新人教版九年级下册-第27章-相似-全章教案

合集下载

九年级数学下册27相似教案新版新人教版

九年级数学下册27相似教案新版新人教版

第二十七章相似1.通过具体实例认识图形的相似.2.了解相似多边形和相似比的含义,探索相似多边形的性质.3.了解三角形相似的概念,探索相似三角形的性质.4.掌握平行线分线段成比例定理.5.理解并掌握相似三角形的判定定理,并能应用判定定理解决问题.6.探索相似三角形的性质定理,能应用相似三角形的性质进行有关计算.7.了解图形的位似,能够利用图形的位似将一个图形放大或缩小.8.了解在同一坐标系中位似变换后图形的坐标变化.将一个多边形的顶点坐标扩大或缩小相同倍数时对应的图形与原图形是位似的.9.会利用图形的相似解决一些简单实际问题.1.结合相似图形性质和判定方法的探索与证明,进一步培养学生的合情推理能力,发展学生逻辑思维能力和推理论证的表达能力.2.经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力.培养学生用联系和转化的观点看待周围的事物,增强探索问题的信心和热情.前面学习了图形的全等和全等三角形的有关知识,也研究了几何图形的全等变换,“全等”和“相似”都是图形之间的一种变换,全等图形是相似比为1的相似图形,所以本章相似形的学习,以全等形和全等变换为基础,是全等三角形在边上的推广,比全等形更具有一般性,是前面学习图形全等的拓展和发展.本章内容是对三角形知识的进一步认识,是通过许多生活中的具体实例来研究相似图形的.在全等三角形的基础上,总结出相似三角形的判定方法和性质,使学过的知识得到巩固和提高.在学习过程中,按照研究对象的“一般→特殊→特殊位置关系”的顺序展开研究.首先,教科书从现实世界中形状相同的物体谈起,然后把研究对象确定为形状相同的图形——相似图形,举例说明了放大、缩小两种操作与相似图形之间的关系.接着教科书把研究对象缩小为特殊的相似图形——相似多边形,由相似多边形的定义推出了相似多边形的性质.对于相似多边形的判定,教科书以三角形为载体进行研究,此外,还研究了相似三角形的其他性质和应用.最后,教科书研究了一种具有特殊位置关系的相似图形——位似图形.本章的知识不仅将在后面学习“锐角三角函数”和“投影与视图”时得到应用,而且对于建筑设计、测量、绘图等实际工作也具有重要价值.在本章中,相似三角形的判定和性质是本章的重点内容,相似三角形判定定理的证明是本章的难点内容.此外,综合应用相似三角形的判定和性质,以及学生前面学过的平行线、全等三角形、平行四边形等知识解决问题(包括实际问题)也是本章的一个难点.为了降低学生在推理论证方面的难度,本章加强了证明思路的引导,或者用分析法分析出由条件到结论必需的转化,或者提示了证明的关键环节;为了降低学生在解决实际问题中的难度,本章专门设置了相似三角形应用举例,从不同角度为解决实际问题作出示范.【重点】1.相似三角形的判定与性质及应用判定和性质解决问题.2.位似图形的性质及画法.【难点】1.相似三角形的判定定理的证明.2.位似变换的坐标表示.1.初中数学从《全等三角形》开始,已经进入了推理证明阶段,本章的学习在已有的基础上继续进行必要的推理证明,本章的证明所涉及的问题不仅包含相似的知识,也有很多是和三角形、全等、平行、勾股定理、平面直角坐标系等知识融合在一起的,例如相似三角形判定定理的证明中利用了全等三角形作为“桥梁”,性质的证明借助了代数运算,因此推理论证的难度提高了.教学时应注意帮助学生复习已有的知识,做到以新带旧、新旧结合;也要注意以具体问题为载体,加强证明思路的引导,帮助学生确定证明的关键环节,指导学生写出完整的证明过程.同时注意根据教学内容及时安排相应的训练,让学生能够逐步达到独立分析、完成证明.2.学生通过前面对三角形、四边形、圆等几何图形的学习,对于研究几何图形的基本问题、思路和方法已经形成了一定的认识.本章教学中要充分利用学生已有的研究几何图形的经验,用研究几何图形的基本套路贯穿全章的教学.例如,在教授本章之前,可以让学生类比对全等三角形研究的主要内容,提出对形状相同、大小不同的三角形应研究的主要问题和方法,构建本章内容的基本线索,使他们对将学习的内容做到心中有数.因此本章在教学相似三角形的性质之前,可以先让学生自己发现性质,再给出证明.3.相似是生活中常见的现象,日常生活中存在着相似的例子,相似图形的性质在实际生活中有着广泛的应用,能直接应用相似三角形的判定和性质的实例很多,教材中融入了许多实际背景问题,所以在教学中要注重数学与实际生活的联系,每个课时都让学生体会数学来源27.1图形的相似1.在具体生活实例中认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的特征,掌握相似图形的识别方法.3.了解成比例线段的含义,会判断是不是成比例线段.4.理解相似多边形的概念、性质及判定,并能计算和相似多边形有关的角度和线段的长.1.通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活密切联系,激发学生学习的兴趣.2.通过观察、测量、辨析、归纳等数学活动,经历相似多边形的概念的形成过程,体会由特殊到一般的数学思想方法.3.通过应用成比例线段定义及相似多边形的性质进行有关计算,体会方程思想在几何中的应用,渗透数形结合思想.1.通过观察识别相似图形,渗透生活和数学中美的教育.2.经历相似多边形概念的形成过程,培养学生的观察、推理能力,激发学生探究、发现数学问题的兴趣.3.在探索相似多边形的性质过程中,培养学生与他人交流、合作的意识和品质.4.在观察、操作、推理的探究过程中,体验数学活动充满探索性和创造性.【重点】1.理解并掌握相似图形、相似多边形的概念及特征.2.能利用成比例线段的概念及相似多边形的性质进行有关计算.【难点】1.理解相似图形的特征,掌握识别相似图形的方法.2.探索相似多边形的性质中的“对应”关系.第课时1.通过具体实例认识相似图形,理解和掌握两个图形相似的概念.2.理解相似图形的性质定理,掌握相似图形的判定定理.1.通过观察实际生活中的图形,辨析相似图形,让学生体会数学与实际生活密切联系,激发学生学习兴趣.2.通过观察、测量、辨析、归纳等数学活动,经历相似图形的概念的形成过程,培养学生观察能力及归纳总结能力.1.通过观察识别相似图形,渗透生活和数学中美的教育.2.通过小组合作交流,培养学生共同探究的合作意识.3.通过识别生活中的相似图形,激发学生探究、发现数学问题的兴趣.【重点】理解并掌握相似图形的概念及特征.【难点】理解相似图形的特征,掌握识别相似图形的方法.【教师准备】多媒体课件1~2.【学生准备】预习教材P24~25.导入一:欣赏图片.【课件1展示】(1)汽车和它的模型(2)大小不同的两个足球(3)大小不同的两张照片【引导语】上面各组图片的共同之处是什么?这些图形涉及的就是我们这章要学习的相似形问题.导入二:请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星它们的形状、大小有什么关系?导入三:【复习提问】1.什么是全等形?全等形的形状和大小有什么关系?(能够完全重合的图形是全等形,全等形的形状相同、大小相等)2.判断下列图形是不是全等形?如何判断?(下列两幅图片均是全等形.判断依据:形状相同、大小相等)[设计意图]通过欣赏生活中的图片,让学生体会数学来源于生活,激发学生学习的兴趣,感受数学中的美.在欣赏国旗上的五角星时,对学生进行爱国主义思想教育.同时通过复习[过渡语]在上面的全等形的图片中放大或缩小其中一张图片,得到的图片与另一张图片的形状和大小有什么关系?通过今天的学习,我们将认识这一类图形.思路一【思考1】以上展示的图片之间有什么特点?它们的形状和大小有怎样的关系?【师生活动】学生观察思考,教师引导点拨它们形状相同、大小不等.共同归纳本节课学习重点——相似形的概念.【结论】形状相同的图形叫做相似图形.【思考2】全等形一定是相似图形吗?相似图形一定全等吗?它们之间有什么关系? 【师生活动】学生通过观察导入中图片,独立思考后小组交流,教师对学生回答进行点评,归纳全等形与相似形之间的关系.【结论】全等图形是相似图形的一种特殊情况.全等图形一定相似,相似图形不一定全等.【思考3】你能举出现实生活中一些相似图形的例子吗?【师生活动】学生积极回答,通过生活中相似图形的实例巩固相似图形的概念,教师对思维活跃、积极参与的学生给予鼓励.思路二教师引导学生思考回答下列问题.(1)全等形的形状和大小之间有什么关系?(全等形的形状相同、大小相等)(2)观察上述图片,它们的形状和大小之间有什么关系?(形状相同、大小不等)(3)你能给出相似图形的定义吗?(形状相同的图形叫做相似形)(4)全等图形一定相似吗?相似图形一定全等吗?(全等图形一定相似,相似图形不一定全等)(5)归纳全等图形和相似图形之间的关系.(全等图形是相似图形的特例)(6)你能举出现实生活中一些相似图形的例子吗?【师生活动】学生在教师设置的问题下积极思考回答,教师及时点拨和引导,最后课件展示探究结论.【结论】形状相同的图形叫做相似图形.全等图形是相似图形的一种特殊情况.[设计意图]让学生亲自观察实际生活中的图形,在教师问题的引导下,进行分析、探究,根据图形特点归纳出相似形的概念,培养学生的观察能力,激发学生的求知欲望,经历相似形概念的形成过程,体会数学与生活息息相关.二、相似图形的特征【课件2展示】观察下列每组图形,是不是相似图形?【思考】(1)两个相似的平面图形之间有什么关系?(2)两个相似图形的主要特征是什么?(3)如何判定两个图形是相似图形?(4)相似图形的大小是不是一定相等?(5)相似图形是否可以看作其中一个图形是由另一个图形放大或缩小得到的?【师生活动】学生观察独立思考,小组合作交流,展示小组成果,教师点评,共同归纳相似图形的特征.【结论】相似图形的特征是:形状相同.两个图形的形状相同,则两个图形就是相似图形.相似图形的大小不一定相等,其中一个图形可以看作是由另一个图形放大或缩小得到的. [设计意图]让学生通过观察思考、合作交流,共同归纳出相似形的特征,培养学生的观察能力、归纳总结能力及合作交流的能力,激发学生学习的兴趣,加深学生对相似图形的概念的理解和掌握.[过渡语]我们了解了相似形的概念和基本特征,让我们一起利用所学知识判断下列图形是不是相似图形.如图所示的是一个女孩从平面镜和哈哈镜里看到的自己的形象,这些镜中的形象相似吗?【思考】(1)在平面镜中的像与物体的形状 ,大小,则从平面镜里看到的自己的形象与女孩相似图形(填“是”或“不是”).(2)哈哈镜里看到的形象,有的被“压扁”了,有的被“拉长”了,所以哈哈镜中的像与物体的形状 ,大小,则从哈哈镜里看到的自己的形象与女孩相似图形(填“是”或“不是”).〔解析〕女孩从平面镜中看到的自己的形象是相似的;女孩从哈哈镜里看到的自己的形象不是相似的.〔答案〕(1)相同相等是(2)不同不相等不是【师生活动】学生独立思考回答,教师点评.观察下列图形,哪些是相似图形?第一组:第二组:【师生活动】教师引导、点拨、分析.要找出图中的相似图形,只要仔细观察每个图形特征,通过图形变化后是否具备“形状相同”这一特征.学生观察后回答即可.解:第一组图,图1,2,5是相似图形.第二组相似图形分别是:(1)和(8);(2)和(6);(3)和(7).[设计意图]通过经历对例题的探究过程,加深学生对相似形的基本特征的理解,达到巩固知识的目的,培养学生分析问题、解决问题的能力.[知识拓展]所谓“形状相同”,就是与图形的大小、位置无关,与摆放角度、摆放方向也无关.有些图形之间虽然只有很小的形状差异,但也不能认为是“形状相同”.1.相似图形定义:形状相同的图形叫做相似图形.2.相似图形与全等形之间的关系.3.相似图形的特征:形状相同.1.下列四个命题:①所有的直角三角形都相似;②所有的等腰三角形都相似;③所有的正方形都相似;④所有的菱形都相似.其中正确的有()A.2个B.3个C.4个D.1个解析:所有的正方形的形状相同,所以③正确;直角三角形、等腰三角形、菱形的形状和内角有关,角度不同,图形的形状就不同,所以所有的直角三角形、所有的等腰三角形、所有的菱形不一定相似.故选D.2.下列图形是相似图形的是()A.①②③B.②③④C.①③④D.①②④解析:观察图形可得①②③中图形的形状相同.故选A.3.下列图形不是相似图形的是()A.同一张底片冲洗出来的两张大小不同的照片B.用放大镜将一个细小物体图案放大过程中原有图案和放大图案C.某人的侧身照片和正面照片D.大小不同的两张中国地图解析:某人的侧面照片和正面照片形状不相同,不是相似图形.故选C.4.如图所示,用放大镜将图形放大,应该属于()A.相似变换B.平移变换C.对称变换D.旋转变换解析:相似图形的形状相同,其中一个图形可以看作是由另一个图形放大或缩小得到的.所以用放大镜放大图形属于相似变换.故选A.第1课时1.认识相似图形2.相似图形的特征3.例题讲解例1例2一、教材作业【必做题】教材第25页练习第1,2题.【选做题】教材第27页习题27.1第4题.二、课后作业【基础巩固】1.下列图形中,相似的一组图形是()2.下列属性中,是相似图形的本质属性的是()A.大小不同B.大小相同C.形状相同D.形状不同3.下列图形中,不是相似图形的有()A.0组B.1组C.2组D.3组4.下列四组图形中,一定相似的是()A.正方形和矩形B.正方形和菱形C.菱形与菱形D.正五边形与正五边形5.如图所示的是小华拍摄的足球的照片,下列说法不正确的是()A.足球上所有“黑片”形状相同B.足球上所有“白片”形状相同C.足球上“黑片”“白片”形状相同D.足球上“黑片”“白片”形状不相同6.放大镜下的图形和原来的图形相似图形.哈哈镜中的图形和原来的图形相似图形(填“是”或“不是”).7.下列各组图形:①两个平行四边形;②两个圆;③两个矩形;④有一个内角是80°的两个等腰三角形;⑤两个正六边形;⑥有一个内角是100°的两个等腰三角形.其中一定是相似图形的是.8.如图所示,各组图形中相似的是.(只填序号)9.在实际生活和数学学习中,我们常会看到许多形状相同的图形,下图中,形状相同的图形有哪几组?10.如何将图中的图形ABCDE放大,使新图形的各顶点仍在格点上?【能力提升】11.用一个10倍的放大镜看一个15°的角,看到的角的度数是.12.在实际生活和数学学习中,我们常会看到许多形状相同的图形,在下图中,形状相同的图形有哪些?【拓展探究】13.用相似图形设计美丽的图案.生活中有许多形状相同的图形,我们可以用相似图形设计出各种各样的美丽图案.例如:已知如图(1)所示的是由相似的直角三角形拼成的一个商标图案,请你参照此图案用相似图形设计出几个你喜欢的图案,并联系实际为你的设计取一个合适的名字. (下面举两例供参考,如图(2)所示)【答案与解析】1.D(解析:观察各图形,只有D中两个图形形状相同,大小不相等.故选D.)2.C(解析:相似图形的形状相同,但大小不一定相同,所以形状相同是相似图形的本质属性.故选C.)3.B(解析:(1)中形状相同,但大小不同,符合相似形的定义;(2)中形状相同,但大小不同,符合相似形的定义;(3)中形状不相同,不符合相似形的定义;(4)中形状相同,符合相似形的定义.故不是相似图形的有1组.故选B.)4.D(解析:正方形和矩形的形状不一定相同,所以不一定相似;正方形和菱形的对应角不一定相等,所以不一定相似;菱形与菱形对应角不一定相等,所以不一定相似;正五边形与正五边形的形状相同,所以两个图形相似.故选D.)5.C(解析:“黑片”是正五边形,“白片”是正六边形,两个图形的形状不相同.故选C.)6.是不是(解析:放大镜下的图形与原来的图形形状相同,大小不相等,所以是相似图形;哈哈镜中的图形与原来的图形形状不同,大小也不相等,所以不相似.)7.②⑤⑥(解析:两个平行四边形的角不一定相等,所以不一定相似;两个矩形的边不确定,所以不一定相似;80°的内角可能是顶角也可能是底角,所以形状不一定相同;两个圆、两个正六边形、一个内角是100°的两个等腰三角形的形状相同,所以图形相似.故填②⑤⑥.)8.②③(解析:观察图形可得:②③的形状相同,大小不相等.故填②③.)9.解:(1)中的左边图形是圆,右边图形是椭圆,形状不同;(2)中的左边是正六边形,右边不是正六边形,形状不同;(3)中的两个图形形状相同;(4)中的左边是长方形,右边的是正方形,形状不同;(5)中的两个图形形状相同;(6)中的左边是圆形脸,右边是椭圆形脸,形状不同,故(3),(5)组中的图形形状相同,(1),(2),(4),(6)组中的图形形状不同.10.如图所示.11.15°(解析:用放大镜看后的图形与原图形形状相同,大小不相等,角放大后度数不变.故填15°.)12.解:(1)和(3),(2)和(13),(4)和(11),(5)和(10),(6)(7)(8)和(9).13.解:答案不唯一,如图所示.本节课通过对生活中形状相同的图形的观察和欣赏导入新课,让学生体会数学来源于生活,激发学生学习的兴趣,同时感受数学和生活中的美,再让学生观察、思考、分析、探究,然后归纳结论,得出相似图形的特征,相似图形只与形状有关,与图形大小、位置无关,培养了学生观察事物的能力,提高了学生分析问题与归纳的能力,例题的探究让学生体会把实际问题转化为数学问题,获得成功的体验,在探究知识的形成过程中,学生积极参与,思维活跃,尤其在举生活中相似图形的实例时,学生发言积极,课堂气氛活跃,让课堂教学达到高潮.本节课比较简单,通过观察图形,形状相同的图形是相似图形,所以学生学习起来比较简单,所以学生在课堂上非常活跃,发言积极,虽然有些学生发言不够准确,但可以看出大家情绪高涨、积极思考的状态.但是在简单课时的教学中,忽略了学生能力的培养和知识的拓展,如在探究图形相似的特征后,可以让学生在网格图中画相似图形,培养学生动手操作能力.本节课的重点是通过欣赏图形,观察图形的特征,归纳总结相似图形的概念和特征,并能总结全等图形与相似图形之间的关系,由于课时内容较少,学生易于掌握,在教学时用多媒体多展示一些相似图形的图片,可以用一些图形不同的角度和方向的图片,培养学生的观察能力,同时在课堂上注重培养学生自主学习的能力,教师起到引导作用即可,让学生多参与、思考、归纳,通过小组合作交流,达到掌握知识的目的.练习(教材第25页)1.解:相似.2.解:(d)与(1)相似,(e)与(2)相似.(1)相似图形是现实生活中广泛存在的现象,本章是在研究了图形的全等及图形的一些变换后,进一步研究的一种变换——相似,本课时重点掌握相似图形的概念,可用大量的实例引入,让学生体会数学与实际生活之间的联系,通过学生观察、思考,得出相似图形的概念,但要注意教材中“形状相同的图形是相似图形”,只是对相似图形概念的一个描述,不是定义,还要强调:相似图形一定形状相同,与它的位置、颜色、大小无关;相似图形不仅仅指平面图形,也包括立体图形;两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的.在教学中,要通过大量实例让学生观察、思考、归纳、辨析,从而理解和掌握相似图形的概念.(2)本节课内容比较简单,易理解掌握,所以在教学设计中注重培养学生的自主探究、合作交流能力,教师要大胆放手,学生通过自主学习,探索知识的形成过程,从而真正成为课堂的主人,享受成功的快乐.同时在课堂上注重培养学生的能力,如通过辨析图形是否为相似图形,探索相似图形的特征时,注重培养学生观察、分析问题、解决问题的能力.如图所示,下面右边的四个图形中,与左边的图形相似的是()〔解析〕因为图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而图C是将左图绕正五边形的中心旋转180°后,再按一定比例缩小得到的,因此图C与左图相似.故选C.如图所示,下列四组图形中,两个图形相似的有A.1组B.2组C.3组D.4组〔解析〕观察图形可得,四组图形的形状都分别相同,只是大小不同,所以四组图形都是相似图形.故选D.第课时1.了解成比例线段的概念,会判断已知线段是否成比例.2.理解相似多边形的概念、性质及判定.3.能根据相似多边形的有关概念和性质进行判断及有关计算.1.通过观察、测量、辨析、归纳等数学活动,经历相似多边形的概念的形成过程,体会由特殊到一般的数学思想方法.2.通过应用成比例线段定义及相似多边形的性质进行有关计算,体会方程思想在几何中的应用,渗透数形结合思想.1.经历相似多边形概念的形成过程,培养学生的观察、推理能力,激发学生探究及发现数学问题的兴趣.2.在探索相似多边形性质的过程中,培养学生与他人交流、合作的意识和品质.在观察、操作、推理的探究过程中,体验数学活动充满探索性和创造性.【重点】1.理解并掌握相似多边形的概念及性质.2.能利用成比例线段的概念及相似多边形的性质进行有关计算.【难点】探索相似多边形的性质中的“对应”关系.【教师准备】多媒体课件.【学生准备】形状相同的两个三角尺及边长不等的两个正方形.导入一:如图所示的一块黑板,长3米,宽1.5米,加一7.5厘米宽的边框,边框外围与边框里边的矩形形状相同吗?【导入语】我们凭借“直观”感觉这两个矩形的形状相同,实际上这两个矩形的形状是不相同的,通过今天的学习,我们将知道这两个矩形的形状为什么不相同.导入二:如图所示,将△ABC用2倍放大镜观察得到△A1B1C1,这两个三角形相似吗?这两个三角形中的对应角、对应边之间有什么关系?导入三:如图所示,将四边形ABCD用2倍放大镜观察得到四边形A1B1C1D1,这两个四边形相似吗?这两个四边形中的对应角、对应边之间有什么关系?。

人教版九年级数学教案 第27章《相似》全章导学案(共13课时)

人教版九年级数学教案 第27章《相似》全章导学案(共13课时)

人教版九年级数学《相似》全章导学案第1课时图形的相似知识点1:相似图形的概念【例1】下列图形不是相似图形的是( C )A. 同一张底片冲洗出来的两张不同尺寸的照片B. 用放大镜将一个细小物体图案放大过程中的原有图案和放大图案C. 某人的侧身照片和正面照片D. 大小不同的两张同版本中国地图,1. 如图1-27-68-1,用放大镜将图形放大,这种图形的改变是( A )图1-27-68-1A. 相似B. 平移C. 轴对称D. 旋转知识点2:相似图形的识别【例2】下列四组图形不是相似图形的是( D ),2. 观察下列各组图形,其中不相似的是( A )知识点3:比例尺的计算【例3】在一幅比例尺是1∶1 000 000的地图上,量得北京到天津的距离是12 cm,则北京到天津的实际距离是120km.,3. 要建一个长40 m,宽20 m的厂房,在比例尺是1∶500的图纸上,长要画cm( B )A. 5B. 8C. 7D. 6知识点4:画相似图形【例4】如图1-27-68-2的左边的格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.图1-27-68-2略.,4. 图1-27-68-3中的三角形称为格点三角形,请画出一个与图中三角形相似的格点三角形.图1-27-68-3略.A组5. “相似的图形”是指( A )A. 形状相同的图形B. 大小不相同的图形C. 能够重合的图形D. 大小相同的图形,6. 对一个图形进行放缩时,下列说法中正确的是( D )A. 图形中线段的长度与角的大小都会改变B. 图形中线段的长度与角的大小都保持不变C. 图形中线段的长度保持不变、角的大小可以改变D. 图形中线段的长度可以改变、角的大小保持不变7. 如图1-27-68-4,下面选项中的四个图形与其相似的是( C )图1-27-68-4A B C D,8. 下列各组图形相似的是( B )B组9. 下列各组图形一定相似的是( C )A. 两个菱形B. 两个矩形C. 两个正方形D. 两个等腰梯形,10. 给出下列几何图形:①两个圆;②两个正方形;③两个矩形;④两个正六边形;⑤两个等边三角形;⑥两个直角三角形;⑦两个菱形. 其中,一定相似的有①②④⑤.(填序号)11. 在比例尺是1∶1 000 000的地图上量得广州到深圳的距离是16 cm,广州到深圳的实际距离是160km.,12. 两地实际距离为2 000 m,图上距离为2 cm,则这张地图的比例尺为( D )A. 1 000∶1B. 100 000∶1C. 1∶1 000D. 1∶100 000C 组13. 在比例尺是1∶25 000 000的地图上,量得北京到上海的距离长4.2 cm ,如果一列直达火车以每小时175 km 的速度从上海开出,经过几小时可以到达北京?解:由题意,得 4.2×25 000 000=105 000 000(cm)=1 050(km). ∴1 050÷175=6(h).∴经过6 h 可以到达北京.,14. 下面四个图案:不等边三角形、等边三角形、正方形和矩形,其中每个图案花边的宽度都相同,那么每个图形中花边的内外边缘所围成的几何图形不一定相似的是( D )第2课时 相似多边形及其性质知识点1:成比例线段【例1】下列各组中的四条线段成比例的是( A ) A. a =2,b =6,c =4,d =12 B. a =4,b =6,c =5,d =10 C. a =2,b =3,c =2,d = 3D. a =2,b =3,c =4,d =1,1. 以下列长度(同一单位)为长的四条线段中,不成比例的是( C ) A. 2,5,10,25 B. 4,7,4,7C. 2,12,12,4 D. 2,5,2 5,5 2知识点2:相似多边形的性质【例2】如图1-27-69-1,四边形CDEF 与四边形C ′D ′E ′F ′相似,求未知边x ,y 的长度和角β的度数.图1-27-69-1解: x =12,y =20,β=80°.,2. 如图1-27-69-2的两个五边形相似,求未知边a ,b ,c ,d 的长度.图1-27-69-2解: a =3,b =4.5,c =4,d =6. 知识点3:相似多边形的判定【例3】如图1-27-69-3,一个矩形广场的长为100 m ,宽为80 m ,广场外围两条纵向小路的宽均为1.5 m ,如果设两条横向小路的宽都为x m ,那么当x 为多少时,小路内、外边缘所围成的两个矩形相似?图1-27-69-3解:当100-1.5×2100=80-2x 80时,小路内、外边缘所围成的两个矩形相似.解得x =1.2.答:当x 为1.2时,小路内、外边缘所围成的两个矩形相似. ,3. 如图1-27-69-4,矩形A′B′C′D′在矩形ABCD 的内部,AB ∥A′B′,AD ∥A′D′,且AD =12,AB =6,设AB 与A′B′,BC 与B′C′,CD 与C′D′,DA 与D′A′之间的距离分别为a ,b ,c ,d ,a =b =c =d =2,矩形A′B′C′D′∽矩形ABCD 吗?为什么?图1-27-69-4解:不相似,理由如下: ∵AD A′D′=128=32,AB A′B′=62=3, ∴AD A′D′≠AB A′B′. ∴不相似.A 组4. 下列线段成比例的是( C ) A. 1,2,3,4 B. 5,6,7,8 C. 1,2,2,4 D. 3,5,6,9,5. 下列各组中的四条线段成比例的是( A ) A. 1 cm,2 cm,20 cm,40 cm B. 1 cm,2 cm,3 cm,4 cm C. 4 cm,2 cm,1 cm,5 cmD. 5 cm,10 cm,15 cm,20 cm B 组6. 如图1-27-69-5的相似四边形,求未知边x ,y 的长度和角α的大小.图1-27-69-5解:x =632,y =27,α=88°.,7. 如图1-27-69-6,四边形ABCD 与四边形A′B′C′D′相似,且AD =BC ,DC ∥AB ,∠A =∠B ,∠A′=65°,A′B′=6 cm ,AB =8 cm ,AD =5 cm ,试求:四边形ABCD 各角的度数与A ′D ′,B ′C ′的长.图1-27-69-6解:四边形ABCD 各角的度数分别为∠A =65°, ∠B =65°,∠C =115°,∠D =115°,B′C′=A′D′=154cm .8. 在一张由打印机打印出来的纸上,一个多边形的一条边由原来的1 cm 变成了4 cm ,那么这个多边形的另一条边由原来4 cm 变成了( C )A . 4 cmB . 8 cmC . 16 cmD . 32 cm ,9. 已知四边形ABCD 和四边形A 1B 1C 1D 1相似,四边形ABCD 的最长边和最短边的长分别是10 cm 和4 cm ,如果四边形A 1B 1C 1D 1的最短边的长是6 cm ,那么四边形A 1B 1C 1D 1的最长边的长是 15 cm .C 组10. 将一个三角形和一个矩形按照如图1-27-69-7的方式扩大,使他们的对应边之间的距离均为1,得到新的三角形和矩形,下列说法正确的是( A )图1-27-69-7A . 新三角形与原三角形相似B . 新矩形与原矩形相似C . 新三角形与原三角形、新矩形与原矩形都相似D. 新三角形与原三角形、新矩形与原矩形都不相似,11. 如图1-27-69-8,已知矩形ABCD 与矩形BCFE 相似,且AD =AE ,求AB ∶AD 的值.图1-27-69-8解:依题意,得 AB AD =BC BE ,即AB AD =AD AB -AD . ∴AB AD =1ABAD-1. 解得AB ∶AD =1+52(负值已舍去).第3课时 相似三角形的简单性质知识点1:找相似三角形的对应边、对应角【例1】如图1-27-70-1,已知△ADE ∽△ABC ,AD =2,BD =3. (1)写出这对相似三角形的对应角和对应边的比例式; (2)求△ADE 与△ABC 的相似比.图1-27-70-1解:(1)相似三角形的对应角为∠A 与∠A ,∠ADE 与∠ABC ,∠AED 与∠ACB ;对应边的比例式为AD AB =AE AC =DEBC .(2)25.1. 如图1-27-70-2,已知△OAB ∽△OCD ,且DC ∥AB ,请写出这对相似三角形的对应角和对应边的比例式.图1-27-70-2解:相似三角形的对应角为∠A 与∠C ,∠B 与∠D ,∠AOB 与∠COD ;对应边的比例式为OA OC =OB OD =AB CD .知识点2:相似三角形简单性质的直接运用【例2】如图1-27-70-3,已知△ABC ∽△DEF ,求未知边x ,y 的长度.图1-27-70-3解: x =6,y =72. ,2. 如图1-27-70-4,△ABC 与△DEF 相似,∠B ,∠E 为钝角,求未知边x ,y 的长度.图1-27-70-4解: x =12,y =7或x =967,y =647.知识点3:相似三角形简单性质的综合运用【例3】如图1-27-70-5,D ,E 分别是AC ,AB 边上的点,△ADE ∽△ABC ,且DE =4,BC =12,CD =9,AD =3,求AE ,BE 的长.图1-27-70-5解:∵△ADE ∽△ABC , ∴AE AC =AD AB =DE BC. ∵DE =4,BC =12,CD =9,AD =3,∴AC =12. ∴AE =4,AB =9. ∴BE =AB -AE =5.3. 如图1-27-70-6,AC =4,BC =6,∠B =36°,∠D =117°,且△ABC ∽△DAC. (1)求∠BAD 的大小; (2)求DC 的长.图1-27-70-6解:(1)∵△ABC ∽△DAC , ∴∠DAC =∠B =36°, ∠BAC =∠D =117°.∴∠BAD =∠BAC +∠DAC =153°. (2)∵△ABC ∽△DAC , ∴AC DC =BC AC. 又∵AC =4,BC =6,∴DC =83.A 组4. 已知△ABC ∽△A 1B 2C 2,如果∠A =40°,那么∠A 1等于( A ) A. 40° B. 80° C. 140° D. 20°,5. 要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为5 cm,6 cm 和9 cm ,另一个三角形的最短边长为2.5 cm ,则它的最长边为( C )A. 3 cmB. 4 cmC. 4.5 cmD. 5 cmB 组6. 如图1-27-70-7,在△ABC 中,点D 在BC 边上,△ABC ∽△DBA . 若BD =4,DC =5,则AB 的长为 6 .图1-27-70-7,7. 如图1-27-70-8,在正方形网格中有两个相似三角形△ABC 和△DEF ,则∠BAC 的度数为( D )图1-27-70-8A . 105°B . 115°C . 125°D . 135°8. 如图1-27-70-9,已知△ABC ∽△AED ,AD =5 cm ,AC =10 cm ,AE =6 cm ,∠A =66°,∠ADE =65°,求AB 的长及∠C 的度数.图1-27-70-9解:∵△ABC ∽△AED ,∠ADE =65°,∴∠C =∠ADE =65°,AD AC =AEAB.∴510=6AB. 解得AB =12(cm ).,9. 如图1-27-70-10,已知△ABC ∽△DEC ,AC =3 cm ,BC =4 cm ,CE =6 cm ,求AD 的长.图1-27-70-10解:∵△ABC ∽△DEC , ∴AC DC =BC EC. ∵AC =3 cm ,BC =4 cm ,CE =6 cm , ∴3DC =46. ∴DC =92(cm ).∴AD =3+92=152(cm ).C 组10. 如图1-27-70-11,点C ,D 在线段AB 上,△PCD 是等边三角形,且△ACP ∽△PDB .(1)求∠APB 的大小.(2)说明线段AC ,CD ,BD 之间的数量关系.图1-27-70-11解:(1)∵△PCD 是等边三角形, ∴∠PCD =60°.∴∠A +∠APC =60°. ∵△ACP ∽△PDB. ∴∠APC =∠PBD. ∴∠A +∠B =60°. ∴∠APB =120°.(2)∵△ACP ∽△PDB ,∴AC PD =PCBD.又∵PC =PD =CD ,∴CD 2=AC·BD.11. 如图1-27-70-12,AD ∥BC ,∠ABC =90°,AB =8,AD =3,BC =4,点P 为AB 边上一动点,若△P AD 与△PBC 是相似三角形,求AP 的长.图1-27-70-12解: ∵AD ∥BC ,∠ABC =90°, ∴∠A =180°-∠ABC =90°. ∴∠PAD =∠PBC =90°. AB =8,AD =3,BC =4, 设AP 的长为x ,则BP 的长为 8-x .若AB 边上存在点P ,使△P AD 与△PBC 相似,则分下列两种情况. ①若△APD ∽△BPC ,则AP ∶BP =AD ∶BC ,即x ∶(8-x )=3∶4.解得x =247;②若△APD ∽△BCP ,则AP ∶BC =AD ∶BP , 即x ∶4=3∶(8-x ).解得x =2或x =6.综上所述,AP =247或AP =2或AP =6.第4课时 相似三角形的判定(1)——平行线法知识点1:平行线分线段成比例【例1】如图1-27-71-1,在△ABC 中,DE ∥BC ,若AD AB =13,AE =1,则EC 等于( B )图1-27-71-1A . 1B . 2C . 3D. 4 ,1. 已知l 1∥l 2∥l 3,直线AB 和CD 分别交l 1,l 2,l 3于点A ,E ,B 和点C ,F ,D. 若AE =2,BE =4,则CFCD的值为( B )图1-27-71-2A . 12B . 13C . 23 D. 34知识点2:相似三角形的判定——平行线法【例2】如图1-27-71-3,DE 是△ABC 的中位线. 那么△ADE 和△ABC 是否相似?说明理由.图1-27-71-3解:△ADE 和△ABC 相似. 理由如下: ∵DE 是△ABC 的中位线, ∴DE ∥BC.∴△ADE ∽△ABC. ,2. 如图1-27-71-4,已知AB ∥CD ∥EF ,请你找出图中所有的相似三角形.图1-27-71-4解:△AOB ∽△DOC , △AOB ∽△FOE ,△DOC ∽△FOE.知识点3:相似三角形判定与性质的综合运用【例3】如图1-27-71-5,DE ∥BC ,且AD =3,AB =5,CE =3,求AE 的长.图1-27-71-5解:AE =4.5.,3. 如图1-27-71-6,AB 与CD 相交于点O ,AC ∥BD ,AO BO =35,AC =9,求BD 的长.图1-27-71-6解:BD =15.A 组4. 如图1-27-71-7,AD ∥BE ∥CF ,直线m ,n 与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,已知AB =5,BC =10,DE =4,则EF 的长为( C )图1-27-71-7A . 12B . 9C . 8 D. 4,5. 如图1-27-71-8,AB ∥CD ,AD 与BC 相交于点O ,若AO =2,DO =4,BO =3,则BC 的长为( B )图1-27-71-8A . 6B . 9C . 12D . 15 B 组6. 如图1-27-71-9,已知DE ∥BC ,AE =50 cm ,EC =30 cm ,BC =70 cm ,∠A =45°,∠C =40°,求:(1)∠AED 和∠ADE 的度数; (2)DE 的长.图1-27-71-9解:(1)∠AED 和∠ADE 的度数分别为40°,95°.(2)DE =1754cm.,7. 如图1-27-71-10,在▱ABCD 中,点E 在DC 上,若EC ∶AB =2∶3,EF =4,求BF 的长.图1-27-71-10解:BF 的长为6. C 组8. 如图1-27-71-11,用三个完全一样的菱形ABGH ,BCFG ,CDEF 拼成平行四边形ADEH ,AE 与BG ,CF 分别交于点P ,Q . 若AB =6,求线段BP 的长.图1-27-71-11解:由菱形的性质可知,AD =3AB =18,DE =6. ∵BP ∥DE ,∴△ABP ∽△ADE. ∴BP DE =AB AD ,即BP 6=618. 解得BP =2.,9. 如图1-27-71-12,E 是▱ABCD 的边BC 延长线上一点,AE 交CD 于点F ,FG ∥AD 交AB 于点G.(1)填空:图中与△CEF 相似的三角形有 △DAF ,△BEA ,△GFA ;(写出图中与△CEF 相似的所有三角形)(2)从(1)中选出一个三角形,并证明它与△CEF 相似.图1-27-71-12解:(2)略.第5课时 相似三角形的判定(2)——三边法和两边及其夹角法知识点1:相似三角形的判定——三边法【例1】如图1-27-72-1,O 为△ABC 内一点,点D ,E ,F 分别为OA ,OB ,OC 的中点,求证:△DEF ∽△ABC.图1-27-72-1证明:∵D ,E ,F 分别是OA ,OB ,OC 的中点,∴DE =12AB ,EF =12BC ,DF =12AC ,即DE AB =EF BC =DFAC.∴△DEF ∽△ABC.,1. 如图1-27-72-2,在正方形网格中,每个小正方形的边长为1,那么△ABC 与△A 1B 1C 1是否相似?为什么?图1-27-72-2解:相似. 理由如下:∵AB =5,AC =10,BC =5, A 1B 1=2,A 1C 1=2,B 1C 1=10, ∴AB A 1B 1=102,AC A 1C 1=102,BC B 1C 1=102.∴AB A 1B 1=AC A 1C 1=BCB 1C 1. ∴△ABC ∽△A 1B 1C 1.知识点2:相似三角形的判定——两边及其夹角法【例2】如图1-27-72-3,D ,E 分别是△ABC 两边AB ,AC 上的点,AD =3,BD =5,AE =4,EC =2. △ADE 与△ACB 是否相似,并说明理由.图1-27-72-3解:相似.理由如下:∵AD =3,BD =5,AE =4, EC =2, ∴AD AC =34+2=12,AE AB =43+5=12. ∴ AD AC =AE AB .∵∠A =∠A ,∴△AED ∽△ABC.,2. 如图1-27-72-4,AB·AE =AD·AC ,且∠1=∠2,求证:△ABC ∽△ADE.图1-27-72-4证明:∵AB·AE =AD·AC ,∴AB AD =ACAE.又∵∠1=∠2,∴∠2+∠BAE =∠1+∠BAE ,即∠BAC =∠DAE. ∴△ABC ∽△ADE.知识点3:相似三角形判定与性质的综合运用【例3】如图1-27-72-5,D 是△ABC 的边AB 上的一点,BD =43,AB =3,BC =2.(1)△BCD 与△BAC 相似吗?请说明理由;(2)若CD =53,求AC 的长.图1-27-72-5解:(1)△BCD ∽△BAC. 理由如下:∵BD =43,AB =3,BC =2,∴BD BC =432=23,BC BA =23. ∴BD BC =BC BA. 而∠DBC =∠CBA ,∴△BCD ∽△BAC.(2)∵△BCD ∽△BAC ,∴CD AC =BCBA ,即53AC =23.∴AC =52.,3. 如图1-27-72-6,已知四边形ABCD ,∠B =∠ACD ,AB =6,BC =4,AC =5,CD =7.5.(1)证明:△ABC ∽△DCA ; (2)求AD 的长.图1-27-72-6(1)证明:∵AB =6,BC =4,AC =5,CD =7.5, ∴AB CD =BC AC =45且∠B =∠ACD. ∴△ABC ∽△DCA.(2)解:∵△ABC ∽△DCA , ∴AC AD =BC AC =45. ∴5AD =45. ∴AD =254.A 组4. 如图1-27-72-7,根据所给条件,判断△ABC 和△DBE 是否相似,并说明理由.图1-27-72-7解:△ABC ∽△DBE.理由如下: ∵AC DE =BC BE =AB DB =12, ∴△ABC ∽△DBE.,5. 如图1-27-72-8,AC =20,BC =10,EC =16,CD =8,证明:△ABC 和△EDC 相似.图1-27-72-8证明:∵AC EC =2016=54, BC CD =108=54, ∴AC EC =BC CD. 又∵∠ACB =∠ECD , ∴△ABC ∽△EDC. B 组6. 如图1-27-72-9,点D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 的中点. 求证:△DEF ∽△ABC .图1-27-72-9证明:∵点 D ,E ,F 分别是△ABC 的三边BC ,CA ,AB 的中点, ∴EF ,FD ,DE 为△ABC 的中位线.∴EF =12BC ,FD =12AC ,DE =12AB.∴EF BC =FD AC =DE AB =12. ∴△DEF ∽△ABC.,7. 如图1-27-72-10,AD ,BC 交于点O ,AO·DO =CO·BO ,求证:△ABO ∽△CDO.图1-27-72-10解:∵AO·DO =CO·BO , ∴AO CO =BO DO. 而∠AOB =∠COD , ∴△ABO ∽△CDO.C 组8. 如图1-27-72-11,在正方形ABCD 中,P 是BC 边上的点,BP =3PC ,Q 是CD 的中点. 求证:△QCP ∽△ADQ .图1-27-72-11证明:∵四边形ABCD 是正方形, ∴AD =CD =BC ,∠C =∠D =90°. ∵BP =3PC ,Q 是CD 的中点,∴CP =14BC ,CQ =DQ =12CD .∴CP ∶DQ =CQ ∶DA =1∶2.∴△QCP ∽△ADQ .,9. 如图1-27-72-12,四边形ABEG ,GEFH ,HFCD 都是边长为a 的正方形,△AEF 与△CEA 相似吗?为什么?图1-27-72-12解:△AEF 与△CEA 相似.理由如下: 由勾股定理,得AE =AB 2+BE 2=2a. ∴AE EF =2a a =2, EC AE =2a 2a = 2. ∴AE EF =EC AE. 又∵∠AEF =∠CEA , ∴△AEF ∽△CEA. 第6课时 相似三角形的判定(3)——两角法知识点1:相似三角形的判定——两角法【例1】如图1-27-73-1,在△ABC 中,AC >AB ,点D 在AC 上(不与A ,C 重合),∠ABD =∠ACB ,求证:△ABD ∽△ACB.图1-27-73-1证明:∵∠BAD =∠CAB ,∠ABD =∠ACB , ∴△ABD ∽△ACB.,1. 如图1-27-73-2,DE ∥AB ,AD ∥BC ,求证:△EAD ∽△ACB.图1-27-73-2解:∵DE ∥AB , ∴∠BAC =∠DEA. ∵AD ∥BC , ∴∠C =∠DAE.∴△EAD ∽△ACB.知识点2:相似三角形判定与性质的综合应用【例2】如图1-27-73-3,在△ABC 中,D ,E 分别是边AB ,AC 上一点,且∠AED =∠B. 若AE =5,AB =9,CB =6.(1)求证:△AED ∽△ABC ; (2)求DE 的长.图1-27-73-3(1)证明:∵∠AED =∠B ,∠A =∠A , ∴△AED ∽△ABC.(2)解:∵△AED ∽△ABC , ∴AE AB =DE CB. ∵AE =5,AB =9,CB =6,∴59=DE6.解得DE =103.∴DE 的长为103.,2. 如图1-27-73-4,AB ,CD 相交于点O ,且∠C =∠B ,若AC =4 cm ,AO =3 cm ,BD =8 cm.(1)求证:△AOC ∽△DOB ; (2)求OD 的长.图1-27-73-4(1)证明:∵∠C =∠B ,∠AOC =∠DOB ,∴△AOC∽△DOB.(2)解:∵△AOC∽△DOB,∴ACDB=OAOD,即48=3OD.解得OD=6(cm).∴OD的长为6 cm.知识点3:圆中的相似三角形【例3】如图1-27-73-5,⊙O的弦AB,CD交于点P,连接AC,BD,求证:△BDP ∽△CAP.图1-27-73-5证明:∵∠A与∠D都为所对的圆周角,∠B与∠C都为所对的圆周角,∴∠A=∠D,∠B=∠C.∴△BDP∽△CAP.,3. 如图1-27-73-6,延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.图1-27-73-6解:∵四边形ABCD为⊙O的内接四边形,∴∠ADC+∠B=180°.又∵∠ADC+∠EDC=180°,∴∠B=∠EDC.∵∠E=∠E,∴△ABE∽△CDE.A组4. 如图1-27-73-7,AB∥DE,AC∥DF,点B,E,C,F在一条直线上,求证:△ABC∽△DEF.图1-27-73-7证明:∵AB∥DE,AC∥DF,∴∠B =∠DEF ,∠ACB =∠F. ∴△ABC ∽△DEF.,5. 如图1-27-73-8,在△ABC 中,∠A =30°,∠C =90°,BD 平分∠ABC. 求证:△ABC ∽△BDC.图1-27-73-8证明:∵∠A =30°,∠C =90°, ∴∠ABC =90°-30°=60°. ∵BD 平分∠ABC ,∴∠DBC =12∠ABC =30°.∴∠A =∠DBC. 又∵∠C =∠C , ∴△ABC ∽△BDC. B 组6. 如图1-27-73-9,在△ABC 和△ADE 中,∠BAD =∠CAE ,∠B =∠D. (1)△ABC 与△ADE 相似吗?为什么?(2)已知AB =2AD ,BC =8 cm ,求DE 的长.图1-27-73-9解:(1)△ABC ∽△ADE.理由如下:∵在△ABC 和△ADE 中,∠BAD =∠CAE ,∴∠BAD +∠DAC =∠CAE +∠DAC ,即∠BAC =∠DAE. 又∵∠B =∠D ,∴△ABC ∽△ADE.(2)由(1)知,△ABC ∽△ADE ,则AB AD =BCDE .∵AB =2AD ,BC =8 cm ,∴2AD AD =8DE.解得DE =4(cm ),即DE 的长是4 cm . ,7. 如图1-27-73-10,Rt △ABC 中,CD 是斜边AB 上的高. 求证: (1)△ACD ∽△ABC ;(2)△CBD ∽△ABC .图1-27-73-10证明:(1)∵CD 是斜边AB 上的高, ∴∠ADC =90°. ∴∠ADC =∠ACB. ∵∠A =∠A , ∴△ACD ∽△ABC.(2)∵CD 是斜边AB 上的高, ∴∠BDC =90°. ∴∠BDC =∠ACB. ∵∠B =∠B ,∴△CBD ∽△ABC. C 组8. 如图1-27-73-11,在△ABC 中,AB =AC ,∠A =36°,BD 是∠ABC 的角平分线. (1)△ABC 与△BDC 相似吗?请说明理由; (2)求证:AD 2=AB ·CD .图1-27-73-11(1)解:相似. 理由如下: ∵在△ABC 中,AB =AC , ∠A =36°,∴∠ABC =180°-36°2=72°.∵BD 是∠ABC 的角平分线,∴∠CBD =12∠ABC =36°.∴∠CBD =∠A .又∵∠C =∠C , ∴△ABC ∽△BDC . (2)证明:∵△ABC ∽△BDC , ∴BC DC =ACBC. ∴BC 2=AC ·CD . 由题意,可得BC =BD =AD . 又∵AB =AC ,∴AD 2=AB ·CD .,9. 如图1-27-73-12,△ABC 内接于⊙O ,∠BAC 的平分线分别交⊙O ,BC 于点D ,E ,连接BD .(1)求证:△ABD ∽△AEC ;(2)试写出图中其他各对相似三角形.图1-27-73-12(1)证明:∵AD 平分∠BAC , ∴∠BAD =∠DAC. ∵∠D =∠C , ∴△ABD ∽△AEC.(2)解:△AEC ∽△BED , △BED ∽△ABD.第7课时 相似三角形的简单性质与判定的综合习题课知识点1:求线段的长【例1】如图1-27-74-1,AD 与BC 交于O 点,∠A =∠C ,AO =4,CO =2,CD =3,求AB 的长.图1-27-74-1解:∵∠A =∠C , ∠AOB =∠COD , ∴△AOB ∽△COD. ∴AB CD =AO CO , 即AB 3=42. ∴AB =6. ,1. 如图1-27-74-2,在△ABC 中,点D 在AB 边上,∠ABC =∠ACD , AD =2,AB =5. 求AC 的长.图1-27-74-2解:∵∠ABC =∠ACD , ∠A =∠A ,∴△ABC ∽△ACD.AD AC∵AD =2,AB =5, ∴AC 2=5AC .∴AC =10.知识点2:证明角相等【例2】如图1-27-74-3,在△ABC 中,点D ,E 分别在AC ,AB 上,已知AE·AB =AD·AC ,求证:∠B =∠ADE.图1-27-74-3解:∵AE·AB =AD·AC ,∴AE AC =AD AB . ∵∠A =∠A , ∴△ADE ∽△ABC.∴∠B =∠ADE. ,2. 如图1-27-74-4,在△ABC 中,D ,E 分别为BC 边上的两点,且AC AD =AB DE =BCAE,求证:∠B =∠AEB.图1-27-74-4证明:∵AC AD =AB DE =BC AE, ∴△ABC ∽△DEA. ∴∠B =∠AED.知识点3:证明等比式 【例3】如图1-27-74-5,已知CD ⊥AB ,BE ⊥AC ,证明:AD AE =ACAB.图1-27-74-5解:∵CD ⊥AB ,BE ⊥AC , ∴∠ADC =∠AEB =90°. ∵∠A =∠A , ∴△ADC ∽△AEB .AE AB,3. 如图1-27-74-6,在平行四边形ABCD 中,F 为AD 上一点,CF 的延长线交BA延长线于点E . 求证:DC BE =DFBC.图1-27-74-6证明:∵四边形ABCD 为平行四边形, ∴∠B =∠D ,BE ∥CD. ∴∠E =∠ECD. ∴△DCF ∽△BEC. ∴DC BE =DFBC .知识点4:证明等积式【例4】如图1-27-74-7,在△ABC 中,∠ADE =∠ABC ,BD ,CE 交于点O. 求证:AE·AB =AD·AC.图1-27-74-7证明:∵∠A =∠A ,∠ADE =∠ABC , ∴△ADE ∽△ABC.∴ AE AC =AD AB . ∴AE·AB =AD·AC.,4. 如图1-27-74-8,在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的高,证明:AC 2=AB ·AD .图1-27-74-8证明:∵在Rt △ABC 中,∠ACB =90°,CD 是斜边AB 上的高, ∴∠ADC =∠ACB =90°. ∵∠A =∠A ,∴△ACD ∽∠ABC . ∴AC AB =AD AC . ∴AC 2=AB ·AD .知识点5:证明线段平行或垂直【例5】如图1-27-74-9,AB 与CD 相交于点O ,OA =3,OB =5,OD =6,OC =185.求证:AC ∥BD .图1-27-74-9证明:∵OA =3,OB =5,OD =6,OC =185,∴OA OB =OC OD =35. 而∠AOC =∠BOD , ∴△AOC ∽△BOD. ∴∠A =∠B. ∴AC ∥BD.,5. 如图1-27-74-10,在△ABC 中,∠C =90°,D ,E 分别为AB ,BC 上的点,且BD·AB =BE·BC. 求证:DE ⊥AB.图1-27-74-10证明:∵BD·AB =BE·BC ,∴BD BC =BE BA. 又∵∠DBE =∠CBA , ∴△BDE ∽△BCA. ∴∠BDE =∠C =90°,即DE ⊥AB .知识点6:圆中的相似三角形【例6】如图1-27-74-11,点A ,B ,C ,D 为⊙O 上的四个点,,AC 交BD 于点E ,CE =4,CD =6.(1)求证:△CDE ∽△CAD ; (2)求AE 的长.图1-27-74-11(1)证明:∵, ∴∠BAC =∠CAD =∠CDE. ∵∠ACD =∠DCE , ∴△CDE ∽△CAD.(2)解:∵△CDE ∽△CAD , ∴CE CD =CD CA ,即46=6CA . 解得CA =9.∴AE =AC -CE =9-4=5.,6. 如图1-27-74-12,AB 是⊙O 的直径,PB 与⊙O 相切于点B ,连接PA 交⊙O 于点C ,连接BC.(1)求证:∠BAC =∠CBP ; (2)求证:PB 2=PA·PC.图1-27-74-12证明:(1)∵AB 是⊙O 的直径,PB 与⊙O 相切于点B , ∴∠ACB =∠ABP =90°.∴∠BAC +∠ABC =∠ABC +∠CBP =90°. ∴∠BAC =∠CBP.(2)∵∠ABP =∠PCB =90°,∠P =∠P , ∴△ABP ∽△BCP . ∴PB P A =PC PB . ∴PB 2=P A ·PC .A 组7. 如图1-27-74-13,在△ABC 中,DE ∥BC ,DE BC =25,AD =4,求BD 的长度.图1-27-74-13解:BD =6.,8. 如图1-27-74-14,在Rt △ABC 中,∠C =90°,AB =10,AC =8,E 是AC 上一点,AE =5,ED ⊥AB ,垂足为D . 求BD 的长.图1-27-74-14解:BD =6.B 组9. 如图1-27-74-15,AB 是⊙O 的直径,CD ⊥AB 于点D ,AD =9 cm ,DB =4 cm ,求CD 和AC 的长.图1-27-74-15解:如答图27-74-1,连接BC. ∵AB 是⊙O 的直径,CD ⊥AB ,可得△ADC ∽△CDB ,△ADC ∽△ACB.由△ADC ∽△CDB ,得CD BD =ADCD,即CD 2=AD·DB =36. 解得CD =6(cm).答图27-74-1由△ADC ∽△ACB ,得AC AB =ADAC,即AC 2=AB·AD =117. 解得AC =313(cm ).∴CD 的长为6 cm ,AC 的长为313 cm. ,10. 如图1-27-74-16,AD 是△ABC 的高,AE 是⊙O 的直径,且△ABC 三个顶点都在⊙O 上,求证:AB ·AC =AE ·AD .图1-27-74-16证明:如答图27-74-2,连接CE. 由圆周角定理可知,∠B =∠E. ∵∠ADB =∠ACE =90°, ∠B =∠E ,∴△ADB ∽△ACE .答图27-74-2∴AB ∶AE =AD ∶AC. ∴AB·AC =AE·AD.C 组11. 如图1-27-74-17,边长为4的等边三角形ABC 中,D ,E 分别为AC ,BC 上的点(D ,E 与顶点不重合),∠BDE =60°.(1)求证:△ABD ∽△CDE ;(2)设CD =x ,BE =y ,求y 与x 的函数关系式,并求y 的最小值.图1-27-74-17(1)证明:∵△ABC 是等边三角形, ∴∠A =∠C =60°. ∵∠BDE =60°,∴∠ADB +∠CDE =120°. ∵∠ABD +∠ADB =120°, ∴∠ABD =∠CDE. ∵∠A =∠C , ∴△ABD ∽△CDE.(2)解:∵△ABD ∽△CDE ,∴AD CE =ABCD.∴CE =x(4-x)4 =-14x 2+x.∴y =4-CE =14x 2-x +4.∵y =14(x -2)2+3,∴y 的最小值为3. ,12. 如图1-27-74-18,在△ABC 中,∠C =90°,BC =16 cm ,AC =12 cm ,点P 从点B 出发,沿BC 以2 cm /s 的速度向点C 移动;点Q 从点C 出发,以1 cm /s 的速度向点A 移动.若点P ,Q 分别从点B ,C 同时出发,设运动时间为t s ,当t 为何值时,△CPQ 与△CBA 相似?图1-27-74-18解:分以下两种情况.①当CP 和CB 是对应边时,△CPQ ∽△CBA ,∴CP CB =CQCA ,即16-2t 16=t 12. 解得t =4.8;②当CP 和CA 是对应边时, △CPQ ∽△CAB ,∴CP CA =CQCB ,即16-2t 12=t 16. 解得t =6411.综上所述,当t =4.8 s 或6411s 时,△CPQ 与△CBA 相似.第8课时 相似三角形的周长和面积知识点1:相似三角形周长的比等于相似比【例1】在一张由复印机复印出来的纸上,一个多边形的一条边的长由原来的1 cm 变成4 cm ,那么它的周长由原来的3 cm 变成( B )A . 6 cmB . 12 cmC . 24 cmD . 48 cm ,1. 如果两个相似三角形的周长的比为1∶4,那么这两个三角形的相似比为( B ) A . 1∶2 B . 1∶4 C . 1∶8 D . 1∶16知识点2:相似三角形对应线段(对应高、对应中线、对应角平分线)的比等于相似比 【例2】如果两个相似三角形对应边之比是1∶4,那么它们的对应中线之比是( B ) A . 1∶2 B . 1∶4 C . 1∶8 D . 1∶16,2. 若△ABC ∽△DEF ,且相似比为2∶3,则它们对应边上的高之比为( A )A . 2∶3B . 4∶9C . 3∶5D . 9∶4知识点3:相似三角形面积的比等于相似比的平方【例3】已知△ABC ∽△DEF ,且相似比为1∶2,则△ABC 与△DEF 的面积比为( A ) A . 1∶4 B . 4∶1C . 1∶2D . 2∶1,3. 如图1-27-75-1,已知△ADE ∽△ABC ,且AD ∶DB =2∶1,则S △ADE ∶S △ABC=( D )图1-27-75-1A . 2∶1B . 4∶1C . 2∶3D . 4∶9知识点4:利用相似三角形周长和面积的性质计算【例4】如图1-27-75-2,已知DB =2AD ,EC =2AE. (1)求证:△ADE ∽△ABC ;(2)若△ABC 的周长为27 cm ,求△ADE 的周长.图1-27-75-2解:(1)证明略.(2)△ADE 的周长为9 cm.,4. 如图1-27-75-3,在△ABC 中,DE ∥BC ,AD BD =32,S △ABC =25.(1)求证:△ADE ∽△ABC ; (2)求S △ADE 和S 四边形DBCE 的值.图1-27-75-3解:(1)证明略.(2)S △ADE =9,S 四边形DBCE =16.A 组5. 如果两个相似三角形对应边之比是1∶3,那么它们的对应中线之比是( A ) A. 1∶3 B. 1∶4 C. 1∶6 D. 1∶9,6. 如图1-27-75-4,已知△ABC ∽△DEF ,AB ∶DE =1∶2,则下列等式一定成立的是( D )图1-27-75-4A .BC DF =12B . ∠A 的度数∠D 的度数=12C . △ABC 的面积△DEF 的面积=12D . △ABC 的周长△DEF 的周长=12B 组7. 若相似三角形△ABC 和△A′B′C′的面积比为1∶4,则它们的相似比为( C ) A . 1∶4 B . 1∶3C . 1∶2D . 1∶1,8. 如图1-27-75-5,在△ABC 中,点D ,E 分别在边AB ,AC 上,且AE AB =AD AC =12,则S △ADE ∶S 四边形BCED =( C )图1-27-75-5A . 1∶3B . 1∶2C . 1∶3D . 1∶49. 已知△ABC ∽△A′B′C′,AD 是△ABC 的中线,A′D′是△A′B′C′的中线,若AD A′D′=12,且△ABC 的周长为20 cm ,求△A′B′C′的周长.解:△A′B′C′的周长是40 cm .10. 已知△ABC 的三边长分别为5,12,13,与其相似的△A′B′C′的最大边长为26,求△A′B′C′的面积.解:△A′B′C′的面积是120.C 组11. 如图1-27-75-6,在△ABC 中,DE ∥BC ,S 1表示△ADE 的面积,S 2表示四边形DBCE 的面积,若D 是AB 边的中点,则S 1∶S 2= 1∶3 ;若S 1=S 2,则AD ∶AB = 22.图1-27-75-6,12. 如图1-27-75-7,在矩形ABCD 中,以对角线BD 为一边构造一个矩形BDEF ,使得另一边EF 过原矩形的顶点C.(1)设Rt △CBD 的面积为S 1,Rt △BFC 的面积为S 2,Rt △DCE 的面积为S 3,则S 1 = S 2+S 3;(填“>”“=”或“<”)(2)若CE =3,DE =4,求S 2的值.图1-27-75-7解:(2)S 2=323.第9课时 相似三角形的应用举例(1)——高度与河宽问题知识点1:利用相似测量物体的高度【例1】如图1-27-76-1,利用标杆BE 测量建筑物的高度. 已知标杆BE 高1.2 m ,测得AB =1.6 m ,BC =12.4 m. 求建筑物CD 的高.图1-27-76-1解:建筑物CD 的高是10.5 m . ,1. 图1-27-76-2是小明测量某古城墙高度的示意图,点P 处放一水平的平面镜,然后,后退至点B ,从点A 经平面镜刚好看到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB =1.2 m ,BP =1.8 m ,PD =12 m ,求该古城墙的高度.图1-27-76-2解:该古城墙的高度是8 m .知识点2:利用相似测量河的宽度(测量距离)【例2】如图1-27-76-3,为了估算河的宽度,我们可以在河对岸选定一点A ,再在河岸的另一边选定点B 和点C ,使得AB ⊥BC ,然后选定点E ,使EC ⊥BC ,确定BC 与AE 的交点为点D ,若测得BD =180 m ,DC =60 m ,EC =50 m ,你能知道小河的宽是多少吗?图1-27-76-3解:由题意,可知△ABD ∽△ECD , ∴AB EC =BD CD ,即AB 50=18060. ∴AB =150(m ).∴小河的宽是150 m .,2. 如图1-27-76-4,为了估计河的宽度,我们在河对岸选定了一个目标点O ,在近岸取点A ,C 使O ,A ,C 三点共线,且线段OC 与河岸垂直,接着在过点C 且与OC 垂直的直线上选择适当的点D ,使OD 与近岸所在的直线交于点B. 若测得AC =30 m ,CD =120 m ,AB =40 m ,求河的宽度OA .图1-27-76-4解:∵AB ⊥OC ,CD ⊥OC , ∴AB ∥CD.∴△OAB ∽△OCD. ∴OA OC =AB CD , 即OA OA +30=40120. ∴OA =15(m ).故河的宽度OA 为15 m.A 组3. 已知某一旗杆的影子长6 m ,同时测得旗杆顶端到其影子顶端的距离是10 m ,如果此时附近的一棵小树影子长3 m ,那么小树高是( A )A. 4 mB. 5 mC. 8 mD. 20 m,4. 如图1-27-76-5,A ,B 两点被池塘隔开,在AB 外取一点C ,连接AC ,BC ,在AC 上取一点E ,使AE =3EC ,作EF ∥AB 交BC 于点F ,量得EF =6 m ,则AB 的长为 24 m .图1-27-76-5B 组5. 如图1-27-76-6,小明家的窗口面对大楼,相距AB =80 m ,窗高CD =1.2 m ,小明从窗口后退2 m ,眼睛从点O 处恰好能看到楼顶M 和楼底N ,求大楼的高度.图1-27-76-6解:由题意,知AB =80 m ,CD =1.2 m ,OA =2 m , ∵CD ∥MN ,∴△OCD ∽△OMN. ∴CD MN =OA OB , 即1.2MN =22+80. ∴MN =49.2(m ).答:大楼的高度为49.2 m .,6. 如图1-27-76-7,小明为了测量楼MN 的高度,在离MN20 m 的A 处放了一块平面镜,小明沿NA 后退到点C ,正好从镜中看到楼顶M ,若AC =2 m ,小明的眼睛离地面的高度BC 为1.8 m ,请你帮助小明计算一下楼房的高度.图1-27-76-7解:∵BC ⊥CA ,MN ⊥AN , ∴∠C =∠N =90°.根据题意,可知∠BAC =∠MAN , ∴△BCA ∽△MNA. ∴BC MN =AC AN . ∴1.8MN =220. 解得MN =18(m ). ∴楼房的高度为18 m .C 组7. 如图1-27-76-8,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上. 已知纸板的两条边DF =50 cm ,EF =30 cm ,测得边DF 离地面的高度AC =1.5 m ,CD =20 m ,求树高AB .图1-27-76-8解:∵∠DEF =∠DCB =90°,∠D =∠D , ∴△DEF ∽△DCB. ∴BC EF =DC DE. ∵DF =50 cm =0.5 m ,EF =30 cm =0.3 m ,AC =1.5 m ,CD =20 m , ∴由勾股定理求得DE =0.4 m . ∴BC 0.3=200.4. ∴BC =15(m ).∴AB =AC +BC =1.5+15=16.5(m ).,8. 如图1-27-76-9,李华晚上在两根相距40 m 的路灯杆下来回散步,已知李华身高AB =1.6 m ,灯柱CD =EF =8 m .(1)若李华距灯柱CD 的距离DB =16 m 时,求他的影子BQ 的长; (2)若李华的影子PB =5 m ,求李华距灯柱EF 的距离.图1-27-76-9解:(1)∵AB ∥CD ,∴△ABQ ∽△CDQ. ∴AB CD =BQ DQ ,即1.68=BQ 16+BQ . ∴BQ =4(m ). ∴他的影子BQ 的长为4 m .(2)∵AB ∥EF ,∴△ABP ∽△EFP. ∴AB EF =PB PF ,即1.68=5PF . ∴PF =25(m ). ∴BF =PF -PB =20 m .∴李华距灯柱EF 的距离是20 m .第10课时 相似三角形的应用举例(2)——盲区及其他问题知识点1:作辅助线构造相似三角形解决实际问题【例1】如图1-27-77-1,一位同学在某一时刻测得直立的标杆高为1 m 时,影长为1.2 m ,他立即又测量建筑物的影子,因建筑物AB 靠近另一个建筑物CE ,所以AB 的影子没有完全落在地上,一部分影子落在墙上,他测得地上部分的影子长BC 为7.2 m ,又测得墙上部分的影子高CD 为1.2 m ,请你帮他计算建筑物AB 的高度.图1-27-77-1解:如答图27-77-1,过点D 作DH ⊥AB 于点H ,则DH =BC =7.2 m ,BH =CD =1.2 m .∵在某一时刻测得直立的标杆高为1 m 时,影长为1.2 m ,答图27-77-1∴AH HD =11.2,即AH 7.2=11.2. ∴AH =6.∴AB =AH +BH =6+1.2= 7.2(m ).答:建筑物AB 的高度为7.2 m . ,1. 如图1-27-77-2,现要测量旗杆的高CD ,在B 处立一标杆AB =2.5 cm ,人在F 处,眼睛为E.标杆顶点A 、旗杆顶点C 在一条直线上. 已知BD =3.6 m ,FB =2.2 m ,EF =1.5 m. 求旗杆的高度.图1-27-77-2解:如答图27-77-2,过点E 作EH ∥FD 分别交AB ,CD 于点G ,H. ∵EF ∥AB ∥CD , ∴EF =GB =HD.∴AG =AB -GB =2.5-1.5= 1(m ),EG =FB =2.2(m ),GH =BD =3.6(m),CH =CD -1.5.答图27-77-2又∵AG CH =EG EH ,∴1CD -1.5=2.25.8. ∴CD =4322(m ).∴旗杆的高度为4322m .知识点2:运用“相似三角形对应高的比等于相似比”解决实际问题【例2】如图1-27-77-3是一个照相机成像的示意图,如果底片AB 宽40 mm ,焦距是60 mm ,求所拍摄的2 m 外的景物的宽CD .图1-27-77-3解:CD =43m .,2. 如图1-27-77-4是步枪在瞄准时的示意图,从眼睛到准星的距离OE 为80 cm ,步枪上的准星宽度AB 为0.2 cm ,目标的正面宽度CD 为50 cm ,求眼睛到目标的距离OF .图1-27-77-4解:眼睛到目标的距离为200 m.A 组3. 如图1-27-77-5是一个照相机成像的示意图. 如果像高MN 是35 mm ,焦距是50mm ,拍摄的景物高度AB 是4.9 m ,那么拍摄点L 离景物有 7 m.,图1-27-77-54. 如图1-27-77-6,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上. 若光源到幻灯片的距离为30 cm ,到屏幕的距离为90 cm ,且幻灯片中的图形的高度为7 cm ,则屏幕上图形的高度为( C )图1-27-77-6 A . 6 cm B . 12 cm C . 21 cm D . 24 cmB 组5. 如图1-27-77-7,一条河的两岸有一段是平行的,在河的南岸边每隔5 m 有一棵树,在河的北岸边每隔50 m 有一根电线杆,小丽站在离南岸15 m 的点P 处看北岸,发现北岸相邻的两根电线杆恰好被南岸的两棵树遮住,并且在这两棵树之间还有四棵树,求河的宽度.图1-27-77-7解:如答图27-77-3,过点P 作PF ⊥AB ,交CD 于点E ,交AB 于点F ,设河宽为x m.答图27-77-3∵AB ∥CD ,∴△PDC ∽△PBA. ∴PF PE =AB CD . ∴15+x 15=5025.解得x =15.答:河的宽度为15 m .6. 如图1-27-77-8,有一路灯杆AB(底部B 不能直接到达),在灯光下,小华在点D 处测得自己的影长DF =3 m ,沿BD 方向到达点F 处再测得自己的影长FG =4 m . 如果小华的身高为1.5 m ,求路灯杆AB 的高度.图1-27-77-8解:∵CD ∥EF ∥AB , ∴△CDF ∽△ABF , △EFG ∽△ABG . ∴CD AB =DF BF ,FE AB =FG BG. 又∵CD =EF ,∴DF BF =FGBG.∵DF =3 m ,FG =4 m ,BF =BD +3,BG =BD +7,∴3BD +3=4BD +7. 解得BD =9(m ). ∴BF =12(m ). 由CD AB =DF BF ,得1.5AB =312.解得AB =6(m ). 则路灯杆AB 的高度是6 m . C 组7. 如图1-27-77-9,要在一块△ABC 的纸片上截取正方形DEFG 模型. 其中,G ,F 在BC 边上,D ,E 分别在AB ,AC 边上,AH ⊥BC 交DE 于点M ,若BC =12 cm ,AH =8 cm ,求正方形DEFG 的边长.图1-27-77-9解:设正方形边长为x cm .由相似可得DE BC =AMAH,∵BC =12 cm ,AH =8 cm , AM =(8-x)cm , ∴x 12=8-x 8.解得x =4.8. ∴正方形的边长是4.8 cm . ,8. 如图1-27-77-10,△ABC 是一块锐角三角形余料,边BC =120 mm ,高AD =80 mm ,要把它加工成长方形零件PQMN ,使长方形PQMN 的边QM 在BC 边上,其余两个顶点P ,N 分别在AB ,AC 边上,求这个长方形零件PQMN 的面积S 的最大值.图1-27-77-10解:设长方形零件PQMN 的边PN =a ,PQ =x ,则AE =80-x. ∵PN ∥BC ,∴△APN ∽△ABC. ∴PN BC =AE AD. ∴a 120=80-x 80. 解得a =120-32x. 所以长方形PQMN 的面积S =xa =x ⎝⎛⎭⎫120-32x =-32x 2+120x =-32(x -40)2+2 400. 当x =40时,S 值最大,S 最大值=2 400(mm 2).∴这个长方形零件PQMN 的面积S 的最大值是2 400 mm 2.第11课时 位 似知识点1:位似图形及其性质【例1】若两个图形位似,则下列叙述不正确的是( C ) A . 每对对应点所在的直线相交于同一点 B . 两个图形上的对应线段之比等于相似比 C . 两个图形上的对应线段必平行D . 两个图形的面积比等于相似比的平方 ,1. 下列关于位似图形的4个表述:①相似图形一定是位似图形,位似图形一定是相似图形;②位似图形一定有位似中心;③如果两个图形是相似图形,且每组对应点的连线所在的直线都经过同一个点,那么,这两个图形是位似图形;④位似图形上任意两点与位似中心的距离之比等于相似比. 正确的有( B )A . 1个B . 2个C . 3个 D. 4个知识点2:位似图形的画法【例2】如图1-27-78-1,以点O 为位似中心,把△ABC 缩小为原来的13.。

2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版

2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
-学生可以尝试利用计算机软件(如几何画板、Mathematica等)进行位似图形的绘制和变换,感受图形变换的动态过程,增强空间观念和数学应用能力。
课后拓展
1.拓展内容:
-阅读材料:《数学的故事》中关于几何变换的起源和发展,了解位似变换在数学史上的地位。
-视频资源:寻找与位似图形相关的教学视频,如介绍位似变换的基本概念、性质和应用实例。
-学生通过观察生活中的位似图形,将所学知识应用到实际中,提高解决问题的能力。
-鼓励学生针对位似图形的特定性质或应用进行深入研究,撰写研究报告,培养探究精神。
-教师提供必要的指导和帮助,如推荐阅读材料、解答学生在自主学习中遇到的疑问等。
-教师组织学生开展课后讨论活动,让学生分享自己的学习心得和研究成果,促进交流与合作。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与位似图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用几何画板绘制位似图形,演示位似的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
2.位似比的概念及其计算方法;
3.位似图形的画法,包括位似中心、位似向量、位似图形的作图方法;
4.应用位似变换解决实际问题。
本节课将结合新人教版教材,以生活实例为导入,让学生在实际操作中体会位似图形的特点,培养他们的观察能力和空间想象能力,从而提高解决几何问题的能力。
核心素养目标
本节课旨在培养学生的以下数学核心素养:
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
学校
授课教师

第27章相似三角形全章教案(共10份)

第27章相似三角形全章教案(共10份)

授课时间:年月日第周星期撰稿:赖庆益审核:李明课时序号一、课前导学:学生自学课本24-27页内容,并完成下列问题.1.观察下图的两个画面,他们的形状、大小有什么关系?象这样,我们把相同的叫做相似图形.【注意】两个图形相似,其中一个图形可以看作由另一个图形得到.2.两个边数相同的多边形,如果它们的角,边成比例,那么这两个多边形叫做相似多边形,相似多边形对应边的比叫做.3.如图,下面右边的四个图形中,与左边的图形相似的是()二、合作、交流、展示:1.相似图形、相似多边形、相似比的意义;相似比为1时,相似的两个图形有什么关系?2.相似多边形有哪些性质?相似多边形的对应角,对应边的比(对应边).3.如何判别两个多边形相似?对应角,且对应边的比的两个多边形的两个多边形相似.4.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的与另两条线段的相等,年级九年级课题27.1图形的相似课型新授教学目标知识技能1.理解并掌握两个图形相似的概念;了解相似比、成比例线段的概念;2.掌握相似多边形的性质;会根据相似多边形的特征识别两个多边形是否相似,并会运用其性质进行简单的计算.过程方法经历相似性质的探究过程,培养学生的观察、分析的能力.情感态度激发学生学习数学的兴趣,感受成功的喜悦.教学重点相似图形的概念;相似多边形的性质与判别.教学难点相似多边形的性质进行相关的计算,相似多边形的判别.教法导学案学法探究、合作教学媒体多媒体FE HGD CBA如dcb a =(即ad=bc ),我们就说这四条线段是成比例线段,简称比例线段. 【注意】 (1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统一单位; (2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d 成比例,记作dcb a =或a:b=c:d ; 5.例题: 例题1.下列说法正确的是( )A .所有的平行四边形都相似B .所有的矩形都相似C .所有的菱形都相似D .所有的正方形都相似 例题2例1、如图,四边形ABCD 和EFGH 相似, 求角βα和的大小和EH 的长度.例3.如图矩形草坪长20m,宽10m,沿草坪四周有1m 宽的环形小路,小路内外边缘所成的矩形EFGH 和矩形ABCD 是否相似?三、巩固与应用: 1.课本第25、27页练习2.下列所给的条件中,能确定相似的有( ) (1)两个半径不相等的圆;(2)所有的正方形;(3)所有的等腰三角形;(4)所有的等边三角形;(5)所有的等腰梯形;(6)所有的正六边形. A .3个 B .4个 C .5个 D .6个3.已知边形ABCD 和四边形A 1B 1C 1D 1相似,四边形ABCD 的最长边和最短边的长分别是10cm 和4cm ,如果四边形A 1B 1C 1D 1的最短边的长是6cm ,那么四边形A 1B 1C 1D 1中最长的边长是多少?4.已知四边形ABCD 与四边形A 1B 1C 1D 1相似,且A 1B 1:B 1C 1:C 1D 1:D 1A 1=7:8:11:14,若四边形ABCD 的周长为40,求四边形ABCD 的各边的长5.如图的左边格点图中有一个四边形,请在右边的格点图中画出一个与该四边形相似的图形.6.如图,一个矩形ABCD 的长AD= a cm ,宽AB= b cm ,E 、F 分别是AD 、BC 的中点,连接E 、F ,所得新矩形ABFE 与原矩形ABCD 相似,求a:b 的值.四、小结::1. 相似多边形的意义; 2相似多边形的性质五、作业:必做:P27练习T1、2、3、4、. 选做:《作业精编》相应练习.六、反思:授课时间: 年 月 日 第 周 星 期 撰稿;李明 审稿:赖小华 课时序号一、课前导学:学生自学课本第29-31 页内容,并完成下列问题1.三个角分别对应 ,三条边对应 的两个三角形是相似三角形.A A '∠=∠,B B '∠=∠,C C '∠=∠2. 【实验探究1】:如图1,任意画两条直线1l , 2l ,再画三条与1l , 2l 相交的平行线3l ,4l ,5l 分别量度3l , 4l ,5l 在1l 上截得的两条线段AB, BC 和在2l , 上截得的两条线段DE, EF 的长度, :AB BC 与:DE EF 相等吗?任意平移5l , 再量度AB, BC, DE, EF的长度, :ABBC 与:DE EF 还相等吗?【归纳】平行线分线段成比例定理:两条直线被一组_______线所截,所得的对应..线段 .2. 【实验探究2】如果把图中1l,2l两条直线相交,交点A 刚落到3l ,4l 上,如图2、年级 九年级 课题 27.2.1相似三角形的判定(1) 课型 新授教 学 目 标知识 技能1. 掌握相似三角形的定义,掌握平行线分线段成比例定理和推论,能应用定理及推论解题. 2. 掌握相似三角形判定的预备定理,能运用它判定两个三角形相似. 过程方法经历定理的探索过程,培养观察、分析、探究、归纳能力。

人教版9年级数学下册第27章全章教案

人教版9年级数学下册第27章全章教案

第二十七章相似27.1 图形的相似1.从生活中形状相同的图形的实例中认识图形的相似;(重点)2.理解成比例线段的概念,会确定线段的比.(难点)一、情境导入如图是两张大小不同的世界地图,左边的图形可以看作是右边的图形缩小得来的.由于不同的需要,对某一地区,经常会制成各种大小的地图,但其形状(包括地图中所描绘的各个部分)肯定是相同的.日常生活中我们会碰到很多这种形状相同、大小不一定相同的图形,在数学上,我们把具有相同形状的图形称为相似图形.像这样的图形有哪些性质?下面我们就一起探讨一下吧!二、合作探究探究点一:相似图形观察下面图形,指出(1)~(9)中的图形有没有与给出的图形(a)、(b)、(c)形状相同的?解析:通过观察寻找与(a),(b),(c)形状相同的图形,在所给的9个图形中仔细观察,然后作出判断.解:通过观察可以发现:图形(4)、(8)与图形(a)形状相同;图形(6)与图形(b)形状相同;图形(5)与图形(c)形状相同.方法总结:判断两个图形的形状是否相同,应仔细观察,当两个图形的形状除了大小没有其他任何差异时,我们才可以说这两个图形形状相同.变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:比例线段 【类型一】判断四条线段是否成比例 下列各组中的四条线段成比例的是( )A .4cm ,2cm ,1cm ,3cmB .1cm ,2cm ,3cm ,5cmC .3cm ,4cm ,5cm ,6cmD .1cm ,2cm ,2cm ,4cm解析:选项A.从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;选项B.从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;选项C.从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;选项D.从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选D.方法总结:判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】利用成比例线段的定义,求线段的长已知线段a 、b 、c 、d 是成比例线段,其中a =2m ,b =4m ,c =5m ,则d =( )A .1mB .10m C.52m D.85m 解析:∵线段a 、b 、c 、d 是成比例线段,∴a ∶b =c ∶d ,而a =2m ,b =4m ,c =5m ,∴d =b ·c a =4×52=10(m).故选B. 方法总结:求线段之比时,要先统一线段的长度单位,然后根据比例关系求值.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】利用比例尺求距离若一张地图的比例尺是1∶150000,在地图上量得甲、乙两地的距离是5cm ,则甲、乙两地的实际距离是( )A .3000mB .3500mC .5000mD .7500m解析:设甲、乙两地的实际距离是x cm ,根据题意得1∶150000=5∶x ,x =750000(cm),750000cm =7500m.故选D.方法总结:比例尺=图上距离∶实际距离.根据比例尺进行计算时,要注意单位的转换. 变式训练:见《学练优》本课时练习“课堂达标训练”第5题探究点三:相似多边形 【类型一】利用相似多边形的性质求线段和角 如图所示,给出的两个四边形是相似形,具体数据如图所示,求出未知边a 、b 的长度及角α的值.解析:根据相似多边形对应角相等和对应边成比例解答.解:因为四边形ABCD 与四边形A ′B ′C ′D ′相似,所以∠B ′=∠B =63°,∠D ′=∠D ,AD A ′D ′=AB A ′B ′=BC B ′C ′,所以416=a 20=4.5b ,所以a =5,b =18.在四边形A ′B ′C ′D ′中,∠D ′=360°-(84°+75°+63°)=138°.∠α=∠D =∠D ′=138°.方法总结:若两个多边形相似,那么它们的对应角相等,对应边成比例.在书写两个多边形相似时,要注意把表示对应角顶点的字母写在对应的位置上.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】相似多边形的判定如图,一块长3m 、宽1.5m 的矩形黑板ABCD 如图所示,镶在其外围的木质边框宽75cm.边框的内边缘所成的矩形ABCD 与边框的外边缘所成的矩形EFGH 相似吗?为什么?解析:两个矩形的四个角虽然相等,但四条边不一定对应成比例,判定两个矩形是否相似,关键是看对应边是否成比例.解:不相似.∵矩形ABCD 中,AB =1.5m ,AD =3m ,镶在其外围的木质边框宽75cm=0.75m ,∴EF =1.5+2×0.75=3m ,EH =3+2×0.75=4.5m ,∴AB EF =1.53=12,AD EH =34.5=23.∵12≠23,∴内边缘所成的矩形ABCD 与边框的外边缘所成的矩形EFGH 不相似. 方法总结:判定两个多边形相似,需要对应角相等,对应边成比例,这两个条件缺一不可.变式训练:见《学练优》本课时练习“课后巩固提升”第10题三、板书设计1.相似图形的概念;2.比例线段;3.相似多边形的判定和性质.本节课中对相似多边形的特征的教学要注意难度的把握,不要过高要求学生掌握更多的内容.学生能了解性质,并能简单运用即可,重要的还是后续的相似三角形的学习,当相似三角形的特征掌握之后,再进一步研究相似多边形的性质,学生就比较容易掌握.27.2.1 相似三角形的判定第1课时平行线分线段成比例1.了解相似比的定义;(重点)2.掌握平行线分线段成比例定理的基本事实以及利用平行线法判定三角形相似;(重点)3.应用平行线分线段成比例定理及平行线法判定三角形相似来解决问题.(难点)一、情境导入如图,在△ABC 中,D 为边AB 上任一点,作DE ∥BC ,交边AC 于E ,用刻度尺和量角器量一量,判断△ADE 与△ABC 是否相似.二、合作探究探究点一:相似三角形的有关概念如图所示,已知△OAC ∽△OBD ,且OA =4,AC =2,OB =2,∠C =∠D ,求:(1)△OAC 和△OBD 的相似比;(2)BD 的长.解析:(1)由△OAC ∽△OBD 及∠C =∠D ,可找到两个三角形的对应边,即可求出相似比;(2)根据相似三角形对应边成比例,可求出BD 的长.解:(1)∵△OAC ∽△OBD ,∠C =∠D ,∴线段OA 与线段OB 是对应边,则△OAC 与△OBD 的相似比为OA OB =42=21; (2)∵△OAC ∽△OBD ,∴AC BD =OA OB ,∴BD =AC ·OB OA =2×24=1. 方法总结:相似三角形的定义既是相似三角形的性质,也是相似三角形的判定方法. 变式训练:见《学练优》本课时练习“课堂达标训练”第1题探究点二:平行线分线段成比例定理 【类型一】平行线分线段成比例的基本事实如图,直线l 1、l 2、l 3分别交直线l 4于点A 、B 、C ,交直线l 5于点D 、E 、F ,直线l 4、l 5交于点O ,且l 1∥l 2∥l 3,已知EF ∶DF =5∶8,AC =24.(1)求CB AB 的值; (2)求AB 的长. 解析:(1)根据l 1∥l 2∥l 3推出CB AB =EF DE ;(2)根据l 1∥l 2∥l 3,推出EF DF =BC AC =58,代入AC =24求出BC 即可求出AB .解:(1)∵l 1∥l 2∥l 3,∴CB AB =EF DE .又∵DF ∶DF =5∶8,∴EF ∶DE =5∶3,∴CB AB =53; (2)∵l 1∥l 2∥l 3,EF ∶DF =5∶8,AC =24,∴EF DF =BC AC =58,∴BC =15,∴AB =AC -BC =24-15=9.方法总结:运用平行线分线段成比例定理时,一定要注意正确书写对应线段的位置. 变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】平行线分线段成比例的基本事实的推论如图所示,已知△ABC 中,DE ∥BC ,AD =2,BD =5,AC =5,求AE 的长.解析:根据DE ∥BC 得到AD AB =AE AC,然后根据比例的性质可计算出AE 的长. 解:∵DE ∥BC ,∴AD AB =AE AC ,即22+5=AE 5,∴AE =107. 方法总结:解题的关键是深入观察图形,准确找出图形中的对应线段,正确列出比例式. 变式训练:见《学练优》本课时练习“课堂达标训练”第4题探究点三:相似三角形的引理【类型一】利用相似三角形的引理判定三角形相似如图,在▱ABCD 中,E 为AB 延长线上的一点,AB =3BE ,DE 与BC 相交于点F ,请找出图中所有的相似三角形,并求出相应的相似比.解析:由平行四边形的性质可得:BC ∥AD ,AB ∥CD ,进而可得△EFB ∽△EDA ,△EFB ∽△DFC ,再进一步求解即可.解:∵四边形ABCD 是平行四边形,∴BC ∥AD ,AB ∥CD ,∴△EFB ∽△EDA ,△EFB ∽△DFC ,∴△DFC ∽△EDA ,∵AB =3BE ,∴相似比分别为1∶4,1∶3,3∶4.方法总结:求相似比不仅要找准对应边,还需要注意两个三角形的先后顺序.变式训练:见《学练优》本课时练习“课堂达标训练”第5题 【类型二】利用相似三角形的引理求线段的长 如图,已知AB ∥EF ∥CD ,AD 与BC 相交于点O . (1)如果CE =3,EB =9,DF =2,求AD 的长;(2)如果BO ∶OE ∶EC =2∶4∶3,AB =3,求CD 的长.解析:(1)根据平行线分线段成比例可求得AF =6,则AD =AF +FD =8;(2)根据平行线AB ∥CD 分线段成比例知BO ∶OE =AB ∶EF ,结合已知条件求得EF =6;同理由EF ∥CD 推知EF 与CD 之间的数量关系,从而求得CD =10.5.解:(1)∵CE =3,EB =9,∴BC =CE +EB =12.∵AB ∥EF ,∴FO AF =EO EB ,则FO EO =AF EB.又∵EF ∥CD ,∴FO FD =EO EC ,则FO EO =FD EC ,∴AF EB =FD EC ,即AF 9=23,∴AF =6,∴AD =AF +FD =6+2=8,即AD 的长是8;(2)∵AB ∥CD ,∴BO ∶OE =AB ∶EF .又∵BO ∶OE =2∶4,AB =3,∴EF =6.∵EF ∥CD ,∴OE OC =EF CD .又∵OE ∶EC =4∶3,∴OE OC =47,∴EF CD =47,∴CD =74EF =10.5,即CD 的长是10.5.方法总结:运用平行线分线段成比例的基本事实的推论一定要找准对应线段,以防解答错误.变式训练:见《学练优》本课时练习“课堂达标训练”第6题三、板书设计1.相似三角形的定义及有关概念;2.平行线分线段成比例定理及推论;3.相似三角形的引理.本节课宜采用探究式教学,教师在教学中是学生学习的组织者、引导者、合作者和共同研究者.鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.上课时教师只在关键处点拨,在不足时补充.教师与学生平等地交流,创设民主、和谐的学习氛围.27.2.1 相似三角形的判定第2课时三边成比例的两个三角形相似1.理解“三边成比例的两个三角形相似”的判定方法;(重点)2.会运用“三边成比例的两个三角形相似”的判定方法解决简单问题.一、情境导入我们现在判定两个三角形是否相似,必须要知道它们的对应角是否相等,对应边是否成比例.那么是否存在判定两个三角形相似的简便方法呢?在如图所示的方格上任画一个三角形,再画第二个三角形,使它的三边长都是原来三角形的三边长的相同倍数.画完之后,用量角器比较两个三角形的对应角,你发现了什么结论?大家的结论都一样吗?二、合作探究探究点:三边对应成比例的两个三角形相似 【类型一】直接利用定理判定两个三角形相似在Rt △ABC 中,∠C =90°,AB =10,BC =6,在Rt △EDF 中,∠F =90°,DF =3,EF =4,则△ABC 和△EDF 相似吗?为什么?解析:已知△ABC 和△EDF 都是直角三角形,且已知两条边长,所以可利用勾股定理分别求出第三边的长,看对应边是否对应成比例.解:△ABC ∽△EDF .在Rt △ABC 中,AB =10,BC =6,∠C =90°,由勾股定理得AC =AB 2-BC 2=102-62=8.在Rt △DEF 中,DF =3,EF =4,∠F =90°,由勾股定理得ED =DF 2+EF 2=32+42=5.在△ABC 和△EDF 中,BC DF =63=2,AC EF =84=2,AB ED =105=2,所以BC DF =AC EF =AB ED,所以△ABC ∽△EDF . 方法总结:利用三边对应成比例判定两个三角形相似时,应说明三角形的三边对应成比例,而不是两边对应成比例. 变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】网格中的相似三角形如图,在边长为1的小正方形组成的网格中,△ABC 和△DEF 的顶点都在格点上,判断△ABC 和△DEF 是否相似,并说明理由.解析:首先由勾股定理,求得△ABC 和△DEF 的各边的长,即可得AB DE =AC DF =BC EF ,然后由三组对应边的比相等的两个三角形相似,即可判定△ABC 和△DEF 相似. 解:△ABC 和△DEF 相似.由勾股定理,得AB =25,AC =5,BC =5,DE =4,DF=2,EF =25,∵AB DE =AC DF =BC EF =254=52,∴△ABC ∽△DEF . 方法总结:在网格中计算线段的长,运用勾股定理是常用的方法.变式训练:见《学练优》本课时练习“课堂达标训练”第8题 【类型三】利用相似三角形证明角相等如图,已知AB AD =BC DE =AC AE,找出图中相等的角,并说明你的理由.解析:由AB AD =BC DE =AC AE,证明△ABC ∽△ADE ,再利用相似三角形对应角相等求解. 解:在△ABC 和△ADE 中,∵AB AD =BC DE =AC AE,∴△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠B =∠D ,∠C =∠E .方法总结:在证明角相等时,可通过证明三角形相似得到.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型四】利用相似三角形的判定证明线段的平行关系如图,某地四个乡镇A ,B ,C ,D 之间建有公路,已知AB =14千米,AD =28千米,BD =21千米,BC =42千米,DC =31.5千米,公路AB 与CD 平行吗?说出你的理由.解析:由图中已知线段的长度,可求两个三角形的对应线段的比,证明三角形相似,得出角相等,通过角相等证明线段的平行关系.解:公路AB 与CD 平行.∵AB BD =1421=23,AD BC =2842=23,BD DC =2131.5=23,∴△ABD ∽△BDC ,∴∠ABD =∠BDC ,∴AB ∥DC .方法总结:如果在已知条件中边的数量关系较多时,可考虑使用“三边对应成比例,两三角形相似”的判定方法. 【类型五】利用相似三角形的判定解决探究性问题要制作两个形状相同的三角形教具,其中一个三角形教具的三边长分别为50cm ,60cm ,80cm ,另一个三角形教具的一边长为20cm ,请问怎样选料可使这两个三角形教具相似?想想看,有几种解决方案.解析:要使两个三角形相似,已知一个三角形的三边和另一个三角形的一边,则我们可以采用三边分别对应成比例的两个三角形相似来判定.解:①当长为20cm 的边长的对应边为50cm 时,∵50∶20=5∶2,且第一个三角形教具的三边长分别是50cm ,60cm ,80cm ,∴另一个三角形对应的三边分别为:20cm ,24cm ,32cm ;②当长为20cm 的边长的对应边为60cm 时,∵60∶20=3∶1,且第一个三角形教具的三边长分别是50cm ,60cm ,80cm ,∴另一个三角形对应的三边分别为:503cm ,20cm ,803cm ;③当长为20cm 的边长的对应边为80cm 时,∵80∶20=4∶1,且第一个三角形教具的三边长分别是50cm ,60cm ,80cm ,∴另一个三角形对应的三边分别为:12.5cm ,15cm ,20cm.∴有三种解决方案.方法总结:解答此题的关键在于分类讨论,当对应比不确定时,采用分类讨论的方法可避免漏解.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.三角形相似的判定定理:三边对应成比例的两个三角形相似;2.利用相似三角形的判定解决问题.因为本课时教学过程中主要是让学生采用类比的方法先猜想出命题,然后证明猜想的命题是否正确.课堂上教师主要还是以提问的形式,逐步引导学生去证明命题.从课后作业情况看出学生对这节课的知识总体掌握得较好.27.2.1 相似三角形的判定第3课时两边成比例且夹角相等的两个三角形相似1.理解“两边成比例且夹角相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)2.会运用“两边成比例且夹角相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)一、情境导入利用刻度尺和量角器画两个三角形,使它们的两条对应边成比例,并且夹角相等.量一量第三条对应边的长,计算它们的比与前两条对应边的比是否相等.另两个角是否对应相等?你能得出什么结论?二、合作探究探究点:两边成比例且夹角相等的两个三角形相似【类型一】直接利用判定定理判定两个三角形相似已知:如图,在△ABC中,∠C=90°,点D、E分别是AB、CB延长线上的点,CE=9,AD=15,连接DE.若BC=6,AC=8,求证:△ABC∽△DBE.解析:首先利用勾股定理可求出AB的长,再由已知条件可求出DB,进而可得到DB∶AB 的值,再计算出EB∶BC的值,继而可判定△ABC∽△DBE.证明:∵在Rt△ABC中,∠C=90°,BC=6,AC=8,∴AB=BC2+AC2=10,∴DB =AD-AB=15-10=5,∴DB∶AB=1∶2.又∵EB=CE-BC=9-6=3,∴EB∶BC=1∶2,∴EB∶BC=DB∶AB,又∵∠DBE=∠ABC=90°,∴△ABC∽△DBE.方法总结:解本题时一定要注意必须是两边对应的夹角才行,还要注意一些隐含条件,如公共角、对顶角等.变式训练:见《学练优》本课时练习“课堂达标训练”第2题【类型二】添加条件使三角形相似如图,已知△ABC中,D为边AC上一点,P为边AB上一点,AB=12,AC=8,AD=6,当AP的长度为________时,△ADP和△ABC相似.解析:当△ADP ∽△ACB 时,AP AB =AD AC ,∴AP 12=68,解得AP =9.当△ADP ∽△ABC 时,AD AB =AP AC ,∴612=AP 8,解得AP =4,∴当AP 的长度为4或9时,△ADP 和△ABC 相似.故答案为4或9.方法总结:添加条件时,先明确已知的条件,再根据判定定理寻找需要的条件,对应本题可先假设两个三角形相似,再利用倒推法以及分类讨论解答.变式训练:见《学练优》本课时练习“课堂达标训练”第5题【类型三】利用三角形相似证明等积式如图,CD 是Rt △ABC 斜边AB 上的高,E 为BC 的中点,ED 的延长线交CA 的延长线于F .求证:AC ·CF =BC ·DF .解析:先证明△ADC ∽△CDB 可得AD CD =AC BC ,再结合条件证明△FDC ∽△F AD ,可得AD CD=DF CF,则可证得结论. 证明:∵∠ACB =90°,CD ⊥AB ,∴∠DAC +∠B =∠B +∠DCB =90°,∴∠DAC =∠DCB ,且∠ADC =∠CDB ,∴△ADC ∽△CDB ,∴AD CD =AC BC.∵E 为BC 的中点,CD ⊥AB ,∴DE =CE ,∴∠EDC =∠DCE ,∵∠EDC +∠FDA =∠ECD +∠ACD ,∴∠FCD =∠FDA ,又∠F =∠F ,∴△FDC ∽△F AD ,∴DF CF =AD DC ,∴AC BC =DF CF,∴AC ·CF =BC ·DF . 方法总结:证明等积式或比例式的方法:把等积式或比例式中的四条线段分别看成两个三角形的对应边,然后证明两个三角形相似,得到要证明的等积式或比例式.【类型四】利用相似三角形的判定进行计算如图所示,BC ⊥CD 于点C ,BE ⊥DE 于点E ,BE 与CD 相交于点A ,若AC =3,BC =4,AE =2,求CD 的长.解析:因为AC =3,所以只需求出AD 即可求出CD .可证明△ABC 与△ADE 相似,再利用相似三角形对应边成比例即可求出AD .解:在Rt △ABC 中,由勾股定理可得AB =BC 2+AC 2=42+32=5.∵BC ⊥CD ,BE⊥DE ,∴∠C =∠E ,又∵∠CAB =∠EAD ,∴△ABC ∽△ADE ,∴AB AD =AC AE ,即5AD =32,解得AD =103,∴CD =AD +AC =103+3=193. 方法总结:利用相似三角形的判定进行边角计算时,应先利用条件证明三角形相似或通过作辅助线构造相似三角形,然后利用相似三角形对应角相等和对应边成比例进行求解.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型五】利用相似三角形的判定解决动点问题如图,在△ABC 中,∠C =90°,BC =8cm ,5AC -3AB =0,点P 从B 出发,沿BC 方向以2cm/s 的速度移动,与此同时点Q 从C 出发,沿CA 方向以1cm/s 的速度移动,经过多长时间△ABC 和△PQC 相似?解析:由AC 与AB 的关系,设出AC =3x cm ,AB =5x cm ,在直角三角形ABC 中,利用勾股定理列出关于x 的方程,求出方程的解得到x 的值,进而得到AB 与AC 的长.然后设出动点运动的时间为t s ,根据相应的速度分别表示出PC 与CQ 的长,由△ABC 和△PQC 相似,根据对应顶点不同分两种情况列出比例式,把各边的长代入即可得到关于t 的方程,求出方程的解即可得到t 的值,从而得到所有满足题意的时间t 的值.解:由5AC -3AB =0,得到5AC =3AB ,设AB 为5x cm ,则AC =3x cm ,在Rt △ABC 中,由BC =8cm ,根据勾股定理得25x 2=9x 2+64,解得x =2或x =-2(舍去),∴AB =5x =10cm ,AC =3x =6cm.设经过t 秒△ABC 和△PQC 相似,则有BP =2t cm ,PC =(8-2t )cm ,CQ =t cm ,分两种情况:①当△ABC ∽△PQC 时,有BC QC =AC PC ,即8t =68-2t ,解得t =3211;②当△ABC ∽△QPC 时,有AC QC =BC PC ,即6t =88-2t ,解得t =125.综上可知,经过125或3211秒△ABC 和△PQC 相似.方法总结:本题的关键是根据三角形相似的对应顶点不同,分两种情况△ABC ∽△PQC 与△ABC ∽△QPC 分别列出比例式来解决问题.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计1.三角形相似的判定定理:两边成比例且夹角相等的两个三角形相似;2.应用判定定理解决简单的问题.本节课采用探究发现式教学法和参与式教学法为主,利用多煤体引导学生始终参与到学习活动的全过程中,处于主动学习的状态.采用动手实践,自主探索与合作交流的学习方法,使学生积极参与教学过程.在教学过程中展开思维,培养学生提出问题、分析问题、解决问题的能力,进一步理解观察、类比、分析等数学思想.27.2.1 相似三角形的判定第4课时两角分别相等的两个三角形相似1.理解“两角分别相等的两个三角形相似”的含义,能分清条件和结论,并能用文字、图形和符号语言表示;(重点)2.会运用“两角分别相等的两个三角形相似”判定两个三角形相似,并解决简单的问题.(难点)一、情境导入与同伴合作,一人画△ABC ,另一人画△A ′B ′C ′,使得∠A 和∠A ′都等于给定的∠α,∠B 和∠B ′都等于给定的∠β,比较你们画的两个三角形,∠C 与∠C ′相等吗?对应边的比AB A ′B ′,AC A ′C ′,BC B ′C ′相等吗?这样的两个三角形相似吗?和同学们交流. 二、合作探究探究点:两角分别相等的两个三角形相似【类型一】利用判定定理证明两个三角形相似如图,在等边△ABC 中,D 为BC 边上一点,E 为AB 边上一点,且∠ADE =60°.(1)求证:△ABD ∽△DCE ;(2)若BD =3,CE =2,求△ABC 的边长.解析:(1)由题有∠B =∠C =60°,利用三角形外角的知识得出∠BAD =∠CDE ,即可证明△ABD ∽△DCE ;(2)根据△ABD ∽△DCE ,列出比例式,即可求出△ABC 的边长.(1)证明:在△ABD 中,∠ADC =∠B +∠BAD ,又∠ADC =∠ADE +∠EDC ,而∠B =∠ADE =60°,∴∠BAD =∠CDE .在△ABD 和△DCE 中,∠BAD =∠CDE ,∠B =∠C =60°,∴△ABD ∽△DCE ;(2)解:设AB =x ,则DC =x -3,由△ABD ∽△DCE ,∴AB DC =BD DE ,∴x x -3=32,∴x =9.即等边△ABC 的边长为9.方法总结:本题主要是利用“两角分别相等的两个三角形相似”,解答此题的关键是利用三角形的外角的知识得出角相等.变式训练:见《学练优》本课时练习“课堂达标训练”第5题 【类型二】添加条件证明三角形相似 如图,在△ABC 中,D 为AB 边上的一点,要使△ABC ∽△AED 成立,还需要添加一个条件为____________.解析:∵∠ABC =∠AED ,∠A =∠A ,∴△ABC ∽△AED ,故添加条件∠ABC =∠AED 即可求得△ABC ∽△AED .同理可得∠ADE =∠C 或∠AED =∠B 或AD AC =AE AB可以得出△ABC ∽△AED .故答案为∠ADE =∠C 或∠AED =∠B 或AD AC =AE AB. 方法总结:熟练掌握相似三角形的各种判定方法是解题关键.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型三】相似三角形与圆的综合应用如图,AB 为⊙O 的直径,C 为⊙O 上一点,CD ⊥AB 于点D ,交AE 于点G ,弦CE 交AB 于点F ,求证:AC 2=AG ·AE .解析:延长CG ,交⊙O 于点M ,连接AM ,根据圆周角定理,可证明∠ACG =∠E ,根据相似三角形的判定定理,可证明△CAG ∽△EAC ,根据相似三角形对应边成比例,可得出结论.证明:延长CG ,交⊙O 于点M ,连接AM ,∵AB ⊥CM ,∴AC ︵=AM ︵,∴∠ACG =∠E ,又∵∠CAG =∠EAC ,∴△CAG ∽△EAC ,∴AC AE =AG AC,∴AC 2=AG ·AE . 方法总结:相似三角形与圆的知识综合时,往往要用到圆的一些性质寻找角的等量关系证明三角形相似.变式训练:见《学练优》本课时练习“课后巩固提升”第3题【类型四】相似三角形与四边形知识的综合如图,在▱ABCD 中,过点B 作BE ⊥CD ,垂足为E ,连接AE ,F 为AE 上一点,且∠BFE =∠C .若AB =8,BE =6,AD =7,求BF 的长.解析:可通过证明∠BAF =∠AED ,∠AFB =∠D ,证得△ABF ∽△EAD ,可得出关于AB ,AE ,AD ,BF 的比例关系.已知AD ,AB 的长,只需求出AE 的长即可.可在直角三角形ABE 中用勾股定理求出AE 的长,进而求出BF 的长.解:在平行四边形ABCD 中,∵AB ∥CD ,∴∠BAF =∠AED .∵∠AFB +∠BFE =180°,∠D +∠C =180°,∠BFE =∠C ,∴∠AFB =∠D ,∴△ABF ∽△EAD .∵BE ⊥CD ,AB ∥CD ,∴BE ⊥AB ,∴∠ABE =90°,∴AE =AB 2+BE 2=82+62=10.∵△ABF ∽△EAD ,∴BF AD=AB AE ,∴BF 7=810,∴BF =5.6. 方法总结:相似三角形与四边形知识综合时,往往要用到平行四边形的一些性质寻找角的等量关系证明三角形相似.变式训练:见《学练优》本课时练习“课后巩固提升”第7题【类型五】相似三角形与二次函数的综合如图,在△ABC 中,∠C =90°,BC =5m ,AB =10m.M 点在线段CA 上,从C 向A 运动,速度为1m/s ;同时N 点在线段AB 上,从A 向B 运动,速度为2m/s.运动时间为t s.(1)当t 为何值时,△AMN 的面积为6m 2?(2)当t 为何值时,△AMN 的面积最大?并求出这个最大值.解析:(1)作NH ⊥AC 于H ,证得△ANH ∽△ABC ,从而得到比例式,然后用t 表示出NH ,根据△AMN 的面积为6m 2,得到关于t 的方程求得t 值即可;(2)根据三角形的面积计算得到有关t 的二次函数求最值即可.解:(1)在Rt △ABC 中,∵AB 2=BC 2+AC 2,∴AC =53m.如图,作NH ⊥AC 于H ,∴∠NHA =∠C =90°,∵∠A 是公共角,∴△NHA ∽△BCA ,∴AN AB =NH BC ,即2t 10=NH 5,∴NH =t ,∴S △AMN =12t (53-t )=6,解得t 1=3,t 2=43(舍去),故当t 为3秒时,△AMN 的面积为6m 2.(2)S △AMN =12t (53-t )=-12(t 2-53t +754)+752=-12(t -532)2+752,∴当t =532时,S 最大值=752m 2. 方法总结:解题的关键是根据证得的相似三角形得到比例式,从而解决问题.三、板书设计1.三角形相似的判定定理:两角分别相等的两个三角形相似;2.应用判定定理解决简单的问题.在探究式教学中教师是学生学习的组织者、引导者、合作者、共同研究者,教学过程中鼓励学生大胆探索,引导学生关注过程,及时肯定学生的表现,鼓励创新.备课时应多考虑学生学法的突破,教学时只在关键处点拨,在不足时补充.与学生平等地交流,创设民主、和谐的学习氛围.27.2.2 相似三角形的性质1.理解相似三角形的性质;(重点)2.会利用相似三角形的性质解决简单的问题.(难点)一、情境导入两个三角形相似,除了对应边成比例、对应角相等之外,还可以得到许多有用的结论.例如,在图中,△ABC 和△A ′B ′C ′是两个相似三角形,相似比为k ,其中AD 、A ′D ′分别为BC 、B ′C ′边上的高,那么AD 、A ′D ′之间有什么关系?二、合作探究探究点一:相似三角形的性质 【类型一】利用相似比求三角形的周长和面积如图所示,平行四边形ABCD 中,E 是BC 边上一点,且BE =EC ,BD 、AE 相交于F 点.(1)求△BEF 与△AFD 的周长之比;(2)若S △BEF =6cm 2,求S △AFD .解析:利用相似三角形的对应边的比可以得到周长和面积之比,然后再进一步求解. 解:(1)∵在平行四边形ABCD 中,AD ∥BC ,且AD =BC ,∴△BEF ∽△AFD .又∵BE=12BC ,∴BE AD =BF DF =EF AF =12,∴△BEF 与△AFD 的周长之比为BE +BF +EF AD +DF +AF =12; (2)由(1)可知△BEF ∽△DAF ,且相似比为12,∴S △BEF S △AFD =(12)2,∴S △AFD =4S △BEF =4×6=24cm 2.方法总结:理解相似三角形的周长比等于相似比,面积比等于相似比的平方是解决问题的关键.变式训练:见《学练优》本课时练习“课堂达标训练”第4、6题【类型二】利用相似三角形的周长或面积比求相似比。

第27章 相似教案

第27章 相似教案

第二十七章相似四、动手设计,转化知识平行线分线段成比例定理问题 2 ,AC AB EF AE ==,AC AB BF DB ==平行于三角形一边的直线截其他两边(或两边的延长线)比相等.问题3 如图,在△ABC 中,能相似吗?为什么?三、运用新知,深化理解EF//AB,请尽可能多地找出图中的相似三角形,并.2.如图D为△ABC中AC于F.过E作EG//ACEGABC中,DE//BC四、师生互动,课堂小结这节课你学到了哪些知识?你还有哪些疑惑?相似三角形的判定定理三角形相似.思考2如图,在△3.要制作两个形状相同的三角形框架,另一个三角形框架的一边长为五、师生互动,课堂小结1.与同伴交流论证判定定理2.判定定理2中“夹角相等”这个条件是否可换成“一角对应相等”说说你的理由.作业必做判定定理3如果一个三角形的两个角与另一个三角形的两个角对应相等,四、运用新知,深化理解中,CD是边AB上的高,且27.2.3 相似三角形应用举例二、思考探究,获取新知位似图形:如果两个图形的对应顶点相交于一点,对应边互相平行,例2 如图所示的是一个四边形ABCD,请将它缩小为原图的四、运用新知,深化理解向左平移3 个单位得到线段y轴对称的线段A2O旋转180°得到线段请在图中画出所有满足要求的△A1B1四、运用新知,深化理解和把它缩小后得到的△OCD,求ABC三个顶点坐标分别为为位似中心,将这个三角形放大为原来的五、师生互动,课堂小结通过本节课的学习,你有哪些收获?列举出生活中的位似图案.第二十七章小结与复习二、释疑解惑,加深理解问题在描述两个三角形相似时,有时用符号表示,如△相似,它们有区别吗?如果有区别,请指出来试一试1.如图,在△ABC与△ACD形相似,则DC的长为_____.中,点D、E分别为AB、的长.三、典例精析,复习新知ABC中,点D、E分别是BC、AC边上的点,且错误!未找到引用源。

=错误!未找到引用源。

第27章相似三角形-相似三角形中怎样找对应边教案

在实践活动中,学生们的分组讨论非常积极,他们能够将所学的相似三角形知识应用到解决实际问题中。然而,我也观察到一些小组在讨论时过于依赖直观感觉,而忽视了严谨的逻辑推理。这让我意识到,在今后的教学中,我需要更多地向学生强调几何证明的重要性。
此外,学生小组讨论的环节让我感到欣慰。他们能够围绕相似三角形在实际生活中的应用提出自己的观点,并进行深入的交流。但在引导讨论的过程中,我发现有些学生对于开放性问题的回答不够自信,这可能是因为他们在批判性思维和创造性思维方面还有待提高。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“相似三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的基本概念、判定方法以及在实际问题中的应用。同时,我们也通过实践活动和小组讨论加深了对相似三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
第27章相似三角形-相似三角形中怎样找对应边教案
一、教学内容
第27章相似三角形-相似三角形中怎样找对应边教案:
1.知识点一:相似三角形的定义及性质
-列举相似三角形的定义及性质,如对应角相等、对应边成比例等。
2.知识点二:相似三角形的判定方法

人教版九年级数学下册《第二十七章 相似》教案

人教版九年级数学下册《第二十七章相似》教案一. 教材分析人教版九年级数学下册《第二十七章相似》主要讲述了相似图形的性质和判定方法。

本章内容包括相似图形的定义、相似比、相似多边形的性质、相似三角形的性质和判定、相似圆的性质和判定等。

这些内容是学生学习几何学的基础,对于培养学生的空间想象能力和逻辑思维能力具有重要意义。

二. 学情分析九年级的学生已经具备了一定的几何基础,对图形有了一定的认识。

但是,对于相似图形的定义和性质,学生可能还比较陌生,需要通过具体的例子和实践活动来加深理解。

此外,学生对于图形的变换和判定方法可能还不够熟练,需要通过大量的练习来提高。

三. 教学目标1.理解相似图形的定义和性质,能够判断两个图形是否相似。

2.掌握相似三角形的性质和判定方法,能够应用到实际问题中。

3.培养学生的空间想象能力和逻辑思维能力,提高解决问题的能力。

四. 教学重难点1.相似图形的定义和性质的理解。

2.相似三角形的性质和判定方法的掌握。

3.图形变换的熟练运用。

五. 教学方法1.采用问题驱动的教学方法,通过引导学生思考和探索,激发学生的学习兴趣和积极性。

2.利用多媒体和实物模型,进行直观演示和操作,帮助学生建立直观的空间想象能力。

3.提供丰富的练习题,进行巩固和拓展,提高学生的解题能力。

六. 教学准备1.多媒体教学设备。

2.实物模型和图片。

3.练习题和答案。

七. 教学过程1.导入(5分钟)通过展示一些相似的图形,如字母“A”和“a”,让学生观察和思考,引出相似图形的概念。

2.呈现(10分钟)讲解相似图形的定义和性质,通过具体的例子和实物模型进行演示,让学生理解和掌握相似图形的特征。

3.操练(10分钟)让学生进行一些类似的练习题,巩固对相似图形的理解和判断能力。

可以提供一些提示和指导,帮助学生解决问题。

4.巩固(10分钟)通过一些综合性的练习题,让学生应用相似图形的性质和判定方法,解决实际问题。

教师可以给予一些帮助和指导,鼓励学生独立思考和解决问题。

新人教版数学九年级下册教案:第27章 相似小结教案

授课时间
年月日星期
主备人
课题名称
第二十七章相似小结
教学目标
一、知识与技能
理解并掌握本章知识,能用相关知识解决具体问题.
二、过程与方法
通过梳理本章知识结构,回顾运用相似方法来解决一些实际问题的过程,加深运用所学知识解决一些实际问题的能力.
三、情感、态度与价值观
在运用相似解决实际问题的过程中,可增强学生的数学应用意识,感受数学应用价值;通过运用相似来证明具体问题的过程中,进一步增强学生的推理论证能力.
∠ABC=∠ACD=90°,且AB =4,AC=5,若图
中的两个三角形相似,则DC的长为_____.
2.在△ABC中,点D、E分别为AB、AC边上的点.且AB =8,AC=6,AD=4,若△ABC与△ADE相似,试求线段AE的长.
学生自主完成,相互交流,最后师生共同评析,加深对符号语言和文字描述的区别的理解.
三、典例精析,复习新知
例1在△ABC中,点D是BC边上一点,且BD : CD=1: 2,连AD,点F是AD的中点,连BF交AC于E,若AC=10,试求AE的长度;
分析:由于图中没有相似三角形,没有平行线,似乎无法进行,但题目出现的BD:CD=1: 2这一条件启示我们可过点D作平行线,利用平行线分线段成比例定理可能会找到出路.过D作DH //AC交BE于H(如图所示),∵ =,∴ =,又DH //AC,∴ = =.∴DH=EC.又F为AD的中点,∴ = =1,∴DH=AE,∴AE=EC.又AC=10,∴AE=. (本题还可求D作DM //BE交AC于M,留给学生完成.)
六、布置作业
复习题27第8,10,11题。
七、板书设计
第二十七章相,加深理解四、练习
教学反思:

人教版数学九年级下册第27章27.2相似三角形的性质(教案)

3.重点难点解析:在讲授过程中,我会特别强调相似三角形的性质和判定定理这两个重点。对于难点部分,我会通过举例和比较来帮助大家理解相似三角形的判定和应用。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。通过绘制和测量相似三角形,学生可以直观地看到性质的应用。
4.能够运用相似三角形的性质与判定定理,解决一些简单的证明问题。
二、核心素养目标
1.培养学生的几何直观与逻辑推理能力,使学生能够通过观察、分析相似三角形的性质,形成对几何图形的深刻理解。
2.提升学生运用数学知识解决实际问题的能力,通过相似三角形的应用实例,让学生感受数学与生活的紧密联系。
3.培养学生的空间观念和抽象思维,使学生能够运用相似三角形的判定定理进行逻辑推理和证明。
4.增强学生的数据分析和数学建模素养,使学生能够运用相似三角形知识对现实问题进行简化、建模和分析。
三、教学难点与重点
1.教学重点
-核心内容:相似三角形的性质及其应用。
-对应角相等,对应边成比例的性质。
-相似三角形的判定定理,特别是两角对应相等和两边对应成比例且夹角相等的判定方法。
-运用相似三角形性质解决实际问题的方法。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了相似三角形的定义、性质和判定定理,以及它们在实际问题中的应用。通过实践活动和小组讨论,我们加深了对相似三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学九(下)第二十七章:相似第1课时图形的相似(1)教学目标:1、知识目标:从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.2、能力目标:在相似图形的探究过程中,让学生运用“观察—比较—猜想”分析问题.3、情感目标:在探究相似图形的过程中,培养学生与他人交流、合作的意识和品质.重点、难点教学重点: 认识图形的相似.教学难点: 理解相似图形概念.一.创设情境活动1观察图片,体会相似图形同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗?(课本图27.1-1)( 课本图27.1-2)师生活动: 教师出示图片,提出问题;学生观察,小组讨论;师生共同交流.得到相似图形的概念.教师活动:什么是相似图形?学生活动:共同交流,得到相似图形的概念.学生归纳总结:(板书)形状相同的图形叫做相似图形在活动中,教师应重点关注:学生用数学的语言归纳相似图形的概念;活动2思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?学生活动: 学生观察思考,小组讨论回答;二. 通过练习巩固相似图形的概念活动3练习问题:1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?2.如图,图形a~f中,哪些是与图形(1)或(2)相似的?教师活动:教师出示图片,提出问题;学生活动:学生看书观察,小组讨论后回答问题.教师活动:在活动中,教师应重点关注:在练习中检验学生对相似图形的几何直觉.三. 小结巩固活动3(1)谈谈本节课你有哪些收获.(2)课外作业1、下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.2、填空题1、形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的。

课后反思:第2课时 图形的相似 (2)教学目标:1、 知识目标:(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比; (2)掌握判定三角形相似的预备定理。

2、能力目标:培养学生探究新知识,提高分析问题和解决问题的能力。

增进发放思维能力和现有知识区向最近发展区迁延的能力。

3、情感目标:加强学生对新知识探究的兴趣,渗透几何中理性思维的思想。

教学重点、难点:重点:相似三角形的概念及判定的预备定理难点:当两个相似三角形部分重叠时,判别它们的对应角和对应边以及例1的证明 教学过程:一、类比联想,动手实验1. 回顾全等三角形的含义(两个三角形形状、大小相同,能够完全重合),全等三角形所具有的性质(对应边、对应角相等)。

2. 让学生动手画一个三角形及三角形的一条中位线,教师提问:三角形的中位线所截的三角形与原三角形的形状有什么关系?大小呢?各角有什么关系?各边有什么关系?二、直观演示,展示新知 A /1. 相似三角形的定义 C ’将上面所截得的三角形移出,记为 B / AA ’B ’C ’,原三角形记为,因此有A= A ’B= B ’, =∠C ∠C ’, B C,21//////===CA A C BC C B AB B A ,即两个三角形的对应角相等,对应边成比例。

这样的两个三角形虽然大小不一定相等,但形状相同。

定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形。

2.表示方法:教师介绍表示法,同时强调应把表示对应顶点的字母写在对应的位置上(可以以此与全等符号及表示作一比较,加强记忆)。

3. 相似三角形的性质:相似三角形的对应角相等,对应边成比例。

4. 相似比:相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)。

’B’C ’的相似比是k ABC 与 ’B’ C ’的相似比是k1。

练习:判断下列命题是否正确。

错误的,举出反例;正确的,用定义加以说明:⑴所有的等腰三角形都相似。

⑵所有的等边三角形都相似。

⑶所有的直角三角形都相似。

⑷所有的等腰直角三角形都相似。

教师示范一个规范过程,让学生模仿,学会用定义来解决问题。

1 ABC 中, A三、范例研讨,迁移练习:D EDE//BC ,D 。

E 分别在AB ,AC 上。

求证:△ADE ∽△ABC B C F 师生共同探讨:(1) 目前要证明两个三角形相似只能根据什么?(定义)(2) 根据定义证明两个三角形相似,要证明满足哪两个条件?(对应角相等,对应边成比例)(3) △ADE 与△ABC 满足“对应角相等”吗?为什么?(4) 对应边成比例,由“DE//BC ”的条件可得到怎样的比例式? ⎪⎭⎫⎝⎛=EC AE AB AD (5) 本题的关键归结为“只要证明什么”?⎪⎭⎫⎝⎛=BC DE AC AE (6) 根据以前的推论,如何把DE 移到BC 上去,即应添怎样的辅助线?(EF//AB )教师板演证明过程。

2.如图,DE//BC ,D 、E 分别在BA 、CA 的延长线上,D E△ADE 与△ABC 相似吗? A ——相似C B由此得到预备定理:3.定理 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

4.例2,如图,D 为△ABC 的AB 边上的一点,过点D 作 C DE//AC ,交BC 于E ,已知BE :EC=2:1,AC=6CM ,求DE 的长。

5、练习:P122页1、2、36、课后拓展(机动):(1 ACB ,则AD :AB= : ,AB :BD= : ,如果AD=2,DC=1,那么AB= (2)ABC 中,AD 是角平分线,求证:DCBDAC AB =。

A A DB C B D C 图甲 图乙四、归纳总结、布置作业:1. 今天学习了相似三角形的定义,它既是三角形相似的判定,又是相似三角形的性质,同时可知全等三角形是相似三角形的特殊情况,其相似比是1;2. 平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

课后反思:第3课时 相似三角形的判定(1)教学目的:1、会用符号“∽”表示相似三角形如△ABC ∽ △C B A ''';2、 知道当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k .3、 理解掌握平行线分线段成比例定理4、 在平行线分线段成比例定理探究过程中,让学生运用“操作—比较—发现—归纳”分析问题.5、 在探究平行线分线段成比例定理过程中,培养学生与他人交流、合作的意识和品质. 重点、难点教学重点: 理解掌握平行线分线段成比例定理及应用. 教学难点: 掌握平行线分线段成比例定理应用.二. 创设情境 谈话复习引入课题(1)相似多边形的主要特征是什么?(2)在相似多边形中,最简单的就是相似三角形.在△ABC 与△A ′B ′C ′中,如果∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′, 且k A C CAC B BC B A AB =''=''=''. 我们就说△ABC 与△A ′B ′C ′相似,记作△ABC ∽△A ′B ′C ′,k 就是它们的相似比. 反之如果△ABC ∽△A ′B ′C ′,则有∠A=∠A ′, ∠B=∠B ′, ∠C=∠C ′, 且AC CAC B BC B A AB ''=''=''. (3)问题:如果k=1,这两个三角形有怎样的关系?教师活动:明确 (1)在相似多边形中,最简单的就是相似三角形。

(2)用符号“∽”表示相似三角形如△ABC ∽ △C B A ''';(3)当△ABC 与△C B A '''的相似比为k 时,△C B A '''与△ABC 的相似比为1/k . 活动1 (教材P 40页 探究1)如图27.2-1),任意画两条直线l 1 , l 2,再画三条与l 1 , l 2 相交的平行线l 3 , l 4, l 5.分别量度l 3 , l 4, l 5.在l 1 上截得的两条线段AB, BC 和在l 2 上截得的两条线段DE, EF 的长度, AB ︰B C 与DE ︰EF 相等吗?任意平移l 5 , 再量度AB, BC, DE, EF 的长度, AB ︰B C 与DE ︰EF 相等吗?教师活动:教师出示探究,提出问题.学生活动: 学生操作画图,量度AB, BC, DE, EF 的长度并计算比值,小组讨论,共同交流,回答结果.师生活动: 提出问题,AB ︰AC=DE ︰( ),BC ︰AC=( )︰DF ,师生共同交流.强调“对应线段的比是否相等”师生归纳总结:(板书并朗读)平行线分线段成比例定理 三条平行线截两条直线,所得的对应线段的比相等。

在活动中,师生应重点关注:平行线分线段成比例定理中相比线段同线; 活动2平行线分线段成比例定理推论思考:1、如果把图27.2-1中l 1 , l 2两条直线相交,交点A 刚落到l 3上,如图27.2-2(1),,所得的对应线段的比会相等吗?依据是什么?2、如果把图27.2-1中l 1 , l 2两条直线相交,交点A 刚落到l 4上,如图27.2-2(2),所得的对应线段的比会相等吗?依据是什么?学生活动: 学生观察思考,小组讨论回答; 师生归纳总结:(板书并朗读)平行线分线段成比例定理推论 平行于三角形一边的直线截其他两边(或两边延长线),所得的对应线段的比相等二. 通过练习巩固平行线分线段成比例定理及其推论 活动3练习问题:如图,在△ABC 中,DE ∥BC ,AC =4 ,AB =3,EC =1.求AD 和BD .教师活动:教师提出问题;学生活动:学生阅题,小组讨论后解答问题.教师活动:在活动中,教师应重点关注:在练习中检查学生对“平行线分线段成比例定理及推论”理解 三. 小结巩固 活动4(1) 谈谈本节课你有哪些收获.“三角形相似的预备定理”.这个定理揭示了有三角形一边的平行线,必构成相似三角形,因此在三角形相似的解题中,常作平行线构造三角形与已知三角形相似.(2) 相似比是带有顺序性和对应性的: 如△ABC ∽△A ′B ′C ′的相似比k AC CAC B BC B A AB =''=''='',那么△A ′B ′C ′∽△ABC 的相似比就是k1CA A C BC C B AB B A =''=''='',它们的关系是互为倒数.这一点在教学中科结合相似比“放大或缩小”的含义来让学生理解; (3)作业1.如图,△ABC ∽△AED, 其中DE ∥BC ,找出对应角并写出对应边的比例式. 2.如图,△ABC ∽△AED ,其中∠ADE=∠B ,找出对应角并写出对应边的比例式.课后反思:第4课时 相似三角形的判定(2)教学目的:1、 初步掌握“三组对应边的比相等的两个三角形相似”的判定方法,以及“两组对应边的比相等且它们的夹角相等的两个三角形相似”的判定方法.2、能够运用三角形相似的条件解决简单的问题.3、在探索三角形相似的判定方法过程中,培养学生与他人交流、合作的意识和品质. 重点、难点教学重点: 掌握两种判定方法,会运用两种判定方法判定两个三角形相似。

相关文档
最新文档