弹簧双振子模型与匀减速直线运动的合成

合集下载

弹簧双振子模型在高考物理中的应用

弹簧双振子模型在高考物理中的应用

弹簧双振子模型在高考物理中的应用作者:周毅慧武维来源:《物理教学探讨》2024年第05期摘要:從质心的概念出发,系统阐述如何在质心参考系中运用质心运动定理推导得出弹簧双振子速度、加速度变化规律,并探讨如何在相关高考题目中应用有关结论解题。

关键词:质心参考系;质心运动定理;弹簧双振子模型;高考物理;中学物理中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2024)5-0052-6两物体通过轻质弹簧连接的运动模型称为“弹簧双振子模型”,该模型涉及到的动力学和能量问题,是高中物理力学常见的问题,也是近几年高考的考查热点。

这类问题中物体的运动情况复杂,涉及位移、速度、加速度等多个物理量变化,需要综合运用牛顿运动定律、能量守恒定律和动量守恒定律来解决。

弹簧双振子模型是一个典型的一维二体运动模型,如果选取系统的质心作为参考系会使解题过程大大简化。

这里质心是一个重要的力学概念,虽然高中物理教学中没有涉及,但对学优生而言,掌握质心和质心参考系,可以更清晰地分析两物体的相互作用过程,从而快速、准确地解决问题。

1 弹簧双振子模型的动力学特征如图1所示,质量分别为mA和mB的两个物体A和B(均可视为质点),用一根劲度系数为k的轻质弹簧连接起来,静止放置在光滑水平面上。

初始时刻弹簧处于原长,长度为l0。

现给A物体一个水平向右的初速度v0,或对A施加水平向右的恒力F,弹簧会被压缩,A、B 物体开始运动。

选取系统的质心为参考系,以质心C为原点,建立如图2所示的一维坐标系x。

当弹簧处于原长时,设A、B物体到质心的距离分别为lA、lB,质心的位置应满足下面在质心参考系中给图1(a)中A物体一个水平向右的初速度,对图1(b)中A物体施加水平向右的恒力。

两种情况下,对弹簧双振子运动模型的动力学特征进行分析。

1.1 惯性参考系中的弹簧双振子在图1(a)所示的运动情形中,系统所受合外力为0,故质心系为惯性参考系,质心速度vC应满足mAv0=(mA+mB)vC当>(m8/mA)>4.6时,A物体会在一段时间内反向运动。

高考物理弹簧模型总结

高考物理弹簧模型总结

高考物理弹簧模型总结第一篇:高考物理弹簧模型总结特级教师分析2013年高考物理必考题:含弹簧的物理模型【命题规律】高考中常出现的物理模型中,斜面问题、叠加体模型、含弹簧的连接体、传送带模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述.有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型.高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下:三、含弹簧的物理模型纵观历年的高考试题,和弹簧有关的物理试题占有相当大的比重.高考命题者常以弹簧为载体设计出各类试题,这类试题涉及静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能问题等,几乎贯穿了整个力学的知识体系.为了帮助同学们掌握这类试题的分析方法,现将有关弹簧问题分类进行剖析.对于弹簧,从受力角度看,弹簧上的弹力是变力;从能量角度看,弹簧是个储能元件.因此,弹簧问题能很好地考查学生的综合分析能力,故备受高考命题老师的青睐.“高考直通车”联合衡水毕业清华北大在校生将于2013年5月中旬推出的手写版高考复习笔记,希望对大家复习备考有所帮助。

该笔记适合2014年、2015年、2016年高考生使用。

凡2013年5月中旬之后购买的高一、高二同学,每年指定日期可以免费更换一次最新一年的笔记。

另外,所有笔记使用者将被加入2014年高考备考专用平台,每周定期提供最新资料和高考互动。

笔记对外公开时间:5月20日1.静力学中的弹簧问题(1)胡克定律:F=kx,ΔF=k·Δx.(2)对弹簧秤的两端施加(沿轴线方向)大小不同的拉力,弹簧秤的示数一定等于挂钩上的拉力.●例4 如图9-12甲所示,两木块A、B的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,两弹簧分别连接A、B,整个系统处于平衡状态.现缓慢向上提木块A,直到下面的弹簧对地面的压力恰好为零,在此过程中A和B的重力势能共增加了()【解析】取A、B以及它们之间的弹簧组成的整体为研究对象,则当下面的弹簧对地面的压力为零时,向上提A的力F恰好为:F=(m1+m2)g设这一过程中上面和下面的弹簧分别伸长x1、x2,如图9-12乙所示,由胡克定律得:故A、B增加的重力势能共为:.[答案] D 【点评】①计算上面弹簧的伸长量时,较多同学会先计算原来的压缩量,然后计算后来的伸长量,再将两者相加,但不如上面解析中直接运用Δx=ΔF/k进行计算更快捷方便.②通过比较可知,重力势能的增加并不等于向上提的力所做的功.2.动力学中的弹簧问题(1)瞬时加速度问题(与轻绳、轻杆不同):一端固定、另一端接有物体的弹簧,形变不会发生突变,弹力也不会发生突变.(2)如图9-13所示,将A、B下压后撤去外力,弹簧在恢复原长时刻B与A开始分离.图9-13 ●例5 一弹簧秤秤盘的质量m1=1.5 kg,盘内放一质量m2=10.5 kg的物体P,弹簧的质量不计,其劲度系数k=800 N/m,整个系统处于静止状态,如图9-14 所示.现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初0.2 s内F是变化的,在0.2 s后是恒定的,求F的最大值和最小值.(取g=10 m/s2)【解析】初始时刻弹簧的压缩量为: x0=((m1+m2)g/k=0.15 m 设秤盘上升高度x时P与秤盘分离,分离时刻有:又由题意知,对于0~0.2 s时间内P的运动有: 1/2)at2=x解得:x=0.12 m,a=6 m/s2故在平衡位置处,拉力有最小值Fmin=(m1+m2)a=72 N 分离时刻拉力达到最大值Fmax=m2g+m2a=168 N. [答案] 72 N 168 N 【点评】对于本例所述的物理过程,要特别注意的是:分离时刻m1与m2之间的弹力恰好减为零,下一时刻弹簧的弹力与秤盘的重力使秤盘产生的加速度将小于a,故秤盘与重物分离.3.与动量、能量相关的弹簧问题与动量、能量相关的弹簧问题在高考试题中出现频繁,而且常以计算题出现,在解析过程中以下两点结论的应用非常重要:(1)弹簧压缩和伸长的形变相同时,弹簧的弹性势能相等;(2)弹簧连接两个物体做变速运动时,弹簧处于原长时两物体的相对速度最大,弹簧的形变最大时两物体的速度相等.●例6 如图9-15所示,用轻弹簧将质量均为m=1 kg的物块A 和B连接起来,将它们固定在空中,弹簧处于原长状态,A距地面的高度h1=0.90 m.同时释放两物块,A与地面碰撞后速度立即变为零,由于B压缩弹簧后被反弹,使A刚好能离开地面(但不继续上升).若将B物块换为质量为2m的物块C(图中未画出),仍将它与A固定在空中且弹簧处于原长,从A距地面的高度为h2处同时释放,C压缩弹簧被反弹后,A也刚好能离开地面.已知弹簧的劲度系数k=100 N/m,求h2的大小.【解析】设A物块落地时,B物块的速度为v1,则有:设A刚好离地时,弹簧的形变量为x,对A物块有: mg=kx从A落地后到A刚好离开地面的过程中,对于A、B及弹簧组成的系统机械能守恒,则有:1/2·mv12=mgx+ΔEp换成C后,设A落地时,C的速度为v2,则有:1/2·2mv22=2mgh2从A落地后到A刚好离开地面的过程中,A、C及弹簧组成的系统机械能守恒,则有:联立解得:h2=0.5 m.[答案] 0.5 m 【点评】由于高中物理对弹性势能的表达式不作要求,所以在高考中几次考查弹簧问题时都要用到上述结论“①”.●例7 用轻弹簧相连的质量均为2 kg的A、B两物块都以v=6 m/s的速度在光滑的水平地面上运动,弹簧处于原长,质量为4 kg的物块C静止在前方,如图9-16 甲所示.B与C碰撞后二者粘在一起运动,则在以后的运动中:(1)当弹簧的弹性势能最大时,物体A的速度为多大?(2)弹簧弹性势能的最大值是多少?(3)A的速度方向有可能向左吗?为什么?【解析】(1)当A、B、C三者的速度相等(设为vA′)时弹簧的弹性势能最大,由于A、B、C三者组成的系统动量守恒,则有:(mA+mB)v=(mA+mB+mC)vA′解得:.(2)B、C发生碰撞时,B、C组成的系统动量守恒,设碰后瞬间B、C两者的速度为v′,则有:mBv=(mB+mC)v′解得:v′=A的速度为vA′时弹簧的弹性势能最大,设其值为Ep,根据能量守恒定律得:.(3)方法一 A不可能向左运动.根据系统动量守恒有:(mA+mB)v=mAvA+(mB+mC)vB 设A 向左,则vA<0,vB>4 m/s 则B、C发生碰撞后,A、B、C三者的动能之和为:实际上系统的机械能为:根据能量守恒定律可知,E′>E是不可能的,所以A不可能向左运动.方法二 B、C碰撞后系统的运动可以看做整体向右匀速运动与A、B和C相对振动的合成(即相当于在匀速运动的车厢中两物块相对振动)由(1)知整体匀速运动的速度v0=vA′=3 m/s取以v0=3 m/s匀速运动的物体为参考系,可知弹簧处于原长时,A、B和C相对振动的速率最大,分别为:vAO=v-v0=3 m/s vBO=|v′-v0|=1 m/s 由此可画出A、B、C的速度随时间变化的图象如图9-16乙所示,故A不可能有向左运动的时刻.[答案](1)3 m/s(2)12 J(3)不可能,理由略【点评】①要清晰地想象、理解研究对象的运动过程:相当于在以3 m/s匀速行驶的车厢内,A、B和C做相对弹簧上某点的简谐振动,振动的最大速率分别为3 m/s、1 m/s.②当弹簧由压缩恢复至原长时,A最有可能向左运动,但此时A 的速度为零.●例8 探究某种笔的弹跳问题时,把笔分为轻质弹簧、内芯和外壳三部分,其中内芯和外壳质量分别为m和4m.笔的弹跳过程分为三个阶段:①把笔竖直倒立于水平硬桌面,下压外壳使其下端接触桌面(如图9-17甲所示);②由静止释放,外壳竖直上升到下端距桌面高度为h1时,与静止的内芯碰撞(如图9-17乙所示);③碰后,内芯与外壳以共同的速度一起上升到外壳下端距桌面最大高度为h2处(如图9-17丙所示).设内芯与外壳的撞击力远大于笔所受重力,不计摩擦与空气阻力,重力加速度为g.求:(1)外壳与内芯碰撞后瞬间的共同速度大小.(2)从外壳离开桌面到碰撞前瞬间,弹簧做的功.(3)从外壳下端离开桌面到上升至h2处,笔损失的机械能.【解析】设外壳上升到h1时速度的大小为v1,外壳与内芯碰撞后瞬间的共同速度大小为v2.(1)对外壳和内芯,从撞后达到共同速度到上升至h2处,由动能定理得:解得:.(2)外壳与内芯在碰撞过程中动量守恒,即: 4mv1=(4m+m)v2将v2代入得:设弹簧做的功为W,对外壳应用动能定理有:将v1代入得:.(3)由于外壳和内芯达到共同速度后上升至高度h2的过程中机械能守恒,只有在外壳和内芯的碰撞中有能量损失,损失的能量将v1、v2代入得:E损=5/4mg(h2-h1).[答案]由以上例题可以看出,弹簧类试题的确是培养和训练学生的物理思维、反映和开发学生的学习潜能的优秀试题.弹簧与相连物体构成的系统所表现出来的运动状态的变化,为学生充分运用物理概念和规律(牛顿第二定律、动能定理、机械能守恒定律、动量定理、动量守恒定律)巧妙解决物理问题、施展自身才华提供了广阔空间,当然也是区分学生能力强弱、拉大差距、选拔人才的一种常规题型.因此,弹簧试题也就成为高考物理题中的一类重要的、6独具特色的考题.第二篇:2010年经典物理模型--弹簧类问题难点探究思考高考资源网()您身边的高考专家弹簧类问题难点探究思考在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,这是一种常见的理想化物理模型弹簧类问题多为综合性问题,涉及的知识面广,要求的能力较高,是高考的难点之一.●难点提出1.(99年全国)如图2-1所示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为A.m1gk1 B.m2gk1 C.m1gk2 D.m2g k2图2—1图2—22.如图2-2所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,劲度系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现施力将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________.3.质量为m的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上.平衡时弹簧的压缩量为x0,如图2-3所示.一物块从钢板正上方距离为3x0的A处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连.它们到达最低点后又向上运动.已知物块质量为m时,它们恰能回到O点.若物块质量为2m,仍从A处自由落下,则物块与钢板回到O点时,还具有向上的速度.求物块向上运动到达的最高点与O点的距离.●案例探究[例1]如图2-4,轻弹簧和一根细线共同拉住一质量为m的物体,平衡时细线水平,弹簧与竖直夹角为θ,若突然剪断细线,刚刚剪断细线图2-3 欢迎广大教师踊跃来稿,稿酬丰厚。

2019-2020年高中物理人教必修二微专题讲义8.8 弹簧模型中的功能问题(二)(解析版)

2019-2020年高中物理人教必修二微专题讲义8.8 弹簧模型中的功能问题(二)(解析版)

第八章机械能守恒定律小专题8弹簧模型中的功能问题(二)【知识清单】1.由力与运动的关系分析物体的运动过程(1)单振子振动系统单振子系统是指弹簧一端连接物体、另一端固定的物理情景。

①物体受到的外力除弹簧的弹力外都是恒力时,物体的运动只能是变加速运动。

②物体的加速度、速度、动量、动能等变化不是简单的单调关系,当物体的加速度为零时速度最大;速度为零时加速度最大。

③物体在同向经过关于平衡位置对称的位置时,其运动学量具有对称时:合力、加速度大小相等方向相反;速率、动能、动量、势能相同。

○4为了快捷分析物体的动态过程,可以采用极限方法而忽略中间突变过程,但要注意“弹簧可拉可压”的特点。

○5当物体在变化的弹力作用下而做匀变速运动时,除弹簧的弹力外物体必然至少还受到一个变化的外力,以保证物体所受的合力恒定。

(2)双振子系统双振子系统是指轻质弹簧两端都边接着物体,两物体在外力作用下皆处于运动之中的物理情景。

○1双振子系统中两物体的速度相等时物体间距离出现极值(最大或最小),弹簧的弹性势能达到最大,注意是速度相等而非速率相等时。

②双振子系统中两物体的加速度相等时物体间的速度差值达到最大③双振子系统的运动过程分析也可结合速度图象,有时需利用(动量定理、动量守恒)功能原理、能量守恒等进行辅助分析2.涉及弹簧的弹性势能的定量计算(1)由其他量求解弹性势能时通常需由能量守恒或功能关系(有时需结合动量守恒)。

(2)由弹性势能只做为系统运动过程中所涉及到的一种能量形式时可利用:①位置的对称性当系统在初末状态下弹簧的形变量(伸长量与压缩量)相同,则此过程中弹性势能变化量为零。

②位置变化的相同性当系统经历两个初末位置相同的过程时,两过程中弹性势能的变化量相同。

③弹性势能公式当弹性势能公式E p =12kx 2做为题设条件时可直接使用。

【考点题组】【题组四】双振子系统始末状态弹性势能的对称性1.如图所示,质量均为m 的A 、B 两物体分别固定在质量不计的轻弹簧的两端,当A 静止时弹簧的压缩量为l 。

高考物理二轮专题复习模型讲解弹簧模型(动力学问题)

高考物理二轮专题复习模型讲解弹簧模型(动力学问题)

2013年高考二轮专题复习之模型讲解弹簧模型(动力学问题)[模型概述]弹簧模型是高考中出现最多的模型之一,在填空、实验、计算包括压轴题中都经常出现,考查范围很广,变化较多,是考查学生推理、分析综合能力的热点模型。

[模型讲解]一. 正确理解弹簧的弹力例1. 如图1所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹簧的左端固定在墙上。

②中弹簧的左端受大小也为F 的拉力作用。

③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动。

④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。

若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有( )① ②③ ④图1A. l l 21>B. l l 43>C. l l 13>D. l l 24=解析:当弹簧处于静止(或匀速运动)时,弹簧两端受力大小相等,产生的弹力也相等,用其中任意一端产生的弹力代入胡克定律即可求形变。

当弹簧处于加速运动状态时,以弹簧为研究对象,由于其质量为零,无论加速度a 为多少,仍然可以得到弹簧两端受力大小相等。

由于弹簧弹力F 弹与施加在弹簧上的外力F 是作用力与反作用的关系,因此,弹簧的弹力也处处相等,与静止情况没有区别。

在题目所述四种情况中,由于弹簧的右端受到大小皆为F 的拉力作用,且弹簧质量都为零,根据作用力与反作用力关系,弹簧产生的弹力大小皆为F ,又由四个弹簧完全相同,根据胡克定律,它们的伸长量皆相等,所以正确选项为D 。

二. 双弹簧系统例2.用如图2所示的装置可以测量汽车在水平路面上做匀加速直线运动的加速度。

该装置是在矩形箱子的前、后壁上各安装一个由力敏电阻组成的压力传感器。

用两根相同的轻弹簧夹着一个质量为2.0kg 的滑块,滑块可无摩擦的滑动,两弹簧的另一端分别压在传感器a 、b 上,其压力大小可直接从传感器的液晶显示屏上读出。

现将装置沿运动方向固定在汽车上,传感器b 在前,传感器a 在后,汽车静止时,传感器a 、b 的示数均为10N (取g m s =102/)图2(1)若传感器a 的示数为14N 、b 的示数为6.0N ,求此时汽车的加速度大小和方向。

弹簧振子运动

弹簧振子运动

弹簧振子运动弹簧振子是指由于弹簧的弹性特性而产生的往复振动的物理系统。

弹簧振子是物理学中重要的研究对象之一,对于理解振动现象、力学和能量转化等概念具有重要意义。

本文将介绍弹簧振子的基本原理、运动方程、能量转化以及一些实际应用。

弹簧振子的基本原理是建立在胡克定律的基础上的,即弹簧的伸长或压缩与其所受的力成正比。

在没有施加外力的情况下,弹簧处于平衡位置。

当外力作用于弹簧时,弹簧开始变形,并且由于弹性势能的存在,弹簧具有恢复力,试图将变形恢复到平衡位置。

这种恢复运动会导致弹簧振动。

弹簧振子的运动方程可以通过牛顿第二定律推导得到。

假设弹簧的伸长或压缩量为x,弹簧的弹性常数为k,振子的质量为m。

根据牛顿第二定律,可以得到以下方程:m * d^2x/dt^2 = -k * x其中,d^2x/dt^2表示x对时间t的二阶导数,即加速度。

可以看出,弹簧振子的运动方程是一个二阶线性常微分方程。

解这个方程可以得到弹簧振子的运动规律。

弹簧振子存在两种运动方式:简谐振动和非简谐振动。

简谐振动指的是振幅大小恒定、振动周期固定的振动,其运动方程的解为:x = A * cos(ωt + φ)其中,A表示振幅,ω表示角频率,t表示时间,φ表示相位差。

简谐振动的特点是振幅恒定且周期固定。

非简谐振动则是指振幅和周期会随着时间的变化而产生变化的振动。

这种振动通常是由于非线性的恢复力导致的。

非简谐振动的运动方程一般不能用简单的三角函数表示,需要使用数值方法或近似方法求解。

弹簧振子的能量转化也是一个重要的物理现象。

在弹簧振动的过程中,振子的动能和势能会不断转化。

当振子处于平衡位置时,动能为零、势能为最大。

当振子到达最大位移时,动能达到最大值、势能达到最小值。

在振子运动的过程中,动能和势能会不断相互转化,总能量保持不变。

除了在物理学研究中的重要性,弹簧振子在实际生活中也有各种应用。

例如,弹簧振子的特性被应用于钟摆的设计中,通过调节振动频率来控制钟摆的走时准确度。

弹簧专题之弹簧振子

弹簧专题之弹簧振子

弹簧专题之弹簧振子【模型构建】定义弹簧振子是一个不考虑摩擦阻力,不考虑空气阻力,不考虑弹簧的质量,不考虑振子(金属小球)的大小和形状的理想化的物理模型。

用来研究简谐振动的规律。

弹簧振子系统在平衡状态下,弹簧没有形变,振子(小球体)在平衡位置保持静止。

若把振子拉过平衡位置,到达最大幅度,再松开,弹簧则会将振子向平衡位置收回。

在收回的过程中,弹簧的势能转换为振子的动能,势能在降低的同时,动能在增加。

当振子到达平衡位置时,振子所积累的动能又迫使振子越过平衡位置,继续向同样的方向移动。

但因已越过弹簧振子系统的平衡位置,所以这时弹簧开始对振子向相反方向施加力。

动能转作势能,动能降低,势能上升,直至到达离平衡位置最大幅度的距离。

这时振子所有的动能被转化为势能,振子速度为零,停止运动。

势能又迫使振子移回平衡位置,在移动过程中,势能转为动能,因而再次越过平衡位置,重复这个过程。

在没有任何其他力影响的完美的条件下,这个弹簧振子系统会在两个最大幅度点间不停地做往返运动。

弹簧振子的固有周期和固有频率与弹簧劲度系数和振子质量有关,与振幅大小无关。

右图为其运动图像。

(注意复习受迫振动,阻尼振动等相关知识)在简谐运动中,我们一般对模型甲(图1)比较熟悉,但模型乙(图2)也经常出现在试题中。

特别注意:模型甲乙都做简谐运动,甲中回复力(弹力),加速度,速度,位移各量都关于平衡位置O点对称。

但是乙是由弹簧弹力和弹簧重力一起提供回复力,弹簧的弹力大小关于平衡位置是不对称的,但是回复力(加速度)仍然是对称的。

特征图31:在振动的过程中,振子在任意一点与该点关于平衡位置的对称点上,回复力F与回复加速度a大小相等,方向相反。

平衡位置合力为零,加速度为零,速度最大。

正负位移最大处回复力最大,加速度最大且方向相反,速度为零。

2:如图3所示,O为平衡位置,假设一弹簧振子在A、B两点间来回振动,振动周期为T,C、D两点关于平衡位置O点对称。

从振子向左运动到C点开始计时,到向右运动到D点为止,即振子由C→A→C→O→D的运动时间为3:弹簧振子在振动过程中,机械能守恒,即在振动过程中,振子在任意位置,弹簧振子的机械能不变,弹簧振子的机械能表现为振子的动能与弹簧储存的弹性势能之和。

振动的合成——精选推荐

二、振动的合成实际生活中,一个系统往往会同时参与两个或更多的振动。

例如悬挂在颠簸船舱中的钟摆,两列声波同时传入人耳等。

一般的振动合成显然是比较复杂,下面仅讨论几种间单情况的简谐振动合成。

一、同方向同频率简谐振动的合成若两个同方向的简谐振动,频率都是,它们的运动方程分别为因振动是同方向的,所以这两个谐振动在任意时刻的和位移应在同一直线上,且等于这两个振动位移的代数和,即合位移仍为简谐振动二、两个同方向不同频率简谐振动的合成拍如果两个简谐振动的振动方向相同而频率不同,那么合成后的振动仍与原振动方向相同但不再是简谐振动。

现设两简谐振动的振幅都为A,初相位为零,它们的振动方程分别为合成振动方程为若两个分振动的频率都较大且其差很小时,即,合振动可看作为振幅随时间缓慢变化的近似谐振动,振幅随时间变化且具有周期性,表现出振动或强或弱的现象,称拍,变化的频率称拍频,变化的振幅为变化的频率为三、相互垂直的简谐振动的合成李萨如图如果两个简谐振动分别在x轴和y轴上进行,他们的振动方程分别为合成后,可得质点的轨迹为椭圆方程若两分振动有不同的频率,且两频率之比为有理数时,则合成后的质点运动具有稳定、封闭的轨迹。

称其为李萨如图形。

程序编写我们已经在第一讲中体验了matlab的编程,可是你一定会生出这样的问号,辛辛苦苦在命令窗口写的一大堆代码怎么不保留?不用担心,matlab程序和其他编程工具一样,也有专门的文件格式,称m文件,文件名形式为“文件名.m”。

你可以用matlab自带的编辑器来输入你的程序代码,当然你也可以用其它编辑器或最经济的文本编辑器,不过别忘记添加文件名的后缀“.m”。

下面,请跟我一起用m文件编辑器来编写matlab程序。

例题:两个振动方向相同而频率不同的简谐振动方程分别为合成后的方程是请用matlab程序描述合成波和拍频现象。

编程:第一步:点击matlab图标,打开程序窗口。

第二步:选file—new—m-file,打开编辑器。

两个互成角度的匀变速直线运动的合运动-概述说明以及解释

两个互成角度的匀变速直线运动的合运动-概述说明以及解释1.引言1.1 概述概述部分的内容应该对本文的主题进行简要介绍,以引起读者的兴趣。

同时,可以提及该主题在物理学中的重要性和应用背景。

概述部分的建议内容如下:"互成角度的匀变速直线运动是物体运动中一个重要的概念。

在物理学中,我们经常会遇到两个物体以不同的匀变速直线运动方式进行运动。

本文旨在探讨这两个运动之间的合运动,了解合运动的定义和特点。

互成角度的匀变速直线运动在许多领域都有广泛的应用,比如机械工程、航空航天、运动理论等。

通过研究互成角度的匀变速直线运动的合运动,我们可以更好地理解物体在空间中的运动轨迹,进一步应用于设计和优化运动系统。

在接下来的正文中,我们将介绍互成角度的匀变速直线运动的概念和特点,以及合运动的定义和特点。

通过详细的实例和分析,我们将揭示互成角度的匀变速直线运动的合运动的一些规律和规定。

最后,我们将得出结论并总结该主题的重要性和应用价值。

本文旨在深入探讨互成角度的匀变速直线运动的合运动,希望通过阅读本文,读者能够对该主题有更深入的理解,并能将其应用于实际问题的解决中。

"文章结构部分的内容可以是对整篇文章的组织和结构进行阐述,同时提供读者一个清晰的指南,让他们能够更好地理解文章的内容。

以下是文章结构部分的一个示例内容:1.2 文章结构本文共分为引言、正文和结论三个部分。

引言部分首先概述了文章的主要内容和研究对象,即两个互成角度的匀变速直线运动的合运动。

接着介绍了文章的结构和目的,为读者提供了整篇文章的框架。

正文部分主要包括两个方面的内容。

首先介绍了互成角度的匀变速直线运动的概念,解释了什么是互成角度的匀变速直线运动,并给出了具体的定义和数学表达式。

然后探讨了这种运动的特点,包括运动轨迹、速度变化等方面的特点,以便读者更好地理解这种运动的规律和规律。

结论部分对合运动进行了定义,解释了什么是互成角度的匀变速直线运动的合运动,并列举了合运动的一些特点和规律。

高考物理 构建复合运动模型 解析物体运动问题

构建复合运动模型解析物体运动问题抽象物理模型是解答物理问题的关键.在对简单问题进行模型化处理时,常可把它抽象为一个已知的物理模型,然而在对某些比较复杂问题进行模型化处理时,常常通过联想旧模型、创造新模型来构建复合模型(或称模型链).构建复合物理模型能将复杂问题转化为简单问题的组合,使问题得到顺利解答.本文通过结合具体教学实例就如何构建复合运动模型来巧解物理竞赛中复杂运动问题.一、构建直线运动和圆周运动的复合运动模型1.构建同一平面内直线运动和圆周运动的复合运动模型,解答摆线运动问题例1 如图1所示,一质量为m、带电量为+q的小球从磁感应强度为B的匀强磁场中A 点由静止开始下落,试求带电小球下落的最大高度h.图1分析与解可以证明这个问题中带电小球运动轨迹是比较复杂的摆线,对高中学生而言从合运动角度分析这个问题比较困难.现构建小球有两个大小相等、方向相反的水平初速度v10、v20,所构建的这两个分运动与小球原有初始运动条件等效.现使小球的分运动v10产生的洛伦兹力为qv10B=mg则v10=mg/qB,因而小球的运动可视为沿水平方向以速度v10做匀速直线运动和在竖直平面内以速度v20做逆时针方向的匀速圆周运动的合运动.匀速圆周运动的半径R=mv20/qB=g(m/qB)2,因而小球在运动过程中下落的最大高度为Hm=2R=2g(m/qB)2.通过构建匀速直线运动和匀速圆周运动复合模型,巧妙地解答了这个复杂问题.2.构建不同平面内的直线运动和圆周运动的复合运动模型,解答螺旋运动问题例2 如图2所示,两个平行板内存在互相平行的匀强电场和匀强磁场,电场强度为E,方向竖直向上,磁感应强度为B.在平行板的右端处有一荧光屏MN,中心为O,OO′既垂直电场方向又垂直荧光屏,长度为L.在荧光屏上以O点为原点建立一直角坐标系,y轴方向竖直向上,x轴正方向垂直纸面向外.现有一束具有相同速度和荷质比的带正电粒子束,沿O′O方向从O′点射入此电场区域,最后打在荧光屏上.若屏上亮点坐标为(L/3,L/6),重力不计.试求:(1)磁场方向;(2)带电粒子的荷质比.图2分析与解带电粒子在相互平行的匀强电场与磁场中运动为比较复杂的三维运动(螺旋线运动),根据力和运动独立作用原理,可以把此螺旋运动构建为y轴方向上的加速直线运动和xOz平面内的匀速圆周运动的复合运动模型.在xOz平面内构建出如图3所示的几何图景,由图3运用物理知识和三角形知识可得:磁场方向竖直向上,且图3R=2L/3,sinθ=/2,θ=π/6.粒子在磁场中运动的时间为t=T/6=πm/(3qB),结合y=Eqt2/(2m)=L/6得粒子的荷质比为q/m=Eπ2/(3B2L).二、构建简谐运动和圆周运动的复合运动模型1.构建简谐运动和圆周运动的复合运动模型,巧解“狗追击狼”的问题例3 如图4所示,一只狼沿半径为R的圆形轨道边缘按逆时针方向匀速跑动.当狼经过A点时,一只猎狗以相同的速度v从圆心O点出发追击狼.设追击过程中,狼、狗、O点始终在同一条直线上.问:狗沿什么轨迹运动?在何处追上狼?分析与解由于狗、狼、O点始终在同一条直线上,狗与狼沿运动轨道的切向的角速度相等,因而可以把狗的运动构建为径向运动和切向圆周运动的复合运动.设当狗离开圆心距离r时,狗的径向速度为v r,切向速度为v t,则图4v t=ωr=v0r/R,由图4可知v r=.由此可知,狗在径向相对圆心O做简谐运动,狗的运动为径向简谐运动和切向圆周运动的复合运动.由简谐运动知识可知r=Rsinωt,任意时刻狗的直角坐标为x=rcosθ,y=rsinθ,结合θ=ωt,得x=Rsinωtcosωt=(1/2)Rsin(2ωt),y=Rsin2ωt=(1/2)R[1-cos(2ωt)],因而得狗的轨迹方程为x2+(y-R/2)2=(R/2)2.即狗的轨迹为一个半径为R/2的圆,在圆形轨道的B点追上狼.有关例3问题在很多参考书上有各种不同解法,笔者认为上述运用构建圆周运动和简谐运动的复合运动模型的方法解答此问题最简捷.2.构建简谐运动和圆周运动的复合运动模型,巧解“有心力作用”问题例4 如图5所示,两个同轴的带电无限长半圆柱面,内外圆柱面的半径分别为a、b.设在图中a<r<b区域内只有径向电场,电势分布为U=klnb/r,其中k为常量.由此电势分布可得出电场强度分布为E=k/r.现有一质量为m、初速为v0、带电量为-q的粒子从左方A处射入,且v0既与圆柱面轴线垂直又与入射处的圆柱的直径垂直(不计带电粒子的重力).图5(1)试问v0为何值时可使粒子沿半径为R(R>a)的半圆轨道运动?(2)若粒子的入射方向与上述v0偏离一个很小的角度β(仍然在图5所示的纸面内),其它条件不变,则粒子将偏离(1)中的半圆轨道.设新轨道与原半圆轨道相交于P点.试证明:对于很小的β角,P点的位置与β角无关,并求出P点的方位角θ=∠AOP的数值.分析与解(1)根据带电粒子在径向电场中做圆周运动的条件,即带电粒子所受的电场力等于粒子沿径向指向圆心O的向心力,得(mv02/R)=qE=(qk/R),则v0=.(2)带电粒子运动轨迹看似比较复杂,但考虑到β较小,粒子沿切向的分速度为v t=v0cosβ≈v0,径向的分速度v r=v0sinβ≈v0β很小.若运用力和运动独立性原理,则把此复杂的运动可构建为沿着半径为R的匀速圆周运动和径向的振幅较小的简谐运动的复合运动.粒子沿径向做简谐运动的平衡位置为r0=R,设振动时的微小位移为x,回复力F r 满足-qk/(r0+x)=Fr-mv2t/(r0+x),即F r=-[qk/(r0+x)-mv2t/(r0+x)],由角动量守恒,得mv0r0=mv t(r o+x),由于x r0,运用数学近似处理,有1/(r0+x)≈(1-x/r0)/r0,1/(r0+x)3≈(1-3x/r0)/r03,结合qk/r0=mv20/r0,得F r=-2mv02x/r02.令k′=2mv20/r02.粒子沿径向做简谐运动的周期为T=2π=πr0/v0.粒子第一次到达平衡位置P点时经过时间为t=T/2,粒子做匀速圆周运动转过的角度为θ=v0t/r0=π(/2).三、构建两个简谐运动模型1.构建两条直线上的复合简谐运动模型例5 如图6所示,一弹性细绳穿过水平面上光滑的小孔O连接一质量为m的小球P,另一端固定于地面上A点,弹性绳的原长为OA,劲度系数为k.现将小球拉到B位置使OB =L,并给小球P以初速度v0,且v0垂直OB.试求:(1)小球绕O点转动90°至C点处所需时间;(2)小球到达C点时的速度.图6分析与解(1)设OB为x轴方向,OC为y轴方向,当小球和O点的连线与x轴成θ角且与O点相距为r时,弹性绳对小球的弹力为F=kr.将力F沿着x、y两个方向分解,有F x=-Fcosθ=-krcosθ=-kx,F y=-Fsinθ=-krsinθ=-ky.由此可知,小球在x方向做初速度为零的简谐运动,在y方向上做初速度为v0的简谐运动,小球运动可视为两个简谐运动组成的复合运动模型.小球到达C点时,Fx=0,即小球恰好经过x轴方向上做简谐运动的平衡位置,故小球从B点运动到C点所经过的时间为小球沿x轴方向做简谐运动的周期的四分之一,即t=T/4=(π/2).(2)因为小球到达C点时在y轴方向上速度为零,所以小球在C点的速度就是在x轴方向上的最大速度,则v C=v xmax=ωL=L.2.构建双振子复合模型,解答多体振动问题例6 如图7所示,质量为2m的均匀带电球M的半径为R,带电量为+Q,开始静止在光滑的水平面上.在通过直径的直线上开一个很小的绝缘、光滑的水平通道.现在球M的最左端A处,由静止开始释放一质量为m、带电量为-Q的点电荷N.若只考虑两电荷间的相互静电力.试求点电荷运动到带电球M的球心时两带电体的速度.图7分析与解均匀带电球M在球内离球心距离为x处产生的电场强度为E=kQx/R3,点电荷N在此处所受的电场力为FN=kQ2x/R3,此时带电球M所受的电场力也为F M=kQ2x/R3,因而可将此系统构建为类似如图8所示的双振子相对质心O′点做简谐运动.由质心运动定理可知,系统的质心O′点静止不动,质心O′点距开始静止的球心O点的距离为x′,则图8x′=(mR/M+m)=(R/3).以质心O′为双振子振动的平衡位置,令k0=kQ2/R3,N相对质心振动等效弹簧劲度系数为kN=3k0/2、振幅为AN=2R/3;球M相对质心振动等效弹簧劲度系数k M=3k0、振幅为AM=R/3.N到达球心时对应于两振子都到达平衡位置,由简谐运动知识得,此时点电荷N、球M的速度分别为vN=AN=2R/3,v M=AM=R/3.。

专题一 第2讲

二轮专题复习·物理(创新版) 第2讲 力和直线运动

要点提炼 1.解决匀变速直线运动问题的方法技巧 (1)常用方法 ①基本公式法,包括vt2=xt=v0+v2,Δx=aT2。 ②v­t图象法。 ③比例法:适用于初速度为零的匀加速直线运动和末速度为零的匀减速直线运动。 ④逆向思维法:末速度为零的匀减速直线运动可看做反向初速度为零的匀加速直线运动。 (2)追及相遇问题的临界条件:前后两物体速度相同时,两物体间的距离最大或最小。 2.物体的直线运动 (1)条件:所受合外力与速度在同一直线上,或所受合外力为零。 (2)常用规律:牛顿运动定律、运动学公式、动能定理或能量守恒定律、动量定理或动量守恒定律。 3.动力学问题常见的五种模型 (1)等时圆模型(图中斜面光滑) 二轮专题复习·物理(创新版) (2)连接体模型 两物体一起加速运动,m1和m2的相互作用力为FN=m2·Fm1+m2,有无摩擦都一样,平面、斜面、竖直方向都一样。

(3)临界模型 两物体刚好没有相对运动时的临界加速度a=g tan α。

(4)弹簧模型 ①如图所示,两物体要分离时,它们之间的弹力为零,速度相同,加速度相同,分离前整体分析,分离后隔离分析。 二轮专题复习·物理(创新版) ②如图所示,弹簧长度变化时隔离分析,弹簧长度不变(或两物体运动状态相同)时整体分析。

(5)下列各情形中,速度最大时加速度为零,速度为零时加速度最大。 4.传送带上物体的运动 由静止释放的物体,若能在匀速运动的传送带上同向加速到与传送带共速,则加速过程中物体的位移必与物体和传送带的相对位移大小相等,且等于传送带在这个过程中位移的一半。 在倾斜传送带(倾角为θ)上运动的物体,动摩擦因数与tan θ的关系、物体初速度的方向与传送带速度方向的关系是决定物体运动情况的两个重要因素。 5.水平面上的板块模型问题 分析两物体的运动情况需要关注:两个接触面(滑块与滑板之间、滑板与地面之间)的动摩擦因数的大小关系,外力作用在哪个物体上。若外力作用在下面物体上,随着力的增大,两物体先共同加速,后发生相对滑动,发生相对滑动的条件是下面物体的加速度较大。若外力作用在上面物体上,力增大过程中,两物体可能共同加速,也可能发生相对滑动,相对滑动时,上面物体的加速度较大。 二轮专题复习·物理(创新版) 高考考向1 匀变速直线运动规律的应用

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

弹簧双振子模型与匀减速直线运动的合成
弹簧双振子模型是一个由两个质点和一个连接它们的弹簧组成的系统。

两个质点可以沿着相互垂直的直线方向上运动,并受到弹簧力的作用。

弹簧的力与位移成正比,满足胡克定律。

匀减速直线运动是一个在一条直线上的匀减速运动,即速度随时间匀减。

将弹簧双振子模型与匀减速直线运动合成的过程是将两个系统的运动叠加在一起。

具体步骤如下:
1. 求解弹簧双振子模型:根据系统的初始条件和弹簧的力学特性,求解出两个质点的运动轨迹和速度函数。

2. 求解匀减速直线运动:根据匀减速运动的初始条件和加速度,求解出质点在直线上的运动轨迹和速度函数。

3. 将两个系统的运动叠加在一起:将双振子系统的两个质点的位移和速度与直线运动的质点的位移和速度进行矢量相加,得到合成后的位移和速度。

4. 对于位移合成,将双振子系统的两个质点的位移与直线运动的质点的位移进行矢量相加。

合成后的位移可以通过求解初始条件下的位移方程得到。

5. 对于速度合成,将双振子系统的两个质点的速度与直线运动的质点的速度进行矢量相加。

合成后的速度可以通过求解初始
条件下的速度方程得到。

通过以上步骤完成了弹簧双振子模型与匀减速直线运动的合成,得到了合成后的位移和速度函数。

这个合成可以帮助我们更好地理解、分析和预测这个复杂系统的运动行为。

相关文档
最新文档