x =-+,即215344y x x =-+(0≤x ≤10);②当直线PQ 恰好通过点D 时,如图3所示:则Q 与D 重合,DM =DC =10,在Rt △ADM 中,AM =8,∴BM =10﹣8=2,∴CM ,∴d =12CM M 到直线PQ 的距离为考点:四边形综合题;动点型;探究型;压轴题.8.(2016贵州贵阳第18题)(10分)如图,点E 正方形ABCD 外一点,点F 是线段AE 上一点,△EBF 是等腰直角三角形,其中∠EBF =90°,连接CE 、CF .(1)求证:△ABF ≌△CBE ;(2)判断△CEF 的形状,并说明理由.【答案】(1)证明见解析;(2)△CEF 是直角三角形.试题解析:(1)证明:∵四边形ABCD 是正方形,∴AB =CB ,∠ABC =90°,∵△EBF 是等腰直角三角形,其中∠EBF =90°,∴BE =BF ,∴∠ABC ﹣∠CBF =∠EBF ﹣∠CBF ,∴∠ABF =∠CBE .在△ABF 和△CBE 中,∵AB =CB ,∠ABF =∠CBE ,BF =BE ,∴△ABF ≌△CBE (SAS ).(2)解:△CEF 是直角三角形.理由如下:∵△EBF 是等腰直角三角形,∴∠BFE =∠FEB =45°,∴∠AFB =180°﹣∠BFE =135°,又∵△ABF ≌△CBE ,∴∠CEB =∠AFB =135°,∴∠CEF =∠CEB ﹣∠FEB =135°﹣45°=90°,∴△CEF 是直角三角形.考点:正方形的性质;全等三角形的判定与性质;等腰直角三角形.9.(2016福建泉州第26题)如图,在四边形ABCD 中,AD ∥BC ,∠A=∠C ,点P 在边AB 上.(1)判断四边形ABCD 的形状并加以证明;(2)若AB=AD ,以过点P 的直线为轴,将四边形ABCD 折叠,使点B 、C 分别落在点B′、C′上,且B′C′经过点D ,折痕与四边形的另一交点为Q .①在图2中作出四边形PB′C′Q (保留作图痕迹,不必说明作法和理由);②如果∠C=60°,那么为何值时,B′P ⊥AB .【答案】(1) 四边形ABCD 是平行四边形,理由见解析;(2)①图见解析;②AP PB =.试题解析:(1)四边形ABCD是平行四边形证明:∵在四边形ABCD中,AD∥BC,∴∠A+∠B=180°,∵∠A=∠C,∴∠C+∠B=180°,∴AB∥CD,∴四边形ABCD是平行四边形;(2)①作图如下:②当AB=AD时,平行四边形ABCD是菱形,由折叠可得,BP=B′P,CQ=C′Q,BC=B′C′,∠C=∠C′=60°=∠A,当B′P⊥AB时,由B′P∥C′Q,可得C′Q⊥CD,∴∠PEA=30°=∠DEB′,∠QDC′=30°=∠B′DE,∴B′D=B′E,,且B′P=b,BC=B′C′=CD=a+b,设AP=a,BP=b,则直角三角形APE中,∴B′E=b∴C′D=a+b﹣(b),∴直角三角形C′QD 中,,,∵CD=DQ+CQ=a+b ,,)a=b , ∴a b12,即AP PB=12.考点:四边形综合题.10.(2016青海第23题)如图,在▱ABCD 中,点E ,F 在对角线AC 上,且AE=CF .求证: (1)DE=BF ;(2)四边形DEBF 是平行四边形.【答案】详见解析.AD CB DAE BCF AE CF =⎧⎪∠=∠⎨⎪=⎩∴△ADE ≌△CBF ,∴DE=BF .(2)由(1),可得∴△ADE ≌△CBF ,∴∠ADE=∠CBF ,∵∠DEF=∠DAE+∠ADE,∠BFE=∠BCF+∠CBF,∴∠DEF=∠BFE,∴DE∥BF,又∵DE=BF,∴四边形DEBF是平行四边形.考点:平行四边形的判定与性质;全等三角形的判定与性质.11.(2016青海第27题)如图1,2,3分别以△ABC的AB和AC为边向△ABC外作正三角形(等边三角形)、正四边形(正方形)、正五边形,BE和CD相交于点O.(1)在图1中,求证:△ABE≌△ADC.(2)由(1)证得△ABE≌△ADC,由此可推得在图1中∠BOC=120°,请你探索在图2中,∠BOC的度数,并说明理由或写出证明过程.(3)填空:在上述(1)(2)的基础上可得在图3中∠BOC=(填写度数).(4)由此推广到一般情形(如图4),分别以△ABC的AB和AC为边向△ABC外作正n边形,BE和CD仍相交于点O,猜想得∠BOC的度数为(用含n的式子表示).【答案】(1)详见解析;(2)∠BOC=90°,理由见解析;(3)72°;(4)∠BOC的度数为0 360 n,理由见解析.试题解析:(1)如图1,∵△ABD和△ACE是等边三角形,∴AB=AD,AC=AE,∠DAB=∠EAC=60°,∴∠DAB+∠BAC=∠EAC+∠BAC,即∠DAC=∠BAE,∴△ABE≌△ADC;(2)如图2,∠BOC=90°,理由是:∵四边形ABFD和四边形ACGE都是正方形,∴AB=AD,AC=AE,∠DAB=∠EAC=90°,∴∠BAE=∠DAC,∴△ADC≌△ABE,∴∠BEA=∠DCA,∵∠EAC=90°,∴∠AMC+∠DCA=90°,∵∠BOC=∠OME+∠BEA=∠AMC+∠DCA,∴∠BOC=90°;(3)如图3,同理得:△ADC≌△ABM,∴∠BME=∠DCA,∵∠BOC=∠BME+∠OEM=∠DCA+∠AEC,∵正五边形ACIGM,∴∠EAC=180°﹣3605=108°,∴∠DCA+∠AEC=72°,∴∠BOC=72°;(4)如图4,∠BOC的度数为360n,理由是:同理得:△ADC≌△ABM,∴∠BME=∠DCA,∵∠BOC=∠BME+∠OEM=∠DCA+∠AEC,∵正n边形AC…M,∴∠EAC=180°﹣0 360n,∴∠DCA+∠AEC=180°﹣(180°﹣0 360n)∴∠BOC=0 360n.考点:四边形综合题.12.(2016内蒙古呼伦贝尔市、兴安盟第22题)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知:∠BAC=30°,EF⊥AB,垂足为F,连接DF.(1)试说明AC=EF;(2)求证:四边形ADFE是平行四边形.【答案】详见解析.又∵△ABE 是等边三角形,EF ⊥AB , ∴AB=2AF ∴AF=BC ,在Rt △AFE 和Rt △BCA 中,AF BC AE BA=⎧⎨=⎩, ∴Rt △AFE ≌Rt △BCA (HL ), ∴AC=EF ;(2)∵△ACD 是等边三角形, ∴∠DAC=60°,AC=AD , ∴∠DAB=∠DAC+∠BAC=90° 又∵EF ⊥AB , ∴EF ∥AD , ∵AC=EF ,AC=AD , ∴EF=AD ,∴四边形ADFE 是平行四边形.考点:全等三角形的判定及性质;等边三角形的性质;平行四边形的判定.13.(2016辽宁葫芦岛第25题)如图①,在△ABC 中,∠BAC=90°,AB=AC ,点E 在AC 上(且不与点A ,C 重合),在△ABC 的外部作△CED ,使∠CED=90°,DE=CE ,连接AD ,分别以AB ,AD 为邻边作平行四边形ABFD ,连接AF . (1)请直接写出线段AF ,AE 的数量关系 ;(2)将△CED绕点C逆时针旋转,当点E在线段BC上时,如图②,连接AE,请判断线段AF,AE的数量关系,并证明你的结论;(3)在图②的基础上,将△CED绕点C继续逆时针旋转,请判断(2)问中的结论是否发生变化?若不变,结合图③写出证明过程;若变化,请说明理由.【答案】;(2),证明详见解析;(3)结论不变,,理由详见解析.【解析】,只要证明△AEF是等腰直角三角形即可.(2)试题分析:(1)如图①中,结论:如图②中,结论:,连接EF,DF交BC于K,先证明△EKF≌△EDA再证明△AEF是等腰直角三角形即可.(3)如图③中,结论不变,,连接EF,延长FD交AC于K,先证明△EDF≌△ECA,再证明△AEF是等腰直角三角形即可..试题解析:(1)如图①中,结论:(2)如图②中,结论:. 理由:连接EF ,DF 交BC 于K . ∵四边形ABFD 是平行四边形, ∴AB ∥DF ,∴∠DKE=∠ABC=45°, ∴EKF=180°﹣∠DKE=135°,∵∠ADE=180°﹣∠EDC=180°﹣45°=135°, ∴∠EKF=∠ADE , ∵∠DKC=∠C , ∴DK=DC , ∵DF=AB=AC , ∴KF=AD ,在△EKF 和△EDA 中,EK DK EKF ADE KF AD =⎧⎪∠=∠⎨⎪=⎩, ∴△EKF ≌△EDA , ∴EF=EA ,∠KEF=∠AED , ∴∠FEA=∠BED=90°, ∴△AEF 是等腰直角三角形,∴.(3)如图③中,结论不变,AF=. 理由:连接EF ,延长FD 交AC 于K .∵∠EDF=180°﹣∠KDC ﹣∠EDC=135°﹣∠KDC , ∠ACE=(90°﹣∠KDC )+∠DCE=135°﹣∠KDC , ∴∠EDF=∠ACE , ∵DF=AB ,AB=AC , ∴DF=AC在△EDF 和△ECA 中,DF AC EDF ACE DE CE =⎧⎪∠=∠⎨⎪=⎩, ∴△EDF ≌△ECA , ∴EF=EA ,∠FED=∠AEC , ∴∠FEA=∠DEC=90°, ∴△AEF 是等腰直角三角形, ∴. 考点:四边形综合题.14.(2016内蒙古通辽第21题)如图,四边形ABCD 是正方形,点E 是BC 的中点,∠AEF =90°,EF 交正方形外角的平分线CF 于F .求证:A E =EF .【答案】证明见解析.考点:正方形的性质;全等三角形的判定与性质.15.(2016辽宁营口第25题)已知:如图①,将∠D=60°的菱形ABCD沿对角线AC剪开,将△ADC沿射线DC方向平移,得到△BCE,点M为边BC上一点(点M不与点B、点C 重合),将射线AM绕点A逆时针旋转60°,与EB的延长线交于点N,连接MN.(1)①求证:∠ANB=∠AMC;②探究△AMN的形状;(2)如图②,若菱形ABCD变为正方形ABCD,将射线AM绕点A逆时针旋转45°,原题其他条件不变,(1)中的①、②两个结论是否仍然成立?若成立,请直接写出结论;若不成立,请写出变化后的结论并证明.【答案】(1)①证明见解析;②△AMN是等边三角形;(2)①成立,②不成立,△AMN是等腰直角三角形.②不成立,△AMN是等腰直角三角形,利用①中的△ANB∽△AMC,得比例式进行变形后,再证明△NAM∽△BAD,则△AMN是等腰直角三角形.试题解析:(1)如图1,①∵四边形ABCD是菱形,∴AB=BC=CD=AD,∵∠D=60°,∴△ADC和△ABC是等边三角形,∴AB=AC,∠BAC=60°,∵∠NAM=60°,∴∠NAB=∠CAM,由△ADC沿射线DC方向平移得到△BCE,可知∠CBE=60°,∵∠ABC=60°,∴∠ABN=60°,∴∠ABN=∠ACB=60°,∴△ANB≌△AMC,∴∠ANB=∠AMC;②如图1,△AMN是等边三角形,理由是:由△ANB≌△AMC,∴AM=AN,∵∠NAM=60°,∴△AMN是等边三角形;(2)①如图2,∠ANB=∠AMC成立,理由是:在正方形ABCD中,∴∠BAC=∠DAC=∠BCA=45°,∵∠NAM=45°,∴∠NAB=∠MAC,由平移得:∠EBC=∠CAD=45°,∵∠ABC=90°,∴∠ABN=180°﹣90°﹣45°=45°,∴∠ABN=∠ACM=45°,∴△ANB∽△AMC,∴∠ANB=∠AMC;②如图2,不成立,△AMN是等腰直角三角形,理由是:∵△ANB∽△AMC,∴AN ABAM AC=,∴AN AMAB AC=,∵∠NAM=∠BAC=45°,∴△NAM∽△BAC,∴∠ANM=∠ABC=90°,∴△AMN是等腰直角三角形.考点:四边形综合题;探究型;压轴题.16.(2016黑龙江绥化第27题)如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q 在CD 边上,且BP =CQ ,连接AP 、BQ 交于点E ,将△BQC 沿BQ 所在直线对折得到△BQN ,延长QN 交BA 的延长线于点M . (1)求证:A P ⊥BQ ;(2)若AB =3,BP =2PC ,求QM 的长; (3)当BP =m ,PC =n 时,求AM 的长.【答案】(1)证明见解析;(2)MQ =134;(3)AM =22n m.试题解析:(1)证明:∵四边形ABCD 是正方形,∴∠ABC =∠C =90°,AB =BC ,在△ABP 和△BCQ 中,∵AB =BC ,∠ABC =∠C ,BP =CQ ,∴△ABP ≌△BCQ ,∴∠BAP =∠CBQ . ∵∠BAP +∠APB =90°,∴∠CBQ +∠APB =90°,∴∠BEP =90°,∴AP ⊥BQ ;(2)解:∵正方形ABCD 中,AB =3,BP =2CP ,∴BP =2,由(1)可得NQ =CQ =BP =2,NB =3. 又∵∠NQB =∠CQB =∠ABQ ,∴MQ =MB . 设MQ =MB =x ,则MN =x ﹣2.在直角△MBN 中,222MB BN MN =+,即2223(2)x x =+-,解得:x =134,即MQ =134; (3)∵BP =m ,CP =n ,由(1)(2)得MQ =BM ,CQ =QN =BP =m ,设AM =y ,BN =BC =m +n ,在直角△BNM中,MB =y +m +n ,MN =MQ ﹣QN =(y +m +n )﹣m =y +n ,222()()()y m n m n y n ++=+++,即22222 2()()()2y m n y m n m n y ny n++++=++++,则y=22nm,AM=22nm.考点:四边形综合题;翻折变换(折叠问题).17.(2016江苏盐城第23题)如图,已知△ABC中,∠ABC=90°.(1)尺规作图:按下列要求完成作图(保留作图痕迹,请标明字母)①作线段AC的垂直平分线l,交AC于点O;②连接BO并延长,在BO的延长线上截取OD,使得OD=OB;③连接DA、DC.(2)判断四边形ABCD的形状,并说明理由.【答案】(1)作图见解析;(2)四边形ABCD是矩形.试题解析:(1)①如图所示:②如图所示:③如图所示:(2)四边形ABCD是矩形,理由:∵Rt△ABC中,∠ABC=90°,BO是AC边上的中线,∴BO=12AC,∵BO=DO,AO=CO,∴AO=CO=BO=DO,∴四边形ABCD是矩形.考点:作图—基本作图;矩形的判定.18.(2016福建南平第25题)已知在矩形ABCD中,∠ADC的平分线DE与BC边所在的直线交于点E,点P是线段DE上一定点(其中EP<PD)(1)如图1,若点F在CD边上(不与D重合),将∠DPF绕点P逆时针旋转90°后,角的两边PD、PF分别交射线DA于点H、G.①求证:PG=PF;②探究:D F、DG、DP之间有怎样的数量关系,并证明你的结论.(2)拓展:如图2,若点F在CD的延长线上(不与D重合),过点P作PG⊥PF,交射线DA于点G,你认为(1)中DE、DG、DP之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请写出它们所满足的数量关系式,并说明理由.【答案】(1)①证明见解析;②DG+DF;(2)不成立,数量关系式应为:D G﹣DF.(2)过点P作PH⊥PD交射线DA于点H,先证△HPD为等腰直角三角形可得PH=PD,HD,再证△HPG≌△DPF可得HG=DF,根据DH=DG﹣HG=DG﹣DF可得DG﹣DF.试题解析:(1)①∵∠GPF=∠HPD=90°,∠ADC=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,∴∠PDF=∠ADP=45°,∴△HPD为等腰直角三角形,∴∠DHP=∠PDF=45°,在△HPG和△DPF中,∵∠PHG=∠PDF,PH=PD,∠GPH=∠FPD,∴△HPG≌△DPF(ASA),∴PG=PF;②结论:D G+DF=DP,由①知,△HPD为等腰直角三角形,△HPG≌△DPF,∴HD,HG=DF,∴HD=HG+DG=DF+DG,∴DG+DF;(2)不成立,数量关系式应为:D G﹣DF,如图,过点P作PH⊥PD交射线DA 于点H,∵PF⊥PG,∴∠GPF=∠HPD=90°,∴∠GPH=∠FPD,∵DE平分∠ADC,且在矩形ABCD中,∠ADC=90°,∴∠HDP=∠EDC=45°,得到△HPD为等腰直角三角形,∴∠DHP=∠EDC=45°,且PH=PD,HD,∴∠GHP=∠FDP=180°﹣45°=135°,在△HPG 和△DPF中,∵∠GPH=∠FPD,∠GHP=∠FDP,PH=PD,∴△HPG≌△DPF,∴HG=DF,∴DH=DG﹣HG=DG﹣DF,∴DG﹣DF.考点:四边形综合题;探究型;和差倍分;变式探究;压轴题.19.(2016内蒙古巴彦淖尔第21题)如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD及等边△ABE,已知∠ABC=60°,EF⊥AB,垂足为F,连接DF.(1)求证:△ABC≌△EAF;(2)试判断四边形EFDA的形状,并证明你的结论.【答案】(1)证明见解析;(2)四边形EFDA是平行四边形.(2)结论:四边形EFDA是平行四边形.理由:∵△ABC≌△EAF,∴EF=AC.∵△ACD是的等边三角形,∴AC=AD,∠CAD=60°,∴AD=EF.又∵Rt△ABC中,∠ABC=60°,∠BAC=30°,∴∠BAD=∠BAC+∠CAD=90°,∴∠EF A=∠BAD=90°,∴EF∥AD.又∵EF=AD,∴四边形EFDA是平行四边形.考点:全等三角形的判定与性质;等边三角形的性质.20.(2016四川南充第24题)已知正方形ABCD的边长为1,点P为正方形内一动点,若点M在AB上,且满足△PBC∽△P AM,延长BP交AD于点N,连结CM.(1)如图一,若点M在线段AB上,求证:A P⊥BN;AM=AN;(2)①如图二,在点P运动过程中,满足△PBC∽△P AM的点M在AB的延长线上时,AP⊥BN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题10 四边形一、选择题1.(2016浙江宁波第12题)如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S1,另两张直角三角形纸片的面积都为S2,中间一张正方形纸片的面积为S3,则这个平行四边形的面积一定可以表示为A. 4S1B. 4S2C. 4S2+S3D. 3S1+4S3【答案】A.考点:直角三角形的面积.2.(2016河北第6题)的叙述,正确的是()A.若AB⊥BC是菱形B.若AC⊥BD是正方形C.若AC=BD,则是矩形D.若AB=AD是正方形【答案】C.【解析】试题分析:根据矩形的判定可得A、C项应是矩形;根据菱形的判定可得B、D项应是菱形,故答案选C.考点:矩形、菱形的判定.3.(2016河北第13题)沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B为()第13题图 A .66° B .104°C .114°D .124°【答案】C. 【解析】试题分析:因为AB∥CD,∠1=∠B'AB,由于折叠,∠BAC=∠B 'AC =22°,在△ABC中,∠B=180°-∠ACB-∠CAB=114°,故答案选C. 考点:平行线的性质;折叠的性质.4.(2016山东滨州第7题)如图,正五边形ABCDE 放入某平面直角坐标系后,若顶点A ,B ,C ,D 的坐标分别是(0,a ),(﹣3,2),(b ,m ),(c ,m ),则点E 的坐标是( )A .(2,﹣3)B .(2,3)C .(3,2)D .(3,﹣2) 【答案】C.考点:坐标与图形性质.5.(2016山东枣庄第9题)如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于 A .524B .512 C .5 D .4CH考点:菱形的性质.6.(2016山东淄博第7题)如图,△ABC 的面积为16,点D 是BC 边上一点,且BD=BC ,点G 是AB 上一点,点H 在△ABC 内部,且四边形BDHG 是平行四边形,则图中阴影部分的面积是( )A .3B .4C .5D .6【答案】B. 【解析】试题分析:设△ABC 底边BC 上的高为h ,△AGH 底边GH 上的高为h 1,△CGH 底边GH 上的高为h 2,则有h=h 1+h 2.所以S △ABC =21BC •h=16,S 阴影=S △AGH +S △CGH =21GH •h 1+21GH •h 2=21GH •(h 1+h 2)=21GH •h .因为四边形BDHG 是平行四边形,且BD=41BC ,可得GH=BD=41BC ,所以S 阴影=41×(21BC •h )=41S △ABC =4.故答案选B .考点:三角形的面积公式;平行四边形的性质.7.(2016山东淄博第8题)如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长为( )8.A.B.2 C.D.10﹣5【答案】B.考点:正方形的性质;全等三角形的判定及性质;勾股定理.8.(2016湖北鄂州第10题)如图,菱形ABCD的边AB=8,∠B=60°,P是AB上一点,BP=3,Q是CD边上一动点,将梯形APQD沿直线PQ折叠,A的对应点为A′,当CA′的长度最小时,CQ的长为()13A. 5B. 7C. 8D.2【答案】B.考点:菱形的性质;轴对称(折叠);等边三角形的判定和性质;最值问题.9.(2016山东威海第12题)如图,在矩形ABCD 中,AB=4,BC=6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内点F 处,连接CF ,则CF 的长为( )A.B .C .D .【答案】D . 【解析】试题分析:如图,连接BF ,已知BC=6,点E 为BC 的中点,可得BE=3,根据勾股定理求得AE=5,根据三角形的面积公式求出BH=,即可得BF=,因FE=BE=EC ,可得∠BFC=90°,再由勾股定理可得CF=.故答案选D .考点:翻折变换;矩形的性质;勾股定理.10.(2016湖北襄阳第7题)如图,在□ABCD 中,AB >AD ,按以下步骤作图:以点A 为圆心,小于AD 的长为半径画弧,分别交AB ,AD 于点E ,F ,再分别以点E ,F 为圆心,大于21EF 的长为半径画弧,两弧交于点G;作射线AG交CD于点H,则下列结论中不能由条件推理得出的是( )A.AG平分∠DAB B.AD=DH C.DH=BC D.CH=DH【答案】D.考点:平行四边形的性质;平行线的性质.11.(2016湖北十堰第8题)如图所示,小华从A点出发,沿直线前进10米后左转24,再沿直线前进10米,又向左转24°,…,照这样走下去,他第一次回到出发地A点时,一共走的路程是()A.140米 B.150米 C.160米 D.240米【答案】B.【解析】试题分析:已知多边形的外角和为360°,而每一个外角为24°,可得多边形的边数为360°÷24°=15,所以小明一共走了:15×10=150米.故答案选B.考点:多边形内角与外角.二、填空题1.(2016河南第10题)如图,在□ABCD中,BE⊥AB交对角线AC于点E,若∠1=20°,则∠2的度数是_________.【答案】110°.考点:平行四边形的性质;三角形外角的性质.2.(2016河南第15题)如图,已知AD ∥BC ,AB ⊥BC ,AB=3. 点E 为射线BC 上一个动点,连接AE ,将△ABE 沿AE 折叠,点B 落在点B ′处,过点B ′作AD 的垂线,分别交AD ,BC 于点M ,N. 当点B ′为线段MN 的三等分点时,BE 的长为__________________.【答案】223或553. 【解析】试题分析:根据题意可得四边形ABNM 是矩形,所以AB=MN=3,AM=BN ,根据折叠的性质可得AB=AB ’,BE=B ’E ,点B ′为线段MN 的三等分点时,分两种情况:①当MB ’=1,B ’N=2时,在Rt △AMB ’中,由勾股定理求得AM=221322=-,设BE==B ’E=x ,在Rt △ENB ’中,由勾股定理可得222)22(2x x -+=,解得x=223;②当MB ’=2,B ’N=1时,在Rt △AMB ’中,由勾股定理求得AM=52322=-,设BE==B ’E=x ,在Rt △ENB ’中,由勾股定理可得222)5(1x x -+=,解得x=553. 考点:矩形的性质;勾股定理;折叠的性质.3.(2016山东滨州第15题)如图,矩形ABCD 中,AB=,BC=,点E 在对角线BD 上,且BE=1.8,连接AE 并延长交DC 于点F ,则CFCD= .【答案】31.考点:相似三角形的判定与性质;矩形的性质.4.(2016广东广州第16题)如图5,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转450得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED③∠DFG =112.5 ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5H【答案】①②③.考点:旋转的性质;全等三角形的判定及性质;菱形的判定.5.(2016湖北襄阳第16题)如图,正方形ABCD的边长为22,对角线AC,BD相交于点0,E是OC的中点。
连接BE,过点A作AM⊥BE于点M交BD于点F则FM的长为..【答案】5考点:正方形的性质;锐角三角函数;勾股定理.6.(2016湖北十堰第14题)如图,在▱ABCD中,AB=213cm,AD=4cm,AC⊥BC,则△DBC比△ABC的周长长cm.【答案】4.【解析】试题分析:在▱ABCD中,已知AB=CD=213cm,AD=BC=4cm,AO=CO,BO=DO,根据平行四边形的性质得到AB=CD=213cm,AD=BC=4cm,AO=CO,BO=DO,又因AC⊥BC,根据勾股定理可得AC=6cm,即可得OC=3cm,再由勾股定理求得BO==5cm,所以BD=10cm,所以△DBC的周长﹣△ABC的周长=BC+CD+BD﹣(AB+BC+AC)=BD ﹣AC=10﹣6=4cm,考点:平行四边形的性质;勾股定理.三、解答题1.(2016河北第21题)(本小题满分9分)如图,点B,F,C,E在直线l上(F,C之间不能直接测量),点A,D在l异侧,测得AB=DE,AC=DF,BF=EC. (1)求证:△ABC≌△DEF;(2)指出图中所有平行的线段,并说明理由.第21题图【答案】(1)详见解析;(2)∠ABC=∠DEF,∠ACB=∠DFE,理由见解析.考点:全等三角形的判定及性质;平行线的判定.2.(2016河北第22题)(本小题满分9分)已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n.若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.【答案】(1)甲对,乙不对,理由见解析;(2)2.考点:多边形的内角和.3.(2016四川达州第20题)如图,在▱ABCD中,已知AD>AB.(1)实践与操作:作∠BAD的平分线交BC于点E,在AD上截取AF=AB,连接EF;(要求:尺规作图,保留作图痕迹,不写作法)(2)猜想并证明:猜想四边形ABEF的形状,并给予证明.【答案】(1)详见解析;(2)四边形ABEF是菱形,理由详见解析.【解析】试题分析:(1)由角平分线的作法容易得出结果,在AD上截取AF=AB,连接EF;画出图形即可;(2)由平行四边形的性质和角平分线得出∠BAE=∠AEB,证出BE=AB,由(1)得:AF=AB,得出BE=AF,即可得出结论.试题解析:解:(1)如图所示:(2)四边形ABEF是菱形;理由如下:考点:角平分线的画法;平行四边形的性质;菱形的判定.4.(2016四川达州第24题)△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B,C重合),以AD为边在AD右侧作正方形ADEF,连接CF.(1)观察猜想如图1,当点D在线段BC上时,①BC与CF的位置关系为:.②BC,CD,CF之间的数量关系为:;(将结论直接写在横线上)(2)数学思考如图2,当点D在线段CB的延长线上时,结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明.(3)拓展延伸如图3,当点D在线段BC的延长线上时,延长BA交CF于点G,连接GE.若已知AB=2,CD=BC,请求出GE的长.【答案】(1)CF⊥BD,BC=CF+CD;(2)成立,证明详见解析;(3)10.(2)成立,∵正方形ADEF中,AD=AF,∴△ADH≌△DEM,∴EM=DH=3,DM=AH=2,考点:四边形综合题.5.(2016山东滨州第21题)如图,过正方形ABCD顶点B,C的⊙O与AD相切于点P,与AB,CD分别相交于点E、F,连接EF.(1)求证:PF平分∠BFD.(2)若tan∠FBC=,DF=,求EF的长.4.【答案】(1)详见解析;(2)5【解析】试题分析:(1)根据切线的性质得到OP⊥AD,由四边形ABCD的正方形,得到CD⊥AD,推出OP∥CD,根据平行线的性质得到∠PFD=∠OPF,由等腰三角形的性质得到∠OPF=∠OFP,根据角平分线的定义即可得到结论;(2)由∠C=90°,得到BF是⊙O的直径,根据圆周角定理得到∠BEF=90°,推出四边形BCFE是矩形,根据矩形的性质得到EF=BC,根据切割线定理得到PD2=DF•CD,于是得到结论.考点:切线的性质;正方形的性质;圆周角定理;切割线定理.6.(2016山东滨州第23题)(10分)如图,BD是△ABC的角平分线,它的垂直平分线分别交AB,BD,BC 于点E,F,G,连接ED,DG.(1)请判断四边形EBGD的形状,并说明理由;(2)若∠ABC=30°,∠C=45°,ED=2,点H是BD上的一个动点,求HG+HC的最小值.【答案】(1)四边形EBGD是菱形,理由见解析;(2)10.(2)作EM⊥BC于M,DN⊥BC于N,连接EC交BD于点H,此时HG+HC最小,在RT△EBM中,∵∠EMB=90°,∠EBM=30°,EB=ED=2,考点:平行四边形的判定和性质;菱形的判定和性质;角平分线的性质;垂直平分线的性质;勾股定理.7.(2016湖南长沙第22题)如图,AC是▱ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=2,求▱ABCD的面积.【答案】(1)详见解析;(2)2.【解析】试题分析:(1)根据已知条件易证∠BAC=∠BCA,即可得出AB=BC;(2)连接BD交AC于O,易证四边形ABCD 是菱形,根据菱形的性质可得AC⊥BD,OA=OC=AC=,OB=OD=BD,根据勾股定理求出OB的长,即可得BD的长,利用▱ABCD的面积=AC•BD,即可求得答案.考点:平行四边形的性质;等腰三角形的判定;勾股定理;菱形面积的计算.8.(2016山东枣庄第24题)(本题满分10分)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=,∠BAD=60°,且AB>.⑴求∠EPF的大小;⑵若AP=8,求AE+AF的值;⑶若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP长的最大值和最小值.【答案】(1)120°;(2)(3)AP 的最大值为12,AP 的最小值为6.在Rt △PME 和Rt △PNF 中,PM=PN ,PE=PF ,第24题备用图第24题图考点:四边形综合题.9.(2016山东淄博第24题)(9分)如图,正方形ABCD的对角线相交于点O,点M,N分别是边BC,CD上的动点(不与点B,C,D重合),AM,AN分别交BD于点E,F,且∠MAN始终保持45°不变.(1)求证:=;(2)求证:AF⊥FM;(3)请探索:在∠MAN的旋转过程中,当∠BAM等于多少度时,∠FMN=∠BAM?写出你的探索结论,并加以证明.【答案】(1)详见解析;(2)详见解析;(3)∠BAM=22.5时,∠FMN=∠BAM,理由详见解析.考点:四边形综合题.10.(2016湖北鄂州第18题)(本题满分8分)如图,□A BCD中,BD是它的一条对角线,过A、C两点作AE⊥BD,CF⊥BD,垂足分别为E、F,延长AE、CF分别交CD、AB于M、N。