2022年九年级数学中考几何证明题

合集下载

2022-2023学年九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)

2022-2023学年九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)

2022-2023学年九年级数学中考复习《几何图形变换综合压轴题》专题提升训练(附答案)1.如图,已知∠DAC=90°,△ABC是等边三角形,点P为射线AD上任意一点(点P与点A不重合),连接CP,将线段CP绕点C顺时针旋转60°得到线段CQ,连接QB并延长交直线AD于E.(1)如图1,猜想∠QEP=;(2)如图2,若当∠DAC是锐角时,其他条件不变,猜想∠QEP的度数,并证明;(3)如图3,若∠DAC=135°,∠ACP=15°,且AC=6,求BQ的长.2.如图1,在等腰△ABC中,AB=AC,AD为中线,将线段AC绕点A逆时针旋转90°,得到线段AE,连接BE交直线AD于点F,连接CF.(1)若∠BAC=30°,则∠FBC=°;(2)若∠BAC是钝角时,①请在图2中依题意补全图形,并标出对应字母;②探究图2中△BCF的形状,并说明理由;③若AB=5,BC=8,则EF=.3.在△ABC中,AB=AC,∠BAC=90°,点D在射线BC上(不与点B、点C重合),将线段AD绕A逆时针旋转90°得到线段AE,作射线BA与射线CE,两射线交于点F.(1)若点D在线段BC上,如图1,请直接写出CD与EF的关系.(2)若点D在线段BC的延长线上,如图2,(1)中的结论还成立吗?请说明理由.(3)在(2)的条件下,连接DE,G为DE的中点,连接GF,若tan∠AEC=,AB=,求GF的长.4.已知△ABC中,∠ABC=90°,将△ABC绕点B逆时针旋转90°后,点A的对应点为点D,点C的对应点为点E,直线DE与直线AC交于点F,连接FB.(1)如图1,当∠BAC<45°时,①求证:DF⊥AC;②求∠DFB的度数;(2)如图2,当∠BAC>45°时,①请依意补全图2;②用等式表示线段FC,FB,FE之间的数量关系,并证明.5.实验探究:如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,BD、CE延长线交于点P.【问题发现】(1)把△ABC绕点A旋转到图1,BD、CE的关系是(“相等”或“不相等”),请直接写出答案;【类比探究】(2)若AB=3,AD=5,把△ABC绕点A旋转,当∠EAC=90°时,在图中作出旋转后的图形,并求出此时PD的长;【拓展延伸】(3)在(2)的条件下,请直接写出旋转过程中线段PD的最小值为.6.如图,在平面直角坐标系中,点O为坐标原点,点A(0,3)与点B关于x轴对称,点C(n,0)为x轴的正半轴上一动点.以AC为边作等腰直角三角形ACD,∠ACD=90°,点D在第一象限内.连接BD,交x轴于点F.(1)如果∠OAC=38°,求∠DCF的度数;(2)用含n的式子表示点D的坐标;(3)在点C运动的过程中,判断OF的长是否发生变化?若不变求出其值,若变化请说明理由.7.[问题背景]如图1所示,在△ABC中,AB=BC,∠ABC=90°,点D为直线BC上的一个动点(不与B、C重合),连接AD,将线段AD绕点D按顺时针方向旋转90°,使点A旋转到点E,连接EC.[问题初探]如果点D在线段BC上运动,通过观察、交流,小明形成了以下的解题思路:过点E作EF⊥BC交直线BC于F,如图2所示,通过证明△DEF≌△,可推证△CEF是三角形,从而求得∠DCE=°.[继续探究]如果点D在线段CB的延长线上运动,如图3所示,求出∠DCE的度数.[拓展延伸]连接BE,当点D在直线BC上运动时,若AB=,请直接写出BE的最小值.8.如图,在等边△ABC中,点D为BC的中点,点E为AD上一点,连EB、EC,将线段EB绕点E顺时针旋转至EF,使点F落在BA的延长线上.(1)在图1中画出图形:①求∠CEF的度数;②探究线段AB,AE,AF之间的数量关系,并加以证明;(2)如图2,若AB=4,点G为AC的中点,连DG,将△CDG绕点C顺时针旋转得到△CMN,直线BM、AN交于点P,连CP,在△CDG旋转一周过程中,请直接写出△BCP 的面积最大值为.9.在△ABC中,点P为BC边中点,直线a绕顶点A旋转,BM⊥直线a于点M.CN⊥直线a于点N,连接PM,PN.(1)如图1,若点B,P在直线a的异侧,延长MP交CN于点E.求证:PM=PE;(2)若直线a绕点A旋转到图2的位置时,点B,P在直线a的同侧,其它条件不变,此时S△BMP+S△CNP=7,BM=1,CN=3,求MN的长度.(3)若过P点作PG⊥直线a于点G,试探究线段PG、BM和CN的数量关系.10.在Rt△ABC中与Rt△DCE中,∠ACB=∠DCE=90°,∠BAC=∠DEC=30°,AC=DC=,将Rt△DCE绕点C顺时针旋转,连接BD,AE,点F,G分别是BD,AE的中点,连接CF,CG.(1)观察猜想如图1,当点D与点A重合时,CF与CG的数量关系是,位置关系是;(2)类比探究当点D与点A不重合时,(1)中的结论是否成立?如果成立,请仅就图2的情形给出证明;如果不成立,请说明理由.(3)问题解决在Rt△DCE旋转过程中,请直接写出△CFG的面积的最大值与最小值.11.如图1,Rt△ABC中,∠C=90°,点E是AB边上一点,且点E不与A、B重合,ED ⊥AC于点D.(1)当sin B=时,①求证:BE=2CD;②当△ADE绕点A旋转到如图2的位置时(60°<∠CAD<90°),BE=2CD是否成立?若成立,请给出证明;若不成立,请说明理由.(2)当sin B=时,将△ADE绕点A旋转到∠DEB=90°,若AC=10,AD=2,请直接写出线段CD的长.12.如图,已知点A(0,8),B(16,0),点P是x轴上的一个动点(不与原点O重合),连接AP,把△OAP沿着AP折叠后,点O落在点C处,连接PC,BC,设P(t,0).(1)如图1,当AP∥BC时,试判断△BCP的形状,并说明理由.(2)在点P的运动过程中,当∠PCB=90°时,求t的值.(3)如图2,过点B作BH⊥直线CP,垂足为点H,连接AH,在点P的运动过程中,是否存在AH=BC?若存在,求出t的值:若不存在,请说明理由.13.如图,点B,C,D在同一条直线上,△BCF和△ACD都是等腰直角三角形.连接AB,DF,延长DF交AB于点E.(1)如图1,若AD=BD,DE是△ABD的平分线,BC=1,求CD的长度;(2)如图2,连接CE,求证:DE=CE+AE;(3)如图3,改变△BCF的大小,始终保持点F在线段AC上(点F与点A,C不重合).将ED绕点E顺时针旋转90°得到EP.取AD的中点O,连接OP.当AC=2时,直接写出OP长度的最大值.14.综合与实践问题情境从“特殊到一般”是数学探究的常用方法之一,类比特殊图形中的数量关系和探究方法可以发现一般图形具有的普遍规律.如图1,在△ABC中,∠ACB=90°,AC=BC,AD为BC边上的中线,E为AD上一点,将△AEC以点C为旋转中心,逆时针旋转90°得到△BFC,AD的延长线交线段BF于点P.探究线段EP,FP,BP之间的数量关系.数学思考(1)请你在图1中证明AP⊥BF;特例探究(2)如图2,当CE垂直于AD时,求证:EP+FP=2BP;类比再探(3)请判断(2)的结论在图1中是否仍然成立?若成立,请证明;若不成立,请说明理由.15.在Rt△ABC中,AB=AC,OB=OC,∠A=90°,∠MON=α,分别交直线AB、AC于点M、N.(1)如图1,当α=90°时,求证:AM=CN;(2)如图2,当α=45°时,求证:BM=AN+MN;(3)当α=45°时,旋转∠MON至图3位置,请你直接写出线段BM、MN、AN之间的数量关系.16.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.2.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.如图,直线MN 是线段AB的垂直平分线,P是MN上任一点,连接P A、PB.将线段AB沿直线MN对折,我们发现P A与PB完全重合.由此即有:线段垂直平分线的性质定理线段:垂直平分线上的点到线段两端的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点求证:P A=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证得P A =PB.(1)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程;(2)如图②,在△ABC中,直线l,m,n分别是边AB,BC,AC的垂直平分线.求证:直线l、m、n交于一点;(请将下面的证明过程补充完整)证明:设直线l,m相交于点O.(3)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=15,则DE的长为.17.如图,在平面直角坐标系中,点O为坐标原点,点A(x,y)中的横坐标x与纵坐标y 满足+|y﹣8|=0,过点A作x轴的垂线,垂足为点D,点E在x轴的负半轴上,且满足AD﹣OD=OE,线段AE与y轴相交于点F,将线段AD向右平移8个单位长度,得到线段BC.(1)直接写出点A和点E的坐标;(2)在线段BC上有一点G,连接DF,FG,DG,若点G的纵坐标为m,三角形DFG 的面积为S,请用含m的式子表示S(不要求写m的取值范围);(3)在(2)的条件下,当S=26时,动点P从D出发,以每秒1个单位的速度沿着线段DA向终点A运动,动点Q从A出发,以每秒2个单位的速度沿着折线AB→BC向终点C运动,P,Q两点同时出发,当三角形FGP的面积是三角形AGQ面积的2倍时,求出P点坐标18.如图1,在Rt△ACB中,AC=BC,过B点作BD⊥CD于D点,AB交CD于E.(1)如图1,若AC=6,tan∠ACD=2,求DE的长;(2)如图2,若CE=2BD,连接AD,在AD上找一点F,使CF=DF,在FD上取一点G,使∠EGF=∠CFG,求证:AF=EG;(3)如图3,D为线段BC上方一点,且∠BDC=90°,AC=6,连接AD,将AD绕A 点逆时针旋转90°,D点对应点为E点,H为DE中点,求当AH有最小值时,直接写出△ACH的面积.19.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,当△DCE旋转至点A,D,E在同一直线上,连接BE.则:①∠AEB的度数为°;②线段AD、BE之间的数量关系是.(2)拓展研究:如图2,△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=90°,点A、D、E在同一直线上,若AD=a,AE=b,AB=c,求a、b、c之间的数量关系.(3)探究发现:图1中的△ACB和△DCE,在△DCE旋转过程中,当点A,D,E不在同一直线上时,设直线AD与BE相交于点O,试在备用图中探索∠AOE的度数,直接写出结果,不必说明理由.20.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到.小明在数学学习中遇到了这样一个问题:“如图1,Rt△ABC中,∠ACB=90°,∠CAB=α,点P在AB边上,过点P作PQ⊥AC于点Q,△APQ绕点A逆时针方向旋转,如图2,连接CQ.O 为BC边的中点,连接PO并延长到点M,使OM=OP,连接CM.探究在△APQ的旋转过程中,线段CM,CQ之间的数量关系和位置关系”小明计划采用从特殊到一般的方法探究这个问题.特例探究:(1)填空:如图3,当α=30°时,=,直线CQ与CM所夹锐角的度数为;如图4,当α=45°时,=,直线CQ与CM所夹锐角的度数为;一般结论:(2)将△APQ绕点A逆时针方向旋转的过程中,线段CQ,CM之间的数量关系如何(用含α的式子表示)?直线CQ与CM所夹锐角的度数是多少?请仅就图2所示情况说明理由;问题解决(3)如图4,在Rt△ABC中,若AB=4,α=45°,AP=3,将△APQ由初始位置绕点A逆时针方向旋转β角(0°<β<180°),当点Q到直线AC的距离为2时,请直接写出线段CM的值.参考答案1.解:(1)∠QEP=60°;证明:如图1,QE与CP的交点记为M,∵PC=CQ,且∠PCQ=60°,∴∠PCQ=∠ACB=60°,∴∠BCQ=∠ACP,则△CQB和△CP A中,,∴△CQB≌△CP A(SAS),∴∠CQB=∠CP A,在△PEM和△CQM中,∠EMP=∠CMQ,∴∠QEP=∠QCP=60°.故答案为:60°;(2)∠QEP=60°.理由如下:如图2,∵△ABC是等边三角形,∴AC=BC,∠ACB=60°,∵线段CP绕点C顺时针旋转60°得到线段CQ,∴CP=CQ,∠PCQ=6O°,∴∠ACB+∠BCP=∠BCP+∠PCQ,即∠ACP=∠BCQ,在△ACP和△BCQ中,,∴△ACP≌△BCQ(SAS),∴∠APC=∠Q,∵∠BOP=∠COQ,∴∠QEP=∠PCQ=60°;(3)作CH⊥AD于H,如图3,与(2)一样可证明△ACP≌△BCQ,∴AP=BQ,∵∠DAC=135°,∠ACP=15°,∴∠APC=30°,∠PCB=45°,∴∠HAC=45°,∴△ACH为等腰直角三角形,∴AH=CH=AC=3,在Rt△PHC中,PH=CH=3,∴P A=PH﹣AH=3﹣3,∴BQ=3﹣3.2.解:(1)如图1中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=(180°﹣30°)=75°,∵AE⊥AC,∴∠EAC=90°,∴∠BAE=30°+90°=120°,∵AB=AE,∴∠ABE=∠E=(180°﹣120°)=30°,∴∠FBC=∠ABC﹣∠ABF=75°﹣30°=45°.故答案为:45.(2)①图形如图2所示.②结论:△BCF是等腰直角三角形理由如下:如图2中,∵AB=AC,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线,∴FB=FC,又AB=AC,AF=AF,∴△ABF≌△ACF(SSS),∴∠1=∠2,由旋转可知AE=AC,又AB=AC,∴AB=AE,∴∠1=∠3,∴∠2=∠3.又∠4=∠5,∴∠CFE=∠CAE=90°即∠CFB=90°,又FB=FC,∴△BCF为等腰直角三角形.③如图3中,作EH⊥DF交DF的延长线于H.∵AB=AC=5,BD=CD=4,∴AD⊥BC,∴∠ADB=90°,∴AD===3,∵∠ADC=∠EAC=∠H=90°,∴∠DAC+∠ACD=90°,∠DAC+∠HAE=90°,∴∠ACD=∠HAE,∵AE=AC,∴△ADC≌△EHA(AAS),∴EH=AD=3,∵△BDF是等腰直角三角形,FD⊥BC,∴∠DFB=∠BFC=45°,∴∠HEF=∠HFE=45°,∵∠H=90°,∴∠EHF=∠HFE=45°,∴EH=FH=3,∴EF=EH=,故答案为:3.3.解:(1)CD=EF,CD⊥EF,理由如下:∵AB=AC,∠BAC=90°,∴∠ABC∠ACB=45°,∵将线段AD绕A逆时针旋转90°得到线段AE,∴AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴BD=CE,∠ABD=∠ACE=45°,∴∠BCF=∠ACB+∠ACE=90°,∴CD⊥EF,又∵∠ABC=45°,∴∠BFC=∠ABC,∴BC=CF,∴CD=EF;(2)结论仍然成立,理由如下:∵AB=AC,∠BAC=90°,∴∠ABC∠ACB=45°,∵将线段AD绕A逆时针旋转90°得到线段AE,∴AD=AE,∠DAE=90°=∠BAC,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS)∴BD=CE,∠ABD=∠ACE=45°,∴∠BCF=∠ACB+∠ACE=90°,∴CD⊥EF,又∵∠ABC=45°,∴∠BFC=∠ABC,∴BC=CF,∴CD=EF;(3)如图,过点A作AN⊥CE于点N,过点G作GH⊥CE于H,∵AB=AC=,∴BC=CF=2,∵AN⊥CE,∠ACF=45°,∴AN=CN=1,∵tan∠AEC==,∴EN=2,∴EC=CN+EN=3,∴EF=EC﹣CF=1=CD,∵GH⊥CE,∠ECD=90°,∴HG∥CD,∴==,且EG=DG,∴HG=,EH=,∴FH=EH﹣EF=∴GF===4.解(1)①由旋转知,∠ABD=∠ABC=90°,∠D=∠A,∴∠D+∠BED=90°,∴∠A+∠BED=90°,∵∠BED=∠AEF,∴∠A+∠AEF=90°,∴∠AFE=90°,∴DF⊥AC;②如图1,过点B作BG⊥BF交DF于G,∴∠FBG=90°,由旋转知,∠D=∠A,BD=AB,∠ABD=90°,∴∠FBG=∠ABD,∴∠DBG=∠ABF,∴△BDG≌△BAF(ASA),∴BG=BF,∵∠FBG=90°,∴∠BFD=45°;(2)①如图2所示,②CF﹣EF=BF.过点B作BG⊥BF交AC于G,∴∠FBG=90°,由旋转知,∠C=∠E,BC=BE,∵∠ABC=90°,∴∠FBG=∠ABC,∴∠CBG=∠EBF,∴△BCG≌△BEF(ASA),∴CG=EF,BG=BF,∵∠FBG=90°,∴∠BFD=45°,∴FG=BF,∵CF=FG+CG,∴FG=CF﹣CG=CF﹣EF=BF,即:CF﹣EF=BF.5.解:(1)BD、CE的关系是相等.理由:∵△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,∠BAD=∠CAE,DA=EA,∴△ABD≌△ACE(SAS)∴BD=CE.故答案为:相等.(2)如图2,3即为旋转后的图形.①如图2,当C在AD上时,由(1)知△ABD≌△ACE,∴∠ADB=∠AEC又∵∠PCD=∠ACE,∴△PCD∽△ACE,∴又∵CE===CD=AD﹣AC=5﹣3=2∴,解得;如图3,当C在AD反向延长线上时,同理△PEB∽△ABD=∵BD=BE=AE﹣AB=5﹣3=2∴=解得PB=∴PD=DB+PB=+=.答:此时PD的长为或.(3)如图4所示,以点A为圆心,AC长为半径画圆,当CE在圆A下方与圆A相切时,PD的值最小.在Rt△ACE中,CE===4在Rt△ADE中,DE===5∵四边形ABPC是正方形,∴PC=AB=3∴PE=PC+CE=3+4=7在Rt△DEP中,PD===1∴线段PD的最小值为1.故答案为:1.6.解:(1)∵∠AOC=90°,∴∠OAC+∠ACO=90°,∵∠ACD=90°,∴∠DCF+∠ACO=90°,∴∠DCF=∠OAC,∵∠OAC=38°,∴∠DCF=38°;(2)如图,过点D作DH⊥x轴于H,∴∠CHD=90°∴∠AOC=∠CHD=90°,∵等腰直角三角形ACD,∠ACD=90°∴AC=CD,由(1)知,∠DCF=∠OAC,∴△AOC≌△CHD(AAS),∴OC=DH=n,AO=CH=3,∴点D的坐标(n+3,n);(3)不会变化,理由:∵点A(0,3)与点B关于x轴对称,∴AO=BO,又∵OC⊥AB,∴x轴是AB垂直平分线,∴AC=BC,∴∠BAC=∠ABC,又∵AC=CD,∴BC=CD,∴∠CBD=∠CDB,∵∠ACD=90°,∴∠ACB+∠DCB=270°,∴∠BAC+∠ABC+∠CBD+∠CDB=90°,∴∠ABC+∠CBD=45°,∵∠BOF=90°,∴∠OFB=45°,∴∠OBF=∠OFB=45°,∴OB=OF=3,∴OF的长不会变化.7.解:[问题初探]如图2,过点E作EF⊥BC交直线BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEF是等腰直角三角形,∴∠ECF=45°,∴∠DCE=135°,故答案为:ADB,等腰直角,135;[继续探究]如图3,过点E作EF⊥BC于F,∴∠DFE=90°=∠ABD,∴∠EDF+∠DEF=90°,由旋转知,AD=DE,∠ADE=90°,∴∠ADB+∠EDF=90°,∴∠ADB=∠DEF,∴△ABD≌△DFE(AAS),∴BD=EF,DF=AB,∵AB=BC,∴BC=DF,∴BD=CF,∴EF=CF,∴△CEF是等腰直角三角形,∴∠ECF=45°,∴∠DCE=45°;[拓展延伸]如图4,在△ABC中,∠ABC=90°,AB=BC=,∴∠ACB=45°当点D在射线BC上时,由[问题初探]知,∠BCM=135°,∴∠ACM=∠BCM﹣∠ACB=90°,当点D在线段CB的延长线上时,由[继续探究]知,∠BCE=45°,∴∠ACN=∠ACB+∠BCM=90°,∴点E是过点C垂直于AC的直线上的点,∴当BE⊥MN时,BE最小,∵∠BCE=45°,∴∠CBE=45°=∠BCE,∴BE=CE,∴BE最小=BC=,即:BE的最小值为.8.解:(1)如图1所示:延长BE,①∵等边△ABC中,点D为BC的中点,∴AD是BC的垂直平分线,∠BAD=∠CAD=30°,∴BE=CE,∴∠EBC=∠ECB,∵将线段EB绕点E顺时针旋转至EF,∴BE=EF,∴∠EBF=∠EFB,∵∠CEF=∠FEH+∠HEC=∠EBF+∠BFE+∠EBC+∠ECB=2∠ABE+2∠EBC,∴∠CEF=2∠ABC=120°;②AB=AF+AE,理由如下:如图1﹣1,在AB上截取BM=AF,连接ME,过点E作EN⊥AB于N,∵BM=AF,∠AFE=∠EBM,BE=EF,∴△BME≌△F AE(SAS),∴AE=EM,又∵EN⊥AB,∴AN=MN=AM,∵∠BAD=30°,∴AE=2NE,AN=NE,∴AN=AE,∴AM=AE,∴AB=BM+AM=AF+AE;(3)如图2,∵△ABC是等边三角形,AB=4,点G为AC的中点,∴AC=BC,∠ACB=60°,CG=CD=2,∵将△CDG绕点C顺时针旋转得到△CMN,∴CM=CN=CG=CD=2,∠MCN=∠ACB=60°,∴∠ACN=∠BCM,∴△BCM≌△ACN(SAS),∴∠CAN=∠CBM,∴点A,点B,点C,点P四点共圆,∴∠BPC=∠BAC=60°,∵将△CDG绕点C顺时针旋转得到△CMN,∴点M在以点C为圆心,CM为半径的圆上,∴当BM与⊙C相切于点M时,△BCP的面积有最大值,如图所示,过点P作PH⊥BC 于H,∵BM是⊙C的切线,∴∠BMC=90°=∠PMC,又∵∠BPC=60°,∴∠PCM=30°,∴CM=PM=2,∴MP=,∵BM===2,∴BP=BM+MP=,∵sin∠PBC=,∴PH==,∴△BCP的面积最大值=×4×=,故答案为.9.(1)证明:如图1中,∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMA=∠CNM=90°,∴BM∥CN,∴∠MBP=∠ECP,又∵P为BC边中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE(ASA),∴PM=PE(2)解:延长MP与NC的延长线相交于点E.∵BM⊥直线a于点M,CN⊥直线a于点N,∴∠BMN=∠CNM=90°∴∠BMN+∠CNM=180°,∴BM∥CN∴∠MBP=∠ECP,又∵P为BC中点,∴BP=CP,又∵∠BPM=∠CPE,∴△BPM≌△CPE(ASA),∴PM=PE,S△PBM=S△PCE,∴AE=CN+CE=4,∵S△BMP+S△CNP=7,∴S△PNE=7,∴S△MNE=2S△PNE=14,∴×MN×4=14,∴MN=7.(3)解:如图1﹣1中,当点B,P在直线a的异侧时,∵PG⊥a,CN⊥a,∴PG∥CN,∵PM=PE,∴MG=GN,∴PG=EN=(CN﹣EC),∵EC=BM,∴PG=(CN﹣BM).如图2﹣2中,当点B,P在直线a的同侧时,延长MP交NC的延长线于Q.∵PG⊥a,CN⊥a,∴PG∥CN,∵BM∥CQ,∴∠BMP=∠Q,∵∠BPM=∠CPQ,BP=CP,∴△PMB≌△PQC(AAS),∴PM=PQ,BM=CQ,∴MG=GN,∴PG=AQ=(CN+BM).综上所述,PG=(CN﹣BM)或PG=(CN+BM).10.解:(1)观察猜想∵在Rt△ABC中与Rt△DCE中,∠ACB=∠DCE=90°,∠BAC=∠DEC=30°,AC =DC=,∴AE=2DC=2,AC=BC=,AB=2BC,∠CDE=60°,∴BC=1,AB=2,∵点F,G分别是BD,AE的中点,∴CG=AE=,CG=AG,CF=AB=1,CF=AF,∴CG=CF,∠GDC=∠GCD=60°,∠ACF=∠F AC=30°,∴∠FCG=90°,∴CF⊥CG,故答案为:CG=CF,CF⊥CG;(2)类比探究仍然成立,理由如下:∵∠ACB=∠DCE=90°,∠BAC=∠DEC=30°,AC=DC=,∴∠BCD=∠ACE,AC=BC,CE=CD,∴=,∴△BCD∽△ACE,∴,∠CAE=∠CBD,∵点F,G分别是BD,AE的中点,∴BF=BD,AG=AE,∴∴△ACG∽△BCF,∴,∠BCF=∠ACG,∴CG=CF,∠ACB=∠FCG=90°,∴CF⊥CG;(3)问题解决如图,延长BC至H,使BC=CH=1,连接DH,∵点F是BD中点,BC=CH=1,∴CF=DH,由(2)可知,CF⊥CG,∴△CFG的面积=×CF×CG=CF2,∴△CFG的面积=DH2,∴当DH取最大值时,△CFG的面积有最大值,当DH取最小值时,△CFG的面积有最小值,∵CD=,∴点D在以点C为圆心,为半径的圆上,∴当点D在射线HC的延长线上时,DH有最大值为+1,∴△CFG的面积最大值=(+1)2=,当点D在射线CH的延长线上时,DH有最小值为﹣1,∴△CFG的面积最小值=(﹣1)2=.11.解:(1)∵Rt△ABC中,∠C=90°,sin B=,∴∠B=30°,∴∠A=60°,①如图1,过点E作EH⊥BC于点H,∵ED⊥AC∴∠ADE=∠C=90°,∴四边形CDEH是矩形,即EH=CD,∴在Rt△BEH中,∠B=30°,∴BE=2EH∴BE=2CD;②BE=2CD成立,理由:∵△ABC和△ADE都是直角三角形,∴∠BAC=∠EAD=60°,∴∠CAD=∠BAE,又∵,,∴,∴△ACD∽△ABE,∴,又∵Rt△ABC中,=2,∴=2,即BE=2CD;(2)∵sin B=,∴∠ABC=∠BAC=∠DAE=45°,∵ED⊥AD,∴∠AED=∠BAC=45°,∴AD=DE,AC=BC,将△ADE绕点A旋转∠DEB=90°,分两种情况:①如图3所示,过A作AF⊥BE交BE的延长线于F,则∠F=90°,当∠DEB=90°时,∠ADE=∠DEF=90°,又∵AD=DE,∴四边形ADEF是正方形,∴AD=AF=EF=2,∵AC=10=BC,根据勾股定理得,AB=10,在Rt△ABF中,BF==6,∴BE=BF﹣EF=4,又∵△ABC和△ADE都是直角三角形,且∠BAC=∠EAD=45°,∴∠CAD=∠BAE,∵,,∴,∴△ACD∽△ABE,∴=,即=,∴CD=2;②如图4所示,过A作AF⊥BE于F,则∠AFE=∠AFB=90°,当∠DEB=90°时,∠DEB=∠ADE=90°,又∵AD=ED,∴四边形ADEF是正方形,∴AD=EF=AF=2,又∵AC=10=BC,∴AB=10,在Rt△ABF中,BF==6,∴BE=BF+EF=8,又∵△ACD∽△ABE,∴=,即=,∴CD=4,综上所述,线段CD的长为2或4.12.解:(1)等腰直角三角形,理由如下:∵AP∥BC,∴∠APC=∠BCP,∠APO=∠CBP,∵△OAP沿着AP折叠,∴∠APO=∠APC,OP=PC,∴∠PCB=∠PBC,∴PC=PB=OP=8,∴△BCP是等腰三角形,∵OA=OP=8,∴∠OP A=∠APC=45°,∴∠OPC=90°,∴△BCP是等腰直角三角形;(2)当t>0时,如图,∵△OAP沿着AP折叠,∴∠AOP=∠ACP=90°,OP=PC=t,∴∠ACP+∠BCP=180°,∴点A,点C,点B三点共线,∵点A(0,8),B(16,0),∴OA=8,OB=16,∴AB===8,∵tan∠ABO=,∴,∴t=4﹣4;当t<0时,如图,同理可求:t=﹣4﹣4;(3)∵△OAP沿着AP折叠,∴AC=AO=8,∠ACP=∠AOP=90°,∵BH⊥CP,∴∠ACP=∠BHC=90°,∵AH=BC,CH=CH,∴Rt△ACH≌Rt△BHC(HL)∴AC=BH,∴四边形AHBC是平行四边形,如图2,当0≤t≤16时,点H在PC上时,连接AB交CH于G,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t﹣8)2,∴t=8;如图3,当0≤t≤16时,点H在PC的延长线上时,∵四边形AHBC是平行四边形,∴AG=BG=4,HG=CG,AC=BH=8,∴HG===4,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=;如图4,当t<0时,同理可证:四边形ABHC是平行四边形,又∵AH=BC,∴四边形ABHC是矩形,∴AC=BH=8,AB=CH=8,在Rt△PHB中,PB2=BH2+PH2,∴(16﹣t)2=64+(t+8)2,∴t=16﹣8;当t>16时,如图5,∵四边形ABHC是矩形,∴AC=BH=8,AB=CH=8,CP=OP=t,在Rt△PHB中,PB2=BH2+PH2,∴(t﹣16)2=64+(t﹣8)2,∴t=16+8.综上所述:当t=8或或16﹣8或16+8时,存在AH=BC.13.(1)解:∵△BCF和△ACD都是等腰直角三角形,∴AC=CD,FC=BC=1,FB=,∵AD=BD,DE是△ABD的平分线,∴DE垂直平分AB,∴F A=FB=,∴AC=F A+FC=,∴CD=;(2)证明:如图2,过点C作CH⊥CE交ED于点H,∵△BCF和△ACD都是等腰直角三角形,∴AC=DC,FC=BC,∠ACB=∠DCF=90°;∴△ABC≌△DFC(SAS),∴∠BAC=∠CDF,∵∠ECH=90°,∴∠ACE+∠ACH=90°,∵∠ACD=90°,∴∠DCH+∠ACH=90°,∴∠ACE=∠DCH.在△ACE和△DCH中,,∴△ACE≌△DCH(ASA),∴AE=DH,CE=CH,∴EH=CE.∵DE=EH+DH=CE+AE;(3)解:如图3,连接OE,将OE绕点E顺时针旋转90°得到EQ,连接OQ,PQ,则OQ=OE.由(2)知,∠AED=∠ABC+∠CDF=∠ABC+∠BAC=90°,在Rt△AED中,点O是斜边AD的中点,∴OE=OD=AD=AC=,∴OQ=OE=,在△OED和△QEP中,,∴△OED≌△QEP(SAS),∴PQ=OD=.∵OP≤OQ+PQ=,当且仅当O、P、Q三点共线时,取“=”号,∴OP的最大值是.14.证明:(1)如图1,∵将△AEC以点C为旋转中心,逆时针旋转90°得到△BFC,∴△AEC≌△BFC,∴∠CAE=∠CBF,∵∠ACB=90°,∴∠CAE+∠EAB+∠CBA=90°,∴∠CBF+∠EAB+∠CBA=90°,∴∠APB=90°,∴AP⊥BF;(2)如图2,∵CE⊥AD,∴∠AEC=90°=∠CEP,∵将△AEC以点C为旋转中心,逆时针旋转90°得到△BFC,∴△AEC≌△BFC,∠ECF=90°,∴∠AEC=∠BFC=90°,CE=CF,∴四边形CEPF是正方形,∴EP=PF=CE=CF,∠EPF=90°,∵AD为BC边上的中线,∴CD=BD,又∵∠CDE=∠BDP,∠CED=∠BPD=90°,∴△CDE≌△BDP(AAS),∴CE=BP,∴EP=PF=BP,∴EP+FP=2BP;(3)结论仍然成立,理由如下:如图1,过点C作CN⊥AD于N,作CM⊥BF,交BF的延长线于M,∵将△AEC以点C为旋转中心,逆时针旋转90°得到△BFC,∴∠CAE=∠CBF,CE=CF,∵∠ACB=90°,∴∠CAE+∠EAB+∠CBA=90°,∴∠CBF+∠EAB+∠CBA=90°,∴∠APB=90°,又∵CN⊥AD,CM⊥BM,∴四边形CNPM是矩形,∵∠CAE=∠CBF,∠ANC=∠BMC=90°,AC=BC,∴△ACN≌△BCM(AAS),∴CM=CN,∴四边形CNPM是正方形,∴CN=CM=NP=MP,∵AD为BC边上的中线,∴CD=BD,又∵∠CDN=∠BDP,∠CND=∠BPD=90°,∴△CDN≌△BDP(AAS),∴CN=BP,∴CN=BP=NP=MP,∴EP+FP=EN+NP+FP=NP+MF+PF=NP+MP=2BP.15.证明:(1)如图1,连接OA,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠MON=∠AOC=90°,∴∠AOM=∠CON,且AO=CO,∠BAO=∠ACO=45°,∴△AOM≌△CON(ASA)∴AM=CN;(2)证明:如图2,在BA上截取BG=AN,连接GO,AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∵BG=AN,∠ABO=∠NAO=45°,AO=BO,∴△BGO≌△AON(SAS),∴OG=ON,∠BOG=∠AON,∵∠MON=45°=∠AOM+∠AON,∴∠AOM+∠BOG=45°,∵∠AOB=90°,∴∠MOG=∠MON=45°,∵MO=MO,GO=NO,∴△GMO≌△NMO(SAS),∴GM=MN,∴BM=BG+GM=AN+MN;(3)MN=AN+BM,理由如下:如图3,过点O作OG⊥ON,连接AO,∵AB=AC,∠BAC=90°,OB=OC,∴AO⊥BC,OA=OB=OC,∠ABO=∠ACO=∠BAO=∠CAO=45°,∴∠GBO=∠NAO=135°,∵MO⊥GO,∴∠NOG=90°=∠AOB,∴∠BOG=∠AON,且AO=BO,∠NAO=∠GBO,∴△NAO≌△GBO(ASA),∴AN=GB,GO=ON,∵MO=MO,∠MON=∠GOM=45°,GO=NO,∴△MON≌△MOG(SAS),∴MN=MG,∵MG=MB+BG,∴MN=AN+BM.16.证明:(1)如图①中,∵MN⊥AB,∴∠PCA=∠PCB=90°.在△P AC和△PBC中,,∴△P AC≌△PBC(SAS),∴P A=PB.(2)如图②中,设直线l、m交于点O,连接AO、BO、CO.∵直线l是边AB的垂直平分线,又∵直线m是边BC的垂直平分线,∴OB=OC,∴OA=OC,∴点O在边AC的垂直平分线n上,∴直线l、m、n交于点O.(3)解:如图③中,连接BD,BE.∵BA=BC,∠ABC=120°,∴∠A=∠C=30°,∵边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,∴DA=DB,EB=EC,∴∠A=∠DBA=30°,∠C=∠EBC=30°,∴∠BDE=∠A+∠DBA=60°,∠BED=∠C+∠EBC=60°,∴△BDE是等边三角形,∴AD=BD=DE=BE=EC,∵AC=15,∴DE=AC=5.故答案为5.17.解:(1)∵+|y﹣8|=0,又∵≥0,|y﹣8|≥0,∴x=2,y=8,∴A(2,8),∵AD⊥x轴,∴OD=2,AD=8,∵AD﹣OD=OE,∴E(﹣6,0).(2)如图1中,连接OG.由题意G(10,m).∵AD=DE=8,∠ADE=90°,∴∠AED=45°,∴∠OEF=∠OFE=45°,∴OE=OF=6,∴F(0,6),∴S=S△ODG+S△OFG﹣S△OFD=×2×m+×6×10﹣×2×6=m+24(0≤m≤8).(3)如图2中,设FG交AD于J,P(2,t),当点P在DJ上,点Q在AB上时,当S=26时,m=2,∴G(10,2),∴直线FG的解析式为y=﹣x+6,∴J(2,),由题意,•(﹣t)×10=2××2t×6,解得t=,∴P(2,),当点P在AJ上,点Q在BG上时,同法可得,•(t﹣)×10=2××(14﹣2t)×8,解得t=,∴P(2,).综上所述,满足条件的点P的坐标为(2,)或(2,).18.解:(1)如图1中,过点E作EH⊥BC于H.∵BD⊥CD,∴∠D=90°,∵∠ACB=90°,∴∠ACD+∠DCB=90°,∠DCB+∠DBC=90°,∴∠ACD=∠DBC,∴tan∠DBC=tan∠ACD=2,∴=2,∵AC=BC=6,∴BD=,CD=,∵EH⊥BC,∠EBH=45°,∴∠EHB=90°,∠EHB=∠HBE=45°,∴EH=BH,设EH=BH=m,则HC=2EH=2m,∴3m=6,∴m=2,∴EH=2,CH=4,∴EC===2,∴DE=CD﹣CE=﹣2=.(2)如图2中,过点A作AT⊥CE于T,在AG上取一点J,使得EJ=EG.∵EJ=EG,∴∠EJG=∠EGJ,∵∠CFG=EGJ,∴∠CFG=∠EJG,∴∠AFC=∠AJE,∵∠ATC=∠CDB=∠ACB=90°,∴∠ACT+∠DCB=90°,∠DCB+∠CBD=90°,∴∠ACT=∠CBD,∵AC=BC,∴△ATC≌△CDB(AAS),∴CT=BD,∵EC=2BD,∴CT=ET,∵AT⊥EC,∴AC=AE,∴∠ACT=∠AEC,∴∠ACF+∠FCD=∠EAJ+∠FDC,∵FC=FD,∴∠FCD=∠FDC,∴∠ACF=∠EAJ,∴△ACF≌△EAJ(AAS),∴AF=EJ=EG.(3)如图3中,取BC的中点T,连接DT,AT.∵AC=BC=6,∠ACT=90°,CT=TB=3,∴AT===3,∵CD⊥BD,∴∠CDB=90°,∴DT=BC=3,∴AD≥AT﹣DT,∴AD≥3﹣3,∴AD的最小值为3﹣3,∵△ADE是等腰直角三角形,AH⊥DE,∴DH=EH,∴AH=DE=AD,∴AH的最小值为﹣,此时,A,D,T共线,如图3﹣1中,过点D作DQ⊥AC于Q,过点E作EP⊥CA交CA 的延长线于P,过点H作HJ⊥AC于J.∵DQ∥CT,∴==,∴==,∴DQ=,AQ=,由△AQD≌△EPQ,可得PE=AQ=,∵EP∥HJ∥DQ,EH=HD,∴PJ=JQ,∴JH=(PE+DQ)=∴△ACH的面积=×6×=.19.解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°,∵点A,D,E在同一直线上,∴∠ADC=120°,∴∠BEC=120°,∴∠AEB=∠BEC﹣∠CED=60°,故答案为:60;②∵△ACD≌△BCE,∴AD=BE,故答案为:AD=BE;(2)∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE,∴△ACD≌△BCE(SAS),∴BE=AD,∠ADC=∠BEC,∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°,∴∠AEB=∠BEC﹣∠CED=90°,∴AD2+AE2=AB2,∵AD=a,AE=b,AB=c,∴a2+b2=c2;(3)如图3,由(1)知△ACD≌△BCE,∴∠CAD=∠CBE,∵∠CAB=∠CBA=60°,∴∠OAB+∠OBA=120°,∴∠AOE=180°﹣120°=60°,如图4,同理求得∠AOB=60°,∴∠AOE=120°,∴∠AOE的度数是60°或120°.20.解:(1)如图3中,连接PB,延长BP交CQ的延长线于J,延长QC到R,设AC交BJ于点K.∵∠P AQ=∠BAC,∴∠CAQ=∠BAP,∵==cos30°=,∴△QAC∽△P AB,。

最新2022学年九年级数学中考经典几何题讲义系列:截长补短

最新2022学年九年级数学中考经典几何题讲义系列:截长补短

中考经典几何题讲义系列:截长补短有一类几何题其命题主要是证明三条线段长度的“和”或“差”及其比例关系。

这一类题目一般可以采取“截长”或“补短”的方法来进行求解。

所谓“截长”,就是将三者中最长的那条线段一分为二,使其中的一条线段与已知线段相等,然后证明其中的另一段与已知的另一段的大小关系。

所谓“补短”,就是将一个已知的较短的线段延长至与另一个已知的较短的长度相等。

然后求出延长后的线段与最长的已知线段的关系。

有的是采取截长补短后,使之构成某种特定的三角形进行求解。

截长法:(1)过某一点作长边的垂线(2)在长边上截取一条与某一短边相同的线段,再证剩下的线段与另一短边相等。

……补短法(1)延长短边。

(2)通过旋转等方式使两短边拼合到一起。

……几种截长补短解题法类型我们大致可把截长补短分为下面几种类型;类型①a±b=c类型②a±b=kc类型③±a bc类型④c²=a·b对于类型①,可采取直接截长或补短,绕后进行证明。

或者化为类型②证明。

对于②,可以将a±b与c构建在一个三角形中,然后证明这个三角形为特殊三角形,如等边三角形,等腰直角三角形,或一个角为30°的直角三角形等。

对于类型③,一般将截长或补短后的a±b与c构建在一个三角形中,与类型②相同。

实际上是求类型②中的k值。

对于类型④,将c²=a·b化为ca =bc的形式,然后通过相似三角形的比例关系进行证明。

在证明相似三角形的过程中,可能会用到截长或补短的方法。

例:B A在正方形ABCD中,DE=DF,DG⊥CE,交CA于G,GH⊥AF,交AD于P,交CE延长线于H,请问三条粗线DG,GH,CH的数量关系方法一(好想不好证)B A方法二(好证不好想)M B A例题不详解。

(第2页题目答案见第3、4页)FE(1)正方形ABCD 中,点E 在CD 上,点F 在BC 上, EAF=45o 。

2022年九年级中考数学冲刺-几何模型讲义

2022年九年级中考数学冲刺-几何模型讲义

2022年中考几何模型一、角平分线模型知识精讲1. 过角平分线上一点向角的两边作垂线段,利用角平分线上的点到角两边的距离相等的性质来解决问题2. 若题目中已经有了角平分线和角平分线上一点到一边的垂线段(距离),则作另一边的垂线段,例:已知:AD是的平分线,,过点D于点E,则.3. 在角的两边上取相等的线段,结合角平分线构造全等三角形(角边等,造全等),已知:点D是平分线上的一点,在OA、OB上分别取点E、F,且,连接DE、DF4. 过角平分线上一点作角的一边的平行线,构造等腰三角形,例:已知:点D是平分线上的一点,过点D作三角形,即.5. 有角平分线时,过角一边上的点作角平分线的平行线,交角的另一边所在直线于一点,也可构造等腰三角形,例:已知:OC平分,点D是OA上一点,过点D作交OB的反向延长线于点E,则.6. 从角的一边上的一点作角平分线的垂线,使之与角的另一边相交,则可得到一个等腰三角形,例:已知:OE平分∠AOB,点D在OA上,DE⊥OE,则可延长DE交OB于点F,则DE=EF,OD=OF,∠ODF=∠OFD.7. 有角平分线时,可将等角放到直角三角形中,构造相似三角形,也可以另加一对相等的角构造相似三角形,例:4321DA4231EFCB(1)已知:OC 平分,点E 、F 分别在OA 、OB 上,过点E M ,过点F N(2)已知:OC 平分,点E 、F 在OC 上,于点M ,于点N ,则(3)已知:OC 平分,点E 、F 在OC ,8. 利用“在同圆或等圆中,相等的圆周角(圆心角)所对的弦相等”可得相等线段,例:已知:∠BAC 是圆O 的圆周角,∠DOE 是圆O 的圆心角,AF 平分∠BAC ,OG 平分∠DOE ,连接BF 、CF 、DG 、EG ,则BF =CF ,DG =EG .9. 【内内模型】如图,两个内角平分线交于点D ,则.10. 【内外模型】如图,的一个内角平分线和一个外角平分线交于点D ,则.11. 【外外模型】如图,交于点D ,则.二、中点模型知识精讲1. 在等腰三角形中有底边中点或证明底边中点时,可以作底边的中线,利用等腰三角形的“三线合一”性质来解决问题.例:已知:在△ABC中,AB=AC,取BC的中点D,连接AD,则AD平分∠BAC,AD是边BC上的高,AD是BC边上的中线.【说明】应用等腰三角形“三线合一”的性质是证明两条直线垂直的重要方法.2. 在直角三角形中,有斜边中点或有斜边的倍分关系线段时,可以作斜边的中线解决问题,例:(1)如图,在Rt△ABC中,D为斜边AB的中点,连接CD,则CD=AD=BD.(2)如图,在Rt△ABC中,AB=2BC,作斜边AB上的中线CD,则AD=BD=CD=BC,△BCD是等边三角形.【总结】在直角三角形中,若遇到斜边的中点,则连接直角顶点与斜边的中点是解决问题的基本方法,作这条辅助线的目的是得到三条相等的线段及两对相等的角. 3. 将三角形的中线延长一倍,构造全等三角形或平行四边形(倍长中线),例:(1)如图,在△ABC中,AD为△ABC的中线,延长AD至点E,使得DE=AD,连接BE,则△ADC≌△EDB.(2)如图,在△ABC中,AD为△ABC的中线,延长AD至点E,使得DE=AD,连接BE,则四边形ABEC是平行四边形.4. 将三角形中线上的一部分延长一倍,构造全等三角形或平行四边形,例:如图,已知点E是△AD上的一点,延长AD至点F,使得DE=DF,连接BF、CF,则四边形BFCE为平行四边形或△BDF≌△CDE或△BED≌△CFD.【总结】证明两条线段相等常用的方法:①当要证明的两条线段是两个三角形的边时,一般通过证明这两条线段所在的两个三角形全等,通过三角形全等的对应边相等来证明两条线段相等;②当两条线段是同一个三角形的两条边时,一般证明这两条边所对的角相等,利用等角对等边证明两条线段相等.5. 有以线段中点为端点的线段时,可以倍长此线段,构造全等三角形或平行四边形,例:如图,已知点C边AE上一点,O为AB的中点,延长CO至点D,使得,连接AD、BD,四边形ADBC为平行四边形.6. 有三角形中线时,可过中点所在的边的两端点向中线作垂线,构造全等三角形,例:如图,AF为△ABC的中线,作BD⊥AF交AF延长线于点D,作CE⊥AF于点E,则△BDN≌△CEN.7. 在三角形中,有一边的中点时,过中点作三角形一边的平行线或把某条线段构造成中位线,利用已知的条件可求线段长,例:如图,D为AB的中点,过点D作DE∥BC,则DE为△ABC的中位线;过点B作BF∥DC 交AC的延长线于点F,则DC为△ABF的中位线.8. 有两个(或两个以上)中点时,连接任意两个中点可得三角形的中位线,例:如图,D、E、F分别为△ABC三边中点,连接DE、DF、EF,则.9. 有一边中点,并且在已知或求证中涉及线段的倍分关系时,可以取另一边的中点,构造三角形的中位线,例:如图,点E是△ABC边BC的中点,取AC的中点F,连接EF,则EF∥AB,10. 当圆心与弧(或弦)的中点,可以利用垂径定理解决问题,例:(1)如图,,连接AC、OB,则OB⊥AC,OB平分AC.(2)如图,点C为弦AB的中点,连接OC,则OC⊥AB.三、平行模型知识精讲在一些有平行线却没有截线的问题中,通常需要添加辅助线构造“三线八角”,再运用平行线的有关知识解题,常见的辅助线添加方式如下:如果遇到两条平行线之间夹折线,一般应过折点作出与已知平行线平行的直线.1. 如图,已知AB∥CD,点E为AB、CD间的一点,过点E作EF∥AB,则∠A+∠C=∠AEC.2. 如图,已知AB∥CD,则∠A+∠AEC+∠C=360°.3. 如图,AB∥CD,则∠B=∠D+∠E.4. 如图,AB∥CD,则∠BEG+∠D+∠F=180°.5. 如图,AB∥CD,则∠ABE=∠D+∠E.四、垂直模型1. 在三角形中,若题目中已经有一边的高了,常作另一边上的高,然后用同角的余角相等证明角相等.例:如图,在△ABC中,AD⊥BC于点D,过点B作BE⊥AC交AC于点E,交AD于点F,则∠CBE=∠CAD,∠AFE=∠C=∠BFD.除了能得到角度间的关系外,还可以通过构造相似三角形来证明线段成比例或者用于求线段的长度.2. 在四边形中,如果有高线,可以再作垂线,构造特殊的四边形或者直角三角形.例:如图,在四边形ABCD中,AB⊥BC,DC⊥BC,过点D作DE⊥BC,垂足为点E,则四边形BCDE为矩形,△ADE为直角三角形.3. 在直角三角形中,常作斜边上的高,利用同角(等角)的余角相等,可得到相似三角形.例:如图,在Rt△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,则∠A=∠DCB,∠B=∠ACD,△ABC∽△CBD∽△ACD.4. 若题中已有直线的垂线时,可再作已知直线的垂线,得到两条平行线.例:如图,在△ABC中,AF⊥BC于点F,过AB上一点D作DE⊥BC于点E,则DE∥AF,∠BDE=∠BAF,∠ADE+∠BAF=180°,△BDE∽△BAF.5. 若存在过一条直线上两点同时向另一条直线作垂线,可以再作一条垂线,构造一组平行线,利用平行线等分线段定理解决问题.6. 当两条互相垂直的弦的交点恰好在圆上,构成90°的圆周角,可构造直径.例:如图,点A在圆O上,∠BAC=90°,连接BC,则BC就是圆O的直径.7. 当圆中有互相垂直的弦时,经常作直径所对的圆周角,可以得到垂直于同一条直线的两条直线,利用平行弦所夹的弧相等来解决问题.例:在圆O中,弦AB⊥CD于点E,连接CO并延长交圆O于点F,连接DF,则FD⊥CD,FD∥AB,.8. 当圆中有和弦垂直的线段时,作直径所对的圆周角,可以得到直角三角形,通过相似三角形来解决问题.例:如图,△ABC内接于圆O,CD⊥AB于点D,连接CO并延长交圆O于点E,连接AE,则△ACE∽△DCB.五、对角互补模型知识精讲1. 全等型—90º如图,已知∠AOB=∠DCE=90º,OC平分∠AOB.则可以得到如下几个结论:①CD=CE,②OD+OE=OC,③2. 如图,已知∠DCE的一边与AO的延长线交于点D,∠AOB=∠DCE=90º,OC 平分∠AOB.则可得到如下几个结论:①CD=CE,②OE-OD=OC,③.3. 全等型—60º和120º如图,已知∠AOB=2∠DCE=120º,OC平分∠AOB.则可得到如下几个结论:①CD=CE,②OD+OE=OC,③.4. 全等型—和如图,已知∠AOB=,∠DCE=,OC平分∠AOB.则可以得到以下结论:①CD=CE,②OD+OE=2OC·cos,③.5. 相似型—90º如图,已知∠AOB=∠DCE=90º,∠BOC=.结论:CE=CD·.六、半角模型知识精讲1. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则BE+DF=EF.2. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则AE平分∠BEF,AF平分∠DFE.3. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,则4. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,过点A作AH⊥EF交EF于点H,则AH=AB.简证:由上述结论可知AE平分∠BEF,又∵AB⊥BC,∴AH=AB.5. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,. 简证:由结论1可得EF=BE+DF,CE+CF+EF=CE+CF+BE+DF=2AB.6. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则.简证:如图,将△AND绕点A顺时针旋90º得到△AGB,连接GM.通过证明△AMG≌△AMN得MN=MG,DN=BG,∠GBE=90º,即可证.7. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则△BME△DFN△AMN△BAN△DMA△AFE.简证:通过证明角相等得到三角形相似,要善于使用上述结论.8. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则简证:连接AC,∵∠DAF=∠EAC,∠ADB=∠ACB,∴△ECA△NDA,又∵△AMN△AFE,∴.【补充】通过面积比是相似比的平方比亦可得到9. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则.简证:由结论7可得△DAM△BNA,∴,即.10. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则.简证:设,在Rt△CEF中,,化简得,.11. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N,则当BE=DF时,EF.证明:如图,作△AEF的外接圆,点P为EF的中点,连接OA、OE、OF、PC,过点A作AH⊥EF.∵∠EAF=45º,∴∠EOF=90º,设,则,∴当点A、O、P、C四点共线时,即BE=DF,、EF大值.12. 如图,在正方形ABCD中,E、F分别是BC、CD上的点,且∠EAF=45º,AE、AF分别与BD相交于点M、N简证:由结论8可得△△ECA△NDA,同理可得补充:等腰直角三角形与“半角模型”如图所示,在等腰直角三角形ABC中,若∠DCE=45º,则.证明:如图,将△ACD绕着点C顺时针旋转90º得到△,连接.∵旋转,∴△ACD≌△,∴AD=,在△DCE与△中,ED=,∵∠BE=∠BC+∠EBC=∠DAC+∠EBC=90º,∴,.七、倍半角模型知识精讲一、二倍角模型处理方法1. 作二倍角的平分线,构成等腰三角形.例:如图,在△ABC中,∠ABC=2∠C,作∠ABC的平分线交AC于点D,则∠DBC=∠C,DB=DC,即△DBC是等腰三角形.2. 延长二倍角的一边,使其等于二倍角的另一边,构成两个等腰三角形.例:如图,在△ABC中,∠B=2∠C,延长CB到点D,使得BD=AB,连接AD,则△ABD、△ADC都是等腰三角形.二、倍半角综合1. 由“倍”造“半”已知倍角求半角,将倍角所在的直角三角形相应的直角边顺势延长即可.如图,若,则()2. 由“半”造“倍”已知半角求倍角,将半角所在的直角三角形相应的直角边截取线段即可.如图,在Rt△ABC(∠A<45º)的直角边AC上取点D,当BD=AD时,则∠BDC=2∠A,设,则,在Rt△BCD中,由勾股定理可得,解得,故有.三、一些特殊的角度1. 由特殊角30º求tan15º的值如图,先构造一个含有30º角的直角三角形,设BC=1,,AB=2,再延长CA至D,使得AD=AB=2,连接BD,构造等腰△ABD,则∠D=∠BAC=15º,.2. 由特殊角45º求tan22.5º的值由图可得,.3. “345”三角形(1)如图1,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,,;(2)如图2,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,,;(3)如图3,Rt△ABC三边比为3:4:5,Rt△BCD三边比为,,.八、全等模型知识精讲一、几何变换中的全等模型1. 平移全等模型,如下图:2. 对称(翻折)全等模型,如下图:3. 旋转全等模型,如下图:二、一线三等角全等模型4. 三垂直全等模型,如图:5. 一线三直角全等模型,如图:6. 一线三等角与一组对应边相等全等模型,如图:三、手拉手全等模型7. 等腰三角形中的手拉手全等模型如图,△ABC与△ADE均为等腰三角形,且∠BAC=∠DAE,连接BD、CE,则△ABD ≌△ACE.8. 等边三角形中的手拉手全等模型如图,△ABC与△CDE均为等边三角形,点B、C、E三点共线,连接AE、BD,则△BCD≌△ACE.9. 一般三角形中的手拉手全等模型如图,在任意△ABC中,以AB为边作等边△ADB,以AC为边作等边△ACE,连接DC、BE,则△ADC≌△ACE.10. 正方形中的手拉手全等模型如图,在任意△ABC中,以AB为边作正方形ABDE,以AC为边作正方形ACFG,连接EC、BG,则△AEC≌△ABG.九、相似模型知识精讲1. A字型与反A字型相似2. 8字型与反8字型相似3. 蝴蝶型相似4. 共角共边相似模型5. 一线三等角6. 旋转相似模型拓展讲解:1. 射影定理(1)双垂直,如图:结论①△ABD∽△ACB,AB2=AD·AC;②△ADC∽△ACB,AC2=AD·AB;③△CDB∽△ACB,CB2=BD·BA.(2)斜射影相似结论:△ABD∽△ACB,AB2=AD·AC.2. 对角互补相似如图,在Rt△ABC中,∠C=90º,点O是AB的中点,若∠EOF=90º,则.证明:过点O作OD⊥AC于点D,OH⊥BC于点H,如图所示:通过△ODE∽△OHF即可得到3. 三平行相似如图,AB∥EF∥CD,若,则.证明:∵EF∥AB,∴△DEF∽△DAB,∴,即①同理△BEF∽△BCD,∴,即②①+②,得,.4. 内接矩形相似如图,四边形DEFG是△ABC的内接矩形,EF在BC边上,D、G分别在AB、AC边上,则△ADG∽△ABC,△ADN∽△ABM,△AGN∽△ACM,.十、倍长中线模型知识精讲1. 如图,在矩形ABCD中,若BD=BE,DF=EF,则AF⊥CF.2. 如图,四边形ABCD是平行四边形,BC=2AB,M为AD的中点,CE⊥AB于点E,则∠DME=3∠AEM.3. 如图,△ADE与△ABC均为等腰直角三角形,且EF=CF,求证(1)DF=BF;(2)DF⊥BF.4. 如图,△OAB∽△ODC,∠OAB=∠ODC=90º,BE=EC,求证:(1)AE=DE;(2)∠AED=2∠ABO.十一、弦图模型知识精讲1. 证法一以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于2. 证法二以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于3. 证法三以a、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于4. 证法四如图所示,分别以a、b为直角边,以c为斜边的四个直角三角形全等,图中3个正方形的边长分别为a、b、c,整个图形的面积为S5. 证法五分别以a、b为直角边,以c为斜边的四个直角三角形全等,将它们按如图所示拼成一个多边形,并延长AC交DF于点P.。

2022年冀教版九年级数学中考复习几何最值问题压轴题专题突破训练

2022年冀教版九年级数学中考复习几何最值问题压轴题专题突破训练

2022年春冀教版九年级数学中考复习《几何最值问题压轴题》专题突破训练(附答案)1.如图,在边长为6cm的等边△ABC中,点D从A出发沿A→B的方向以1cm/s 的速度运动,点E从B出发沿B→C的方向以2cm/s的速度运动,D,E两点同时出发,当点E到达点C时,D,E两点停止运动,以DE为边作等边△DEF(D,E,F按逆时针顺序排列),点N为线段AB上一动点,点M为线段BC的中点,连MF,NF,当MF+NF取得最小值时,线段BN的长度为()A.5cm B.4.5cm C.4cm D.3cm2.如图,△ABC是等边三角形,E是AC的中点,D是直线BC上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,当D点运动时,若AF的最小值为2+2,那么等边三角形△ABC的边长为()A.10 B.8 C.6 D.43.如图,边长为9的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M 运动过程中,线段HN长度的最小值是()A.3 B.C.D.4.如图,已知△ABC和△ADE均为等边三角形,点O是AC的中点,点D在射线BO上,连结OE,EC,若AB=8,则OE的最小值为()A.2 B.2C.D.25.如图,在矩形ABCD中,AB=2,BC=4,P是对角线AC上的动点,连接DP,将直线DP绕点P顺时针旋转,使旋转角等于∠DAC,且DG⊥PG,即∠DPG=∠DAC.连接CG,则CG最小值为()A.B.C.D.6.如图所示,菱形ABCO的边长为5,对角线OB的长为4,P为OB上一动点,则AP+OP的最小值为()A.4 B.5 C.2D.37.如图,菱形ABCD的边长为2,∠B=60°,E为BC边的中点,F为AB边上一动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG的最小值为()A.B.1 C.D.8.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.9.如图,△ABC是边长为2的等边三角形,点D为BC边上的中点,以点D为顶点作正方形DEFG,且DE=BC,连接AE,AG.若将正方形DEFG绕点D 旋转一周,当AE取最小值时,AG的长为.10.如图,△ABC是等边三角形,AB=6,E是AB中点,点G在直线BC上运动.将线段EG绕点E顺时针旋转90°,得线段EH,则线段AH的最小值为.11.如图,在平面直角坐标系中,已知A(0,2),△AOB为等边三角形,P是x轴上的一个动点,以线段AP为一边,在其右侧作等边三角形APQ,点P的运动过程中,OQ的最小值为.12.如图,在正方形ABCD中,AB=4,点P为边AB上的一动点,联结PC,以PC为边向下作等边三角形PCQ,联结BQ,则BQ的最小值为.13.如图,正方形ABCD的边长为8,E为BC上一点,且BE=2.5,F为AB边上的一个动点,连接EF,以EF为边向右侧作等边△EFG,连接CG,则CG 的最小值为.14.如图,Rt△ABC中,∠A=30°,BC=1,等边三角形DEF的顶点D,E,F分别在直角三角形的三边上,则EF长的最小值是.15.如图,在三角形△ABC中,∠A=45°,AB=8,CD为AB边上的高,CD =6,点P为边BC上的一动点,P1,P2分别为点P关于直线AB,AC的对称点,连接P1P2,则线段P1P2长度的取值范围是.16.如图,在等腰三角形ABC中,AC=BC=50,tan A=3,BD为高.M,N分别是BD,CD上的动点,若DN﹣AD=2DM,E是AB的中点,连接EM,MN,则EM+MN的最小值为.17.如图,在Rt△ABC中,∠ABC=90°,BC=4,AB=6,在线段AB上有一点M,且BM=2,在线段AC上有一动点N,连接MN,BN,将△BMN沿BN 翻折得到△BM′N,连接AM′,CM′,则2CM′+AM′的最小值为.18.如图,在△ABC中,∠ACB=90°,BC=12,AC=9,以点C为圆心,6为半径的圆上有一个动点D.连接AD、BD、CD,则AD+BD的最小值是.19.如图,已知AC=6,BC=8,AB=10,以点C为圆心,4为半径作圆.点D 是⊙C上的一个动点,连接AD、BD,则AD+BD的最小值为.20.如图,矩形ABCD中,AB=4,AD=6,点E是边CD上一点,EF⊥AE交BC于点F,则CF长的取值范围是.21.如图,在等边△ABC和等边△DEF中,FD在直线AC上,BC=3DE=3,连接BD,BE,则BD+BE的最小值是.22.如图,已知四边形ABCD中,∠A=∠B=90°,AD=5,AB=BC=6,M 为AB边上一个动点,连接CM,以BM为直径的圆交CM于Q,点P为AB 上的另一个动点,连接DP、PQ,则DP+PQ的最小值为.23.如图,已知边长为的等边△ABC,平面内存在点P,则P A+PB+PC的取值范围为.24.如图,在△ABC中,∠BAC=30°,AC=4,AB=8,点D在△ABC内,连接DA、DB、DC,则DC+DB+AD的最小值是.25.如图,在正方形ABCD中,点M,N在CB,CD上运动,且∠MAN=45°,在MN上截取一点G,满足BM=GM,连接AG,取AM,AN的中点F,E,连接GF,GE,令AM,AN交BD于H,I两点,若AB=4,当GF+GE的取值最小时,则HI的长度为.26.如图,△ABC中,AB=4,∠ACB=75°,∠ABC=45°,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则EF 的最小值为.27.在△AOB中,∠ABO=90°,AB=3,BO=4,点C在OB上,且BC=1,(1)如图1,以O为圆心,OC长为半径作半圆,点P为半圆上的动点,连接PB,作DB⊥PB,使点D落在直线OB的上方,且满足DB:PB=3:4,连接AD①请说明△ADB∽△OPB;②如图2,当点P所在的位置使得AD∥OB时,连接OD,求OD的长;③点P在运动过程中,OD的长是否有最大值?若有,求出OD长的最大值:若没有,请说明理由.(2)如图3,若点P在以O为圆心,OC长为半径的圆上运动.连接P A,点P在运动过程中,P A﹣是否有最大值?若有,直接写出最大值;若没有,请说明理由.28.如图1,P是⊙O外的一点,直线PO分别交⊙O于点A、B,则P A是点P 到⊙O上的点的最短距离.(1)如图2,在⊙O上取一点C(不与点A、B重合),连PC、OC.求证:P A<PC.(2)如图3,在Rt△ABC中,∠ACB=90°,AC=BC=2,以BC为直径的半圆交AB于D,P是上的一个动点,连接AP,则AP的最小值是.(3)如图4,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,请求出A′B长度的最小值.(4)①如图5,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为2,则线段DH的最小值是.②如图6,平面直角坐标系中,分别以点A(﹣2,3),B(3,4)为圆心,以1、2为半径作⊙A、⊙B,M、N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值等于.29.如图,在等边△ABC中,点D在AC边上,点E为BD延长线上一点,连接CE,过点C作CF∥BD交AE延长线于点F.(1)如图1,若∠BAF=90°,tan∠AEB=,AB=8,求EF的长;(2)如图2,若∠CBE=45°,点F在CE的垂直平分线上,点G在BC边上,连接AG交BE于点H,且∠BHG=60°,求证:AG+AE+ED=AB;(3)如图3,若∠CBE=45°,tan∠BCE=3,BC=4,点K、M、N分别是△BCE三边上的动点,当△KMN周长取得最小值时,取线段BK的中点I,点T为平面内一点,且∠ETI=45°,连接BT、CT,请直接写出的最大值.30.问题提出:(1)如图①,在正方形ABCD中,E为边AB上一点(点E不与点A、B重合),连接DE,过点A作AF⊥DE,交BC于点F,则DE与AF的数量关系是:DE AF;问题探究:(2)如图②,在矩形ABCD中,AB=4,AD=6,点E、F分别在边AB、CD 上,点M为线段EF上一动点,过点M作EF的垂线分别交边AD、BC于点G、点H.若线段EF恰好平分矩形ABCD的面积,且DF=1,求GH的长;问题解决:(3)如图③,在正方形ABCD中,M为AD上一点,且,E、F分别为BC、CD上的动点,且BE=2DF,若AB=4,求ME+2AF的最小值.参考答案1.解:如图,过点E作EH⊥AB于H,连接FC.由题可得:∠BEH=30°,BD=1×t=t(cm),CE=2(t﹣3)=(2t﹣6)(cm),∴BE=6﹣(2t﹣6)=(12﹣2t)(cm),BH=BE•cos B=BE=(6﹣t)(cm),∴DH=t﹣(6﹣t)=(2t﹣6)(cm),∴DH=EC.∵△DEF是等边三角形,∴DE=EF,∠DEF=60°.∵∠HDE+∠HED=90°,∠HED+∠FEC=180°﹣30°﹣60°=90°,∴∠HDE=∠FEC.在△DHE和△ECF中,,∴△DHE≌△ECF(SAS),∴∠DHE=∠ECF=90°,∴F点运动的路径为过点C垂直于BC的一条线段,作点M关于CF的对称点K,连接FK,过点K作KJ⊥AB于J,∵FM+FM=FK+FN≥KJ,∴当点N与J重合,点F在KJ上时,FM+FN的值最小,此时BK=BC+CK =6+3=9(cm),∵∠KJB=90°,∠B=60°,∴BJ=BK•cos60°=9×=4.5(cm),当MF+NF取得最小值时,线段BN的长度为4.5cm.故选:B.2.解:如图,连接BE,延长AC至N,使EN=BE,连接FN,∵△ABC是等边三角形,E是AC的中点,∴AE=EC,∠ABE=∠CBE=30°,BE⊥AC,∴∠BEN=∠DEF=90°,BE=AE,∴∠BED=∠CEF,在△BDE和△NFE中,,∴△BDE≌△NFE(SAS),∴∠N=∠CBE=30°,∴点N在与AN成30°的直线上运动,∴当AF'⊥F'N时,AF'有最小值,∴AF'=AN,∴2+2=(AE+AE),∴AE=4,∴AC=8,故选:B.3.解:如图,取BC的中点,连接MG,∵线段BM绕点B逆时针旋转60°得到BN,∴∠MBH+∠HBN=60°,又∵△ABC是等边三角形,∴∠ABC=60°,即∠MBH+∠MBC=60°,∴∠HBN=∠GBM,∵CH是等边三角形的高,∴BH=AB,∴BH=BG,又∵BM旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,当MG⊥CH时,MG最短,即HN最短,此时∠BCH=×60°=30°,∴CG=BC=×9=,∴MG=CG=,∴HN=.∴线段HN长度的最小值是.故选:B.4.解:∵△ABC的等边三角形,点O是AC的中点,∴OC=AC,∠ABD=30°,∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,且AB=AC,AD=AE,∴△ABD≌△ACE(SAS),∴∠ACE=30°=∠ABD,当OE⊥EC时,OE的长度最小,∵∠OEC=90°,∠ACE=30°,∴OE最小值=OC=AB=2,故选:A.5.解:如图,作DH⊥AC于H,连接HG延长HG交CD于F,作HE⊥CD于E,∵DG⊥PG,DH⊥AC,∴∠DGP=∠DHA,∵∠DPG=∠DAH,∴△ADH∽△PDG,∴,∠ADH=∠PDG,∴∠ADP=∠HDG,∴△ADP∽△DHG,∴∠DHG=∠DAP=定值,∴点G在射线HF上运动,∴当CG⊥HF时,CG的值最小,∵四边形ABCD是矩形,∴∠ADC=90°,∴∠ADH+∠HDF=90°,∵∠DAH+∠ADH=90°,∴∠HDF=∠DAH=∠DHF,∴FD=FH,∵∠FCH+∠CDH=90°,∠FHC+∠FHD=90°,∴∠FHC=∠FCH,∴FH=FC=DF=1,在Rt△ADC中,∵∠ADC=90°,AD=4,CD=2,由勾股定理得AC=2,DH=,∴CH==,∴EH=,∵∠CFG=∠HFE,∠CGF=∠HEF=90°,CF=HF,∴△CGF≌△HEF(AAS),∴CG=HE=,∴CG的最小值为,故选:C.6.解:如图,过点A作AH⊥OC于点H,过点P作PF⊥OC于点F,连接AC 交OB于点J.∵四边形OABC是菱形,∴AC⊥OB,∴OJ=JB=2,CJ===,∴AC=2CJ=2,∵AH⊥OC,∴OC•AH=•OB•AC,∴AH=×=4,∴sin∠POF===,∴PF=OP,∴AP+OP=AP+PF,∵AP+PF≥AH,∴AP+OP≥4,∴AP+OP的最小值为4,故选:A.7.解:如图1,记AB与CD的中点分别为点M、N,连接MN、EM,则MN∥BC,∵点E是BC的中点,四边形ABCD是菱形,∴BM=BE,∵∠B=60°,∴△BME为等边三角形,∴∠BEM=60°,∵△EFG是等边三角形,∴EF=EG,∠FEG=60°,∴∠BEM+∠MEF=∠FEG+∠MEF,即∠BEF=∠MEG,∴△BEF≌△MEG(SAS),∴∠B=∠GME=60°,∴∠BEM=∠GME=60°,∴GM∥BC,∵MN∥BC,∴点G在MN上运动,∴CG⊥MN时,CG的值最小,如图2所示,∵菱形ABCD的边长为2,CD=2,∴CN=1,∵∠BCD=120°,∠GCB=90°,∴∠GCN=30°,在Rt△GCN中,CG=CN•cos∠GCN=1×=.故选:C.8.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵在Rt△AHD中,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.9.解:连接AD,∵△ABC是边长为2的等边三角形,点D为BC边上的中点,∴BD=CD==1,AD⊥BC,在Rt△ABD中,AD==,当点E在DA延长线上时,AE=DE﹣AD.此时AE取最小值,在Rt△ADG中,AG===,故答案为:.10.解:将△AHE绕点E顺时针旋转90°得到△DGE,过D作直线BC垂线交CB延长线于F,过E作EK⊥CB于K,作EM⊥DF于M,在△ABC是等边三角形中,AB=6,E是BA的中点,由旋转性质可得,AE=DE=3,AH=DG,∠DEB=90°,∵G是直线CB上一动点,∴当点G运动时,DG的最小值是DF,∵∠EKF=∠KFM=∠FME=90°,∴四边形EKFM为矩形,∴EK=MF,ME∥FK,∵△ABC为等边三角形,∴∠ABC=60°,∴∠KEB=30°,∠BEM=60°,即∠DEM=30°,∴KB=BE=,DM=DE=,∴EK==,∴DF=DM+MF=+.故答案为:+.11.解:∵△APQ、△AOB均为等边三角形,∴AP=AQ、AO=AB、∠P AQ=∠OAB,∴∠P AO=∠QAB;在△APO与△AQB中,,∴△APO≌△AQB(SAS).∴∠ABQ=∠AOP=90°,∴OQ的最小值为OQ垂直直线BQ时,如图,延长BQ交y轴于点C,∵AB=AO=2,∴AC=4,∴OQ=(AC﹣AO)=1.故答案为1.12.解:如图,以BC为边在正方形ABCD内部作等边三角形BCE,连接PE,过点E作EF⊥AB于F,∵△PCQ和△BCE是等边三角形,∴PC=QC,BC=CE=BE=4,∠ECB=∠PCQ=∠EBC=60°,∴∠PCE=∠BCQ,∠ABE=30°,∵EF⊥AB,∴EF=BE=2,在△PEC和△QBC中,,∴△PEC≌△QBC(SAS),∴BQ=PE,∴当PE有最小值时,BQ有最小值,∴当点P与点F重合时,PE有最小值为2,即BQ有最小值为2,故答案为:2.13.解:由题意可知,点F是主动点,点G是从动点,点F在线段上运动,点G也一定在直线轨迹上运动,将△EFB绕点E旋转60°,使EF与EG重合,得到△EFB≌△EHG,从而可知△EBH为等边三角形,点G在垂直于HE的直线HN上,过点C作CM⊥HN,则CM即为CG的最小值,过点E作EP⊥CM,可知四边形HEPM为矩形,则CM=MP+CP=HE+EC=2.5+=,故答案为:.14.解:由题意知,Rt△ABC中,∠A=30°,∠C=90°,∴∠B=60°,延长BC至G,连接FG使∠G=∠B=60°,∵△DEF为等边三角形,∴DE=DF,∠EDF=60°,∴∠BDE+∠FDG=120°,∵∠B=60°,∴∠BDE+∠BED=120°,∴∠FDG=∠BED,在△GFD和△BED中,,∴△GFD≌△BED(AAS),∴BD=GF,设CG=x,∵Rt△CFG中,∠G=60°,∴∠CFG=30°,∴GF=2x,FC=x,∴BD=2x,CD=1﹣2x,在Rt△DCF中,由勾股定理得,DC2+CF2=DF2,∴DF=EF==,∵0≤2x≤1,即0≤x≤,∴当x=时,EF=,最小值∴EF的最小值为,故答案为:.15.解:如图,连接AP1,AP,AP2,作AH⊥BC于H.∵P1,P2分别为点P关于直线AB,AC的对称点,∴AP=AP1=AP2,∠P AB=∠BAP1,∠P AC=∠CAP2,∵∠BAC=45°,∴∠P1AP2是等腰直角三角形,∴P1P2=AP2=P A.∵CD⊥AB,∴∠ADC=90°,∠DAC=∠DCA=45°,∴AD=DC=6,∴AC=6>AB,∵AB=8,∴BD=2,BC===2,∵S=•BC•AH=•AB•CD,△ABC∴AH==,∵≤P A≤6,∴≤P1P2≤12.故答案为≤P1P2≤12.16.解:如图在线段DC上取一点F使得DF=AD,在DF的下方以DF为斜边构造直角△DFG,使得FG=2DG.连接GN,MG,过点E作EK⊥AC于K,过点G作GP⊥EK交EK的延长线于P,GJ⊥AC于J.∵BD⊥AC,∴∠ADB=∠CDB=90°,∵tan A==3,∴可以设AD=x,BD=3x,则CD=50﹣x,在Rt△BDC中,BC2=BD2+CD2,∴502=(3x)2+(50﹣x)2,解得x=10,∴AD=10,BD=30,CD=40,∵DN﹣AD=DN﹣DF=FN=2DM,∴==2,∵∠MDG=90°+∠GDF,∠GFN=90°+∠GDF,∴∠MDG=∠GFN,∴△GFN∽△GDM,∴==,∠FGN=∠DGM,∴∠DGF=∠MGN=90°,GN=2MG,∴MG=MN,在Rt△DFG中,∠DGF=90°,DF=10,FG=2DG,∴DG=2,GF=4,∵GJ⊥DF,∴GJ==4,DJ===2,∵AE=EB,EK∥BD,∴AK=DK=5,∴EK=BD=15,KJ=KD+DJ=7,∵四边形PGJK是矩形,∴PG=KJ=7,PK=GJ=4,∴PE=EK+PK=19,∴EG===,∵EM+MN=(EM+MN)=(EM+MG),∵EM+MG≥EG,∴EM+MN≥5.∴EM+MN的最小值为5.故答案为:5.17.解:如图,在BA上取一点T,使得BT=,连接TM′,TC.∵BM′=BM=2,BT=,BA=6,∴M′B2=BT•BA,∴=,∵∠ABM′=∠M′BT,∴△BAM′∽△BM′T,∴==,∴TM′=AM′,∵2CM′+AM′=2(CM′+AM′)=2(CM′+TM′),∵CM′+TM′≥CT,CT===,∴2CM′+AM′≥,∴2CM′+AM′的最小值为.故答案为.18.解:在CA上截取CM,使得CM=4,连接DM,BM.∵CD=6,CM=4,CA=9,∴CD2=CM•CA,∴=,∵∠DCM=∠ACD,∴△DCM∽△ACD,∴==,∴DM=AD,∴AD+BD=DM+BD,∵DM+BD≥BM,在Rt△CBM中,∵∠MCB=90°,CM=4,BC=12,∴BM==4,∴AD+BD≥4,∴AD+BD的最小值为4.故答案为4.19.解:如图,在CB上取一点E,使CE=2,连接CD、DE、AE.∵AC=6,BC=8,AB=10,所以AC2+BC2=AB2,∴∠ACB=90°,∵CD=4,∴==,∴△CED∼△CDB,∴==,∴ED=BD,∴AD+BD=AD+ED≥AE,当且仅当E、D、A三点共线时,AD+BD取得最小值AE==2.20.解:如图所示:∵EF⊥AE,∴∠AEF=90°,又∵∠AED+∠AEF+∠CEF=180°,∴∠AED+∠CEF=90°,又∵四边形ABCD是矩形,∴∠D=∠C=90°,又∵∠AED+∠DAE=90°,∴∠DAE=∠CEF,∴△ADE∽△ECF,∴,又∵AB=4,AD=6,AB=EC+ED,∴,解得:CF==,又∵0≤CE≤4,∴,故答案为.21.解:如图,延长CB到T,使得BT=DE,连接DT,作点B关于直线AC的对称点W,连接TW,DW,过点W作WK⊥BC交BC的延长线于K.∵△ABC,△DEF都是等边三角形,BC=3DE=3,∴BC=AB=3,DE=1,∠ACB=∠EDF=60°,∴DE∥TC,∵DE=BT=1,∴四边形DEBT是平行四边形,∴BE=DT,∴BD+BE=BD+DT,∵B,W关于直线AC对称,∴CB=CW=3,∠ACW=∠ACB=60°,DB=DW,∴∠WCK=60°,∵WK⊥CK,∴∠K=90°,∠CWK=30°,∴CK=CW=,WK=CK=,∴TK=1+3+=,∴TW===,∴DB+BE=DB+DT=DW+DT≥TW,∴BD+BE≥,∴BD+BE的最小值为.故答案为.22.解:如图,连接BQ,取BC的中点T,连接TQ.∵BM是直径,∴∠BQM=∠BQC=90°,∵BT=CT=3,∴QT=BC=3,∴当P,Q,T共线时,PQ的长最小,要使得PQ+PD的值最小,只要PT+PD的值最小即可,作点T关于直线AB的对称点T′,连接DT′交AB于P′,连接P′T交⊙T 于Q′,此时P′T+P′D的值最小,最小值=DT′的长,过点D作DH⊥BC于H,则四边形ABHD是矩形,∴DH=AB=6,AD=BH=5,∴HT′=3+5=8,∴DT′===10,∴P′D+P′T的最小值为10,∴P′D+P′Q′的最小值=10﹣3=7,故答案为7.23.解:如图,将△BPC绕点B顺时针旋转120°,得△BP′C′,连接PP′,过点B作BD⊥PP′于点D,∵△ABC是等边三角形,∴∠ABC=60°,AB=BC=BC′=,∴AC′=AB+BC′=2,∵∠CBC′=∠PBP′=120°,∴∠ABC′=∠ABC+∠CBC′=180°,∴点A,B,C′在同一条直线上,∵BP=BP′,∠PBP′=120°,BD⊥PP′,∴∠BPP′=∠BP′P=30°,∴PD=PB,∴PP′=2PD=PB,∴P A+PP′+PC=P A+PB+PC>AC′,因为等边三角形的边长为,∴P A+PB+PC的取值范围为大于等于2,故答案为:大于等于2.24.解:如图,将△ADB绕点A顺时针旋转120°得到△AEF,连接DE,CF,过点F作FH⊥CA交CA的延长线于H.∵AD=AE,∠DAE=120°,BD=EF,∴DE=AD,∴DC+DB+DA=DC+DE+EF,∵CD+DE+EF≥CF,在Rt△ABC中,∠ACB=90°,AB=8,∠BAC=30°,∴AB=AB•cos30°=4,在Rt△AFH中,∠H=90°,AF=AB=8,∠F AH=30°,∴FH=AF=4,AH=FH=4,∴CH=AC+AH=8,∴CF===4,∴CD+DB+AD≥4,∴CF的最小值为4.故答案为:.25.解:如图1中,将△ADN绕点A顺时针旋转90°得到△ABJ,则AN=AJ,∠DAN=∠BAJ,∵四边形ABCD是正方形,∴∠DAB=∠ABC=90°,∵∠MAN=45°,∴∠MAJ=∠MAB+∠BAJ=∠MAB+∠DAN=45°,∴∠MAJ=∠MAN,∵AM=AM,AJ=AN,∴△AMJ≌△AMN(SAS),∴∠AMB=∠AMN,∵MA=MA,MB=MG,∴△MAB≌△MAG(SAS),∴AB=AG=4,∠ABM=∠AGM=90°,∵AF=FM,AE=EN,∴FG=AM,EG=AN,∴GF+GE=(AM+AN),下面证明当AM=AN时,AM+AN的值最小,如图2中,过点A在直线l∥MN,作点N关于直线l的对称点N′,连接AN′,MN′.∵N,N′关于直线对称,∴AN=AN′,∴AM+AN=AN′+AM,∴当A,M,N′共线时,AM+AN的值最小,此时∵AN=AN′,∴∠ANN′=∠AN′N,∵MN∥直线l,NN′⊥直线l,∴NN′⊥MN,∴∠MNN′=90°,∴∠AMN+∠AN′N=90°,∠ANM+∠ANN′=90°,∴∠AMN=∠ANM,∴AN=AM,∴当AM=AN时,AM+AN的值最小,如图1中,当AM=AN时,可知BH=DI,过点H作HP⊥AB于P,在AP上截取一点K,使得AK=KH,连接KH,设PH=PB=x,∵∠BAM=∠DAN=22.5°,KA=KH,∴∠KAH=∠KHA=22.5°,∴∠PKH=∠KAH+∠KHA=45°,∴PK=PB=PH=x.AK=KH=x,∵AB=4,∴2x+x=4,∴x=4﹣2,∴BH=DI=PB=4﹣4,∵BD=4,∴HI=4﹣2(4﹣4)=8﹣4,故答案为8﹣4.26.解:连接OE、OF,过O点作OM⊥EF,如图,则EM=FM,∵∠ACB=75°,∠ABC=45°,∴∠BAC=60°,∴∠EOF=2∠EAF=120°,∵OE=OF,∴∠OEF=∠OFE=30°,∴OM=OE,∴EM=OM=OE,∴EF=OE,当OE的值最小时,EF的值最小,∵D是线段BC上的一个动点,AD为直径,∴当AD垂直BC时,AD的值最小,过A点作AH⊥BC于H,∵∠ABH=45°,∴AH=AB=×4=2,即AD的最小值为2,∴OE的最小值为,∴EF的最小值为×=.故答案为:.27.解:(1)①∵DB⊥PB,∠ABO=90°,∴∠ADB=∠CDP,又∵AB=3,BO=4,DB:PB=3:4,即:,∴△ADB∽△OPB;②如解图(2),过D点作DH⊥BO交OB延长线于H点,∵AD∥OB,∠ABD=90°,∴∠DAB=90°,又∵△ADB∽△OPB,∴,∴AD=,∵四边形ADHB为矩形,∴HD=AB=3,HB=AD=,∴OH=OB+HB=在Rt△DHO中,OD===.③在△AOB中,∠ABO=90°,AB=3,BO=4,∴OA=5.由②得AD=,∴D在以A为圆心AD为半径的圆上运动,∴OD的最大值为OD过A点时最大,即OD的最大值为=OA+AD=5+=.(2)如解图(4),在OC上取点B′,使OB′=OP=,∵∠BOP=∠POB′,=,∴△BOP∽△POB′,∴,∴=P A﹣PB′≤AB',∴有最大值为AB′,在Rt△ABB′中,AB=3,BB′==,∴AB′===,即:点P在运动过程中,P A﹣有最大值为,28.(1)证明:如图2,在⊙O上任取一点C(不为点A、B),连接PC、OC.∵PO<PC+OC,PO=P A+OA,OA=OC,∴P A<PC.(2)解:连接AO与⊙O相交于点P,如图3,由已知定理可知,此时AP最短,∵∠ACB=90°,AC=BC=2,BC为直径,∴PO=CO=1,∴AO==,∴AP=﹣1,故答案为:﹣1;(3)解:如图4,由折叠知A′M=AM,又M是AD的中点,可得MA=MA′=MD,故点A′在以AD为直径的圆上,由模型可知,当点A′在BM上时,A′B长度取得最小值,∵边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,∵MA=MA′=MD,则BM⊥AM,∴BM==,故A′B的最小值为:﹣1;(4)①解:在正方形ABCD中,AB=AD=CD,∠BAD=∠CDA,∠ADG=∠CDG,在△ABE和△DCF中,,∴△ABE≌△DCF(SAS),∴∠1=∠2,在△ADG和△CDG中,,∴△ADG≌△CDG(SAS),∴∠2=∠3,∴∠1=∠3,∵∠BAH+∠3=∠BAD=90°,∴∠1+∠BAH=90°,∴∠AHB=180°﹣90°=90°,取AB的中点O,连接OH、OD,则OH=AO=AB=1,在Rt△AOD中,OD==,根据三角形的三边关系,OH+DH>OD,∴当O、D、H三点共线时,DH的长度最小,DH最小值=OD﹣OH=﹣1.故答案为:﹣1;②解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图6,则此时PM+PN最小,∵点A坐标(﹣2,3),∴点A′坐标(﹣2,﹣3),∵点B(3,4),∴A′B==,∴MN=A′B﹣BN﹣AM=﹣2﹣1=﹣3,∴PM+PN的最小值为﹣3.故答案为:﹣3.29.解:(1)如图1,∵∠BAF=90°,tan∠AEB=,AB=8,∴AE==6,作CG⊥AF于G,∵△ABC是等边三角形,∴AC=AB=8,∠CAB=60°,∴∠CAG=30°,∴CG=AC=4,AG=AC•cos∠CAG=4,在Rt△CGF中,∠CFG=∠AEB,∴FG==3,∴EF=AF﹣AE=AG+FG﹣AE=4+3﹣6=4﹣3;(2)如图2,证明:作CP⊥CB交BE的延长线于P,作CM⊥BE于M,CN⊥EF于N,∴∠CNE=∠CME=90°,∵点F在CE的垂直平分线上,∴FC=FE,∴∠FCE=∠FEC,∵CF∥BE,∴∠FCE=∠CEB,∴∠CEF=∠CEB,∵CE=CE,∴△CNE≌△CME(AAS),∴CN=CM,EN=EM,∴∠BCP=90°,∵∠CBE=45°,∴∠CPB=45°,∴CP=CB,PB=CB=AB,∵AC=CB,∴CP=AC,∴△PCM≌△ACN(HL),∴AN=PM,∴AN﹣EN=PM﹣EM,∴PE=AE,∵∠BHG=60°,∠BHG=∠ABD+∠BAH,∴∠ABD+∠BAH=60°,∵∠BAC=60°,∴∠BAH+∠CAG=60°,∴∠ABD=∠CAG,∵∠ACB=∠BAC=60°,AC=AB,∴△ACG≌△BAD(ASA),∴BD=AG,∵PE+DE+BD=PB,∴AE+DE+AG=AB;(3)如图3,∵△KMN周长取得最小值,∴BK⊥CE,∵tan∠BCE=3,BC=4,∴sin∠BCE=,cos∠BCE=,∴CK=4•cos∠BCE=,BK=,∵I是BK的中点,∴KI==,作EP⊥BC于P,∵tan∠BCE==3,∴设EP=3k,CP=k,∵∠CBE=45°,∴BP=CP=3k,∵CB+BP=BC∴k+3k=4,∴k=1,∴CP=1,EP=3,∴CE=,∴EK=CE﹣CK=﹣=,∴EK=KI,∴△KEI是等腰直角三角形,以K为圆心,EK长为半径作⊙K,∵∠ETJ=45°,∴T在⊙K上运动,取KI的中点O,∴==,∵∠KTO=∠BKT,∴△TKO∽△BKT,∴==,∴OT=BT,∵OT﹣CT≤CK,∴当O、C、T(图中T′)共线时,OT﹣CT最大=OC,∵OK=KI=,CK=,,∴OC==,∴最大值是,∵BT﹣2CT=2•(),∴BT﹣2CT最大值是,∴最大值==.30.解:(1)如图1,DE=AF,理由如下:在正方形ABCD中,∠ABC=∠BAD=90°,AD=AB,∴∠BAF+∠AFB=90°,∵AF⊥DE,∴∠AOE=90°,∴∠BAF+∠AED=90°,∴∠AFB=∠AED,∴△ABF≌△DAE(AAS),∴DE=AF,故答案是“=”;(2)如图2,连接AC,交EF于O,∵线段EF恰好平分矩形ABCD的面积,∴O是矩形的对称中心,∴BE=DF=1,作DI∥EF,AJ∥GH,∵四边形ABCD是矩形,∴DF∥IE,∴四边形DIEF是平行四边形,∴EI=DF=1,∴AI=AB﹣BE﹣EI=2,同理可得,AJ=GH,∵EF⊥GH,∴DI⊥AJ,由(1)得,∠AID=∠AJB,∴△ADI∽△BAJ,∴=,∴=,∴BJ=,在Rt△ABJ中由勾股定理得,AJ===,∴GH=;(3)如图3,作EG⊥AD于G,∵,AD=4,∴AM=3,设DF=a,则BE=2a,∴GM=AM﹣AG=3﹣2a,在Rt△ADF中,AF==,在Rt△EGM中,ME==,∴ME+2AF=+=+ME+2AF最小值可以看作在平面直角坐标系中,点H(2a,0)到定点I(3,4),J(0,8)的距离之和最小,如图4,作J的对称点K,连接KI,则KI与x轴的交点是H点,此时ME最小,作IK⊥y轴于T,=KI===3.∴ME最小。

2022年春北师大版九年级数学中考一轮复习几何部分综合练习题(附答案)

2022年春北师大版九年级数学中考一轮复习几何部分综合练习题(附答案)

2022年春北师大版九年级数学中考一轮复习几何部分综合练习题(附答案)1.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.2.在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)3.下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形4.如图,将矩形纸片ABCD折叠,使点C与点A重合,折痕为EF,若AB=4,BC=8.则D′F的长为()A.2B.4C.3D.25.已知△ABC∽△A'B'C',AD和A'D'是它们的对应中线,若AD=10,A'D'=6,则△ABC 与△A'B'C'的周长比是()A.3:5B.9:25C.5:3D.25:96.如图,AB是⊙O的直径,点C和点D是⊙O上位于直径AB两侧的点,连接AC,AD,BD,CD,若⊙O的半径是13,BD=24,则sin∠ACD的值是()A.B.C.D.7.如图,点P是以AB为直径的半圆上的动点,CA⊥AB,PD⊥AC于点D,连接AP,设AP=x,P A﹣PD=y,则下列函数图象能反映y与x之间关系的是()A.B.C.D.8.如图AB∥CD,CB∥DE,∠B=50°,则∠D=°.9.如图,△ABC是等边三角形,延长BC到点D,使CD=AC,连接AD.若AB=2,则AD的长为.10.如图,建筑物C上有一杆AB.从与BC相距10m的D处观测旗杆顶部A的仰角为53°,观测旗杆底部B的仰角为45°,则旗杆AB的高度约为m(结果取整数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33).11.如图,在四边形ABCD中,点E,F,G,H分别是AB,CD,AC,BD的中点,若AD =BC=2,则四边形EGFH的周长是.12.如图,正方形ABCD的对角线AC上有一点E,且CE=4AE,点F在DC的延长线上,连接EF,过点E作EG⊥EF,交CB的延长线于点G,连接GF并延长,交AC的延长线于点P,若AB=5,CF=2,则线段EP的长是.13.在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相似比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.14.如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG 交AD于点P,若AP=3,则点P到BD的距离为.15.如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥l,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3,延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n的横坐标为(结果用含正整数n的代数式表示)16.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE.17.如图,在四边形ABCD中,点E和点F是对角线AC上的两点,AE=CF,DF=BE,且DF∥BE,过点C作CG⊥AB交AB的延长线于点G.(1)求证:四边形ABCD是平行四边形;(2)若tan∠CAB=,∠CBG=45°,BC=4,则▱ABCD的面积是.18.如图,AB是⊙O的直径,BC是⊙O的弦,直线MN与⊙O相切于点C,过点B作BD ⊥MN于点D.(1)求证:∠ABC=∠CBD;(2)若BC=4,CD=4,则⊙O的半径是.19.如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.20.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE =DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.21.小李要外出参加“建国70周年”庆祝活动,需网购一个拉杆箱,图1,2分别是她上网时看到的某种型号拉杆箱的实物图与示意图,并获得了如下信息:滑杆DE,箱长BC,拉杆AB的长度都相等,即DE=BC=AB,B,F在AC上,C在DE上,支杆DF=30cm,CE:CD=1:3,∠DCF=45°,∠CDF=30°,请根据以上信息,解决下列问题.(1)求AC的长度(结果保留根号);(2)求拉杆端点A到水平滑杆ED的距离(结果保留根号).22.如图,点P为正方形ABCD的对角线AC上的一点,连接BP并延长交CD于点E,交AD的延长线于点F,⊙O是△DEF的外接圆,连接DP.(1)求证:DP是⊙O的切线;(2)若tan∠PDC=,正方形ABCD的边长为4,求⊙O的半径和线段OP的长.23.在Rt△ABC中,∠BCA=90°,∠A<∠ABC,D是AC边上一点,且DA=DB,O是AB的中点,CE是△BCD的中线.(1)如图a,连接OC,请直接写出∠OCE和∠OAC的数量关系:;(2)点M是射线EC上的一个动点,将射线OM绕点O逆时针旋转得射线ON,使∠MON=∠ADB,ON与射线CA交于点N.①如图b,猜想并证明线段OM和线段ON之间的数量关系;②若∠BAC=30°,BC=m,当∠AON=15°时,请直接写出线段ME的长度(用含m的代数式表示).24.思维启迪:(1)如图1,A,B两点分别位于一个池塘的两端,小亮想用绳子测量A,B间的距离,但绳子不够长,聪明的小亮想出一个办法:先在地上取一个可以直接到达B点的点C,连接BC,取BC的中点P(点P可以直接到达A点),利用工具过点C作CD∥AB交AP 的延长线于点D,此时测得CD=200米,那么A,B间的距离是米.思维探索:(2)在△ABC和△ADE中,AC=BC,AE=DE,且AE<AC,∠ACB=∠AED=90°,将△ADE绕点A顺时针方向旋转,把点E在AC边上时△ADE的位置作为起始位置(此时点B和点D位于AC的两侧),设旋转角为α,连接BD,点P是线段BD的中点,连接PC,PE.①如图2,当△ADE在起始位置时,猜想:PC与PE的数量关系和位置关系分别是;②如图3,当α=90°时,点D落在AB边上,请判断PC与PE的数量关系和位置关系,并证明你的结论;③当α=150°时,若BC=3,DE=1,请直接写出PC2的值.25.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC 上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自己的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).参考答案1.解:主视图有3列,每列小正方形数目分别为2,1,1.故选:B.2.解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.3.解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.4.解:∵四边形ABCD是矩形,∴∠B=∠D=90°,CD=AB=4,AD∥BC,∴∠AFE=∠CEF,由折叠的性质得:∠AEF=∠CEF,AE=CE,∠D'=∠D=90°,AD'=CD=4,∴∠AFE=∠AEF,∴AF=AE=CE,设AF=AE=CE=x,则BE=8﹣x,在Rt△ABE中,由勾股定理得:AB2+BE2=AE2,即42+(8﹣x)2=x2,解得:x=5,∴AF=5,在Rt△AFD'中,由勾股定理得:D'F===3;故选:C.5.解:∵△ABC∽△A'B'C',AD和A'D'是它们的对应中线,AD=10,A'D'=6,∴△ABC与△A'B'C'的周长比=AD:A′D′=10:6=5:3.故选:C.6.解:∵AB是直径,∵⊙O的半径是13,∴AB=2×13=26,由勾股定理得:AD=10,∴sin∠B===,∵∠ACD=∠B,∴sin∠ACD=sin∠B=,故选:D.7.设:圆的半径为R,连接PB,则sin∠ABP=,∵CA⊥AB,即AC是圆的切线,则∠P AD=∠PBA=α,则PD=AP sinα=x×=x2,则y=P A﹣PD=﹣x2+x,图象为开口向下的抛物线,故选:C.8.解:∵AB∥CD,∴∠B=∠C=50°,∵BC∥DE,∴∠C+∠D=180°,∴∠D=180°﹣50°=130°,故答案为:130.9.解:∵△ABC是等边三角形,∴∠B=∠BAC=∠ACB=60°,∵CD=AC,∵∠ACB=∠CAD+∠D=60°,∴∠CAD=∠D=30°,∴∠BAD=90°,∴AD===2.故答案为2.10.解:在Rt△BCD中,tan∠BDC=,则BC=CD•tan∠BDC=10(m),在Rt△ACD中,tan∠ADC=,则AC=CD•tan∠ADC≈10×1.33=13.3(m),∴AB=AC﹣BC=3.3≈3(m),故答案为:3.11.证明:∵E、G是AB和AC的中点,∴EG=BC=×=,同理HF=BC=,EH=GF=AD==.∴四边形EGFH的周长是:4×=4.故答案为:4.12.解:如图,作FH⊥PE于H.∵四边形ABCD是正方形,AB=5,∴AC=5,∠ACD=∠FCH=45°,∵∠FHC=90°,CF=2,∴CH=HF=,∵CE=4AE,∴EC=4,AE=,∴EH=5,在Rt△EFH中,EF2=EH2+FH2=(5)2+()2=52,∵∠GEF=∠GCF=90°,∴E,G,F,C四点共圆,∴∠EFG=∠ECG=45°,∴∠ECF=∠EFP=135°,∵∠CEF=∠FEP,∴△CEF∽△FEP,∴=,∴EF2=EC•EP,∴EP==.故答案为.13.解:以点O为位似中心,相似比为,把△ABO缩小,点A的坐标是A(4,2),则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故答案为:(2,1)或(﹣2,﹣1).14.解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.15.解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x轴,C3D3⊥x 轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×+()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1=()n﹣1.故答案为:()n﹣1.16.证明:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF和△DCE中,,∴△ABF≌△DCE(SAS)∴AF=DE.17.(1)证明:∵AE=CF,∴AE+EF=CF+EF,即AF=CE,∵DF∥BE,∴∠DF A=∠BEC,∵DF=BE,∴△ADF≌△CBE(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四边形ABCD是平行四边形;(2)解:∵CG⊥AB,∴∠G=90°,∵∠CBG=45°,∴△BCG是等腰直角三角形,∵BC=4,∴BG=CG=4,∵tan∠CAB=,∴AG=10,∴AB=6,∴▱ABCD的面积=6×4=24,故答案为:24.18.(1)证明:连接OC,∵MN为⊙O的切线,∴OC⊥MN,∵BD⊥MN,∴OC∥BD,∴∠CBD=∠BCO.又∵OC=OB,∴∠BCO=∠ABC,∴∠CBD=∠ABC.;(2)解:连接AC,在Rt△BCD中,BC=4,CD=4,∴BD==8,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACB=∠CDB=90°,∵∠ABC=∠CBD,∴△ABC∽△CBD,∴=,即=,∴AB=10,∴⊙O的半径是5,故答案为5.19.(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠P AC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.20.证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=621.解:(1)过F作FH⊥DE于H,∴∠FHC=∠FHD=90°,∵∠FDC=30°,DF=30,∴FH=DF=15,DH=DF=15(cm),∵∠FCH=45°,∴CH=FH=15(cm),∴(cm),∵CE:CD=1:3,∴DE=CD=(20+20)(cm),∵AB=BC=DE,∴AC=(40+40)cm;(2)过A作AG⊥ED交ED的延长线于G,∵∠ACG=45°,∴AG=AC=(20+20)(cm),答:拉杆端点A到水平滑杆ED的距离为(20+20)cm.22.(1)连接OD,∵正方形ABCD中,CD=BC,CP=CP,∠DCP=∠BCP=45°,∴△CDP≌△CBP(SAS),∴∠CDP=∠CBP,∵∠BCD=90°,∴∠CBP+∠BEC=90°,∵OD=OE,∴∠ODE=∠OED,∠OED=∠BEC,∴∠BEC=∠OED=∠ODE,∴∠CDP+∠ODE=90°,∴∠ODP=90°,∴DP是⊙O的切线;(2)∵∠CDP=∠CBE,∴tan,∴CE=,∴DE=2,∵∠EDF=90°,∴EF是⊙O的直径,∴∠F+∠DEF=90°,∴∠F=∠CDP,在Rt△DEF中,,∴DF=4,∴==2,∴,∵∠F=∠PDE,∠DPE=∠FPD,∴△DPE∽△FPD,∴,设PE=x,则PD=2x,∴,解得x=,∴OP=OE+EP=.23.解:(1)结论:∠ECO=∠OAC.理由:如图1中,连接OE.∵∠BCD=90°,BE=ED,BO=OA,∵CE=ED=EB=BD,CO=OA=OB,∴∠OCA=∠A,∵BE=ED,BO=OA,∴OE∥AD,OE=AD,∴CE=EO.∴∠EOC=∠OCA=∠ECO,∴∠ECO=∠OAC.故答案为:∠OCE=∠OAC.(2)如图2中,∵OC=OA,DA=DB,∴∠A=∠OCA=∠ABD,∴∠COA=∠ADB,∵∠MON=∠ADB,∴∠AOC=∠MON,∴∠COM=∠AON,∵∠ECO=∠OAC,∴∠MCO=∠NAO,∵OC=OA,∴△COM≌△AON(ASA),∴OM=ON.②如图3﹣1中,当点N在CA的延长线上时,∵∠CAB=30°=∠OAN+∠ANO,∠AON=15°,∴∠AON=∠ANO=15°,∴OA=AN=m,∵△OCM≌△OAN,∴CM=AN=m,在Rt△BCD中,∵BC=m,∠CDB=60°,∴BD=m,∵BE=ED,∴CE=BD=m,∴EM=CM+CE=m+m.如图3﹣2中,当点N在线段AC上时,作OH⊥AC于H.∵∠AON=15°,∠CAB=30°,∴∠ONH=15°+30°=45°,∴OH=HN=m,∵AH=m,∴CM=AN=m﹣m,∵EC=m,∴EM=EC﹣CM=m﹣(m﹣m)=m﹣m,综上所述,满足条件的EM的值为m+m或m﹣m.24.(1)解:∵CD∥AB,∴∠C=∠B,在△ABP和△DCP中,,∴△ABP≌△DCP(AAS),∴DC=AB.∵AB=200米.∴CD=200米,故答案为:200.(2)①PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.理由如下:如解图1,延长EP交BC于F,同(1)理,可知∴△FBP≌△EDP(AAS),∴PF=PE,BF=DE,又∵AC=BC,AE=DE,∴FC=EC,又∵∠ACB=90°,∴△EFC是等腰直角三角形,∵EP=FP,∴PC=PE,PC⊥PE.②PC与PE的数量关系和位置关系分别是PC=PE,PC⊥PE.理由如下:如解图2,作BF∥DE,交EP延长线于点F,连接CE、CF,同①理,可知△FBP≌△EDP(AAS),∴BF=DE,PE=PF=,∵DE=AE,∴BF=AE,∵当α=90°时,∠EAC=90°,∴ED∥AC,EA∥BC∵FB∥AC,∠FBC=90,∴∠CBF=∠CAE,在△FBC和△EAC中,,∴△FBC≌△EAC(SAS),∴CF=CE,∠FCB=∠ECA,∵∠ACB=90°,∴∠FCE=90°,∴△FCE是等腰直角三角形,∵EP=FP,∴CP⊥EP,CP=EP=.③如解图3,作BF∥DE,交EP延长线于点F,连接CE、CF,过E点作EH⊥AC交CA 延长线于H点,当α=150°时,由旋转旋转可知,∠CAE=150°,DE与BC所成夹角的锐角为30°,∴∠FBC=∠EAC=α=150°同②可得△FBP≌△EDP(AAS),同②△FCE是等腰直角三角形,CP⊥EP,CP=EP=,在Rt△AHE中,∠EAH=30°,AE=DE=1,∴HE=,AH=,又∵AC=BC=3,∴CH=3+,∴EC2=CH2+HE2=∴PC2==.25.证明:(1)∵AB=AD,∴∠ABD=∠ADB,∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE,∴∠BAE=∠DAC,(2)设∠DAC=α=∠BAE,∠C=β,∴∠ABC=∠ADB=α+β,∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC,∴∠EAC=2β,∵AF平分∠EAC,∴∠F AC=∠EAF=β,∴∠F AC=∠C,∠ABE=∠BAF=α+β,∴AF=FC,AF=BF,∴AF=BC=BF,∵∠ABE=∠BAF,∠BGA=∠BAC=90°,∴△ABG∽△BCA,∴∵∠ABE=∠BAF,∠ABE=∠AFB,∴△ABF∽△DBA,∴,且AB=kBD,AF=BC=BF,∴k=,即,∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°,∴∠ABH=∠C,且∠BAC=∠BAC,∴△ABH∽△ACB,∴,∴AB2=AC×AH设BD=m,AB=km,∵,∴BC=2k2m,∴AC==km,∴AB2=AC×AH,(km)2=km×AH,∴AH=,∴HC=AC﹣AH=km﹣=,∴。

2022九年级数学中考复习—尺规作图2

2022九年级数学中考复习—尺规作图2

2022九年级数学中考复习——尺规作图1尺规作图:如图,已知ABC △,AB AC =,作矩形MNPQ ,使得点M 、N 分别在边AB 、AC 上,点P 、Q 在边BC 上,且2MN MQ =(不写作法,保留作图痕迹).2.如图,已知点P 为∠ABC 内一点,利用直尺和圆规确定一条过点P 的直线,分别交AB 、BC 于点E 、F ,使得BE =BF .(不写作法,保留作图痕迹)2.(1)如图,已知P 是O 外一点.用两种不同的方法过点P 作O 的一条切线.要求:用直尺和圆规作图;保留作图的痕迹,写出必要的文字说明.(2)如果把本题改为用直尺和圆规在,使∠OQP=60°OABPABP3.如图,在边长为4的正方形ABCD 中,请画出以A 为一个顶点,另外两个顶点在正方形ABCD 的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)4.如图,在□ABCD 中,E 是AD 上一点,延长CE 到点F ,使∠FBC =∠DCE .(1)求证∠D =∠F ;(2)用直尺和圆规在AD 上作出一点P ,使△BPC ∽△CDP (保留作图的痕迹,不写作法).5.解决问题常常需要最近联想,迁移经验.例如研究线段成比例时需要想到……【积累经验】(1)如图①,⊙O 是△ABC 的外接圆,AD 是△ABC 的高,AE 是⊙O的直径.求证AB AD =AE AC.(2)如图②,已知线段a ,b ,c .用两种..不同的方法作线段d ,使得线段a ,b ,c ,d 满足a b =cd.要求:(1)用直尺和圆规作图;(2)保留作图的痕迹,写出必要的文字说明.AC B DFEAOBCDE①ab c②6.(1)如图,已知∠AOB 的边OA 上有一点P ,请用尺规作图法,求作⊙O ′,使其过点P 并且与∠AOB 的两边相切.(保留作图痕迹,不写作法)(2)已知在BAC ∠的内部有一点P ,请作出M ,使得M 经过点P ,且与,AB AC 都相切.7.如图,在ABC 中,作矩形DEFG ,使其满足:点D 在AB 上,点E 在AC 上,点,FG 在BC 上,且:2:1DE EF =.8.已知线段AB 与点O ,利用直尺和圆规按下列要求作△ABC (不写作法,保留作图痕迹).(1)在图①中,点O 是△ABC 的内心;(2)在图②中,点O 是△ABC 的重心.9.在△ABC 中,D 为BC 边上一点.(1)如图①,在Rt△ABC 中,∠C =90°,将△ABC 沿着AD 折叠,点C 落在AB 边上.请用直尺和圆规作出点D (不写作法,保留作图痕迹);(2)如图②,将△ABC 沿着过点D 的直线折叠,点C 落在AB 边上的E 处.①若DE ⊥AB ,垂足为E ,请用直尺和圆规作出点D (不写作法,保留作图痕迹);②若AB =42,BC =6,∠B =45°,则CD 的取值范围是.①②ABCAC BAO②AO①。

三角形与全等三角形-2022年中考数学专练(解析版)

热点06 三角形与全等三角形三角形的基础知识是解决后续很多几何问题的基础,全等三角形也是几何问题中证明线段相等或者角相等的常用关系。

所以,在中考中,考察的几率也是比较大。

在考察题型上,三角形基础知识部分多以选择或者填空题形式,考察其三边关系、内角和定理、“三线”基本性质等,全等三角形考点,考题形式选择填空均有,个别以简答题形式出现考察其性质与判定的简单应用。

而且,因为该考点与其他几何考点的融入性特别多,所以还有作为几何综合问题的考点之一来综合考察。

1.三角形基本性质:分类记忆,边、角、线;有关三角形的基本性质,主要从以下几个方向考察:①边的角度——三边关系——三角形两边之和大于第三边;②角的角度——三角形内角和定理——三个内角之和=180°(外角定理:三角形的一个外角等于与它不相邻两个内角的和);③三线的角度——高线、中线、角平分线2.应用方面抓实质——当问题已知条件中出现什么概念,立马想找个概念对应的性质;不仅仅是三角形的基本性质,其他几何图形也一样,概念决定性质,性质决定应用。

应用时用不上怎么办?添加对应的辅助线,使对应概念的性质可以应用。

3.全等三角形:根据不同条件选择合适的判定方法,判定和性质通常都是同步考察的;全等三角形的问题,简单问题直接选择合适的方法判定或者应用;复杂的问题中,证出两个三角形是全等三角形之后,通常要接着用全等三角形的对应边或者对应角相等来解决后续问题。

所以,有时候问题中并没有让判定两个三角形全等,但是我们需要通常“三角形全等的证明”间接得到所需要的边相等或角相等。

三角形常考热点考点有:三角形三边关系、内角和定理、外角定理、中线高线角平分线的应用、全等三角形的性质与判定等。

大多数是数学问题的直接考察,个别时候会需要我们把生活实例中的某个物体抽象出数学模型,之后根据其性质对应计算或应用。

A卷(建议用时:50分钟)1.(2021•宜宾·中考真题)若长度分别是a、3、5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.4D.8【分析】根据三角形三边关系定理得出5﹣3<a<5+3,求出即可.【解答】解:由三角形三边关系定理得:5﹣3<a<5+3,即2<a<8,即符合的只有4,故选:C.2.(2021•梧州·中考真题)在△ABC中,∠A=20°,∠B=4∠C,则∠C等于()A.32°B.36°C.40°D.128°【分析】由三角形的内角和定理可得:∠A+∠B+∠C=180°,再结合所给的条件,可得5∠C=160°,从而可求解.【解答】解:∵∠A=20°,∠B=4∠C,∴在△ABC中,∠A+∠B+∠C=180°,20°+4∠C+∠C=180°,5∠C=160°,∠C=32°.故选:A.3.(2021•湖北·中考真题)如图,在△ABC中,∠C=90°,点D在AC上,DE∥AB,若∠CDE=160°,则∠B的度数为()A.40°B.50°C.60°D.70°【分析】利用平角的定义可得∠ADE=20°,再根据平行线的性质知∠A=∠ADE=20°,再由内角和定理可得答案.【解答】解:∵∠CDE=160°,∴∠ADE=20°,∵DE∥AB,∴∠A=∠ADE=20°,∴∠B=180°﹣∠A﹣∠C=180°﹣20°﹣90°=70°.故选:D.4.(2021•本溪·中考真题)一副三角板如图所示摆放,若∠1=80°,则∠2的度数是()A.80°B.95°C.100°D.110°【分析】根据直角三角形的性质求出∠5,根据三角形的外角性质求出∠3,根据对顶角相等求出∠4,再根据三角形的外角性质计算,得到答案.【解答】解:如图,∠5=90°﹣30°=60°,∠3=∠1﹣45°=35°,∴∠4=∠3=35°,∴∠2=∠4+∠5=95°,故选:B.5.(2021•哈尔滨·中考真题)如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.30°B.25°C.35°D.65°【分析】由全等三角形的性质可求得∠ACD=65°,由垂直可得∠CAF+∠ACD=90°,进而可求解∠CAF 的度数.【解答】解:∵△ABC≌△DEC,∴∠ACB=∠DCE,∵∠BCE=65°,∴∠ACD=∠BCE=65°,∵AF⊥CD,∴∠AFC=90°,∴∠CAF+∠ACD=90°,∴∠CAF=90°﹣65°=25°,故选:B.6.(2021•盐城·中考真题)工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB 的两边OA、OB上分别截取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是()A.SAS B.ASA C.AAS D.SSS【分析】根据全等三角形的判定定理SSS推出△COM≌△DOM,根据全等三角形的性质得出∠COM=∠DOM,根据角平分线的定义得出答案即可.【解答】解:在△COM和△DOM中,所以△COM≌△DOM(SSS),所以∠COM=∠DOM,即OM是∠AOB的平分线,故选:D.7.(2021•攀枝花·中考真题)如图,一名工作人员不慎将一块三角形模具打碎成三块,他要带其中一块或两块碎片到商店去配一块与原来一样的三角形模具,他带()去最省事.A.①B.②C.③D.①③【分析】根据全等三角形的判定方法结合图形判断出带③去.【解答】解:由图形可知,③有完整的两角与夹边,根据“角边角”可以作出与原三角形全等的三角形,所以,最省事的做法是带③去.故选:C.8.(2021•青海·中考真题)如图,在四边形ABCD中,∠A=90°,AD=3,BC=5,对角线BD平分∠ABC,则△BCD的面积为()A.8B.7.5C.15D.无法确定【分析】过D点作DE⊥BC于E,如图,根据角平分线的性质得到DE=DA=3,然后根据三角形面积公式计算.【解答】解:过D点作DE⊥BC于E,如图,∵BD平分∠ABC,DE⊥BC,DA⊥AB,∴DE=DA=3,∴△BCD的面积=×5×3=7.5.故选:B.9.(2021•宁夏·中考真题)如图,在▱ABCD中,AD=4,对角线BD=8,分别以点A、B为圆心,以大于AB的长为半径画弧,两弧相交于点E和点F,作直线EF,交对角线BD于点G,连接GA,GA恰好垂直于边AD,则GA的长是()A.2B.3C.4D.5【分析】根据线段垂直平分线的性质得到AG=BG,根据勾股定理列出方程,解方程得到答案.【解答】解:设BG=x,则DG=8﹣x,由作图可知:EF是线段AB的垂直平分线,∴AG=BG=x,在Rt△DAG中,AD2+AG2=DG2,即42+x2=(8﹣x)2,解得:x=3,即AG=3,故选:B.10.(2021•安徽·中考真题)在△ABC中,∠ACB=90°,分别过点B,C作∠BAC平分线的垂线,垂足分别为点D,E,BC的中点是M,连接CD,MD,ME.则下列结论错误的是()A.CD=2ME B.ME∥AB C.BD=CD D.ME=MD【分析】根据题意作出图形,可知点A,C,D,B四点共圆,再结合点M是中点,可得DM⊥BC,又CE⊥AD,BD⊥AD,可得△CEM≌△BFM,可得EM=FM=DM,延长DM交AB于点N,可得MN是△ACB的中位线,再结合直角三角形斜边中线等于斜边的一半,可得DN=AN,得到角之间的关系,可得ME∥AB.【解答】解:根据题意可作出图形,如图所示,并延长EM交BD于点F,延长DM交AB于点N,在△ABC中,∠ACB=90°,分别过点B,C作∠BAC平分线的垂线,垂足分别为点D,E,由此可得点A,C,D,B四点共圆,∵AD平分∠CAB,∴∠CAD=∠BAD,∴CD=DB,(故选项C正确)∵点M是BC的中点,∴DM⊥BC,又∵∠ACB=90°,∴AC∥DN,∴点N是线段AB的中点,∴AN=DN,∴∠DAB=∠ADN,∵CE⊥AD,BD⊥AD,∴CE∥BD,∴∠ECM=∠FBM,∠CEM=∠BFM,∵点M是BC的中点,∴CM=BM,∴△CEM≌△BFM(AAS),∴EM=FM,∠CEM=∠BFM,∴点M是EF的中点,CE∥BF,∴∠EDF=∠CED=90°,∴EM=FM=DM(故选项D正确),∴∠DEM=∠MDE=∠DAB,∴EM∥AB(故选项B正确),综上,可知选项A的结论不正确.故选:A.11.(2021•雅安·中考真题)如图,将△ABC沿BC边向右平移得到△DEF,DE交AC于点G.若BC:EC =3:1.S△ADG=16.则S△CEG的值为()A.2B.4C.6D.8【分析】根据平移的性质得出AD=BE,进而得出BE:EC=2:1,利用三角形面积之比解答即可.【解答】解:由平移性质可得,AD∥BE,AD=BE,∴△ADG∽△CEG,∵BC:EC=3:1,∴BE:EC=2:1,∴AD:EC=2:1,∴=4,∵S△ADG=16,∴S△CEG=4,故选:B.12.(2021•鄂州·中考真题)如图,四边形ABDC中,AC=BC,∠ACB=90°,AD⊥BD于点D.若BD =2,CD=4,则线段AB的长为.【分析】过点C作CE⊥CD交AD于E,判断出∠ACE=∠BCD,进而利用AAS判断出△ACE≌△BCD,得出AE=BD=2,CE=CD,进而利用勾股定理求出DE=8,即AD=10,最后用勾股定理即可得出结论.【解答】解:如图,过点C作CE⊥CD交AD于E,∴∠ECD=90°,∵∠ACB=90°,∴∠ACB=∠ECD,∴∠ACB﹣∠BCE=∠ECD﹣∠BCE,∴∠ACE=∠BCD,∵AC=BC,BC与AD的交点记作点F,∵∠ACB=90°,∴∠AFC+∠CAE=90°,∵∠AFC=∠DFB,∴∠DFB+∠CAE=90°,∵∠ADB=90°,∴∠DFB+∠CBD=90°,∴∠CAE=∠CBD,∴△ACE≌△BCD(AAS),∴AE=BD,CE=CD,在Rt△DCE中,CE=CD=4,∴DE=CD==8,∵BD=2,∴AE=2,∴AD=AE+DE=2+8=10,在Rt△ABD中,根据勾股定理得,AB===2,故答案为.13.(2021•兰州·中考真题)如图,点E,C在线段BF上,∠A=∠D,AB∥DE,BC=EF.求证:AC=DF.【分析】根据平行线的性质得到∠ABC=∠DEF.根据全等三角形的判定和性质定理即可得到结论.【解答】证明:∵AB∥ED,∴∠ABC=∠DEF.在△ABC与△DEF中,,∴△ABC≌△DEF(AAS).∴AC=DF.14.(2021•南京·中考真题)如图,AC与BD交于点O,OA=OD,∠ABO=∠DCO,E为BC延长线上一点,过点E作EF∥CD,交BD的延长线于点F.(1)求证△AOB≌△DOC;(2)若AB=2,BC=3,CE=1,求EF的长.【分析】(1)由AAS证明△AOB≌△DOC即可;(2)由全等三角形的性质得AB=DC=2,再证△BCD∽△BEF,得=,即可求解.【解答】(1)证明:在△AOB和△DOC中,,∴△AOB≌△DOC(AAS);(2)解:由(1)得:△AOB≌△DOC,∴AB=DC=2,∵BC=3,CE=1,∴BE=BC+CE=4,∵EF∥CD,∴△BCD∽△BEF,∴=,即=,解得:EF=.15.(2021•河池·中考真题)如图,在Rt△ABC中,∠A=90°,AB=4,AC=3,D,E分别是AB,BC 边上的动点,以BD为直径的⊙O交BC于点F.(1)当AD=DF时,求证:△CAD≌△CFD;(2)当△CED是等腰三角形且△DEB是直角三角形时,求AD的长.【分析】(1)因为BD是⊙O的直径,所以∠DFB=90°,利用“HL“证明Rt△CAD≌Rt△CFD;(2)因为△CED为等腰三角形,故每一条边都可能是底边,可以分三类讨论,由于△DEB是直角三角形,所以D和F都可能为直角顶点,故需要分两类讨论,我们选择按照D和F为直角顶点分两类讨论更简单,当∠EDB=90°时,∠DEB<90°,∠CED是钝角,所以此时只能构造EC=ED的等腰三角形,故取点D使CD平分∠ACB,作DE⊥AB交BC于E,可以证明DE=DC,且DE∥AC,得到△BDE∽△BAC,设DE=DC=x,利用相似三角形对应边成比例,列出方程并求解,即可解决,当∠DEB=90°时,如图2,则∠AED=90°,若△CED为等腰三角形,则∠ECD=∠EDC=45°,即EC=DC,可以利用三角函数或相似来求AD的长度.【解答】证明:(1)∵BD为⊙O直径,∴∠DFB=90°,在Rt△ACD与Rt△FCD中,,∴Rt△ACD≌Rt△FCD(HL),解:(2)∵△DEB是直角三角形,且∠B<90°,∴直角顶点只能是D点和E点,①若∠EDB=90°,如图1,在AB上取点D,使CD平分∠ACB,过D作DE⊥AB交BC于E,∵CD平分∠ACB,∴∠ACD=∠ECD,∵∠CAB=∠EDB=90°,∴AC∥DE,∴∠ACD=∠CDE,∴∠ECD=∠CDE,∴CE=DE,此时△ECD为E为顶角顶点的等腰三角形,△DEB是以D为直角顶点的直角三角形,设CE=DE=x,在直角△ABC中,BC==5,∴BE=5﹣x,∵DE∥AC,∴△BDE∽△BAC,∴=,∴,∴x=,∴,∵DE∥AC,∴,∴,∴AD=,②若∠DEB=90°,如图2,则∠CED=90°,∵△CED为等腰三角形,∴∠ECD=∠EDC=45°,∴可设CE=DE=y,∵tan∠B==,∴tan∠B==,∴,∴BC=CE+EB=5,∴y+=5,∴,∴CE=DE=,∴BD===,∴AD=AB﹣BD=4﹣=,∴AD的长为或.B卷(建议用时:80分钟)1.(2021•绥化·中考真题)下列命题是假命题的是()A.任意一个三角形中,三角形两边的差小于第三边B.三角形的中位线平行于三角形的第三边,并且等于第三边的一半C.如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等D.一组对边平行且相等的四边形是平行四边形【分析】利用三角形的三边关系、三角形的中位线定理、平行线的性质及平行四边形的判定方法分别判断后即可确定正确的选项.【解答】解:A、任意一个三角形中,三角形两边的差小于第三边,正确,是真命题,不符合题意;B、三角形的中位线平行于三角形的第三边,并且等于第三边的一半,正确,是真命题,不符合题意;C、如果一个角的两边分别平行于另一个角的两边,那么这两个角一定相等或互补,故原命题错误,是假命题,符合题意;D、一组对边平行且相等的四边形是平行四边形,正确,是真命题,不符合题意,故选:C.2.(2021•淮安·中考真题)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是.【分析】利用三角形三边关系定理,先确定第三边的范围,再根据第三边是偶数这一条件,求得第三边的值.【解答】解:设第三边为a,根据三角形的三边关系知,4﹣1<a<4+1,即3<a<5,又∵第三边的长是偶数,∴a为4.故答案为:4.3.(2021•宿迁·中考真题)如图,在△ABC中,∠A=70°,∠C=30°,BD平分∠ABC交AC于点D,DE∥AB,交BC于点E,则∠BDE的度数是()A.30°B.40°C.50°D.60°【分析】根据三角形内角和定理求出∠ABC,根据角平分线定义求出∠ABD,根据平行线的性质得出∠BDE=∠ABD即可.【解答】解:在△ABC中,∠A=70°,∠C=30°,∴∠ABC=180°﹣∠A﹣∠C=80°,∵BD平分∠ABC,∴∠ABD=∠ABC=40°,∵DE∥AB,∴∠BDE=∠ABD=40°,故选:B.4.(2021•乐山·中考真题)如图,已知直线l1、l2、l3两两相交,且l1⊥l3,若α=50°,则β的度数为()A.120°B.130°C.140°D.150°【分析】先求出α的对顶角等于50°,再根据三角形的外角性质求出β的度数.【解答】解:如图,根据对顶角相等得:∠1=∠α=50°,∵l1⊥l3,∴∠2=90°.∵∠β是三角形的外角,∴∠β=∠1+∠2=50°+90°=140°,故选:C.5.(2021•台湾·中考真题)已知△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,且E点在AC 上,B、F、C、D四点共线,如图所示.若∠A=40°,∠CED=35°,则下列叙述何者正确?()A.EF=EC,AE=FC B.EF=EC,AE≠FCC.EF≠EC,AE=FC D.EF≠EC,AE≠FC【分析】由△ABC与△DEF全等,A、B、C的对应点分别为D、E、F,可得∠A=∠D=40°,AC=DF,∠ACB=∠DFE,可得EF=EC;∠CED=35°,∠D=40°可得∠D>∠CED,由大角对大边可得CE >CD;利用AC=DF,可得AC﹣CE<DF﹣CD,即AE<FC,由上可得正确选项.【解答】解:∵△ABC≌△DEF,∴∠A=∠D=40°,AC=DF,∠ACB=∠DFE,∵∠ACB=∠DFE,∴EF=EC.∵∠CED=35°,∠D=40°,∴∠D>∠CED.∴CE>CD.∵AC=DF,∴AC﹣CE<DF﹣CD,即AE<FC.∴AE≠FC.∴EF=EC,AE≠FC.故选:B.6.(2021•齐齐哈尔·中考真题)如图,AC=AD,∠1=∠2,要使△ABC≌△AED,应添加的条件是.(只需写出一个条件即可)【分析】利用∠1=∠2得到∠BAC=∠EAD,由于AC=AD,然后根据全等三角形的判定方法添加条件.【解答】解:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即∠BAC=∠EAD,∵AC=AD,∴当添加∠B=∠E时,可根据“AAS”判断△ABC≌△AED;当添加∠C=∠D时,可根据“ASA”判断△ABC≌△AED;当添加AB=AE时,可根据“SAS”判断△ABC≌△AED.故答案为∠B=∠E或∠C=∠D或AB=AE.7.(2021•陕西·中考真题)如图,AB、BC、CD、DE是四根长度均为5cm的火柴棒,点A、C、E共线.若AC=6cm,CD⊥BC,则线段CE的长度是()A.6cm B.7cm C.6cm D.8cm【分析】过B作BM⊥AC于M,过D作DN⊥CE于N,由等腰三角形的性质得到AM=CM=3,CN=EN,根据全等三角形判定证得△BCM≌△CDN,得到BM=CN,在Rt△BCM中,根据勾股定理求出BM =4,进而求出.【解答】解:由题意知,AB=BC=CD=DE=5cm,AC=6cm,过B作BM⊥AC于M,过D作DN⊥CE于N,则∠BMC=∠CND=90°,AM=CM=AC=×6=3,CN=EN,∵CD⊥BC,∴∠BCD=90°,∴∠BCM+∠CBM=∠BCM+∠DCN=90°,∴∠CBM=∠DCN,在△BCM和△CDN中,,∴△BCM≌△CDN(AAS),∴BM=CN,在Rt△BCM中,∵BC=5,CM=3,∴BM===4,∴CN=4,∴CE=2CN=2×4=8,故选:D.8.(2021•泰州·中考真题)如图,四边形ABCD中,AB=CD=4,且AB与CD不平行,P、M、N分别是AD、BD、AC的中点,设△PMN的面积为S,则S的范围是.【分析】有中点一般思考中线或者中位线,本题借助三角形中位线求解.【解答】解:作ME⊥PN,如图所示,∵P,M,N分别是AD,BD,AC中点,∴PM=AB=2,PN=CD=2,∴S△PMN==ME,∵AB与CD不平行,∴M,N不能重合,∴ME>0∵ME≤MP=2∴0<S△≤2.故答案是:0<S≤2.9.(2021•威海·中考真题)如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连接CD,连接BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是()A.∠ADC=∠AEB B.CD∥AB C.DE=GE D.BF2=CF•AC【分析】根据题意得出∠DAC=∠EAB,用边角边定理证明△DAC≌△EAB,从而得出∠ADC=∠AEB;根据平分线的性质得出角之间的关系:∠DCA=∠EBA=36°=∠CAB=36°,再根据平行线的判定可得出CD∥AB;先假设DE=GE,根据等边对等角及三角形的内角和推出各角之间的关系,得到∠AEG≠∠EAB+∠ABE 与三角形的外角性质产生矛盾,从而推出假设不成立;【解答】解:①∵∠CAB=∠DAE=36°,∴∠CAB﹣∠CAE=∠DAE﹣∠CAE,即∠DAC=∠EAB,在△DAC和△EAB中有:,∴△DAC≌△EAB(SAS),∴∠ADC=∠AEB,故A选项不符合题意;②∵∠CAB=∠DAE=36°,∴∠ACB=∠ABC=(180°﹣36°)÷2=72°,∵BE平分∠ABC,∴∠ABE=∠CBE=36°,由①可知∠DCA=∠EBA=36°,∠CAB=36°,∴CD∥AB(内错角相等,两直线平行),故B选项不符合题意;③假设DE=GE,则∠DGE=∠ADE=72°,∠DEG=180°﹣2×72°=36°,∴∠AEG=∠AED﹣∠DEG=72°﹣36°=36°,∵∠ABE=36°,∠AEG是△ABE的一个外角,∴∠AEG=∠EAB+∠ABE而事实上∠AEG≠∠EAB+∠ABE,∴假设不成立,故C选项符合题意;④∵∠F AB=∠FBA=36°,∴∠AFB=180°﹣2×36°=108°,∴在△AFB中有=,∵∠CBF=36°,∠FCB=72°,∴∠BFC=72°,∴在△BFC中有:=,∴=,即BF2=AB•CF,∵AB=AC,∴BF2=AC•CF,故D选项不符合题意.故选:C.10.(2021•日照·中考真题)如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s 的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D 运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为2或时,△ABP与△PCQ全等.【分析】可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值.【解答】解:①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=,综上所述,当v=2或时,△ABP与△PQC全等,故答案为:2或.11.(2021•绍兴·中考真题)已知△ABC与△ABD在同一平面内,点C,D不重合,∠ABC=∠ABD=30°,AB=4,AC=AD=2,则CD长为.【分析】分C,D在AB的同侧或异侧两种情形,分别求解,注意共有四种情形.【解答】解:如图,当C,D同侧时,过点A作AE⊥CD于E.在Rt△AEB中,∠AEB=90°,AB=4,∠ABE=30°,∴AE=AB=2,∵AD=AC=2,∴DE==2,EC==2,∴DE=EC=AE,∴△ADC是等腰直角三角形,∴CD=4,当C,D异侧时,过C′作C′H⊥CD于H,∵△BCC′是等边三角形,BC=BE﹣EC=2﹣2,∴CH=BH=﹣1,C′H=CH=3﹣,在Rt△DC′H中,DC′===2,∵△DBD′是等边三角形,∴DD′=2+2,∴CD的长为2±2或4或2.故答案为:2±2或4或2.12.(2021•达州·中考真题)如图,在边长为6的等边△ABC中,点E,F分别是边AC,BC上的动点,且AE=CF,连接BE,AF交于点P,连接CP,则CP的最小值为.【分析】由“SAS”可证△ABE≌△ACF,可得∠ABE=∠CAF,可求∠APB=120°,过点A,点P,点B作⊙O,则点P在上运动,利用锐角三角函数可求CO,AO的长,即可求解.【解答】解:∵△ABC是等边三角形,∴AB=AC=BC,∠CAB=∠ACB=60°,在△ABE和△CAF中,,∴△ABE≌△CAF(SAS),∴∠ABE=∠CAF,∴∠BPF=∠P AB+∠ABP=∠CAP+∠BAP=60°,∴∠APB=120°,如图,过点A,点P,点B作⊙O,连接CO,PO,∴点P在上运动,∵AO=OP=OB,∴∠OAP=∠OP A,∠OPB=∠OBP,∠OAB=∠OBA,∴∠AOB=360°﹣∠OAP﹣∠OP A﹣∠OPB﹣∠OBP=120°,∴∠OAB=30°,∴∠CAO=90°,∵AC=BC,OA=OB,∴CO垂直平分AB,∴∠ACO=30°,∴cos∠ACO=,CO=2AO,∴CO=4,∴AO=2,在△CPO中,CP≥CO﹣OP,∴当点P在CO上时,CP有最小值,∴CP的最小值=4﹣2=2,故答案为2.13.(2021•长沙·中考真题)如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至E,使得CE =CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.【分析】(1)证明AD是BC的中垂线,即可求解;(2)利用勾股定理分别计算出BD和AE即可求出△ABE的周长和面积.【解答】解:(1)证明:∵AD⊥BC,BD=CD,∴AD是BC的中垂线,∴AB=AC,∴∠B=∠ACB;(2)在Rt△ADB中,BD===3,∴BD=CD=3,AC=AB=CE=5,∴BE=2BD+CE=2×3+5=11,在Rt△ADE中,AE===4,∴C△ABE=AB+BE+AE=5+11+4=16+4,S△ABE===22.14.(2021•黄石·中考真题)如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.【分析】(1)利用角角边定理判定即可;(2)利用全等三角形对应边相等可得AD的长,用AB﹣AD即可得出结论.【解答】(1)证明:∵CF∥AB,∴∠ADF=∠F,∠A=∠ECF.在△ADE和△CFE中,,∴△ADE≌△CFE(AAS).(2)∵△ADE≌△CFE,∴AD=CF=4.∴BD=AB﹣AD=5﹣4=1.15.(2021•湘潭·中考真题)如图,矩形ABCD中,E为边BC上一点,将△ABE沿AE翻折后,点B恰好落在对角线AC的中点F上.(1)证明:△AEF≌△CEF;(2)若AB=,求折痕AE的长度.【分析】(1)由折叠性质得到,∠AFE=∠B=90°,由点B恰好落在对角线AC的中点F上可得AF=CF,根据邻补角的定义得到∠CFE=90°,即可根据SAS判定△AEF≌△CEF;(2)由(1)得∠EAF=∠ECF,由折叠性质得到∠BAE=∠EAF,根据直角三角形的两锐角互余求出∠BAE=30°,再解直角三角形求解即可.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=90°,∵将△ABE沿AE翻折后,点B恰好落在对角线AC的中点F上,∴∠AFE=∠B=90°,AF=CF,∵∠AFE+∠CFE=180°,∴∠CFE=180°﹣∠AFE=90°,在△AEF和△CEF中,,∴△AEF≌△CEF(SAS).(2)解:由(1)知,△AEF≌△CEF,∴∠EAF=∠ECF,由折叠性质得,∠BAE=∠EAF,∴∠BAE=∠EAF=∠ECF,∵∠B=90°,∴∠BAC+∠BCA=90°,∴3∠BAE=90°,∴∠BAE=30°,在Rt△ABE中,AB=,∠B=90°,∴AE===2.16.(2021•威海·中考真题)(1)已知△ABC,△ADE如图①摆放,点B,C,D在同一条直线上,∠BAC =∠DAE=90°,∠ABC=∠ADE=45°.连接BE,过点A作AF⊥BD,垂足为点F,直线AF交BE于点G.求证:BG=EG.(2)已知△ABC,△ADE如图②摆放,∠BAC=∠DAE=90°,∠ACB=∠ADE=30°.连接BE,CD,过点A作AF⊥BE,垂足为点F,直线AF交CD于点G.求的值.【分析】(1)连接EC,根据题意易推出∠BAD=∠CAE,从而证明△BAD≌△CAE,得到AF∥CE,再利用平行线分线段成比例的性质求解即可.(2)作相关辅助线构造直角三角形△DGM和△CGN,先由角之间的互余关系推出∠1=∠2,∠3=∠4,再根据等角的正弦值相等得出边之间的关系DM=CN,从而证明△DGM≌△CGN,利用全等三角形的性质求解即可.【解答】(1)证明:如图,连接EC,∵∠BAC=∠DAE=90°,∠ABC=∠ADE=45°,∴△ABC和△ADE为等腰直角三角形,∴AB=AC,AD=AE,∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD与△CAE中,,∴△BAD≌△CAE(SAS),∴∠ABD=∠ACE=45°,∴∠ACB+∠ACE=90°,则CE⊥BD,∵AF⊥BD,∴AF∥CE,BF=FC,∴==1,∴BG=EG.(2)解:如图,过点D作DM⊥AG,垂足为点M,过点C作CN⊥AG,交AG的延长线于点N,在△ABC和△AED中,∠BAC=∠DAE=90°,∠ACB=∠ADE=30°,设AE=a,AB=b,则AD=a,AC=b,∵∠1+∠EAF=90°,∠2+∠EAF=90°,∴∠1=∠2,∴sin∠1=sin∠2,∴=,即===,同理可证∠3=∠4,==,∴=,∴DM=CN,在△DGM和△CGN中,有:,∴△DGM≌△CGN(AAS),∴DG=CG,∴=1.。

重难点04几何综合题(22年上海二模25题)-【寒假预习】2022-2023学年九年级数学核心考点+

重难点04几何综合题(22年上海二模25题)几何题是中考数学中必考题目之一,主要考察了利用图形变换(平移、旋转、轴对称)证明线段、角的数量关系及动态几何问题。

这类题往往图形较复杂,涉及的知识点较多,题设和结论之间的关系较隐蔽,常常需要添加辅助线来解答.将几何综合题目分解为基本问题,转化为基本图形或者可与基本图形、方法类比,从而使问题得到解决。

【满分技巧】一、常考题型几何综合题的呈现形式多样,如折叠类型、探究型、开放型、运动型、情景型等,背景鲜活,具有实用性和创造性,考查方式偏重于考查考生分析问题、探究问题、综合应用数学知识解决实际问题的能力.以几何为主的综合题常常在一定的图形背景下研究以下几个方面的问题:1、证明线段、角的数量关系(包括相等、和、差、倍、分及比例关系等);2、证明图形的位置关系(如点与线、线与线、线与圆、圆与圆的位置关系等);3、几何计算问题;4、动态几何问题等.二、基本图形及辅助线解决几何综合题,是需要厚积而薄发,所谓的“几何感觉”,是建立在足够的知识积累的基础上的,熟悉基本图形及常用的辅助线,在遇到特定条件时能够及时联想到对应的模型,找到“新”问题与“旧”模型间的关联,明确努力方向,才能进一步综合应用数学知识来解决问题。

在中档几何题目教学中注重对基本图形及辅助线的积累是非常必要的。

1、与相似及圆有关的基本图形2、正方形中的基本图形3、基本辅助线(1)角平分线——过角平分线上的点向角的两边作垂线(角平分线的性质)、翻折;(2)与中点相关——倍长中线(八字全等),中位线,直角三角形斜边中线;(3)共端点的等线段——旋转基本图形(60°,90°),构造圆;垂直平分线,角平分线——翻折;转移线段——平移基本图形(线段)线段间有特殊关系时,翻折;(4)特殊图形的辅助线及其迁移——梯形的辅助线等作双高——上底、下底、高、腰(等腰梯形)三推一;面积;锐角三角函数平移腰——上下底之差;两底角有特殊关系(延长两腰);梯形——三角形平移对角线——上下底之和;对角线有特殊位置、数量关系。

2023年中考数学常见几何模型全归纳之模型 对角互补模型(从全等到相似)(解析版)

专题04 对角互补模型(从全等到相似)全等三角形与相似三角形在中考数学几何模块中占据着重要地位。

相似三角形与其它知识点结合以综合题的形式呈现,其变化很多,难度大,是中考的常考题型。

如果大家平时注重解题方法,熟练掌握基本解题模型,再遇到该类问题就信心更足了.本专题就对角互补模型进行梳理及对应试题分析,方便掌握。

模型1.对角互补模型(全等模型)【模型解读】四边形或多边形构成的几何图形中,相对的角互补。

常见含90°、120°(60°)及任意角度的三种对角互补类型。

该题型常用到的辅助线主要是顶定点向两边做垂线,从而证明两个三角形全等. 【常见模型及结论】1)全等型—60º和120º:如图1,已知∠AOB =2∠DCE =120º,OC 平分∠AOB . 则可得到如下几个结论:∠CD =CE ,∠OD +OE =OC ,∠234CODCOESS+=. 2)全等型—90º:如图2,已知∠AOB =∠DCE =90º,OC 平分∠AOB . 则可以得到如下几个结论:∠CD =CE ,∠OD +OE =OC ,∠212ODCE OCDCOES SSOC =+=. 3)全等型—2α和1802α︒-:如图3,已知∠AOB =2α,∠DCE =1802α︒-,OC 平分∠AOB . 则可以得到以下结论:∠CD =CE ,∠OD +OE =2OC ·cos ,∠2sin cos OCDCOESSOC αα+=⋅⋅.1.(2021·贵州黔东南·中考真题)在四边形ABCD 中,对角线AC 平分∠BAD .(探究发现)(1)如图①,若∠BAD =120︒,∠ABC =∠ADC =90︒.求证:AD +AB =AC ;(拓展迁移)(2)如图②,若∠BAD =120︒,∠ABC +∠ADC =180︒.①猜想AB 、AD 、AC 三条线段的数量关系,并说明理由;②若AC =10,求四边形ABCD 的面积.【答案】(1)见解析;(2)①AD +AB =AC ,见解析;②【分析】(1)根据角平分线的性质得到∠DAC =∠BAC =60o ,然后根据直角三角形中30o 是斜边的一半即可写出数量关系;(2)①根据第一问中的思路,过点C 分别作CE ∠AD 于E ,CF ∠AB 于F ,构造AAS 证明∠CFB ≅∠CED ,根据全等的性质得到FB =DE ,结合第一问结论即可写出数量关系; ②根据题意应用60o 的正弦值求得CE 的长,然后根据()111222ABCD S AD CE AB CF AD AB CE ⨯⨯⨯四边形=+=+的数量关系即可求解四边形ABCD 的面积.【详解】(1)证明:∠AC 平分∠BAD ,∠BAD =120o ,∠∠DAC =∠BAC =60o , ∠∠ADC =∠ABC =90o ,,∠∠ACD =∠ACB =30o ,∠AD =1122AC AB AC ,=.∠AD +AB =AC , (2)①AD +AB =AC ,理由:过点C 分别作CE ∠AD 于E ,CF ∠AB 于F .∠AC 平分∠BAD ,∠CF =CE ,∠∠ABC +∠ADC =180o ,∠EDC +∠ADC =180o ,∠∠FBC =∠EDC , 又∠CFB =∠CED =90o ,∠∠CFB ≅∠CED ()AAS ,∠FB =DE , ∠AD +AB =AD +FB +AF =AD +DE +AF =AE +AF ,在四边形AFCE 中,由∠题知:AE +AF =AC ,∠AD +AB =AC ; ②在Rt ∠ACE 中,∠AC 平分∠BAD ,∠BAD =120o ∠∠DAC =∠BAC =60o ,又∠AC =10,∠CE =A sin 10sin 60o DAC ∠==∠CF =CE ,AD +AB =AC ,∠()111222ABCD S AD CE AB CF AD AB CE ⨯⨯⨯四边形=+=+=111022AC CE ⨯⨯⨯=. 【点睛】本题考查了全等三角形的判定和性质,角平分线的性质和应用,解直角三角形,关键是辨认出本题属于角平分线类题型,作垂直类辅助线.2.(2022·广东深圳·一模)【问题提出】如图1,在四边形ABCD 中,AD CD =,120ABC ∠=︒,60ADC ∠=︒,2AB =,1BC =,求四边形ABCD 的面积.【尝试解决】旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.(1)如图2,连接BD ,由于AD CD =,所以可将DCB 绕点D 顺时针方向旋转60︒,得到'DAB △,则'BDB △的形状是 .(2)在(1)的基础上,求四边形ABCD 的面积.(3)如图3,等边ABC 的边长为2,BDC 是顶角为120BDC ∠=︒的等腰三角形,以D 为顶点作一个60︒的角,角的两边分别交AB 于点M ,交AC 于点N ,连接MN ,求AMN 的周长. )将BDM 绕点,得到DCP ,则DCP =∠,NPD ≅△,证得AMN 的周长【详解】解:(1)将DCB 绕点顺时针方向旋转60︒,得到'DAB , ∠DCB ∠'DAB △,'BD B D =,60BDB ∠=︒, 'BDB △是等边三角形; 故答案为:等边三角形; (2)过B ′于E ,2224)解:将BDM 绕点,得到DCP , CDP △,,CP BM =PDC ∠, ∠BDC 是等腰三角形,且BD CD =DBC ∠=∠又∠ABC 等边三角形,ABC ACB ∠=∠MBD ACB ∠=∠同理可得NCD ∠PCD NCD =∠DCN NCP +∠在NMD △和NPD 中,MD PD MDN PDN DN DN =⎧⎪∠=⎨⎪=⎩∠()NMD NPD SAS ≅△△, ∠MN PN NC CP NC BM ==+=+,∠AMN 的周长224AM AN MN AM AN NC BM AB AC =++=+++=+=+=.故AMN 的周长为4.【点睛】本题考查三角形全等变换,等边三角形判定,四边形面积转化为三角形面积,图形旋转,直角三角形判定,三点共线,三角形的周长转化为两边之和,特殊角锐角三角函数,掌握三角形全等变换,等边三角形判定,四边形面积转化为三角形面积,图形旋转,直角三角形判定,三点共线,三角形的周长转化为两边之和,特别是利用图形旋转进行图形的转化特殊角锐角三角函数,是解题关键. 3.(2022·河南安阳·二模)【阅读】通过构造恰当的图形,可以对线段长度大小进行比较,直观地得到线段之间的数量关系,这是“数形结合”思想的典型应用.【理解】(1)如图1,120MAN ∠=︒,AC 平分,,MAN CD AM CB AN ∠⊥⊥,求证:AB AD AC +=. 【拓展】(2)如图2,其他条件不变,将图1中的DCB ∠绕点C 逆时针旋转,CD 交MA 的延长线于点D ,CB 交射线AN 于点B ,写出线段AD ,AB ,AC 之间的数量关系,并就图2的情形说明理由.【应用】(3)如图3,ABC 为等边三角形,4AB =,P 为BC 边的中点,120MPN ∠=︒,将MPN ∠绕点P 转动使射线PM 交直线AC 于点M ,射线PN 交直线AB 于点N ,当8AM =时,请直接写出AN 的长. 的结论可得PEM PFN ≌,根据含FN AF EM AF =+=) AC 平分MAN ∠,60DAC BAC ∠=∠=1AC =,∴AB AD +∠MAN ∠=BAD ∠+∠CED ∠=CED CFB ∴≌,ED ∴,AE ED AD AF =-AE AF ED AD ∴+=-又AE AF AC +=,∴(3)①如图,当M P 是BC 的中点,ABC 是等边三角形,∠B =∠C =60°)可得PEM PFN ≌,EM ∴AB 1122CP BC AB ∴===FPB =90°-60°=30°,1,3AE AF ∴==,AM AN AF FN AF ∴=+=模型2.对角互补模型(相似模型)【模型解读】四边形或多边形构成的几何图形中,相对的角互补。

2022年中考一轮复习数学几何专题:三角形 解答题训练(一)

2022年中考一轮复习数学几何专题:三角形解答题训练(一)1.如图,在平面直角坐标系中,已知点A(﹣1,m),点B(2,n),且|m﹣1|+=0.(1)求A,B两点的坐标;(2)在(1)的条件下,若直线AB交x轴于点C点,试求出C点坐标;不超过9,请求出a (3)在(2)的结论下,已知P(a,0)为x轴上一动点,若S△ABP的取值范围.2.如图,在△ABC中,AB=7,BC=14,M为AC的中点,OM⊥AC交∠ABC的平分线于O,OE ⊥AB交BA的延长线于E,OF⊥BC.垂足为F.(1)求证:AE=CF.(2)求线段BE的长.3.已知在△ACD中,P是CD的中点,B是AD延长线上的一点,连结BC,AP.(1)如图1,若∠ACB=90°,∠CAD=60°,BD=AC,AP=,求BC的长.(2)过点D作DE∥AC,交AP延长线于点E,如图2所示,若∠CAD=60°,BD=AC,求证:BC=2AP.(3)如图3,若∠CAD=45°,是否存在实数m,当BD=mAC时,BC=2AP?若存在,请直接写出m的值;若不存在,请说明理由.4.如图,在Rt△ABC中,∠BAC=90°,AB=AC,点D是BC中点,点E是AC边上一动点,连接DE,在DE左侧作Rt△DEF,满足∠DFE=90°,DF=EF,连接AF并延长,交BC于点G.(1)如图1,若AB=4,AE=1,求DE的长;(2)如图2,在点E的运动过程中,猜想AF与FG存在的数量关系,并证明你的结论;(3)如图3,在点E的运动过程中,将AF绕点F逆时针旋转90°,得到A′F,连接A'B,A'D,若AB=4,请直接写出当A'B+A′D取得最小值时,△A′DF的面积.5.如图,直线MN与直线PQ相交于O,∠POM=30°,点A在射线OP上运动,点B在射线OM上运动,AC、BC分别是∠BAO和∠ABO的角平分线.(1)若∠BAO=50°,试求出∠ACB的度数.(2)点A、B在运动的过程中,∠ACB的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出∠ACB的度数.(3)在(2)的条件下,在△ABC中,如果有一个角是另一个角的2倍,请直接写出∠BAC 的度数.6.如图,在平面直角坐标系中,已知点A的坐标是(a,0),点B的坐标是(b,0),其中a,b满足+(b﹣3)2=0.(1)填空:a=,b=;(2)在y轴有一点M(0,m),△ABM的面积为4.求m的值;(3)如图,若M在y轴负半轴,将线段AM沿x轴正方向平移,使得A的对应点为B,M 的对应点为N.若点P为线段AB上的任意一点(不与A,B重合),试写出∠MPN,∠PMA,∠PNB之间的数量关系,并说明理由.7.已知:DF∥BC,∠FDC=∠AEC.(1)如图1,已知CD⊥AB,CB平分∠NCE.求∠ABC的度数;(2)如图2,若∠ABC=∠ACF,AC=FC,DM=BE.求证:BC=MC.8.如图,在四边形ABCD中,∠DAB=∠DCB=90°,对角线AC与BD相交于点O,M、N分别是边BD、AC的中点.(1)求证:MN⊥AC;(2)当AC=30cm,BD=34cm时,求MN的长.9.如图,在等边△ABC中,点D是射线BC上一动点(点D在点C的右侧),CD=DE,∠BDE =120°.点F是线段BE的中点,连接DF、CF.(1)请你判断线段DF与AD的数量关系,并给出证明;(2)若AB=4,求线段CF长度的最小值.10.如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD、BE之间的数量关系是.③当点A、D、E不在同一直线上,∠AEB的度数会发生变化吗?(填写“变化”或“不变”).11.在△ABC中,∠CAB=90°,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:四边形ADCF是菱形.(2)连接CE,若CE=EF,直接写出长度等于的线段.12.如图,△ABC中,CD⊥AB,垂足为D.BE⊥AC,垂足为G,AB=CF,BE=AC.(1)求证:AE=AF;(2)求∠EAF的度数.13.如图,已知△ABC为等腰直角三角形,AB=AC且∠CAB=90°,E为BC上一点,且BE =AC,过E作EF⊥BC且EF=EC,连接CF.(1)如图1,已知AB=2,连接AE、AF,求△AEF的面积;(2)如图2所示,D为AB上一点,连接DB,作∠DBH=45°交EF于H点,求证:CD=HF+CE;(3)已知△ABC面积为8+4,D为射线AC上一点,作∠DBH=45°,交射线EF于H,连接DH,点M为DH的中点,当CM有最小值时,请直接写出△CMD的面积.14.直角三角形ABC中,∠ACB=90°,直线l过点C.(1)当AC=BC时,如图①,分别过点A、B作AD⊥l于点D,BE⊥l于点E.求证:△ACD ≌△CBE.(2)当AC=8,BC=6时,如图②,点B与点F关于直线l对称,连接BF,CF,动点M 从点A出发,以每秒1个单位长度的速度沿AC边向终点C运动,同时动点N从点F出发,以每秒3个单位的速度沿F→C→B→C→F向终点F运动,点M、N到达相应的终点时停止运动,过点M作MD⊥l于点D,过点N作NE⊥l于点E,设运动时间为t秒.①CM=,当N在F→C路径上时,CN=.(用含t的代数式表示)②直接写出当△MDC与△CEN全等时t的值.15.在△ABC和△DBE中,CA=CB,EB=ED,点D在AC上.(1)如图1,若∠ABC=∠DBE=60°,求证:∠ECB=∠A;(2)如图2,设BC与DE交于点F.当∠ABC=∠DBE=45°时,求证:CE∥AB;(3)在(2)的条件下,若tan∠DEC=时,求的值.16.阅读下列材料,完成相应任务.数学活动课上,老师提出了如下问题:如图1,已知△ABC中,AD是BC边上的中线.求证:AB+AC>2AD.智慧小组的证法如下:证明:如图2,延长AD至E,使DE=AD,∵AD是BC边上的中线∴BD=CD在△BDE和△CDA中∴△BDE≌△CDA(依据一)∴BE=CA在△ABE中,AB+BE>AE(依据二)∴AB+AC>2AD.任务一:上述证明过程中的“依据1”和“依据2”分别是指:依据1:;依据2:.归纳总结:上述方法是通过延长中线AD,使DE=AD,构造了一对全等三角形,将AB,AC,AD转化到一个三角形中,进而解决问题,这种方法叫做“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.任务二:如图3,AD是BC边上的中线,AB=3,AC=4,则AD的取值范围是;任务三:如图4,在图3的基础上,分别以AB和AC为边作等腰直角三角形,在Rt△ABE 中,∠BAE=90°,AB=AE;Rt△ACF中,∠CAF=90°,AC=AF.连接EF.试探究EF与AD的数量关系,并说明理由.17.(1)①如图1,△ABC、△ECF都是等腰直角三角形,点E在线段AB上,∠ACB=∠ECF =90°.求证:△ACF≌△BCE;②如图2,当AE=,BE=3AE时,求线段CG的长;(2)如图3,∠BDC=∠CAD=30°,∠BCD=90°,AB=2,AD=4,求AC的长.18.(1)如图①,△ABC和△CDE都是等边三角形,且点B,C,E在一条直线上,连接BD 和AE,直线BD,AE相交于点P.则线段BD与AE的数量关系为;BD与AE相交构成的锐角的度数为.(2)如图②,点B,C,E不在同一条直线上,其它条件不变,上述的结论是否还成立?请说明理由.(3)应用:如图③,点B,C,E不在同一条线上,其它条件依然不变,此时恰好有∠AEC =30°.设直线AE交CD于点Q,请把图形补全.若PQ=2,则DP=.19.如图,平面直角坐标系中,A(a,0),B(0,b),C(0,c),+|2﹣b|=0,c=(a﹣b).(1)求△ABC的面积;(2)如图2,点A以每秒m个单位的速度向下运动至A′,与此同时,点Q从原点出发,以每秒2个单位的速度沿x轴向右运动至Q′,3秒后,A′、C、Q′在同一直线上,求m 的值;(3)如图3,点D在线段AB上,将点D向右平移4个单位长度至E点,若△ACE的面积等于14,求点D坐标.20.在△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于点E,BD⊥AE交AE延长线于点D,连接CD,过点C作CF⊥CD交AD于F.(Ⅰ)如图①,(1)求∠EBD的度数;(2)求证AF=BD;(Ⅱ)如图②,DM⊥AC交AC的延长线于点M,探究AB、AC、AM之间的数量关系,并给出证明.参考答案1.解:(1)∵|m﹣1|+=0,又∵|m﹣1|≥0,≥0,∴m=1,n=4,∴A(﹣1,1),B(2,4).(2)如图1中,过点B作BH⊥x轴于H,连接AH,设C(m,0).∵B(2,4),A(﹣1,1),∴H(2,0),BH=4,∵S△ABH =S△CBH﹣S△ACH,∴×4×3=×(2﹣m)×4﹣×(2﹣m)×1,∴m=﹣2,∴C(﹣2,0).(3)如图2中,当S△PAB=9时,•|a+2|•4﹣•|a+2|•1=9, 解得a=4或﹣8,∴满足条件的a的值为:﹣8≤a<﹣2或﹣2<a≤4.2.(1)证明:连接OA,∵OB平分∠ABC,又∵OE⊥AB,OF⊥BC,∴OE=OF.∵OM⊥AC,M为AC中点,∴OM垂直平分AC,∴OA=OC,在Rt△AEO与Rt△CFO中,,∴Rt△AEO≌Rt△CFO(HL),∴AE=CF;(2)解:在Rt△BEO与Rt△BFO中,,∴△BEO≌△BFO(HL),∴BE=BF,∵AB=7,BC=14,设AE=CF=x,∴x+7=14﹣x,∴,∴.3.解:(1)∵∠ACB=90°,∠CAD=60°,∴AB=,∵BD=AC,∴AD=AC,∴△ADC是等边三角形,∴∠ACD=60°,∵P是CD的中点,∴AP⊥CD,在Rt△APC中,AP=,∴,∴,(2)证明:连接BE,∵DE∥AC,∴∠CAP=∠DEP,在△CPA和△DPE中,∴△CPA≌△DPE(AAS),∴AP=EP=,DE=AC,∵BD=AC,∴BD=DE,又∵DE∥AC,∴∠BDE=∠CAD=60°,∴△BDE是等边三角形,∴BD=BE,∠EBD=60°,∵BD=AC,∴AC=BE,在△CAB和△EBA中,∴△CAB≌△EBA(SAS),∴AE=BC,∴BC=2AP,(3)存在这样的m,m=.理由如下:作DE∥AC交AP延长线于E,连接BE,由(2)同理可得DE=AC,∠EDB=∠CAD=45°,AE=2AP,当BD=时,∴BD=,作BF⊥DE于F,∵∠EDB=45°,∴BD=,∴DE=DF,∴点E,F重合,∴∠BED=90°,∴∠EBD=∠EDB=45°,∴BE=DE=AC,同(2)可证:△CAB≌△EBA(SAS),∴BC=AE=2AP,∴存在m=,使得BC=2AP4.(1)解:过点E作EH⊥DC,垂足为H,∵∠BAC=90°,AB=AC,AB=4,∴BC=4,∠C=45°,∵点D是BC中点,∴DB=DC=2,∵AE=1,∴CE=3,∵∠C=45°,∴HE=HC=,HD=CD﹣HC=,DE=,∴DE=.(2)AF=FG,证明如下:取AE的中点I,连接FI,DI,∵点D是BC中点,∴DI∥AB,∴△DIC是等腰直角三角形,∴,即,∠FDE=∠IDC=45°,∴∠FDI=∠BDC,∴△FDI∽△EDC,∴∠FID=∠C=45°,∴∠AIF=∠C=45°,∴FI∥CB,∴AF=FG.(3)延长DA′交AB于点M,取AM的中点N,连接DN,AD,AA′,∵△ADB和△AFA′是等腰直角三角形,∴=,∠BAD=∠A′AD=45°,∴∠BAA′=∠DAF,∴△BAA′∽△DBF,∴,由(2)可知,AF=FG,∠ADC=90°,∴AF=FD,∴BA′=AA′,∵BD=DA,∴DM垂直平分AB,BM=AM=DM=2,NM=1,∴DN=,sin,tam,过点A′作A′P⊥DN,垂足为P,∴sin,,当B、A′、P在同一条直线上时,A′B+A′D最小,∵∠BA′M=∠DA′P,∴∠MBP=∠MDN,∴,A′M=1,A′D=1,∵,A,∴,A,∵,∴,DP=,∴=.5.解:(1)如图1中,∵BC平分∠ABO,AC平分∠BAO,∴∠ABC=∠ABO,∠BAC=∠BAO,∵∠POM=30°,∴∠ABO+∠BAO=180°﹣30°=150°,∴∠CBA+∠CAB=(∠ABO+∠BAO)=×150°=75°,∴∠ACB=180°﹣(∠CBA+∠CAB)=180°﹣75°=105°;(2)∠ACB的大小不变,理由如下:由(1)知:点A、B在运动的过程中,∠ACB=105°;(3)由(2)可知,∠ACB=105°,∠BAC+∠ABC=75°,∵△ABC中有一个角是另一个角的2倍,∴∠ACB=2∠BAC或∠ACB=2∠ABC或∠ABC=2∠BAC或∠BAC=2∠ABC,∴∠BAC=52.5°或22.5°或25°或50°.6.解:(1)∵+(b﹣3)2=0,≥0,(b﹣3)2≥0,∴a+1=0,b﹣3=0,解得,a=﹣1,b=3,故答案为:﹣1;3;(2)由(1)可知A(﹣1,0),B(3,0),∴OA=1,OB=3,∴AB=OA+OB=4,由题意得,△ABM的面积=AB•OM=×4×OM=4,即×4×|m|=4,解得,m=±2;(3)∠MPN=∠PMA+∠PNB,理由如下:过点P作PE∥AM,则∠MPE=∠PMA,∵AM平移后得到BN,∴AM∥BN,∴PE∥BN,∴∠NPE=∠PNB,∴∠MPN=∠MPE+∠NPE=∠PMA+∠PNB.7.解:(1)∵DF∥BC,∴∠FDC=∠NCB,∵CB平分∠NCE,∴∠NCB=∠BCE,∵∠FDC=∠AEC,∴∠FDC=∠NCB=∠BCE=∠AEC,∵CD⊥AB,∴∠ENC=90°,∴∠AEC+∠NCE=∠AEC+∠BCE+∠NCB=3∠NCB=90°,∴∠NCB=30°,∴∠ABC=90°﹣∠NCB=60°;(2)∵DF∥BC,∴∠FMC=∠ACB,∵∠ABC=∠ACF,∴180°﹣∠FMC﹣∠ACF=180°﹣∠ACB﹣∠ABC,即∠F=∠BAC,在△DFC和△EAC中,,∴△DFC≌△EAC(AAS),∴CD=CE,在△MDC和△BEC中,,∴△MDC≌△BEC(SAS),∴MC=BC.8.解:(1)如图,连接AM,CM,∵∠DAB=∠DCB=90°,点M是BD的中点,∴AM=BD,CM=BD,∴AM=CM,∵点N是AC的中点,∴MN⊥AC;(2)∵BD=34cm,∴AM=CM=BD=17cm,∵AC=30cm,∴AN=AC=15cm,由(1)知,MN⊥AC,∴MN===8.9.解:(1)线段DF与AD的数量关系为:AD=2DF,理由如下:延长DF至点M,使DF=FM,连接BM、AM,如图1所示:∵点F为BE的中点,∴BF=EF,在△BFM和△EFD中,,∴△BFM≌△EFD(SAS),∴BM=DE,∠MBF=∠DEF,∴BM∥DE,∵线段CD绕点D逆时针旋转120°得到线段DE,∴CD=DE=BM,∠BDE=120°,∴∠MBD=180°﹣120°=60°,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∴∠ABM=∠ABC+∠MBD=60°+60°=120°,∵∠ACD=180°﹣∠ACB=180°﹣60°=120°,∴∠ABM=∠ACD,在△ABM和△ACD中,,∴△ABM≌△ACD(SAS),∴AM=AD,∠BAM=∠CAD,∴∠MAD=∠MAC+∠CAD=∠MAC+∠BAM=∠BAC=60°,∴△AMD是等边三角形,∴AD=DM=2DF;(2)连接CE,取BC的中点N,连接作射线NF,如图2所示:∵△CDE为等腰三角形,∠CDE=120°,∴∠DCE=30°,∵点N为BC的中点,点F为BE的中点,∴NF是△BCE的中位线,∴NF∥CE,∴∠CNF=∠DCE=30°,∴点F的轨迹为射线NF,且∠CNF=30°,当CF⊥NF时,CF最短,∵AB=BC=4,∴CN=2,在Rt△CNF中,∠CNF=30°,∴CF=CN=1,∴线段CF长度的最小值为1.10.解:①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.③如图2,点A、D、E不在同一直线上,∠AEB的度数会发生变化;故答案为:变化.11.证明:(1)∵AF∥BC,∴∠FAE=∠BDE,∵E为AD中点,∴AE=DE,在△AEF和△DEB中,,∴△AEF≌△DEB(ASA),∴AF=BD,∵AD为Rt△ABC的斜边中线,∴AD=BD=CD,∴AF=AD=CD,又∵AF∥CD,∴四边形ADCF是菱形.(2)由(1)得E为BF中点,∵CE=EF,∴CE=BE,∴AD垂直平分BC,∴△ABC为等腰直角三角形,四边形CFAD为正方形,∴BD=AD=CD=CF=FA=AB.故答案为:BD,AD,CD,CF,FA.12.(1)证明:∵CD⊥AB,BE⊥AC,∴∠CAD+∠ACD=∠CAD+∠EBA=90°,∴∠ACD=∠EBA,在△AEB和△FAC中,,∴△AEB≌△FAC(SAS),∴AE=FA;(2)解:∵△AEB≌△FAC,∴∠E=∠CAF,∵∠E+∠EAG=90°,∴∠CAF+∠EAG=90°,即∠EAF=90°.13.解:(1)∵AB=AC=2,∠CAB=90°,∴BC===2,∠ACB=45°,如图1,过点A作AT⊥BC于点T,则BT=CT,AT=BC=,∵BE=AC=2,∴CE=BC﹣BE=2﹣2,∵EF⊥BC且EF=EC,∴∠ECF=45°,CF=CE=×(2﹣2)=4﹣2,∴∠ACF=∠ACB+∠ECF=45°+45°=90°,∴S△AEF =S△ACF﹣S△ACE﹣S△CEF=•AC•CF﹣•CE•AT﹣•CE•EF=×2×(4﹣2)﹣12×(2﹣2)×﹣×(2﹣2)×(2﹣2)=3﹣4;(2)如图2,∵∠DBH=45°=∠ABC,∴∠ABD+∠CBD=∠EBH+∠CBD,∴∠ABD=∠EBH,在△ABD和△EBH中,,∴△ABD≌△EBH(ASA),∴AD=EH,过点B作BR⊥AB交CF的延长线于点R,在RC上截取RK=AD,连接BK,BF,∴∠ABR=90°=∠A=∠ACF,∴四边形ABRC是矩形,∵AB=AC,∴四边形ABRC是正方形,∴BR=AB,∠R=90°=∠A,在△BRK和△BAD中,,∴△BRK≌△BAD(SAS),∴BK=BD,RK=AD,∠ABD=∠RBK,∵∠ABC=∠RBC=45°,∴∠ABC﹣∠ABD=∠RBC﹣∠RBK,即∠CBD=∠CBK,在△CBD和△CBK中,,∴△CBD≌△CBK(SAS),∴CD=CK=CF+FK,∵CF=CE,∴CD=FK+CE,在Rt△BRF和Rt△BEF中,,∴Rt△BRF≌Rt△BEF(HL),∴FR=FE,∵RK=AD=EH,∴FR﹣RK=FE﹣EH,即FK=FH,∴CD=FH+CE;(3)由(2)知,△ABD≌△EBH,∴AD=EH,根据瓜豆原理,点H的运动轨迹为射线EF,∵点M为DH的中点,点M的运动轨迹为射线AE,当CM有最小值时,CM⊥AE,∴∠AMC=90°,设AB=a,则BC=a,CE=()a,过点M作MK⊥AB于K,过点E作ET⊥AB于点T,∴∠BTE=∠BKM=∠AKM=∠ALM=∠BAC=90°,∵∠ABC=45°,∴ET=BT=BE•cos∠ABC=a•sin45°=a,∴AT=AB﹣BT=a﹣a=a,∴AE===a,∵ET∥AC,∴∠CAM=∠AET,∵∠AMC=∠ETA=90°,∴△AMC∽△ETA,∴==,即==,∴CM=a,AM=a,∵ET∥MK,∴△AET∽△AMK,∴=,即=,∴MK=a,∴S△ABM=AB•MK=•a•a=a2,∵∠AMD=∠BMD=90°,∴∠CMD+∠AMD=∠AMB+∠AMD,∴∠CMD=∠AMB,∵∠CAM+∠DCM=90°,∠CAM+∠BAM=90°,∴∠DCM=∠BAM,∴△CMD∽△AMB,∴===3﹣2,∴S△CMD =(3﹣2)•S△AMB=(3﹣2)•a2,∵S△ABC=a2=8+4,∴a2=16+8,∴S△CDM=(3﹣2)•a2=(3﹣2)××(16+8)=2.14.解:(1)△ACD与△CBE全等.理由如下:∵AD⊥直线l,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB,在△ACD和△CBE中,,∴△ACD≌△CBE(AAS);(2)①由题意得,AM=t,FN=3t,则CM=8﹣t,由折叠的性质可知,CF=CB=6,∴CN=6﹣3t.故答案为:8﹣t;6﹣3t.②由折叠的性质可知,∠BCE=∠FCE,∵∠MCD+∠CMD=90°,∠MCD+∠BCE=90°,∴∠NCE=∠CMD,∴当CM=CN时,△MDC与△CEN全等,当点N沿F→C路径运动时,8﹣t=6﹣3t,解得,t=﹣1(不合题意),当点N沿C→B路径运动时,8﹣t═3t﹣6,解得,t=3.5,当点N沿B→C路径运动时,由题意得,8﹣t=18﹣3t,解得,t=5,当点N沿C→F路径运动时,由题意得,8﹣t=3t﹣18,解得,t=6.5,综上所述,当t=3.5秒或5秒或6.5秒时,△MDC与△CEN全等.15.(1)证明:∵CA=CB,EB=ED,∠ABC=∠DBE=60°,∴△ABC和△DBE都是等边三角形,∴AB=BC,DB=BE,∠A=60°.∵∠ABC=∠DBE=60°,∴∠ABD=∠CBE,∴△ABD≌△CBE(SAS).∴∠A=∠ECB;(2)证明:∵∠ABC=∠DBE=45°,CA=CB,EB=ED,∴△ABC和△DBE都是等腰直角三角形,∴∠CAB=45°,∴,∴,∵∠ABC=∠DBE,∴∠ABD=∠CBE,∴△ABD∽△CBE,∴∠BAD=∠BCE=45°,∵∠ABC=45°,∴∠ABC=∠BCE,∴CE∥AB;(3)解:过点D作DM⊥CE于点M,过点D作DN∥AB交CB于点N,∵∠ACB=90°,∠BCE=45°,∴∠DCM=45°,∴∠MDC=∠DCM=45°,∴DM=MC,设DM=MC=a,∴a,∵DN∥AB,∴△DCN为等腰直角三角形,∴DN=DC=2a,∵tan∠DEC=,∴ME=2DM,∴CE=a,∴,∵CE∥DN,∴△CEF∽△NDF,∴.16.任务一:证明:延长AD至E,使DE=AD,∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=CA,在△ABE中,AB+BE>AE(三角形任意两边之和大于第三边),∴AB+AC>2AD.故答案为:SAS,三角形任意两边之和大于第三边.任务二:解:如图1,延长AD至点E,使DE=AD,连接CE,∵AD是中线,∴BD=CD,在△ABD和△ECD中,,∴△ABD≌△CDE(SAS),∴AB=EC=4,在△ACE中,AC﹣CE<AE<AC+CE,∴4﹣3<2AD<4+3,∴1<2AD<7,∴.故答案为:<AD<.任务三:EF与AD的数量关系为EF=2AD.理由如下:如图2,延长AD至点M,使DM=AD,连接CM,∵AD是中线,∴BD=CD,在△ABD和△MCD中,,∴△ABD≌△CDM(SAS),∴AB=MC,∠ABD=∠DCM,∴AE=CM,AB∥CM,∴∠BAC+∠ACM=180°,∵∠BAE=∠CAF=90°,∴∠EAF+∠BAC=180°,∴∠EAF=∠ACM,又∵AF=AC,∴△EAF≌△MCA(SAS),∴AM=EF,∵AM=2AD,∴EF=2AD.17.解:(1)①证明:∵△ABC、△ECF都是等腰直角三角形,∴AC=BC,CE=CF,∠ACB=∠ECF=90°,∴∠BCE=∠ACF,在△ACF和△BCE中,,∴△ACF≌△BCE(SAS);②由①知△ACF≌△BCE,∴AF=BE,∠CBE=∠CAF,∵AC=BC,∠ACB=90°,∴∠B=∠BAC=45°,∴∠CAF=45°,∴∠EAF=90°,∵AE=,BE=3AE,∴AF=3,AB=BE+AE=4,∴AC=AB=4,EF==2,又∵△ECF为等腰直角三角形,∴∠CEF=45°,CE=EF=,∴∠CEG=∠EAC,又∵∠ECG=∠ACE,∴△ECG∽△ACE,∴,∴CE2=CG•AC,∴CG=;(2)过点A作AD的垂线,过点C作AC的垂线,两垂线交于点M,连接DM,∵∠CAD=30°,∴∠CAM=60°,∴∠AMC=30°,∴∠AMC=∠BDC,又∵∠ACM=∠BCD=90°,∴△BCD∽△ACM,∴,又∠BCD=∠ACM,∴∠BCD+∠BCM=∠ACM+∠BCM,即∠DCM=∠ACB,∴△DCM∽△BCA,∴,∵AB=2,∴DM=2=6,∴AM===2,∴AC=AM=.18.解:(1)∵△ABC和△CDE都是等边三角形,∴AB=AC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴BD=AE,∠AEC=∠BDC,由三角形的外角性质,∠DPE=∠AEC+∠BDC,∠DCE=∠BDC+∠DBC,∴∠DPE=∠DCE=60°;故答案为:相等,60°;(2)成立.证明:∵△ABC和△CDE都是等边三角形,∴AB=AC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACD=∠DCE+∠ACD,即∠ACE=∠BCD,在△ACE和△BCD中,,∴△ACE≌△BCD(SAS),∴BD=AE,∠AEC=∠BDC,又∵∠DNA=∠ENC,∴∠DPE=∠DCE=60°.(3)补全图形如图③,由(1)(2)可知△AEC≌△BDC,∴∠AEC=∠BDC=30°,∵△DEC为等边三角形,∴∠DEC=∠EDC=60°,∴∠DEP=∠DEC﹣∠CEP=60°﹣30°=30°,∠PDE=∠BDC+∠EDC=60°+30°=90°,∴∠DPQ=60°,∴∠DQP=90°,∵PQ=2,∴DP=2PQ=2×2=4.故答案为:4.19.解:(1)∵+|2﹣b|=0,≥0,|2﹣b|≥0,∴=0.,|2﹣b|=0,∴a=﹣4,b=2,∴c=(a﹣b)=﹣3,∴A(﹣4,0),B(0,2),C(﹣3,0),∴BC=5,OA=4,∴S△ABC=×BC×OA=×5×4=10;(2)由题意知:OQ'=2×3=6,AA'=3m,∵S△A'Q'A =S△CQ'O+S梯形AA'CO,∴×6×3+×(3+3m)×4,∴m=.(3)连接OD,OE,设D(m,n),∵S△AOB =S△AOD+S△DOB,∴×2×(﹣m),∴m=2n﹣4,∵点D向右平移4个单位长度得到E点,∴E(2n,n),∵S△AOC +S△AOE+S△COE=S△ACE,∴×3×2n=14,∴n=,∴m=2n﹣4=﹣,∴D(﹣,).20.解:(Ⅰ)①∵AC=BC,∠ACB=90°,∴∠CAB=∠CBA=45°,∵AE平分∠BAC,∴∠CAE==,∵BD⊥AD,∴∠ADB=90°,∵∠AEC=∠BED,∴∠EBD=∠CAE=22.5°.②∵CF⊥CD,∴∠FCD=90°,∵∠ACB=90°,∴∠ACF+∠FCE=∠BCD+∠FCE,即∠ACF=∠BCD,由①得∠EBD=∠CAE=22.5°,在△ACF和△BCD中,,∴△ACF≌△BCD(ASA),∴AF=BD;(Ⅱ)AB、AC、AM之间的数量关系为AB+AC=2AM.证明:如图所示,过点D作DH⊥AB于点H,∵AD平分∠BAC,DM⊥AC,DH⊥AB,∴DM=DH,∵△ACF≌△BCD,∴CF=CD,又∵CF⊥CD,∴∠CFD=45°,∵∠CAE=22.5°,∴∠FCA=22.5°,∴AF=CF,由②得AF=BD,∴DC=DB,在Rt△CDM和Rt△BDH中,,∴Rt△CDM≌Rt△BDH(HL),∴CM=BH,在Rt△ADM和Rt△ADH中,,∴Rt△ADM≌Rt△ADH(HL),∴AM=AH,∴AB+AC=AH+BH+AC=AM+CM+AC=AM+AM=2AM.∴AB、AC、AM之间的数量关系为AB+AC=2AM.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考几何证明题1、如图,在平行四边形ABCD中,过B作BE⊥CD,垂足为点E,连接AE,F为AE上一点,且∠BFE=∠C.(1)求证:△ABF∽△EAD;(2)若AB=4,∠BAE=30°,求AE的长;(3)在(1)(2)的条件下,若AD=3,求BF的长.(计算结果可含根号)2、如图,矩形ABCD为台球桌面,AD=260cm,AB=130cm,球目前在E点位置,AE=60cm.如果小丁瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到D点位置。

(1)求证:△BEF∽△CDF;(2)求CF的长。

3、如图,△ABC为等边三角形,D、E两点在直线BC上,且∠DAE=120°,求证:(1)△ADB∽△EAC;(2)BC2=BD∙CE4、如图,在▱ABCD中,∠ABC的平分线BF分别与AC、AD交于点E. F.(2)当AB =3,BC =5时,求ACAE 的值。

5、如图,四边形ABCD 是正方形,△ECF 是等腰直角三角形,其中CE =CF ,G 是CD 与EF 的交点。

(1)求证:△BCF ≌△DCE ;(2)若∠BFC =90°,S △CFG ﹕S △DEG =9﹕16,求tan ∠FBC 的值。

6、如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B.(1)求证:△ADF ∽△DEC(2)若AB =4,AD =33,AE =3,求AF 的长.7、在△ABC 中,AB =CB ,∠ABC =O90,F 为AB 延长线上一点,点E 在BC 上,且AE =CF .(1)求证:Rt △ABE ≌Rt △CBF ;(2)若∠CAE =30°,求∠ACF 的度数8、如图,在矩形ABCD 中,E 是BC 边上的点,AE =BC ,DF ⊥AE ,垂足为F ,连接DE .(2)若AD=10,AB=6,求tan∠EDF的值。

9、如图,已知△ABC,按如下步骤作图:①以A为圆心,AB长为半径画弧;②以C为圆心,CB长为半径画弧,两弧相交于点D;③连接BD,与AC交于点E,连接AD,CD.(1)求证:△ABC≌△ADC;(2)若∠BAC=30°,∠BCA=45°,AC=4,求BE的长。

10、如图,在Rt△ABC中,∠ACB=90°,点D. F分别在AB、AC上,CF=CB,连接CD,将线段CD绕点C按顺时针方向旋转90°后得CE,连接EF.(1)求证:△BCD≌△FCE;(2)若EF∥CD,求∠BDC的度数。

11、将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′处,折痕为EF.(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论。

12、如图,在▱ABCD中,E为BC的中点,连接DE.延长DE交AB的延长线于点F. 求证:AB=BF.13、如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内。

求证:(1)∠PBA=∠PCQ=30°;(2)PA=PQ.14、如图,△ABC中,AB=AC,AD、CD分別是△ABC两个外角的平分线。

(1)求证:AC=AD;(2)若∠B=60∘,求证:四边形ABCD是菱形。

15、如图,点E、F分别是等边△ABC中AC、AB边上的中点,以AE为边向外作等边△ADE.(1)求证:四边形AFED是菱形; (2)连接DC,若BC=10,求四边形ABCD的面积.16、如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当▱ABCD的面积为8时,求△FED的面积。

17、在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.18、如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC 于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求BG的长。

19、如图,已知△ABC是等边三角形,D. E分别是AC、BC上的两点,AD=CE,且AE与BD交于点P,BF⊥AE于点F.(1)求证:△ABD≌△CAE;(2)若BP=6,求PF的长。

20、如图,在正方形ABCD外侧,以CD为一边作等边三角形CDE,连接AE,BE(1)求证:AE=BE;(2)已知BE=10,求△ABE的面积。

21、如图,BD 是△ABC 的角平分线,点E ,F 分别在BC 、AB 上,且DE ∥AB ,EF ∥AC .(1)求证:BE =AF ;(2)若∠ABC =60°,BD =6,求四边形ADEF 的面积。

22、如图,在△ABC 中,AB =AC ,D 为边BC 上一点,以AB ,BD 为邻边作▱ABDE ,连接AD ,EC .(1)求证:△ADC ≌△ECD ;(2)若BD =CD ,求证:四边形ADCE 是矩形。

23、如图,四边形ABCD 是矩形,对角线AC 、BD 相交于点O ,BE ∥AC 交DC 的延长线于点E.(1)求证BD=BE ;(2)如果4,30==∠BO DBC o ,求四边形ABED 的面积?24、如图,四边形ABCD 的对角线AC 、BD 交于点O ,BE ⊥AC 于E ,DF ⊥AC 于F ,点O 既是AC 的中点,又是EF 的中点。

(1)求证:△BOE ≌△DOF ;(2)若OA =21BD ,则四边形ABCD 是什么特殊四边形?请说明理由。

25、如图,在正方形ABCD 中,等边三角形AEF 的顶点E. F 分别在BC 和CD 上。

(1)求证:CE =CF ;(2)若等边三角形AEF 的边长为2,求正方形ABCD 的周长。

26、如图,在△ABC 中,AB =AC ,AD 平分∠BAC ,CE ∥AD 且CE =AD .(1)求证:四边形ADCE 是矩形;(2)若△ABC 是边长为4的等边三角形,AC ,DE 相交于点O ,在CE 上截取CF =CO ,连接OF ,求线段FC 的长及四边形AOFE 的面积。

27、在菱形ABCD 中,对角线AC 、BD 相交于点O ,过点O 作一条直线分别交DA 、BC 的延长线于点E. F ,连接BE 、DF .(1)求证:四边形BFDE 是平行四边形;(2)若EF ⊥AB ,垂足为M ,tan ∠MBO =32,求EM :MF 的值。

28、如图,四边形ABCD 中,BD 垂直平分AC ,垂足为点F ,E 为四边形ABCD 外一点,且∠ADE =∠BAD ,AE ⊥AC(1)求证:四边形ABDE 是平行四边形;(2)如果DA 平分∠BDE ,AB =5,AD =6,求AC 的长。

60,点P、Q分别在边AB、BC上,且AP=BQ.29、如图,在菱形ABCD中,∠A=o(1)求证:△BDQ≌△ADP;(2)已知AD=3,AP=2,求cos∠BPQ的值(结果保留根号).30、如图,矩形ABCD中,AB=8,AD=6,点E. F分别在边CD、AB上。

(1)若DE=BF,求证:四边形AFCE是平行四边形;(2)若四边形AFCE是菱形,求菱形AFCE的周长。

31、在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E. 将点C翻折到对角线BD上的点N处,折痕DF交BC于点F.(1)求证:四边形BFDE为平行四边形;(2)若四边形BFDE为菱形,且AB=2,求BC的长。

32、已知,如图:∠DME=∠A=∠B=α,M为线段AB中点,AE与BD交于C,交MD于F,ME交BD于G.(1)求证;△EMF∽△EAM;6,AF=5,求FG的长。

(2)连结FG,如果α=30°,AB=333、如图,过平行四边形ABCD的对角线BD的中点O作两条互相垂直的直线,且交AB、CD的延长线于点E,G,交BC,AD于点F,H,连接EF,FG,GH,EH.(1)求证:△BEO≌△DGO;(2)试判断四边形EFGH的形状,并说明理由。

34、已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD.(1)求证:△AGE≌△DAB;(2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的度数。

35、如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论。

36、如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.(1)求证:△ABE≌△DFA;(2)如果AD=10,AB=6,求sin∠EDF的值。

37、如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形。

38、已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD于点E,∠1=∠2.(1)若CE=1,求BC的长;(2)求证:AM=DF+ME.39、如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形。

40、如图,在▱ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.(1)求证:四边形ABEF是菱形;(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值。

41、如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;2,当四边形BEDF为矩形时,求线段AE的长。

(2)若AB⊥AC,AB=4,BC=1342、如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∥AC交BC的延长线于点E,当AB=6,AC=8时,求△BDE的周长。

43、如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.(1)求证:△BCP≌△DCP;(2)求证:∠DPE=∠ABC;(3)把正方形ABCD改为菱形,其它条件不变(如图②),若∠ABC=58°,则∠DPE=______度。

相关文档
最新文档