新能源汽车空调电动压缩机的控制策略研究
新能源汽车空调控制系统

新能源汽车空调控制系统摘要:传统燃油汽车空调结构主要有:压缩机、冷凝器、蒸发器、膨胀阀、储液罐、控制系统和送风及其管路系统组成。
空调压缩机主要动力来源于发动机,空调主要能耗是压缩机和冷凝器。
大家熟知传统汽车空调工作原理,这里不再介绍,这类空调共同特点是由发动机直接提供动力,消耗发动功率约为20%,且效率转化值不足40%。
如何降低能耗,提高效率一直是空调领域关注的焦点。
新能源汽车空调在结构上大体与传统汽车近似,电动汽车空调制冷系统主要由:电动压缩机、电动压缩机控制器、冷凝器、管路系统(液体管、压缩机排气管、压缩机吸气管)、室内温度传感器、室外温度传感器、阳光传感器、空调主机(蒸发器、加热器、温度风门执行器、模式风门执行器、内外循环风门、鼓风器、蒸发器温度传感器)、膨胀阀、空调控制器等零部件构成。
但是电动汽车空调系统不但要满足汽车制冷需要,还要制热。
目前电动汽车空调制热主要采用PTC加热和电热管加热的两种模式,由于系能源电动汽车动力取自电动机,能量来源与动力电池,所以多数国内车企在使用电动压缩机直接利用蓄电池供电带动其工作,虽然电动压缩机比就流行使用无刷永磁直流电动机,电子控制单元等是其结构简单,体积小、制冷效率高,但是仍然影响电动汽车的续航里程,而且制热的效率也不高。
鉴于目前新能源汽车空调现状,其明显的缺陷制约着我国新能源电动汽车的普及。
特别是北方地区,冬季车内制热可损失大约50%的续航里程。
如果我国要在全国范围内推广新能源电动汽车一些关键技术还亟需解决。
关键词:空调;新能源;汽车;控制一:新能源汽车空调系统发展趋势未来新能源汽车空调系统的发展趋势还是集中在高效控制,节能环保上来。
在空调控制方面上,传统汽车空调目前采用ECU电控系统加“变排量控制”。
在效率上有所提升。
新能源电动汽车采用电动压缩机,在电控领域我们可以借鉴家用空调的控制模式采用“变频控制”,目前各空调厂家已经研究交流变频电动压缩机,而且变频空调在技术上比较成熟,主攻方向是车内的应用。
电动汽车空调制冷系统的理论研究

Z HANG Je HEN W e — in ,P h-e i,C nqa g AN Z i i,DI n ,ZHAO F — u n j NG Yo g uq aI si t,Ha g h u 3 1 2 ,C i a e t n z o 1 2 8 hn )
电动汽车空调制冷系统的理论研究
张 杰 , 陈 文 强 ,潘 之 杰 ,丁 勇 , 赵 福 全 ( 利 汽 车 研 究 院 ,浙 江 杭 州 3 1 2 ) 吉 1 2 8
摘 要 :介 绍 电 动 汽 车 空 调 制 冷 系 统 的组 成 及 控 制 原 理 ,对 电 动 压 缩 机 在 电动 汽 车 上 的 合 理 选 择 做 出 了 详 细 分 析 。通 过 电动 汽 车 空调 制 冷 系 统选 择 核 心 零 部 件 的探 究 ,为 电 动 汽 车 车 内环 境 控 制提 供 技 术 支持 。
保 、节 能 的今 天 ,电 动 汽 车 由于 具 有 无 任 何 排 放 物 、不 污 染 环 境 、噪 声 低 及 不 消 耗 石 油 资 源 等 特 点 受 到 了 全 世 界 广 泛 的关 注 , 国 内 外 各 大 汽 车 企 业 也 相 继 投 入 了 大 量 的 人 力 、 物 力 进 行 电 动 汽 车 的 开 发
内外 循 环 风 门 、鼓 风 器 、蒸 发 器 温 度 传 感 器 ) 、膨
了舒 适 的驾 驶 和 乘 坐 环 境 .也 对 电 动 汽 车 的进 一 步 研 究 和 开 发 提 出 了新 的课 题 与 挑 战 。 汽 车 空 调 的 功 能 就 是 在 各 种 季 节 、各 种 不 同 环 境 下 使 车 厢 内 的 温 度 、湿 度 以 及 空 气 流 动 性 保 持 在 人 体 感 觉 舒 适 的 状 态 ,从 而 为 车 内 人 员 提 供 舒 适 的 驾 驶 和 乘 坐 环 境 。所 以 为 开 拓 电 动 汽 车 市 场 、 开 发 节 能 高 效 的 电 动 空 调 系 统 也 是 必 不 可 少 的 ,而 电 动
新能源电动汽车驱动系统NVH特征及控制策略

例子: MCU控制策略对电机高频噪声的影响
车前0.5m噪声频谱及声压级对比
红线——标准SV PMW控制 蓝线——三段PWM控制
实线——overall值 虚线-----10kHz-16阶噪声
标准SV-PWM控制
约18dB(A)
三段PWM控制
约40dB(A)
控制逻辑: 随机PWM 离散PWM
SV(Space
4. 性能平衡控制难度大:如何做到动力性、 可靠性与舒适性兼具的控制
NVH挑战
1. 大扭矩: 纯电/混动加速、怠速充电、上坡 起步等低速大扭矩及动力分汇 流工况下的NVH表现天然较差;
2. 制动能量回收引起电机啸叫 3. 热管理及冷却系统带来噪声问题 4. 能量切换:
转矩协同、并/卸载转矩等工况带 来振动和冲击问题
4 能量切换(混动车)引起的噪声与振动
在动力模式切换过程中,汽车抖动:EV、 充电、自动,等等
EV:纯电动模式 Charge:发动机给电池充电 Auto:自动模式 ……
解决办法
同时监测发动机扭矩和转速、电机扭矩 和转速、电池电流和电压。 调节VCU, ECU, MCU(IPU) 参数来调整 发动机扭矩的波动。
7000. 00
0. 00
3 怠速充电(混动车)引起的振动与噪声
1. 问题: 无充电负载时,车内振动水平较好;车辆在怠速工况(电量<17%充电 时),车内振动偏大 随电量降低时,发动机请求扭矩增大,发动机负载大,车内振动增大
2. 解决方案: 降低扭矩波动 降低扭矩 传递路径控制:悬置设计、车身传递
5. NVH与动力性和可靠性的矛盾
3.3 宽频脉冲控制引起的噪声
脉宽调制(Pulse Width Modulation):按照冲量相等但幅值不同的窄脉
新能源电动汽车低温热泵型空调系统研究

新能源电动汽车低温热泵型空调系统研究作者:***来源:《专用汽车》2024年第07期摘要:随着电动化技术的快速发展,新能源汽车已经逐渐取代传统的燃油汽车,并且成为当今社会发展的主流。
但是新能源电动车在冬天使用电热采暖技术消耗能量很大,直接影响其经济性能,且会减小其续航里程。
为保障电动汽车能源的经济性,可以采用热泵空调系统进行采暖,不仅能有效减少低温制热性能衰减的问题,而且可以达到延长汽车续航里程的效果,因此该类系统成为降低新能源电动汽车能耗的关键手段。
据此,主要聚焦新能源电动汽车低温热泵型空调系统,通过实验和模拟分析,探讨其工作原理、性能优化及关键部件设计。
结果表明,该系统能有效提升低温环境下的空调效果,降低能源消耗,有利于推动新能源汽车技术发展。
关键词:新能源;电动汽车;低温热泵;空调系统中图分类号:U469.7 收稿日期:2024-05-14DOI:1019999/jcnki1004-02262024070201 新能源电动汽车低温热泵型空调系统性能新能源电动汽车低温热泵型空调系统,一般是建立在热泵原理的基础上而研发的,它能促进电动汽车外部低品位热能的转化,使其成为高品位热能的形式,再将其传输到车体的内部,能够实现对车体内部温度的合理调节。
此类系统可以帮助新能源电动汽车减少对能源的损耗,充分发挥其能效,有利于提高产品的续航能力。
对新能源电动汽车低温热泵型空调系统性能进行研究时,可以模拟电动汽车环境实验舱,并借助一台热泵型电动汽车空调系统,在调整实验舱内部温度和湿度时,利用不同的设定值,再将热泵型电动汽车空调系统启动,对其制热、制冷、除湿等多方面的性能表现予以观察[1]。
结果显示,在制热和制冷两种模式下,新能源电动汽车低温热泵型空调系统的性能良好。
以制冷模式为例,随着实验舱温度的下降,从35 ℃降至25 ℃,此时系统的能效比为2.1;在制热模式下,随着实验舱温度的上升,从15 ℃升到达25 ℃,此时系统的能效比为2.3。
吉利帝豪EV450 电动汽车热管理系统控制策略与故障检修

AUTO TIME187AUTO AFTERMARKET | 汽车后市场时代汽车 吉利帝豪EV450电动汽车热管理系统控制策略与故障检修王景智广东轻工职业技术学院 广东省广州市 510300摘 要: 纯电动汽车热管理系统整体结构复杂,控制策略各异,故障检修难度较高。
本文以主流纯电动汽车—吉利帝豪EV450为例,剖析其热管理系统的组成结构与工作原理,对其配备的电池智能热管理系统ITCS 2.0控制策略进行分析,并对其热管理系统两例典型的故障进行检修,为电动汽车热管理系统故障诊断及排除提供参考。
关键词:EV450 热管理系统 电池智能热管理 控制策略纯电动汽车热管理系统性能的好坏直接影响车辆的续航里程,是电动汽车的核心管理系统之一。
纯电动汽车热管理系统通常包括电驱动系统、驾乘舱和动力电池的热管理,由于电动汽车热管理系统组成部件多,电驱动系统和动力电池对温度的控制要求更高,电动汽车热管理系统控制策略相对于传统燃油车更为复杂。
吉利帝豪电动汽车的热管理系统是目前主流电动汽车中较为先进的热管理系统,下面对吉利帝豪EV450电动汽车热管理的组成结构与工作原理、控制策略进行剖析,结合热管理系统常见故障的检修归纳其检修的基本流程。
1 吉利EV450电动汽车热管理系统组成与工作原理吉利帝豪EV450电动汽车热管理系统分为三个部分:驾乘舱热管理、动力电池热管理、电驱动系统热管理[1]。
1.1 驾乘舱热管理驾乘舱热管理如图1所示,制冷系统由电动涡旋式压缩机、平行流式冷凝器、层叠式蒸发器和H 型膨胀阀等组成,采用的制冷剂是R134a。
在H 型膨胀阀的前端设置有制冷管路电磁阀,在驾乘舱不需要制冷时电磁阀关闭,切断通向蒸发器的制冷回路。
由于没有发动机,驾乘舱制热靠液暖电加热PTC 来实现。
需要制热时,热管理控制器控制PTC 加热器(HVH)工作,控制三通电磁阀WV1的1、2号管路接通,PTC 加热水泵驱使经PTC 加热后的冷却液流进空调箱的加热芯体,实现采暖。
新能源汽车空调工作原理

新能源汽车空调工作原理
x
新能源汽车空调工作原理
新能源汽车空调系统是由电动压缩机、电动风机、湿度传感器、温度传感器、热交换器等组成,构成一个被称为“电动空调”的微型自动空调系统。
这种系统可以根据室内外温度,并将室内外气体调整到恒定温度,以满足车内乘客的舒适需求。
新能源汽车空调系统的工作原理是:空调系统中的电动压缩机和电动风机分别将室内外空气进行吸入和排出,由湿度传感器和温度传感器检测室内外空气的温度和湿度,根据运算控制板,通过控制电动压缩机的升降压来调节室内外空气的温度,当电动压缩机完成空气的压缩时,空气的温度也会升高,此时电动风机会将热的空气引导到热交换器,将空气中的热量转化成可以吹出的热空气,并将热量抛出到室外,在完成这个过程后,室内空气温度就会降低了。
通过上述步骤,新能源汽车空调系统可以实现室内外空气的调节,从而更好地满足乘客的舒适度需求,节省能源,提高汽车使用效率。
- 1 -。
纯电动汽车空调系统的能效技术要求及 试验方法基本信息
纯电动汽车空调系统的能效技术要求及试验方法基本信息全文共四篇示例,供读者参考第一篇示例:一、纯电动汽车空调系统的能效技术要求1. 节能性能要求:纯电动汽车空调系统应该具备较高的节能性能,尽可能减少能耗,提高整车的能效。
可以通过选择高效的压缩机、换热器、蒸发器等核心部件,采用智能控制系统等技术手段来提升空调系统的节能性能。
2. 制冷效果要求:纯电动汽车空调系统要能够在各种环境温度下都能够有效制冷,确保车内空气舒适度。
在极端高温或低温环境下也能够正常运行,确保驾驶者和乘客的舒适性和安全性。
3. 环保性要求:纯电动汽车空调系统应该符合环保标准,减少对大气的排放,降低对环境的污染。
可以采用环保制冷剂、低功耗电机等技术手段来实现空调系统的环保性要求。
4. 效果稳定性要求:纯电动汽车空调系统在长时间运行过程中要能够保持稳定的制冷效果,确保车内温度的稳定性和舒适性。
通过设计合理的系统结构和配件选材,进行严格的质量控制和测试验证,可以保证空调系统的效果稳定性。
1. 制冷性能试验:制冷性能试验是评价空调系统制冷效果的关键指标之一。
通常采用性能试验室模拟不同工况下的制冷操作,测量不同工况下的制冷量、制热量、能效比等参数,评估空调系统的性能。
2. 能耗试验:能耗试验是评价空调系统节能性能的重要指标之一。
通过模拟车辆在不同环境温度和负载下的运行情况,测量空调系统的能耗,分析不同条件下的能效差异,为节能技术的优化提供参考依据。
3. 环保试验:环保试验是评价空调系统环保性能的必要手段。
可以通过实验室或实车试验的方式测量空调系统对大气的排放情况,评估空调系统的环保性能,确保符合相关环保标准。
4. 效果稳定性试验:效果稳定性试验是评价空调系统系统稳定性的重要手段。
可以通过长时间稳定运行、高温、低温、高湿度等恶劣条件下的试验验证,检测空调系统的性能稳定性和可靠性。
纯电动汽车空调系统的能效技术要求和试验方法对于提升纯电动汽车的整体性能具有重要意义。
纯电动汽车空调系统的能效技术要求及 试验方法基本信息-概述说明以及解释
纯电动汽车空调系统的能效技术要求及试验方法基本信息-概述说明以及解释1.引言1.1 概述概述部分的内容:随着全球环境保护意识的不断提升和对传统燃油汽车排放的严格限制,纯电动汽车正逐渐成为汽车行业的新宠。
然而,纯电动汽车的发展并不仅仅是停留在电池技术的革新,空调系统作为汽车的重要组成部分,对能源消耗和车辆续航里程也有着重要影响。
因此,本文将重点探讨纯电动汽车空调系统的能效技术要求及试验方法,旨在为提升纯电动汽车的整体能效和行驶里程提供技术支持。
文章将从空调系统能效要求、改进方法和试验方法等方面展开,为读者提供全面的视角和技术指导。
1.2 文章结构本文主要分为引言、正文和结论三个部分。
引言部分包括概述、文章结构和目的。
在概述部分,我们将介绍纯电动汽车空调系统的重要性和发展现状。
文章结构部分将简要说明本文的组织结构和各个部分的内容。
目的部分则阐明了本文的写作目的和意义。
正文部分分为纯电动汽车空调系统的能效技术要求、空调系统的能效改进方法和试验方法基本信息三个小节。
在第一个小节中,我们将介绍纯电动汽车空调系统的能效技术要求,包括能耗限制、节能措施等方面的要求。
在第二个小节中,我们将提出改进空调系统能效的方法,探讨如何提高系统的能效性能。
第三个小节将介绍相关试验方法的基本信息,以确保系统的性能和稳定性。
结论部分包括总结、展望和结论三个小节。
总结部分将简要回顾本文的主要内容和观点。
展望部分将展望未来纯电动汽车空调系统能效技术的发展趋势。
结论部分则对整篇文章的主要观点进行总结和提出建议。
1.3 目的本文旨在探讨纯电动汽车空调系统的能效技术要求及试验方法,以提高纯电动汽车空调系统的能效性能,减少能耗,延长电池续航里程。
通过研究空调系统的能效改进方法,找到适合纯电动汽车的节能措施,提高整车的综合能效水平。
同时,归纳总结出适用于纯电动汽车空调系统的试验方法基本信息,为相关研究和应用提供参考。
在推动电动汽车的发展过程中,提高空调系统的能效将有助于减少环境污染,促进电动汽车的普及和发展。
浅谈新能源汽车空调系统工作原理与检修注意事项
浅谈新能源汽车空调系统工作原理与检修注意事项新能源汽车是指采用了新型动力系统的汽车,一般包括混合动力汽车和纯电动汽车。
随着新能源汽车市场的快速发展,新能源汽车的空调系统也成为了人们关注的焦点之一。
新能源汽车的空调系统与传统汽车的空调系统有一些不同,今天我们就来浅谈一下新能源汽车空调系统的工作原理和检修注意事项。
一、新能源汽车空调系统工作原理1. 空调压缩机新能源汽车的空调系统同样采用压缩机循环制冷的工作原理,但在传统汽车上,压缩机通常是由发动机带动的,而新能源汽车上的压缩机则多为电动压缩机。
电动压缩机通过电能转换为机械能,驱动制冷剂流动,实现制冷作用。
2. 制冷剂循环系统新能源汽车的空调系统制冷剂循环系统与传统汽车相似,主要由压缩机、冷凝器、膨胀阀和蒸发器组成。
制冷剂在这些元件中循环流动,完成制冷过程,为车内提供舒适的温度。
3. 电源系统新能源汽车的空调系统的电源通常来源于高压电池组,电池组通过直流-交流变流器将直流电转换为交流电,供给空调系统的电动压缩机和风扇等部件。
1. 注意安全新能源汽车的高压电池组是其核心部件,检修空调系统时一定要注意安全。
在进行检修前,必须先切断电源,避免触电意外发生。
需要遵循相关操作规程,做好个人防护措施,确保自身安全。
2. 注意电气部件检修新能源汽车空调系统的电气部件包括电动压缩机、控制器和传感器等,在进行检修时,要注意检查这些电气部件的接线是否松动、线路是否老化,以及控制器是否能够正常工作。
也要注意检查高压线路是否有漏电的情况,确保电气部件的安全可靠。
3. 注意制冷剂检修制冷剂是新能源汽车空调系统中不可或缺的重要组成部分,它的充注量和充注质量直接影响到空调系统的制冷效果。
检修时,要注意检查制冷剂的充注量是否正常,是否存在泄漏的情况,以及制冷剂的种类是否符合规定标准。
空调系统除了电气部件和制冷剂外,还包括了一些机械部件,如冷凝器、蒸发器和风扇等。
在检修时,要注意检查这些机械部件是否存在堵塞、腐蚀或磨损问题,及时进行清洗和更换,以确保空调系统的正常工作。
新能源汽车空调电动压缩机的智能化监测与管理
新能源汽车空调电动压缩机的智能化监测与管理随着新能源汽车的广泛应用,对环保和乘坐舒适性的需求逐渐增大,车辆空调系统的安全性和性能也变得至关重要。
其中,空调电动压缩机作为关键组件,对空调系统的运行状态起着至关重要的作用。
为了确保新能源汽车空调电动压缩机的正常运行和延长其使用寿命,智能化监测与管理技术应运而生。
一、智能化监测技术的应用智能化监测技术通过传感器和数据处理系统,实时监测空调电动压缩机的工作状态,包括电流、转速、温度、压力等参数的变化情况。
通过这些监测数据的分析和处理,可以实现对空调电动压缩机的预警与故障诊断,及时发现并解决潜在问题,确保车辆空调系统的正常运行。
1. 传感器技术传感器是智能化监测技术的基础,它能够将压缩机内部的各种参数变化转化为电信号进行传输和处理。
常见的传感器包括温度传感器、压力传感器、电流传感器等,通过这些传感器,可以实时监测和记录空调电动压缩机的工作状态。
2. 数据处理技术传感器采集到的数据需要经过处理才能发挥作用,数据处理系统可以实时分析和解读传感器所采集到的数据,提取有用信息,并对空调电动压缩机的工作状态进行评估和判断。
二、智能化管理技术的应用智能化管理技术通过云计算和远程监控技术,实现对新能源汽车空调电动压缩机的远程管理和控制。
通过这些管理技术,可以及时获取和分析压缩机的运行状态,实现对压缩机的精细化管理,提高运行效率和可靠性。
1. 云计算技术云计算技术可以将压缩机的运行数据上传至云端服务器进行存储和分析。
通过云计算技术,可以对大量的数据进行处理和分析,实现对压缩机运行状态的全面监测与评估。
2. 远程监控技术远程监控技术可以实现对压缩机的遥控和遥测,即通过互联网远程监控压缩机的运行状况,及时发现并解决潜在问题。
同时,远程监控技术还可以对多个压缩机进行集中管理,提高管理效率和运行可靠性。
三、智能化监测与管理技术的优势智能化监测与管理技术的应用,对新能源汽车空调电动压缩机的运行状态进行全面监测和精细化管理,具有如下优势:1. 提高安全性和可靠性:通过实时监测和故障诊断,可以及时发现和解决潜在问题,提高空调系统的安全性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新能源汽车空调电动压缩机的控制策略研究随着环保意识的增强和汽车工业的技术进步,新能源汽车的发展势
头迅猛。
为了满足乘客的舒适需求,并保证车辆高效能耗,新能源汽
车空调系统的研发显得尤为重要。
其中,电动压缩机的控制策略成为
了关注的焦点。
本文将对新能源汽车空调电动压缩机控制策略进行探
讨和研究。
1. 引言
新能源汽车空调系统的研究旨在提高能源利用率,减少能源消耗,并且尽量减少对环境的污染。
电动压缩机作为空调系统的核心组件,
其控制策略对整个系统的性能和效能起着至关重要的作用。
2. 电动压缩机控制策略的分类
2.1 固定转速控制
固定转速是指电动压缩机运行在恒定的转速下,不对其运行状
态进行调整。
这种控制策略简单直观,但无法根据实际工况进行自适
应调节。
2.2 变频控制
变频控制策略通过调整电动压缩机的转速,实现制冷量的调节。
这种策略可以根据车厢内部实际需求进行自动调整,在一定程度上提
高了空调系统的能效。
2.3 目标温度控制
目标温度控制策略是通过测量车内环境温度,调节电动压缩机运行状态来实现车内温度的控制。
该策略较为精准,但对系统的响应速度有一定的要求。
3. 电动压缩机控制策略的优化
3.1 车辆工况优化
充分了解并分析车辆的行驶工况,可以根据车辆速度、环境温度和湿度等因素,合理调整电动压缩机的运行状态,进而提高空调系统的整体性能。
3.2 多参数协同控制
同时考虑多个参数对电动压缩机控制的影响,如车速、外界温度、湿度以及空调系统内部各部件的状态等,通过综合判断来确定最佳控制策略,以提高空调系统的可靠性和稳定性。
3.3 智能化控制策略
利用智能化技术,如人工智能、模糊控制等方法,对电动压缩机的运行状态进行智能化调控,实现更精确、高效的能源利用。
4. 实验验证与结论
通过实际的测试和验证,对比不同的电动压缩机控制策略的性能和效能。
根据实验结果进行数据分析,并提出优化建议,为新能源汽车空调电动压缩机的控制策略提供有力的参考。
5. 结语
新能源汽车空调电动压缩机的控制策略研究对于提高空调系统的
性能,节约能源,减少环境污染具有重要意义。
通过控制策略的选择
和优化,可以提高电动压缩机的工作效率,同时满足乘客的舒适需求。
(正文字数:415字)。