磁场-洛伦兹力基础计算

磁场-洛伦兹力基础计算
磁场-洛伦兹力基础计算

磁场洛伦兹力基础计算

磁场---洛伦兹力基础计算 1、(12分)下左图中MN表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B。一带电粒子从平板上的狭缝O处以垂直于平板的初速v射入磁场区域,最后到达平板上的P点。已知B、v以及P到O的距离l,不计重力,求此粒子的电荷q与质量m之比。 2、如图所示,一束电子流以速率v通过一个处于矩形空间的大小为B的匀强磁场,速度方向与磁感线垂直.且平 行于矩形空间的其中一边,矩形空间边长为a与a电子刚好从矩形的相对的两个顶点间通过,求: (1)电子在磁场中的飞行时间? (2)电子的荷质比q/m. 3、如图所示,一个电子(电量为e)以速度v垂直射入磁感应强度为B、宽度为d的匀强磁场中,穿出磁场时的速度方向与原来入射方向的夹角就是30°,试计算: (1)电子的质量m。(2)电子穿过磁场的时间t。

4、一宽为L的匀强磁场区域,磁感应强度为B,如图所示,一质量为m、电荷量为-q的粒子以某一速度(方向如图所示)射入磁场。若不使粒子从右边界飞出,则其最大速度应为多大?(不计粒子重力) 5、(12分)一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限,不计重力。 求:(1) 粒子做圆周运动的半径 (2)匀强磁场的磁感应强度B 6、如图所示,在xoy平面内有垂直坐标平面的范围足够大的匀强磁场,磁感强度为B,一带正电荷量Q的粒子,质量为m,从O点以某一初速度垂直射入磁场,其轨迹与x、y轴的交点A、B到O点的距离分别为a、b,试求: (1)初速度方向与x轴夹角θ. (2)初速度的大小、

磁场练习题 (3)

稳恒磁场 一.选择题: 1.边长为L 的一个导体方框上通有电流I,则此框中心的磁感应强度[ ]. (1)与L 有关 (2)正比于L 2 (3)正比于L (4)反比于L (5)与I 2有关 2.一载有电流I 的细导线分别均匀密绕成半径为R 和r (R=2r)的螺线管,两螺线管单位长度上的匝数相等,?两螺线管中的磁感应强度的大小B R 和B r 应满足:[ ] (1)B R =2B r (2)B R =B r (3)2B R =2B r (4)B R =4B r 3.均匀磁场的磁感应强度B 垂直于半径为r 的圆面.今以该圆周为边线作一半球面s,则通过s 面的磁通量的大小为:[ ] (1) 2B r 2π (2)B r 2 π. (3) 0 . (4) 无法确定. 4.如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭和回路L,则由安培环路定理可知:[ ] (1) 0=??L l B d 且环路上任意一点B=0, (2) 0=??L l B d 且环路上任意一点B ≠0, (3) 0≠??L l B d 且环路上任意一点B ≠0, (4) 0≠??L l B d 且环路上任意一点B=常数。 5.一半导体样品通过的电流为I, 放在磁场中,如图,实验测的霍耳电压U ba <0, 此半导体是[ ] (1) N 型 (2)P 型 6. 反,这两圆柱面之间距轴线为r 处的磁感应强度大小为[ ] (1) 0 (2)r I πμ20 (3)r I πμ0 (4)πμ20Ir 7.可以用安培环路定理求磁场的是 [ ] (1)通电螺绕环 (2)圆电流 (3)半圆电流 (4)一段直电流

第三章 专题强化7 洛伦兹力作用下的实例分析

专题强化7 洛伦兹力作用下的实例分析 [学习目标] 1.知道速度选择器、磁流体发电机、电磁流量计的工作原理.2.进一步了解洛伦兹力在科技生活中的应用,提高学生的综合分析和计算能力. 一、速度选择器 1.装置及要求 如图1,两极板间存在匀强电场和匀强磁场,二者方向互相垂直,带电粒子从左侧射入,不计粒子重力. 图1 2.带电粒子能够沿直线匀速通过速度选择器的条件是qE =q v B ,即v =E B . 3.速度选择器的特点

(1)v 的大小等于E 与B 的比值,即v =E B .速度选择器只对选择的粒子速度有要求,而对粒子的质量、电荷量大小及带电正、负无要求. (2)当v >E B 时,粒子向F 洛方向偏转,F 电做负功,粒子的动能减小,电势能增大. (3)当v <E B 时,粒子向F 电方向偏转,F 电做正功,粒子的动能增大,电势能减小. 例 1 在两平行金属板间,有如图2所示的正交的匀强电场和匀强磁场.α粒子以速度v 0从两板左侧正中央垂直于电场方向和磁场方向射入时,恰好能沿直线匀速通过.供下列各小题选择的选项有:

图2 A .不偏转 B .向上偏转 C .向下偏转 D .向纸内或纸外偏转 (1)若质子以速度v 0从两板左侧正中央垂直于电场方向和磁场方向射入时,质子将________. (2)若电子以速度v 0从两板左侧正中央垂直于电场方向和磁场方向射入时,电子将________. (3)若质子以大于v 0的速度从两板左侧正中央垂直于电场方向和磁场方向射入时,质子将________. (4)若增大匀强磁场的磁感应强度,其他条件不变,电子以速度v 0沿垂直于电场和磁场的方向,从两板左侧正中央射入时,电子将________. 答案 (1)A (2)A (3)B (4)C 解析 设带电粒子的带电荷量为q ,匀强电场的电场强度为E ,匀强磁场的磁感应强度为B .带电粒子以速度v 0从左侧垂直射入正交的匀强电场和匀强磁场中时,若粒子带正电荷,则所受电场力方向向下,大小为qE ;所受磁场力方向向上,大小为Bq v 0.沿直线匀速通过时,有 Bq v 0=qE ,v 0=E B ,即沿直线匀速通过时,带电粒子的速度与其带电荷量无关.如果粒子带负电荷,所受电场力方向向上,磁场力方向向下,上述结论仍然成立,所以第(1)、(2)两小题应选A.若质子以大于v 0的速度从左侧射入,所受磁场力将大于电场力,质子带正电荷,将向上偏转,所以第(3)小题应选B.磁场的磁感应强度B 增大,其他条件不变,电子所受磁场力大于电场力,电子带负电荷,所受磁场力方向向下,将向下偏转,所以第(4)小题应选C. 二、磁流体发电机 磁流体发电机的发电原理图如图3甲所示,其平面图如图乙所示.

安培力经典计算题

安培力复习 1.把轻的长方形线圈用细线挂在载流直导线AB 的附近,两者在同一平面内,直导线AB 固定,线圈可以活动,当长方形线圈通以如图所示的电流时,线圈将( ) (A )不动 (B )靠近导线AB (C )离开导线AB (D )发生转动,同时靠近导线AB 答案:B 2.长直电流I 2与圆形电流I 1共面,并与其一直径相重合(但两者绝缘),如图所示。设长直导线不动,则圆形电流将( ) (A )绕I 2旋转(B )向右运动(C )向左运动(D )不动 答:B 3.在均匀磁场中,放置一个正方形的载流线圈使其每边受到的磁力的大小都相同的方法有( ) (A )无论怎么放都可以;(B )使线圈的法线与磁场平行;(C )使线 圈的法线与磁场垂直;(D )(B )和(C )两种方法都可以 答:B 4.一平面载流线圈置于均匀磁场中,下列说法正确的是( ) (A )只有正方形的平面载流线圈,外磁场的合力才为零。 (B )只有圆形的平面载流线圈,外磁场的合力才为零。 (C )任意形状的平面载流线圈,外磁场的合力和力矩一定为零 (D )任意形状的平面载流线圈,外磁场的合力一定为零,但力矩不一定为零。 答:D 1. 截面积为S 、密度为ρ的铜导线被弯成正方形的三边,可以绕水平轴O O '转动,如图所示。导线放在方向竖直向上的匀强磁场中,当导线中的电流为I 时,导线离开原来的竖直位置偏转一个角度θ而平衡。求磁感应强度。若S =2mm 2 ,ρ=8.9g/cm 3 , θ=15°,I =10A ,磁感应强度大小为多少? 解:磁场力的力矩为 θθθcos cos cos 2212BIl l BIl Fl M F ===(3分) 重力的力矩为 θ ρθ ρθρsin 2sin 2 1 2sin 22221gSl l gSl l gSl M mg =?+?= (3分) 由平衡条件 mg F M M =,得 ' '

2015高中物理磁场经典计算题-(一)含详解

磁场综合训练(一) 1.弹性挡板围成边长为L = 100cm 的正方形abcd ,固定在光滑的水平面上,匀强磁场竖直向 下,磁感应强度为B = 0.5T ,如图所示. 质量为m =2×10-4kg 、带电量为q =4×10-3C 的小 球,从cd 边中点的小孔P 处以某一速度v 垂直于cd 边和磁场方向射入,以后小球和挡板 的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P 点垂直于dc 射出来,小球入射的速度v 1是多少? (2)若小球以v 2 = 1 m/s 的速度入射,则需经过多少时间才能由P 点出来? 2. 如图所示, 在区域足够大空间中充满磁感应强度大小为B 的匀强磁场,其方向垂直于纸面 向里.在纸面内固定放置一绝缘材料制成的边长为L 的等边三角形框架DEF , DE 中点S 处 有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE 边向下,如图(a )所示. 发射粒子的电量为+q ,质量为m ,但速度v 有各种不同的数值.若这些粒子和三角形框架碰撞 时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v 为多大时,能够打到E 点? (2)为使S 点发出的粒子最终又回到S 点,且运动时间最短,v 应为多大?最短时间为多少? (3)若磁场是半径为a 的圆柱形区域,如图(b )所示(图中圆为其横截面),圆柱的轴线 通过等边三角形的中心O ,且a =)10 1 33( L .要使S 点发出的粒子最终又回到S 点, 带电粒子速度v 的大小应取哪些数值? 3.在直径为d 的圆形区域内存在 匀强磁场,磁场方向垂直于圆面 指向纸外.一电荷量为q ,质量 为m 的粒子,从磁场区域的一条直径AC 上的A 点射入磁场,其速度大小为v 0,方向和AC 成α.若 此粒子恰好能打在磁场区域圆 周上D 点,AD 和AC 的夹角为β,如图所示.求该匀强磁场的磁感强度B 的大小. 4.如图所示,真空中有一半径为R 的圆形磁场区域,圆心为O ,磁场的方向垂直纸面向内, 磁感强度为B ,距离O 为2R 处有一光屏MN ,MN 垂直于纸面放置,AO 过半径垂直于屏,延 长线交于C .一个带负电粒子以初速度v 0沿AC 方向进入圆形磁场区域,最后打在屏上D 点,DC 相距23R ,不计粒子的重力.若该粒子仍以初速v 0从A 点进入圆形磁场区域, 但方向和AC 成600 角向右上方,粒子最后打在屏上E 5.如图所示,3条足够长的平行虚线a 、b 、c ,ab 间和bc 间相距分别为2L 和L ,ab bc 间都有垂直于纸面向里的匀强磁场,磁感应强度分别为B 2B 。质量为m ,带电量为q 的粒子沿垂直于界面a 的方向射入磁场区域,不计重力,为使粒子能从界面c 射出磁场, 粒子的初速度大小应满足什么条件? a b c d B P v C D α β v 0 L B v E S F D (a ) a O E S F D L v (b )

电磁铁计算公式

第一章常用低压电器 电器:电能的生产、输送、分配与应用起着控制、调节、检测和保护的作用。 根据外界的信号和要求,自动或手动接通或断开电路,断续或连续地改变电路参数,以实现对电路或非电路对象的切换、控制、保护、检测、变换和调节用的电气设备。 定义:一种能控制电能的器件。 第一节电磁式低压电器的结构和工作原理 ●低压电器:用于交流1200V、直流1500V以下电路的器件 ●高压电器:用于交流1200V、直流1500V以上电路的电器。 电力传动系统的组成: 1)主电路:由电动机、(接通、分断、控制电动机)接触器主触点等电器元件所组成。 特点:电流大 2)控制电路:由接触器线圈、继电器等电器元件组成。 特点:电流小 ●任务:按给定的指令,依照自动控制系统的规律和具体的工艺要求对主电路进行控制。 一、低压电器的分类 1、按使用的系统

1)低压配电电器 用于低压供电系统。电路出现故障(过载、短路、欠压、失压、断相、漏电等)起保护作用,断开故障电路。(动动稳定性、热稳定性) 例如:低压断路器、熔断器、刀开关和转换开关等。 2)低压控制电器 用于电力传动控制系统。能分断过载电流,但不能分断短路电流。(通断能力、操作频率、电气和机械寿命等) 例如:接触器、继电器、控制器及主令电器等。 2、按操作方式 1)手动电器:刀开关、按钮、转换开关 2)自动电器:低压断路器、接触器、继电器 3、按工作原理 1)电磁式电器:电磁机构控制电器动作 2)非电量控制电器:非电磁式控制电器动作 ◆电磁式电器由感测和执行两部分组成。 感测部分(电磁机构):接受外界输入的信号,使执行部分动作,实现控制的目的。 执行部分:触点系统。 二、电磁机构

大学物理常用公式(电场磁场 热力学)知识分享

大学物理常用公式(电场磁场热力学)

第四章 电 场 一、常见带电体的场强、电势分布 1)点电荷:201 4q E r πε= 04q U r πε= 2)均匀带电球面(球面半径R )的电场: 2 00 ()()4r R E q r R r πε≤?? =?>?? 00()4()4q r R r U q r R R πεπε?>??=??≤?? 3)无限长均匀带电直线(电荷线密度为λ):02E r λ πε= ,方向:垂直于带电直线。 4)无限长均匀带电圆柱面(电荷线密度为λ): 00()() 2r R E r R r λ πε≤?? =?>?? 5)无限大均匀带电平面(电荷面密度为σ)的电场:0/2E σε=,方向:垂直于平面。 二、静电场定理 1、高斯定理:0 e S q E dS φε= ?= ∑? 静电场是有源场。 q ∑指高斯面内所包含电量的代数和;E 指高斯面上各处的电场强度,由高斯面内外的 全部电荷产生; S E dS ?? 指通过高斯面的电通量,由高斯面内的电荷决定。 2、环路定理:0l E dl ?=? 静电场是保守场、电场力是保守力,可引入电势能 三、 求场强两种方法 1、利用场强势叠加原理求场强 分离电荷系统:1n i i E E ==∑;连续电荷系统: E dE =? 2、利用高斯定理求场强 四、求电势的两种方法

1、利用电势叠加原理求电势 分离电荷系统:1 n i i U U == ∑;连续电荷系统: U dU =? 2、利用电势的定义求电势 五、应用 电势差:b U U E -=?? a 由a 到 b 电场力做功等于电势能增量的负值六、导体周围的电场 1、静电平衡的充要条件: 1)、导体内的合场强为0,导体是一个等势体。 2)、导体表面的场强处处垂直于导体表面。E ⊥表表面。导体表面是等势面。 2、静电平衡时导体上电荷分布: 1)实心导体: 净电荷都分布在导体外表面上。 2)导体腔内无电荷: 电荷都分布在导体外表面,空腔内表面无电荷。 3)导体腔内有电荷+q ,导体电量为Q :静电平衡时,腔内表面有感应电荷-q ,外表面有电荷Q +q 。 3n ε= 七、电介质与电场 1、在外电场作用下,在外电场作用下,非极性分子电介质分子正、负电荷中心发生相对位 移,产生位移极化; 极性分子电介质分子沿外电场偏转,产生取向极化。 2、—电介质介电常数,r ε—电介质相对介电常数。 3、无介质时的公式将0ε换成ε(或0ε上乘 r ε),即为有电介质时的公式 八、电容 1 3 C

磁场,感应计算题有详细(答案)(快考试了,希望对同学们有所帮助)

稳恒磁场计算题 144.稳恒磁学计算题144、如下图所示,AB 、CD 为长直导线BC 为圆心在O 点的一段圆弧形导线,其半径为R .若通以电流 I ,求O 点的磁感应强度. 解:如图所示,O 点磁场由DC 、CB 、BA 三部分电流产生,其中: DC 产生 )21(4)2sin 4(sin 45cos 400 01-=-= R I R I B πμπ π πμ 方向向里 CB 产生 R I R I B 16224002 μμππ == 方向向里 BA 产生 03=B R I R I B B B B O 16)12(400321μπμ+-=++= 方向向里 145、如图所示,一载流导线中间部分被弯成半圆弧状,其圆心点为O ,圆弧半径为R 。若导线的流过电流I ,求圆心O 处的磁感应强度。 解:两段直电流部分在O 点产生的磁场 01=B 弧线电流在O 点产生的磁场 R I B 2202μπα= R I R I B B B O πα μπαμ42220 021== +=∴ 146、载流体如图所示,求两半圆的圆心点P 处的磁感应强度。

解:水平直电流产生 01=B 大半圆 产生 1 024R I B μ= 方向向里 小半圆 产生 2 034R I B μ= 方向向里 竖直直电流产生 2 044R I B πμ= 方向向外 4321B B B B B O +++=∴ )1 11(44442 210202 01 0R R R I R I R I R I B O πμπμμμ-+=- + = 方向向里 147、在真空中,有两根互相平行的无限长直导线相距0.1m ,通有方向相反的电流,I 1=20A,I 2=10A ,如图所示.试求空 、解:取垂直纸面向里为正,如图设X 轴。 ) 1.0(102102)(2272010x x x x d I x I B --?=-+= -πμπμ 在电流1I 左侧,B 方向垂直纸面向外 在电流1I 、2I 之间,B 方向垂直纸面向里 在电流2I 右侧,当m x 2.0<时,B 方向垂直纸面向外

洛伦兹力的应用教案

洛伦兹力的应用 教学目标: 1.知识与技能 (1)理解运动电荷垂直进入匀强磁场时,电荷在洛仑兹力的作用下做匀速圆周运动。(2)能通过实验观察粒子的圆周运动的条件以及圆周半径受哪些因素的影响。推导带电粒子在磁场中做匀速圆周运动的半径周期公式,并会应用它们分析实验结果,并用于解决实际问题。 2.过程与方法 多媒体和演示实验相结合 3.情感态度及价值观 培养科学的探究精神 教学重点:掌握运动电荷在磁场中圆周运动的半径和周期的计算公式以及运用公式分析各种实际问题。 教学难点:理解粒子在匀强磁场中的圆周运动周期大小与速度大小无关。 教具:洛伦兹力演示仪 复习导入: 提问学生带电粒子在磁场中的受力情况: (1)平行进入磁场中:F=0;粒子将做匀速直线运动。 (2)垂直进入磁场中:F=Bqv。 猜想:粒子将做什么运动? 教学过程: 一、理论探究: 匀速圆周运动的特点:速度大小不变;速度方向不断发生变化;向心力 大小不变;向心力方向始终与速度方向垂直。 洛伦兹力总与速度方向垂直,不改变带电粒子的速度大小,所以洛伦兹 力对带电粒子不做功且洛仑兹力大小不变。 洛伦兹力对电荷提供向心力,故只在洛伦兹力的作用下,电荷将作匀速 圆周运动。 二、实验演示: 用Flash演示正电荷和负电荷垂直进入匀强磁场中得运动。 介绍洛伦兹力演示仪: (1)加速电场:作用是改变电子束出射的速度 (2)励磁线圈:作用是能在两线圈之间产生平行于两线圈中心匀强磁 场。 实验过程:a、未加入磁场时,观察电子束的轨迹; b、加入磁场时,观察电子束的轨迹;

c 、改变线圈电流方向时,观察电子束的轨迹。 结论:带电粒子垂直进入匀强磁场时,做匀速圆周运动。 提问:若带电粒子是以某个角度进入磁场时,运动轨迹是什么呢? 用Flash 演示带电粒子以某个角度进入磁场时的运动轨迹。 提问:为什么轨迹是螺旋形? 小结:带电粒子在磁场中做匀速圆周运动的条件: (1)、匀强磁场 (2)、B ⊥V (3)、仅受洛伦兹力或除洛伦兹力外,其它力合力为零. 三、半径与周期 推导过程: 得: 提问: 磁场强度不变,粒子射入的速度增加,轨道半径将 增大 。 粒子射入速度不变,磁场强度增大,轨道半径将 减小 。 .......(1) .. (2) 由(1)(2)可得: 提问:周期与速度、半径有什么关系? 四、应用 例1、匀强磁场中,有两个电子分别以速率v 和2v 沿垂直于磁 场方向运动,哪个电子先回到原来的出发点? 例2、已知两板间距为d ,板间为垂直纸面向内的匀强磁场,带 电粒子以水平速度V 垂直进入磁场中,穿过磁场后偏转角 为30o 。求: (1) 圆心在哪里? (2) 圆心角为多大? (3) 轨道半径是多少? (4) 穿透磁场的时间? 五、作业:P123 1,2,3,4题 r mv Bqv 2=Bq mv r =v r T ?=π2Bq mv r =Bq m T π2=

高中物理磁场12个基础计算题专练

磁场12个计算题 参考答案与试题解析 一.解答题(共12小题) 1.图中虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感强度为B的匀强磁场,方向垂直纸面向外.O是MN上的一点,从O点可以向磁场区域发射电量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方向.已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O的距离为L,不计重力及粒子间的相互作用. (1)求所考察的粒子在磁场中的轨道半径. (2)求这两个粒子从O点射入磁场的时间间隔. 【分析】(1)粒子射入磁场后做匀速圆周运动,洛伦兹力充当向心力,根据牛顿第二定律列式即可求得半径; (2)根据时间与转过的角度之间的关系求得两个粒子从O点射入磁场的时间间隔之差值. 【解答】解:(1)设粒子在磁场中做圆周运动的轨道半径为R,由牛顿第二定律,有: 得: (2)如图所示,以OP为弦可画两个半径半径相同的圆,分别表示在P点相遇的 两个粒子的轨道,圆心和直径分别为O 1、O 2 和OO 1 Q 1 、OO 2 Q 2 ,在O处两个圆的切 线分别表示两个粒子的射入方向,用θ表示它们之间的夹角.由几何关系可知: ∠PO 1Q 1 =∠PO 2 Q 2 =θ 从O点射入到相遇,粒子1的路程为半个圆周加弧长Q 1 P Q 1 P=Rθ 粒子2的路程为半个圆周减弧长PQ 2 PQ 2 =Rθ 粒子1运动的时间: 粒子2运动的时间: 两粒子射入的时间间隔:

因 得 解得: 答:(1)所考察的粒子在磁场中的轨道半径是. (2)这两个粒子从O点射入磁场的时间间隔是. 【点评】本题考查带电粒子在磁场中的运动,关键是明确洛伦兹力提供向心力,根据牛顿第二定律求解出半径,然后结合几何关系列式求解,属于带电粒子在磁场中运动的基础题型. 2.如图所示,两根光滑平行的金属导轨相距5m,固定在水平面上,导轨之间接有电源盒开关,整个装置处于磁感应强度为2T,方向与导轨平行的匀强磁场中.当开关闭合时,一根垂直放在导轨上的导体棒MN恰好对金属导轨没有压力.若导体棒MN的质量为4kg,电阻为2Ω,电源的内阻为Ω,其余部分电阻忽略不计,g=10m/s2.求: (1)通过导体棒MN的电流大小; (2)电源的电动势. 【分析】根据平衡条件求出安培力大小,进而电流大小; 闭合电路欧姆定律求电动势的大小; 【解答】解:(1)根据竖直方向受力平衡:mg=BIL 得:I===4A (2)根据闭合电路欧姆定律:E=I(R+r) 得:E=4×=10V 答:(1)通过导体棒MN的电流大小为4A; (2)电源的电动势为10V. 【点评】本题是电路知识、力学知识的综合,掌握闭合电路欧姆定律、安培力公式是解题的关键,常规题,不容有失.

电磁铁电磁力计算方法

电磁铁电磁力计算方法 1磁动势计算(又叫安匝数)IN E = 匝数2 2)12(212d D D L d L d D D N -=-= 其中: -L 绕线宽度)(mm -2D 绕线外径)(mm -1D 绕线内径)(mm -d 漆包线直径)(mm 绕线长度 2 22322121(21)=222(21)10()4D D D D L D D l DN N d L D D m d ππππ-++-==-=?绕

根据电阻公式 222223324(21)(21)41010()d 4L D D l L D D d R d S πρρρπ----==?=?Ω绕其中: 20.0178./mm m ρ-Ω铜的电阻率 2S mm -漆包线的截面积() 根据4322224 10(21)(21)d U U Ud I L D D R L D D ρρ===?-- 故磁动势 23102(21) d U IN D D ρ=?+ 2磁感应强度计算(磁动势在磁路上往往有不同的磁降,但每一圈的磁降和应等于磁动势) 即:()IN HL = ∑ 其中: H -磁场强度(A/m) L m -该段磁介质的长度() 一般情况下,电磁阀除气隙处外,其余部分均采用导磁性能

很好的材料,绝大部分磁动势降是在气隙处, 即0()IN HL H δ= ≈?∑ 其中: 0H -气隙处磁场强度(A/m) mm δ-气隙长度()即行程 而0 00=B H μ 其中: 0B -气隙中的磁感应强度(特斯拉) -70μπ-?导磁率,410亨/米 所以:30 00=10B IN H δδμ-≈?? 又因为23102(21) d U IN D D ρ=?+ 故:2600102(21)d U B D D μρδ=?+ 3电磁力的计算 根据26000 1102F B S μ=? 其中:

洛伦兹力的大小和方向参考资料

洛伦兹力的大小、方向及公式 一、单项选择题 1.(09年广东理科基础)带电粒子垂直匀强磁场方向运动时,会受到洛伦兹力的作用。下列表述正确的是 ( ) A .洛伦兹力对带电粒子做功 B .洛伦兹力不改变带电粒子的动能 C .洛伦兹力的大小与速度无关 D .洛伦兹力不改变带电粒子的速度方向 2.有一束电子流沿x 轴正方向高速运动,如图所示,电子流在z 轴上的P 点处所产生的磁场方向是( ) A 、y 轴正方向 B 、y 轴负方向 C 、z 轴正方向 D 、z 轴负方向 3.(泰州市2008届第二学期期初联考)“月球勘探者号”空间探 测器运用高科技手段对月球进行了近距离勘探,在月球重力分布、 取得了新的成果。月球上的磁场极其微弱,通过探测器拍摄电子在月球磁场中的运动轨迹,可分析月球磁场的强弱分布情况。如图是探测器通过月球表面①、②、③、④四个位置时,拍摄到的电子运动轨迹照片(尺寸比例相同),设电子速率相同,且与磁场方向垂直,则可知磁场从强到弱的位置排列正确的是( ) A. ①②③④ B. ①④②③ C. ④③②① D. ③④②① 4.在匀强磁场中有一带电粒子做匀速圆周运动,当它运动到M 点,突然与一不带电的静止粒子碰撞合为一体,碰撞后的运动轨迹应是图中的哪一个?(实线为原轨迹,虚线为碰后轨迹,不计粒子的重力) ( ) 二、双向选择题 5.海南省海口市2010届高三调研测试如图所示,一束电子以大小不同的速率沿图示方向 飞入横截面为一正方形的匀强磁场区,在从ab 边离开磁场的电子中,下列判断正确的是 ( ) A.从b 点离开的电子速度最大 B.从b 点离开的电子在磁场中运动时间最长 C.从b 点离开的电子速度偏转角最大 D.在磁场中运动时间相同的电子,其轨迹线一定重合 6.(烟台市2008届第一学期期末考)如图所示,在x 轴上方存在磁感应强度为B 的匀强磁场,一个电子(质量为m ,电荷量为q )从x 轴上的O 点以速度v 斜向上射入磁场中,速度方向与x 轴的夹角为45°并与磁场方向垂直.电子在磁场中运动一段时间后,从x 轴上的P 点射出磁场. 则 ( )

磁场概念、公式

1在磁场中垂直于磁场方向的通电导线,受到的磁场力F 跟电流I 和导线长度L 的乘积的 比值,叫做通电导线所在处的磁感应强度,用符号B 表示,即F B IL =。定义式F B IL =是典型的比值定义法,与电场强度由电场本身决定一样,磁感应强度由磁场本身决定,跟该位置放不放通电导线及通电导线的电流大小等无关。 2磁感线的特点:闭合曲线,在磁体外部由N 极指向S 极,磁体内部由S 极指向N 极。 3地磁场:地磁场与条形磁铁的磁场相似,主要特点如下: ①地磁场的N 极在地球南极附近,S 极在地球北极附近.地球的地理两极 与地磁两极不重合.磁感线分布如图所示. ②地磁场B 的水平分量()x B 总是从地球南极指向北极,竖直分量()y B 在 南半球垂直地面向上,在北半球垂直地面向下. 4BS Φ=,平面与B 垂直.若平面与B 不垂直,则要用这个面在垂直于磁 场B 方向的投影面积S '与B 的乘积表示磁通量,BS Φ'=磁通量为标量,为了计算方便,有了“正”“负”之分.任何一个面都有正、反两面,若规定磁感线从正面穿入时磁通量为正,则从反面穿入时磁通量为负. 5安培力(有效长度的理解要注意) ①垂直于磁场B 放置、长为L 的一段导线,当通过的电流为I 时,它所受到的安培力F 为F ILB =. ②当磁感应强度B 的方向与导线方向平行时,受力为零. ③当磁感应强度B 的方向与导线方向成θ角时,安培力sin F ILB θ=. 6洛伦兹力 (1)电荷量为q 的粒子以速度v 运动,速度方向与磁感应强度的方向夹角为θ,则粒子受到的洛伦兹力大小为sin F qvB θ=. (2)若v 与B 垂直,则F qvB =. (3)若//v B ,则0F =. 7洛伦兹力提供带电粒子做圆周运动所需的向心力. 由牛顿第二定律得2 v qvB m R =,则粒子运动的轨道半径mv R qB =,运动周期2m T qB π=. 8速度选择器:如图,带电粒子必须以唯一确定的速度进入才能匀速通过 速度选择器,否则将发生偏转,这个速度E v B =,方向向右. 9法拉第电磁感应定律 公式:E =t Φ??,若闭合电路为n 匝线圈,则E =n t Φ?? ①若磁感应强度B 不变,线圈在垂直于磁场方向上的面积S 变化,则E =S nB t ?? ②若S 不变,B 变,则E =B n S t ?? 10导线切割磁感线时的感应电动势 在匀强磁场中,B 与L 垂直、v 与L 垂直的情况下,若导体垂直磁感线切割,即v B ⊥时产生的感应电动势E BLv =;若导体不垂直切割,设v 与B 的夹角为θ,则sin E BLv θ= 11正弦交流电产生,最大值E=nBS ?,有效值的概念,注意只有正弦交流电最大值才是有效值的2倍。除此之外,一般都要按照能量的定义来算。

最新高中物理磁场经典计算题专题

1、弹性挡板围成边长为L= 100cm的正方形abcd,固定在光滑的水平面上,匀强磁场竖直向下,磁感应强度为B = 0.5T,如图所示. 质量为m=2×10-4kg、带电量为q=4×10-3C的小球,从cd边中点的小孔P处以某一速度v垂直于cd边和磁场方向射入,以后小球与挡板的碰撞过程中没有能量损失. (1)为使小球在最短的时间内从P点垂直于dc射出来,小球入射的速度v1是多少? (2)若小球以v2 = 1 m/s的速度入射,则需经过多少时间才能由P点出来? 2、如图所示, 在区域足够大空间中充满磁感应强度大小为B的匀强磁场,其方向垂直于纸面向里.在纸面内固定放置一绝缘材料制成的边长为L的等边三角形框架DEF, DE中点S处有一粒子发射源,发射粒子的方向皆在图中截面内且垂直于DE边向下,如图(a)所示.发射粒子的电量为+q,质量为m,但速度v有各种不同的数值.若这些粒子与三角形框架碰撞时均无能量损失,并要求每一次碰撞时速度方向垂直于被碰的边.试求: (1)带电粒子的速度v为多大时,能够打到E点? (2)为使S点发出的粒子最终又回到S点,且运动时间最短,v应为多大?最短时间为多少? (3)若磁场是半径为a的圆柱形区域,如图(b)所示(图中圆为其横截面),圆柱的轴线通过等边三角形的中心O,且 a= ) 10 1 3 3 ( L.要使S点发出的粒子最终又回到S点,带电粒子速度v的大小应取哪些数值? 3、在直径为d的圆形区域内存在匀强磁场,磁场方向垂直于圆面指向纸外.一电荷量为q,质量为m的粒子,从磁场区域的一条直径AC上的A点射入磁场,其速度大小为v0,方向与AC成α.若此粒子恰好能打在磁场区域圆周上D点,AD与AC的夹角为β,如图所示.求该匀强磁场的磁感强度B的大小? 4、如图所示,真空中有一半径为R的圆形磁场区域,圆心为O,磁场的方向垂直纸面向内,磁感强度为B,距离O为2R处有一光屏MN,MN垂直于纸面放置,AO过半径垂直于屏,延长线交于C.一个带负电粒子以初速度v0沿AC方向进入圆形磁场 区域,最后打在屏上D点,DC相距23R,不计粒子的重力.若该粒子仍以初速v 0从A点进入圆形磁场区域,但方向与AC 成600角向右上方,粒子最后打在屏上E点,求粒子从A到E所用时间? a b c d A F D (a) (b)

第十章 电磁系统的吸力计算和静特性

L O G O 本章讲授内容 (其中红色内容是重点)1.磁场的能量磁场能量的计算方法。 2.能量转换与电磁力的普遍公式 虚位移原理、实用的电磁吸力计算公式。 3.麦克斯韦电磁吸力公式 4.恒磁势与恒磁链条件下的吸力特性 恒磁势与恒磁链条件下的吸力计算公式。 5.交流电磁吸力的特点与分磁环原理 交流电磁吸力的计算方法、分磁环的参数计算。 6.静态吸力特性与反力特性的配合第十章电磁系统的吸力计算和静特性 第十章

L O G O 教学目的与要求: 1、掌握麦克斯韦电磁吸力公式,熟悉能量转换与 电磁力的普遍公式,了解恒磁势与恒磁链条件下的吸力。 2、掌握交流电磁吸力与分磁环的原理,熟悉静态 吸力特性与反力特性的配合。 第十章电磁系统的吸力计算和静特性 第十章

L O G O 教学基本内容: 1、磁场的能量; 2、能量转换与电磁力的普遍公式; 3、麦克斯韦电磁吸力公式; 4、恒磁势与恒磁链条件下的吸力; 5、交流电磁吸力与分磁环的原理; 6、静态吸力特性与反力特性的配合。 第十章电磁系统的吸力计算和静特性 第十章

L O G O 教学重点与难点: 1、能量转换与电磁力的普遍公式,麦克斯韦电磁吸力公 式; 2、交流电磁吸力与分磁环的原理和特性配合。 通过本章节的学习,学生应掌握能量平衡电磁吸力计算公式和麦克斯韦电磁吸力计算公式各自的适用范围,从实用的观点出发,后者较前者更有意义;还应掌握交流电磁吸力的计算与分磁环所解决的问题;熟悉静态吸力特性与反力特性的配合,是决定电磁系统特性指标与工作性能优劣的重要因素。 第十章电磁系统的吸力计算和静特性 第十章

洛伦兹力基础练习

洛伦兹力基础练习 1、如图所示,一束带电粒子沿水平方向飞过小磁针的上方,并与磁针指向平行,能使小磁针的 这束带电粒子可能是( ) 2、 一束几种不同的离子,垂直射入有正交的匀强磁场 B i 和匀强电场区域里,离子束保持原 运动方向未发生偏转.接着进入另一匀强磁场 R,发现这些离子分成几束。如图 .对这些 离子,可得出结论 A 、 它们速度大小不同 B 、它们都是正离子 C 、它们的电荷量不相等 D 、它们的荷质比不相等 3、 如图所示,在垂直纸面向里的匀强磁场中有三个带电粒子,它们在纸面内沿逆时针方向 做匀速圆周运动,其中 1和2为质子的轨迹,3为a 粒子(氦核)的轨迹?三者的轨道半径关 系为R > Ra>讯,并相切于P 点?设v 、a 、T 、F 分别表示它们做圆周运动的线速度、加速度、 周期和所受的洛伦兹力的大小,则下列判断正确的是( ) A. v i > V 2 > v a B . a i > a 2> a a C . T i V T 2V T a D . F i =F 2=F 3 4、如图所示,在垂直纸面向里的匀强磁场的边界上,有两个电荷量绝对值相同、质量相同的正、负粒子 从o 点以相同的速度先后射入磁场中,入射方向与边界成 e 角,则正、负粒子在磁场中 A. 运动时间相同 B. 运动轨迹的半径相同 C. 重新回到边界时速度大小不同方向相同 D. 重新回到边界时与 0点的距离相同 XXXXXXXXXXXX X XX XXXXXXXXX x >rx xxx X /K x x x x X X X X X 江彩缪X X X X 5、圆形区域内有垂直于纸面的匀强磁场,三个质量和电荷量都相同的带电粒子 a 、 b 、c,以不同的速率沿着 A0方向 对准圆心0射入磁场,其运动轨迹如图所示。若带电粒子只受磁场力的作用,则下列说法正确的是 ( ) A. a 粒子速率最大 B. c 粒子速率最大 C. a 粒子在磁场中运动的时间最长 D.它们做圆周运动的周期 T a VT b VT c N 极转向纸内,那么 A.向右飞行的正离子束 B ?向左飞行的正离子束 C.向右飞行的负离子束 D ?向左飞行的负离子束 (不计重力),

电磁场计算题专项练习

电磁场计算题专项练习 一、电场 1、(20分)如图所示,为一个实验室模拟货物传送的装置,A 是一个表面绝缘质量为1kg 的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q =1×10-2C 的绝缘货柜,现将一质量为0.9kg 的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E 1=3×102N/m 的电场,小车和货柜开始运动,作用时间2s 后,改变电场,电场大小变为E 2=1×102N/m ,方向向左,电场作用一段时间后,关闭电场,小车正好到达目的地,货物到达小车的最右端,且小车和货物的速度恰好为零。已知货柜与小车间的动摩擦因数μ=,(小车不带电,货柜及货物体积大小不计,g 取10m/s 2)求: ⑴第二次电场作用的时间; ⑵小车的长度; ⑶小车右端到达目的地的距离. ] 16(8分)如图所示,水平轨道与直径为d=0.8m 的半圆轨道相接,半圆轨道的两端点A 、B 连线是一条竖直线,整个装置处于方向水平向右,大小为103V/m 的匀强电场中,一小球质量m=0.5kg,带有q=5×10-3C 电量的正电荷,在电场力作用下由静止开始运动,不计一切摩擦,g=10m/s2, (1)若它运动的起点离A 为L ,它恰能到达轨道最高点B ,求小球在B 点的速度和L 的值. (2)若它运动起点离A 为L=2.6m ,且它运动到B 点时电场消失,它继续运动直到落地,求落地点与起点的距离. 、 A B

! 6如图所示,两平行金属板A 、B 长l =8cm ,两板间距离d =8cm ,A 板比B 板电势高300V ,即UAB =300V 。一带正电的粒子电量q =10-10C ,质量m =10-20kg ,从R 点沿电场中心线垂直电场线飞入电场,初速度v0=2×106m/s ,粒子飞出平行板电场后经过界面MN 、PS 间的无电场区域后,进入固定在中心线上的O 点的点电荷Q 形成的电场区域(设界面PS 右边点电荷的电场分布不受界面的影响)。已知两界面MN 、PS 相距为L =12cm ,粒子穿过界面PS 最后垂直打在放置于中心线上的荧光屏EF 上。求(静电力常数k =9×109N ·m2/C2) (1)粒子穿过界面PS 时偏离中心线RO 的距离多远 (2)点电荷的电量。 ! 二、磁场 1、(19分)如图所示,在直角坐标系的第—、四象限内有垂直于纸面的匀强磁场,第二、三象限内沿x 轴正方向的匀强电场,电场强度大小为E ,y 轴为磁场和电场的理想边界。一个质量为m ,电荷量为e 的质子经过x 轴上A 点时速度大小为v o ,速度方向与x 轴负方向夹角θ=300。质子第一次到达y 轴时速度方向与y 轴垂直,第三次到达y 轴的位置用B 点表示,图中未画出。已知OA=L 。 (1) 求磁感应强度大小和方向; (2) " (3) 求质子从A 点运动至B 点时间 B A v 0 R M N L P S O E F l

洛伦兹力基础练习题

< 1、一个带电粒子在磁场力的作用下做匀速圆周运动,要想确定带电粒子的电荷量与质量之比,则只需要知道( B ) A.运动速度v和磁感应强度B B.磁感应强度B和运动周期T C.轨道半径R和运动速度v D.轨道半径R和磁感应强度B 2、“月球勘探号”空间探测器运用高科技手段对月球近距离勘探,在月球重力分布、磁场分布及元素测定方面取得了新成果.月球上的磁场极其微弱,通过探测器拍摄电子在月球磁场中的运动轨迹,可分析月球磁场强弱的分布情况.如图所示,是探测器通过月球表面的A、B、C、D、四个位置时拍摄到的电子的运动轨迹的照片.设电子的速率相同,且与磁场的方向垂直,则可知磁场最强的位置应在( A ) 由r=mv qB 可知B较大的地方,r较小. 3、如图5所示,用绝缘细线悬吊着的带正电小球在匀匀强磁场中做简谐运 动,则下列说法正确的是( A ) A、当小球每次通过平衡位置时,动能相同 B、¥ C、当小球每次通过平衡位置时,速度相同 D、当小球每次通过平衡位置时,丝线拉力相同 E、撤消磁场后,小球摆动周期变化 4、如图所示,在加有匀强磁场的区域中,一垂直于磁场方向射入的带电 粒子轨迹如图所示,由于带电粒子与沿途的气体分子发生碰撞,带电粒子 的能量逐渐减小,从图中可以看出:( B ) A、带电粒子带正电,是从B点射入的 B、带电粒子带负电,是从B点射入的 C、带电粒子带负电,是从A点射入的 D、@ E、带电粒子带正电,是从A点射入的 5、质子(p)和α粒子以相同的速率在同一匀强磁场中作匀速圆周运动,轨道半径分别为 Rp 和 R ,周期分别为 Tp和 T ,则下列选项正确的是( A ) A.R :Rp=2 :1 ;T :Tp=2 :1 B.R :Rp=1:1 ;T :Tp=1 :1 C.R :Rp=1 :1 ;T :Tp=2 :1 D.R :Rp=2:1 ;T :Tp=1 :1

磁场---洛伦兹力基础计算

磁场---洛伦兹力基础计算 1、(12分)下左图中MN表示真空室中垂直于纸面的平板,它的一侧有匀强磁场,磁场方向垂直于纸面向里,磁感应强度大小为B。一带电粒子从平板上的狭缝O处以垂直于平板的初速v射入磁场区域,最后到达平板上的P点。已知B、v以及P到O的距离l,不计重力,求此粒子的电荷q与质量m之比。 2、如图所示,一束电子流以速率v通过一个处于矩形空间的大小为B的匀强磁场,速度方向与磁感线垂直.且平行于矩形空间的其中一边,矩形空间边长为a和a电子刚好从矩形的相对的两个顶点间通过,求: (1)电子在磁场中的飞行时间? (2)电子的荷质比q/m. 3、如图所示,一个电子(电量为e)以速度v垂直射入磁感应强度为B、宽度为d的匀强磁场中,穿出磁场时的速度方向与原来入射方向的夹角是30°,试计算: (1)电子的质量m。(2)电子穿过磁场的时间t。 4、一宽为L的匀强磁场区域,磁感应强度为B,如图所示,一质量为m、电荷量为-q的粒子以某一速度(方向如图所示)射入磁场。若不使粒子从右边界飞出,则其最大速度应为多大?(不计粒子重力) 5、(12分)一个质量为m电荷量为q的带电粒子从x轴上的P(a,0)点以速度v,沿与x正方向成60°的方向射入第一象限的匀强磁场中,并恰好垂直于y轴射出第一象限,不计重力。 求:(1)粒子做圆周运动的半径 (2)匀强磁场的磁感应强度B

6、如图所示,在xoy平面有垂直坐标平面的围足够大的匀强磁场,磁感强度为B,一带正电荷量Q的粒子,质量为m,从O点以某一初速度垂直射入磁场,其轨迹与x、y轴的交点A、B到O点的距离分别为a、b,试求: (1)初速度方向与x轴夹角θ. (2)初速度的大小. 7、一电子(e,m)以速度v0与x轴成30°角垂直射入磁感强度为B的匀强磁场中,经一段时间后,打在x轴上的P点,如图所示,则P点到O点的距离为多少?电子由O点运动到P点所用的时间为多少? 8、如图所示,在x轴上方存在着垂直于纸面向里、磁感应强度为B的匀强磁场。一个不计重力的带电粒子从坐标原点O处以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与x轴正方向成120°角,若粒子穿过y轴正半轴后在磁场中到x轴的最大距离为a。求: (1)该带电粒子的电性; (2)该带电粒子的比荷。

相关文档
最新文档