喷雾干燥器设计计算..

喷雾干燥器设计计算..
喷雾干燥器设计计算..

广东工业大学课程设计任务书

一、课程设计的内容 1.设计任务与要求

设计一喷雾干燥装置以干燥某种物料悬浮液。干燥介质为空气,热源为蒸气和电;雾化器采用旋转型压力喷嘴,选用热风-雾滴(或颗粒)并流向下的操作方式。 2.概述、原理、优点、流程

通过查阅喷雾干燥有关资料,熟悉喷雾干燥基本原理、优点和工艺流程。 3.根据计算的最主要尺寸绘制流程示意图 二、课程设计的要求与数据 料液处理量1G =300h kg /

料液含水量1ω=80%(湿基,质量分数) 产品含水量ω=2%(湿基,质量分数) 料液密度L ρ=11003/m kg 产品密度D ρ=9003/m kg 热风入塔温度 t 1=300℃ 热风出塔温度t 2=100℃ 料液入塔温度1θ=20℃ 产品出塔温度2θ=90℃

产品平均粒径dp =125μm 干物料比容热m c =2.5kJ/(kg.·℃) 加热蒸汽压力(表压)0.4MPa 料液雾化压力(表压)4MPa 年平均空气温度12℃ 年平均空气相对湿度 70%

注意:以上数据仅作为例子,每个学生设计时应按下表要求独立自选参数3个,并登记入点名册,所选参数完全一致的学生无效,上述示例数据不能选。

三、课程设计应完成的工作

1、通过查阅喷雾干燥有关资料,熟悉喷雾干燥基本原理、优点和工艺流程。

2、工艺计算

3、主要设备尺寸的设计

4、绘制工艺流程

5、撰写课程设计说明书 四、课程设计进程安排

五、应收集的资料及主要参考文献

陈英南刘玉兰主编. 常用化工单元设备的设计. 华东理工大学出版社2005年第一版。

发出任务书日期:2009年6月22日

指导教师签名:

计划完成日期: 2009年7月2日

基层教学单位责任人签章:

主管院长签章:

摘要

物料在加工成为成品之前,必须除去其中超过规定的湿分。化学工业中常用干燥法除湿,它是利用热能使湿物料中的水分汽化,并排出生成的蒸汽,以获得湿含量达到要求的产品。干燥过程中物料表面的水汽压强必须大于干燥介质中的水汽的分压,两者差别越大,干燥操作进行得越快。所以干燥介质应及时将汽化的水汽带走,以维持一定的扩散推动力。

喷雾干燥器是将溶液、浆液或悬浮液在热风中喷雾成细小液滴,液滴在下降过程中,水分被迅速汽化而达到干燥目的,从而获得粉末状或颗粒状的干产品。本文是设计一个喷雾干燥装置以干燥某种物料悬浮液。干燥介质为空气,热源为蒸汽和电;雾化器采用旋转型压力喷嘴,选用热风-雾滴(或颗粒)并流向下的操作方式。

本文就设计任务与要求,和所规定的工艺设计条件,在喷雾干燥器的原理,优点和流程方面作了详细的描述,同时在工艺设计计算过程中有详细,严谨的计算过程。主要针对的是物料、热量的衡算,喷雾干燥所需的时间,压力喷嘴主要尺寸的确定和干燥塔主要尺寸的确定,在文章的最后绘制了喷雾干燥装置的流程示意图。

关键词:喷雾干燥器干燥塔压力喷嘴

一、工艺设计条件

料液处理量G

1

=340kg/h

料液含水量ω

1

=59%(湿基,质量分数)产品含水量ω=2%(湿基,质量分数)

料液密度ρ

L =1100kg/m3产品密度ρ

D

=900kg/m3

热风入塔温度t

1=245℃热风出塔温度t

2

=100℃

料液入塔温度θ

1=20℃产品出塔温度θ

2

=90℃

产品平均粒径dp=125μm 干物料比容热c

2

m

=2.5kJ/(kg.·℃)

加热蒸汽压力(表压)0.4MPa 料液雾化压力(表压)4MPa

年平均空气温度12℃年平均空气相对湿度70%

注意:以上数据仅作为例子,每个学生设计时应按下表要求独立自选参数3个,并登记入点名册,所选参数完全一致的学生无效,上述示例数据不能选。

二、设计基本内容

1.设计任务与要求

设计一喷雾干燥装置以干燥某种物料悬浮液。干燥介质为空气,热源为蒸气和电;雾化器采用旋转型压力喷嘴,选用热风-雾滴(或颗粒)并流向下的操作方式。

2.概述、原理、优点、流程

(1)概述

喷雾干燥器是将溶液、浆液或悬浮液在热风中喷雾成细小液滴,液滴在下降过程中,水分被迅速汽化而达到干燥目的,从而获得粉末状或颗粒状的干产品。

(2)原理

在干燥塔顶部导入热风,同时将料液泵送至塔顶,经过雾化器喷成雾状的液滴,这些液

滴群的表面积很大,与高温热风接触后水分迅速蒸发,在极短的时间内便成为干燥产品,从干燥塔底部排出。热风与液滴接触后温度显著降低,湿度增大,它作为废气由排风机排出,废气中夹带的微粉用分离装置回收。

物料干燥过程分为等速阶段和减速阶段两个部分进行。在等速阶段,水分蒸发是在液滴表面发生,蒸发速度由蒸汽通过周围气膜的扩散速度所控制。主要的推动力是周围热风和液滴的温度差,温度差越大蒸发速度越快,水分通过颗粒的扩散速度大于蒸发速度。当扩散速度降低而不能再维持颗粒表面的饱和时,蒸发速度开始减慢,干燥进入减速阶段。在减速阶段中,颗粒温度开始上升,干燥结束时,物料的温度接近于周围空气的温度。

(3)优点:

(a) 干燥速度十分迅速。料液经喷雾后,表面积很大。在热风气流中热交换迅速,水分蒸发极快,瞬间就可蒸发95%~98%的水分,完成干燥的时间一般仅需5~40s左右。

(b) 干燥过程中液滴的温度不高,产品质量较好。喷雾干燥使用的温度范围非常广(80~800℃),即使采用高温热风,其排风温度仍不会很高。在干燥初期,物料温度不超过周围热空气的湿球温度50~60℃,干燥产品质量较好,不容易发生蛋白质变化,维生素损失,氧化等缺陷。对热敏性物料和产品的质量,基本上接近在真空下干燥的标准,防止物料过热变质。

(c) 产品具有良好的分散性,流动性和溶解性。由于干燥过程是在空气中完成的,产品基本上能保持与液滴相近似的中空球状或疏松团粒状的粉末状,具有良好的分散性,流动性和溶解性。

(d) 生产过程简化,操作控制方便。喷雾干燥通常用于处理湿含量40%~60%的溶液,特殊浆料即使湿含量高达90%,也可不经浓缩,同样能一次干燥成粉状产品。大部分产品干燥后不需要再进行粉碎和筛选,从而减少了生产工序,简化了生产工艺流程。产品的粒经,松密度,水分,在一定范围内,可用改变操作条件进行调整,控制管理都很方便。

(e) 防止发生公害,改善生产环境。由于喷雾干燥是在密闭的干燥塔内进行的,这就避免了干燥产品在车间里飞扬。

(f) 适宜于连续化大规模生产。喷雾干燥能适应工业上大规模生产的要求,干燥产品经连续排料,在后处理上可结合冷却器和风力输送,组成连续生产作业线。

(g) 容易改变操错条件,控制或调节产品的质量指标。改变原料的浓度,热风温度等喷雾条件,可获得不同水分和粒度的产品。

(h) 可以满足对产品的各种要求。增加某些措施或运用操作上的灵活性,能制成不同形

状(球形、粉末、疏松团粒)、性质(流动性、速溶性)、色、香、味的产品。 (4) 流程

常用喷雾干燥工艺流程:雾化→热气流中加热→水分蒸发干燥→气固分离→收集产品; 主要构成:干燥器、雾化器、旋风分离器、卸料器、空气加热器、过滤器、风机和泵等。

3.工艺设计计算 3.1物料衡算 ① 产品产量G 2 G 2=G 1×

2

111ωω--=340×02.0159

.01--=142.2 (kg/h)

② 水分蒸发量W

W =G 1-G 2=340-142.2=197.8(kg/h) 3.2热量衡算

① 物料升温所需的热量q m q m =

W c G m )θθ1222(-=8

.19720905.22.142)(-?

?=125.88 (kJ/kg 水)

② 热损失q l

根据经验取q l =210(kJ/kg 水) ③ 干燥塔出口空气的湿含量H 2

1

21

2H H I I --=-(q m +q l -C W θ1)=-(125.88+210-4.186×20)=-252.16

C W 为水的比热;4.186kJ/(kg ·℃)

I 1,I 2分别为空气进入干燥器前和离开干燥器时的热焓,kJ/kg 干气; H 1,H 2分别为空气进入干燥器前和离开干燥器时的湿度,kg 水/kg 干气; 根据年平均空气温度为12℃,年平均空气相对湿度70%,查空气的I -H 图得H 0= H 1=0.006, I 1=320kJ/kg ,任取H '1=H e =0.04,代入上式得: I '2= I e =320-223.50×(0.04-0.006)=311.43 kJ/kg

根据H -I 图,查得H 2=0.078(kg 水/kg 干空气) ④ 干空气的消耗量 L =

12H H W

-=006

.0078.08.197-=2746.6 (kg 干空气/h)

3.3雾滴干燥所需时间 ① 汽化潜热r 的确定

由I-H 图查得空气入塔状态下的湿球温度t W =54℃,该温度下水的汽化潜热r =2400kJ/kg

② 导热系数λ的确定

平均气膜温度为(54+100)/2=77℃,在该温度下空气的导热系数λ=3×105-KW/(m ·K)

③ 初始滴径d 0p d 0p 可由下式计算 d 0p =(

l

s ρρ×2111X X ++)3

/1·d p (X 1表示溶液每千克干固体含湿量,X 2表示干产品每千克干固体含湿量,)

由于X 1=

4159=1.44(kg 水/kg 干物料),X 2=982=0.0204kg 水/kg 干物料, 所以d 0p =(1100900×0204

.0144

.11++)3/1×125=156μm

④ 雾滴临界直径d pc d pc =d p =125μm

⑤ 雾滴临界湿含量X C 可以下式计算 X C =111

ω-{ω1-[1-(0

p pC d d )3]l ρρω}=59.011-{0.59-[1-(156125)]3

×

1100

1000

}=0.36kg 水/kg 干料 进一步换算成湿基湿含量:C C =0.36/(1+0.36)=0.262,即含水量26.2%。 ⑥ 空气临界湿含量H C

干燥第一阶段水分蒸发量为

W1=340×0.41×(59/41-0.36)=151.04 kg/h H C =0.006+204.91/3571=0.0610 kg 水/kg 干气 ⑦ 空气临界温度t C 查I-H 图得t C =135℃ ⑧ 传热温度差 恒速阶段传热温度差 △t 1=

W

C W C t t t t t t -----1

111ln

)()(θθ=5413520245ln )

54135()20245(-----=140.9 ℃

降速阶段传热温度差 △t 2=

2

222ln

)()(θθ-----t t t t t t W

C W C =9010054135ln )

90100()54135(-----=33.9℃

⑨ 雾滴的干燥时间τ

τ=12028)(t d d pC p L λ△γρ-+2

2212)

(t X X d C PC D λ△γρ-

τ=9

.140103810)25.165.1(110024005

822????-??--+9.3310312)

0204.036.0(1025.19002400582???-????-- =1.61(s )

3.4 压力喷嘴主要尺寸的确定

① 为了使塔径不致过大,根据经验选取雾化角θ=58°,由A ′—θ关联图查得A ′=2.0

② 当A ′=2.0 ,查C 0—A ′关联图得流量系数C 0=0.28 ③喷嘴孔径的计算,由式可得(Q 为流量)

d 0=2[L P C Q

ρ△π/20]2/1=2[1100/104228.014.3)36001100/(3406?????]2/1=2.14×

103-m

圆整后取d 0=3mm

④ 喷嘴其他主要尺寸的确定。选矩形切线入口通道2个,根据经验取b=1.2mm ,2R/b=8,即R=4.8mm ,圆整R=5mm ,即旋转室直径为10mm

因为对于矩形通道液体旋转半径R 1=R-b/2=5-1.2/2=4.4mm ,所以由式可求出矩形切线入口通道高度h :

h =('02bA R r π)(1

0R r )2/1=5.12.1255.1????π×(4.45.1)2/1=2.86mm (γ

0喷嘴孔半径)

取h =3mm

⑤ 校核喷嘴的生产能力:

由于A ′=(bh R r 20π)(1

0R r )2/1=32.1255.1????π×(4.45.1)2

/1=1.910

圆整后,A ′基本不变,不必复算,可以满足设计要求。 ⑥ 空气心半径r C 由下式计算出几何特性参数A : A =

bh R r 20π=3

2.125

5.1????π=3.27 利用A —a 关联图(图6-21)可查得a=0.43,因此 r C =r 0

a -1=1.5×43.01-=1.132mm

⑦ 喷嘴出口处液膜速度的计算。 喷嘴出口处液膜喷出平均速度ω0

,径向分速度ωx ,轴向分速度ωy 分别为

ω

=)(202C r r Q -π=6

2210)13.15.1(11003600/(340-π)?-??=28.26m/s ωx =ω0

sin (θ/2)=28.26×sin (58/2)=13.7m/s ωy =ω

cos (θ/2)=28.26×cos (58/2)=24.7m/s

3.5干燥塔主要尺寸的确定 ① 塔径的计算

塔内空气的平均温度为(100+300)/2=200℃,该温度下空气的动力粘度μa

0.0260mPa.·s ,空气的密度ρ

a

=0.746kg/m 3

A 、根据径向分速度ωx ,计算出τ=0时的雷诺数R 0e

R 0e =a

a x P d μρω0=3

4100260.0746.07.13102--????=61.5 即在R e =R 0e 时,ωx =13.7 m/s, R 0e =61.5, τ=0 B 、取一系列R 1e =100, R 2e =50,…, R ef =0.5,利用式ωx =R e

a

W a

D ρμ和式τ=4A a L P d μρ32 求出相应的雾滴水平飞行速度及相应的停留时间

如取R e =50,

与R e =50对应的雾滴飞行速度为

ωx =R e a

P a d ρμ0=50×746.01056.1100260.04

3

???--=11.15m/s 利用图R e 与ξR 2

e ∫5

102?e R 2

·)(e

e R R d ξ列线图得

A =∫5

10250

?2

·e

e R dR ξ-∫5

10

25

.149?2

·e

e R dR ξ=2.22×102--1.10×102-=1.12×102-

相应的停留时间为

τ=4A a

L P d μρ32=1.12×102

-×3

2

4100260.0311001056.14--)(?????=5.69×102-s 其余各组计算结果列于表 表1 τ~ωx 间关系计算结果

C、以τ为横坐标,ω

x 为纵坐标画出τ-ω

x

关系曲线如图1,由图解积分得:

S=∫318.0

x

dτ=1.012m

1

采用梯形法作图解积分:

横轴,每隔0.02取一点:X0,X1,X2……Xn-1,Xn,即X1—X0=X2—X1=……=Xn—Xn-1=h。但最后一格取为0.018,故需另列一项。从图上读出与X相应的Y值,

即Y0,Y1,Y2,……Yn-1,Yn 于是,积分值

S =∫318

.00

ωx d τ=h[Y0/2+Y1+Y2+……+Yn-1/2]+h ’(Yn-1+Yn)/2 =0.02[31.62/2+14.15+6.7+4.1+2.75+1.81+1.34+0.94+0.75+0.59+0.48+0.4+0.35+0.3+0.26+0.23/2]+0.018×(0.23+0.11)/2=1.012 那么,塔径为D =2S =2×1.012=2.023m 圆整取D =2.1m ② 塔高的计算

A 、降速运动时间内雾滴的下降距离H 1的计算 i 、根据初始轴向分速度ωy =24.72m/s ,计算出R 0e : R 0e =

a

a

y P d μρω0=3

410

0260.0746

.072.241056.1--????=213 φ=2

3

3)(4a

a L P a d g μρρρ-=2334100260.03746.01100)103746.081.94)()-((--???????=428.4 由于φ=ξ

f

R 2

ef ,因此根据图R e 与ξR 2e

50

102?e R 2

·)(e

e R R d ξ 查得R e

f =10.2,并由

R 0e =213 可查得ξ

0R 2

0e =3.2×104,那么φ

ξ-2

001e R =0.0361×103- 同样取一系列雷诺数R 1e =200, R 2e =100,…, R ef =3.9,,由图R e 与ξR 2

e ∫

50

102?e R 2

·)(e

e R R d ξ 查得相应的ξ

1

R 22e ,ξ

2

R 2

2e ,…,ξ

f

R 2

ef ,再计算出对应

φ

ξ-20

01

e R 值,结果列于表

表2 R e 与φ

ξ-21

e R ,u y 及τ’的关系

ii 、以R e 为横坐标,φ

ξ-2

001

e R 为纵坐标画图,可得到图2

iii 、由R 1e =200,计算出ω1y =34.85m/s ,根据图 R e 与ξR 2e

50

102?e R 2

·)(e

e R R d ξ可求得

389

300

φξ-2e e

R dR ,从而可计算出停留时间:τ’=a L P d μρ

342∫389

300φξ-2

e e R dR =2.96×

103-

类似可求出各相应停留时间,可见雾滴减速运动所需时间为τ’=0.878s

iv、由表2的ω

y

,τ’数据作曲线,如图2,由图解积分可得雾滴减速运动的下

降距离为H

1=∫878

.0

ω

y

dz=3.95m

如下图3

B、等速运动时间内雾滴的下降距离H

2

的计算

上述已算出φ=ξ

f R2

ef

=126.9,由图查得R

ef

=3.9,所以雾滴的沉降速度:

ω

t =R

ef

a

P

a

μ

=3.9×

746

.0

10

2

10

0260

.0

4

3

?

?

?

=1.185m/s

雾滴等速运动时间

τ’’=τ-τ’=1.61-0.878=0.735s 等速运动时间内雾滴的下降距离H

2

H

2=ω

t

×τ’’=1.185×0.735=0.87m

C、塔的有效高度H

H=H

1+H

2

=3.95+0.87=4.82m,圆整后取H=4.9m

工艺设计计算结果汇总表

通过上述计算,设计计算结果汇总于表3

表3 工艺计算结果汇总表

4. 绘制喷雾干燥装置流程示意图

参考书

陈英南刘玉兰主编. 常用化工单元设备的设计. 华东理工大学出版社2005年第一版

气流干燥机计算

气流干燥器计算 一、基本计算 1. 汽化水份量W ; G C =G 1 (1-W 1 ) X 1 =11(1) w w - X 2 = 22(1) w w -= 0.04(10.04) -=0.04167 W=G C (12()X X - 2. 绝干空气消耗量L ① 物料出口温度2 θ (湿球温度w t ): s p = 215 3991.11exp(18.5916)20233.84 -+=2.3382 kN m 0H ;1H c ; 1()w w W H r t t H H c =- - (1) 2491.27 2.3w w r t =- (2) 0.622 w W w p H P p =- (3) 23991.11exp(18.5916)15 233.84 w w p t = -+ (4) 联立以上四个方程,采用试差法可以求得湿球温度 ② 绝干空气消耗量L 假设出口温度 2t →L ,H 2; 3. 干燥管直径D 的计算; 假设气体进干燥器的速度… 4.沉降速度t u 的计算 8.02 11=--t t t t t →t t →t q →t W →t H →Ht v →t g ρ→t Jt u A → m p gt gt Jt d A ρμρ6 .16 .04.0875 .13= 4.11 )81.9( Jt t A u =

5. 确定加速度Nu 和R e r 间的关系 n r n A Nu Re = 设400Re

气流干燥器设计说明书(1)

第一章气流干燥的设计原则 (2) 干燥的目的及各种不同干燥方式 (2) 气流干燥过程及适用范围 (2) 气流干燥过程 (2) 气流干燥器适用对象 (3) 对流干燥流程、设备和某些操作条件的确定 (3) 干燥流程的主体设备 (4) 干燥对象氯酸钠的特性 (4) 第二章气流干燥器的设计基础 (5) 颗粒在气流干燥管中的运动 (5) 加速运动与等速运动及其特征 (5) 球形颗粒在气流中的运动速度 (5) 颗粒在气流干燥器中的对流传热系数 (6) 颗粒在气流干燥器中的对流传热速率 (6) 加速运动阶段 (6) 等速运动阶段 (7) 第三章气流干燥器的设计计算 (8) 物料、热量衡算 (8) 设计条件 (8) 干燥器的物料衡算 (9) 干燥器的热量衡算 (9) 气流干燥管直径和高度的计算 (11) 干燥管管径的计算 (11) 干燥管高度计算 (12) 气流干燥管的压降 (14) 气固相与干燥管壁的摩擦损失 (14) 克服位能提高所需压降 (14) 颗粒加速所引起的压降损失 (14) 局部阻力损失 (14) 辅助设备的选型 (15) 风机 (15) 预热器 (15) 及壁厚的核算 (15) 第四章后记 (17) 设计心得体会 (17) 符号说明 (17) 附录 (19) 参考文献 (19)

第一章气流干燥的设计原则 气流装置的设计内容包括干燥介质的选择,流程的确定,搜集和整理有关数据,干燥过程的物料和能量的衡算,干燥管结构类型和主要工艺尺寸的确定,干燥条件的确定以及主要辅助设备类型选型及设计,绘制表明物料流向﹑流量﹑组成﹑主要控制点和各设备之间相互个关系的工艺流程图和干燥装置主要设备总装置图等。 干燥的目的及各种不同干燥方式 干燥的目的主要是便于物料的储藏﹑运输和加工,通过干燥使产品或半成品达到要求的含湿标准。 将湿物料中的湿分(常见的为水分)除去的方法很多,如压榨﹑过滤﹑离心﹑冷冻及利用干燥剂等等。但综合除湿程度﹑操作的可靠性﹑经济性和处理能力,干燥是工业生产中应用最普遍的除湿方法。就干燥而言,根据传递方式的不同可分为传导干燥﹑对流干燥﹑辐射干燥和介电加热干燥。 气流干燥过程及适用范围 1.2.1 气流干燥过程 气流干燥装置是连续常压干燥器的一种。颗粒状或粉末状湿物料通过带式供料器从干燥器底部进入,同时高温干燥介质也从干燥器底部进入,并达到一定的流速将湿物料分散和悬浮于气流中,在物料和热介质气流一并沿干燥管向上流动的同时,发生高效的传质传热,达到快速干燥的目的。 适当的安装风机在系统中的位置,气流干燥器可以在正压下操作,对于有毒或粉尘污染可能较大的情况,采用真空操作,产品不宜泄露,有利于保持生产环境;同时也有利于降低水分汽化温度,保护热敏性物料。但此时风机处于抽气工作状态,所抽的气体温度较高,并可能含有一些颗粒和

喷雾干燥器的设计

喷雾干燥器的设计 一、 概述 (一) 喷雾干燥的原理 喷雾干燥是将溶液、浆液或悬浮液在热风中喷雾成细小液滴,液滴在下降过程中,水分被迅速汽化而达到干燥目的,从而获得粉末或颗粒状的产品。 物料的干燥过程分为等速阶段和降速阶段。在等速阶段,水分通过颗粒的扩散速率大于汽化速率,水分汽化是在液滴表面发生,等速阶段又称为表面汽化控制阶段。当水分通过颗粒的扩散速率降低而不能维持颗粒表面的充分润湿时,汽化速率开始减慢,干燥进入降速阶段,降速阶段又称为内部迁移控制阶段。 (二) 喷雾干燥的特点 1. 喷雾干燥的优点主要是: (1) 干燥速度快。 (2) 产品具有良好的分散性和溶解性。 (3) 生产过程简化,操作控制方便。 (4) 产品纯度高,生产环境好。 (5) 适宜于连续化大规模生产。 2. 喷雾干燥的缺点有: (1) 低温操作时,传质速率较低,热效率较低,空气消耗量大,动力消耗也随之增 大。 (2) 从废气中回收粉尘的设备投资大。 (3) 干燥膏糊状物料时,干燥设备的负荷较大。 二、 工艺设计条件 干燥物料为悬浮液,干燥介质为空气,热源为蒸汽和电;雾化器采用旋转型压力式喷嘴,选用热风——雾滴并流向下的操作方式。具体工艺参数如下: 料液处理量 h kg G /3301= 料液含水量 %801=w (湿基); 产品含水量 %22=w (湿基) 料液密度 31/1100m kg =ρ; 产品密度 32/900m kg =ρ 热风入塔温度 ℃t 3001=; 热风出塔温度 ℃t 1002= 料液入塔温度 ℃201=θ; 产品出塔温度 ℃902=θ 产品平均粒径 m d μ1252=; 产品比热容 )/(5.22℃kg kJ c ?= 加热蒸汽压力(表压) M P a 4.0; 料液雾化压力(表压) M P a 4 年平均温度 12℃; 年平均相对湿度 70%

喷雾干燥器设计计算

广东工业大学课程设计任务书 一、课程设计的内容 1.设计任务与要求 设计一喷雾干燥装置以干燥某种物料悬浮液。干燥介质为空气,热源为蒸气和电;雾化器采用旋转型压力喷嘴,选用热风-雾滴(或颗粒)并流向下的操作方式。 2.概述、原理、优点、流程 通过查阅喷雾干燥有关资料,熟悉喷雾干燥基本原理、优点和工艺流程。 3.根据计算的最主要尺寸绘制流程示意图 二、课程设计的要求与数据 料液处理量1G =300h kg / 料液含水量1ω=80%(湿基,质量分数) 产品含水量ω=2%(湿基,质量分数) 料液密度L ρ=11003/m kg 产品密度D ρ=9003/m kg 热风入塔温度 t 1=300℃ 热风出塔温度t 2=100℃ 料液入塔温度1θ=20℃ 产品出塔温度2θ=90℃ 产品平均粒径dp =125μm 干物料比容热m c =2.5kJ/(kg.·℃) 加热蒸汽压力(表压)0.4MPa 料液雾化压力(表压)4MPa 年平均空气温度12℃ 年平均空气相对湿度 70% 注意:以上数据仅作为例子,每个学生设计时应按下表要求独立自选参数3个,并登记入点名册,所选参数完全一致的学生无效,上述示例数据不能选。

三、课程设计应完成的工作 1、通过查阅喷雾干燥有关资料,熟悉喷雾干燥基本原理、优点和工艺流程。 2、工艺计算 3、主要设备尺寸的设计 4、绘制工艺流程 5、撰写课程设计说明书 四、课程设计进程安排 五、应收集的资料及主要参考文献 陈英南刘玉兰主编. 常用化工单元设备的设计. 华东理工大学出版社2005年第一版。 发出任务书日期:2009年6月22日 指导教师签名:

气流干燥器设计说明书(1)

第一章气流干燥的设计原则 (2) 1.1干燥的目的及各种不同干燥方式 (2) 1.2 气流干燥过程及适用范围 (2) 1.2.1 气流干燥过程 (2) 1.2.2气流干燥器适用对象 (3) 1.3对流干燥流程、设备和某些操作条件的确定 (3) 1.3.1 干燥流程的主体设备 (4) 1.4干燥对象氯酸钠的特性 (4) 第二章气流干燥器的设计基础 (5) 2.1颗粒在气流干燥管中的运动 (5) 2.1.1加速运动与等速运动及其特征 (5) 2.1.2 球形颗粒在气流中的运动速度 (5) 2.2 颗粒在气流干燥器中的对流传热系数 (6) 2.3 颗粒在气流干燥器中的对流传热速率 (6) 2.3.1加速运动阶段 (6) 2.3.2等速运动阶段 (7) 第三章气流干燥器的设计计算 (8) 3.1物料、热量衡算 (8) 3.1.1设计条件 (8) 3.1.2干燥器的物料衡算 (9) 3.1.3干燥器的热量衡算 (9) 3.2气流干燥管直径和高度的计算 (10) 3.2.1干燥管管径的计算 (10) 3.2.2干燥管高度计算 (11) 3.3气流干燥管的压降 (13) 3.3.1气固相与干燥管壁的摩擦损失 (13) 3.3.2克服位能提高所需压降 (13) 3.3.3颗粒加速所引起的压降损失 (13) 3.3.4局部阻力损失 (13) 3.4辅助设备的选型 (14) 3.4.1风机 (14) 3.4.2预热器 (14) 3.4.3及壁厚的核算 (14) 第四章后记 (15) 4.1设计心得体会 (15) 4.2符号说明 (16) 附录 (16) 参考文献 (16)

第一章气流干燥的设计原则 气流装置的设计内容包括干燥介质的选择,流程的确定,搜集和整理有关数据,干燥过程的物料和能量的衡算,干燥管结构类型和主要工艺尺寸的确定,干燥条件的确定以及主要辅助设备类型选型及设计,绘制表明物料流向﹑流量﹑组成﹑主要控制点和各设备之间相互个关系的工艺流程图和干燥装置主要设备总装置图等。 1.1干燥的目的及各种不同干燥方式 干燥的目的主要是便于物料的储藏﹑运输和加工,通过干燥使产品或半成品达到要求的含湿标准。 将湿物料中的湿分(常见的为水分)除去的方法很多,如压榨﹑过滤﹑离心﹑冷冻及利用干燥剂等等。但综合除湿程度﹑操作的可靠性﹑经济性和处理能力,干燥是工业生产中应用最普遍的除湿方法。就干燥而言,根据传递方式的不同可分为传导干燥﹑对流干燥﹑辐射干燥和介电加热干燥。 1.2 气流干燥过程及适用范围 1.2.1 气流干燥过程 气流干燥装置是连续常压干燥器的一种。颗粒状或粉末状湿物料通过带式供料器从干燥器底部进入,同时高温干燥介质也从干燥器底部进入,并达到一定的流速将湿物料分散和悬浮于气流中,在物料和热介质气流一并沿干燥管向上流动的同时,发生高效的传质传热,达到快速干燥的目的。 适当的安装风机在系统中的位置,气流干燥器可以在正压下操作,对于有毒或粉尘污染可能较大的情况,采用真空操作,产品不宜泄露,有利于保持生产环境;同时也有利于降低水分汽化温度,保护热敏性物料。但此时风机处于抽气工作状态,所抽的气体温度较高,并可能含有一些颗粒和粉

烘干机计算说明书

烘干机计算说明书 1. 应知参数 ① 原料情况 状态:形状、颗粒大小; 初水份:干基水份=物料重量水份重量 湿基水份=水份 物料水份重量+ 一般情况下初水份是指湿基水份。 ② 烘干系统 气流干燥系统:颗粒较小或水份较小; 回转滚筒干燥系统:颗粒较大或水份较大(30%以上); ③ 成品要求 终水份要求; ④ 进风温度情况 气流干燥:木屑类的进风温度控制在180℃-200℃,以180℃为基准,水份在30%-40% 或以上,温度可以控制在180℃以上; 回转滚筒干燥:水份较高时(30%-40%或以上)温度可控制在200℃以上(木屑类); 低水份类温度可控制在160℃以下; 注意:设计时,气流干燥和回转滚筒干燥系统在干燥木屑类物料时进风温度可控制在200℃, 木塑行业中的木粉不得超过180℃。 ⑤ 出风温度 终水份在10%以上,回转滚筒干燥系统控制在60℃,气流干燥系统控制在80℃; 终水份在5%下,回转滚筒干燥系统控制在70℃,气流干燥系统控制在90℃; 2. 计算 ① 蒸发量计算(单位:kg/h ) 型号按蒸发量选 蒸发量=初水份 终水份)(产量--11*-产量 产量单位:kg/h ② 系统风量 系统风量=出风温度 进风温度蒸发量-3000* 选用鼓风机; ③ 回转滚筒干燥系统 直径=风速 引风机风量*14.3*3600*2 风速为1.5m/s 左右,一般取中间值;按引风机风量计算。 长度=直径*(6-10)倍 气流干燥系统 直径=风速 系统风量*14.3*3600*2 风速为16-20m/s ,一般取中间值; 长度=直径*(60-100)倍 ④ 热源计算(单位:kCa ) 热量=系统风量*0.25*(进风温度-20℃)

压力式喷雾干燥塔设计计算书

目录 一.设计题目----------------------------------------------2二.设计任务及条件-------------------------------------2三.工艺设计计算 1.物料衡算----------------------------------------------3 2.热量衡算----------------------------------------------3 3.雾滴干燥所需时间 计算--------------------------3 4.压力式喷嘴主要尺寸的确定----------------------5 5.干燥塔主要尺寸的确定----------------------------6 6.主要附属设备的设计或选型---------------------11 四.设计结果汇总表------------------------------------13五.参考文献---------------------------------------------13

“压力式喷雾干燥塔设计”任务书 (一)设计题目 压力式喷雾干燥器设计。 (二)设计任务及设计条件 1、干粉生产能力:(湿基)见下表。 2、设备型式:压力式喷雾干燥器,干燥物质为陶瓷原料料浆,干燥介质为空气,热源为发生炉煤气。 3、设计条件: (1)料浆含水量 w 1=40wt %(湿基) (2)干粉含水量 w 2=6wt %(湿基) (3)料浆密度 ρl =1200kg/m 3 (4)干粉密度 ρp =900kg/m 3 (5)热风入塔温度 t 1=450℃ (6)热风出塔温度 t 2=70℃ (7)料浆入塔温度 t m1=20℃ (8)干粉出塔温度 t m2=50℃ (9)干粉平均粒径 d p =60μm (10)干粉比热容 c m =(kg ·℃) (11)料浆雾化压力 2MPa (表压) (12)取冬季的空气参数 温度t a =2℃,相对湿度φa =70% (13)进料量 1100kg/h(干基) (三)工艺设计计算 1.物料衡算 (1)料液处理量G 1 2121100100611001723.3kg/h 10010040 G G ωω--==?=-- (2)水分蒸发量W 2.热量衡算 (1)使物料升温所需热量:

气流干燥器的设计2

附图1: 干燥装置流程示意图16 废气 产品

[1] 泽勇.气流干燥技术的应用[J].科技, 2000, (5) [2]功样等主编.常用化工单元设备设计. 市.华南理工大学.2003年 [3]化工学院:干燥技术进展1976(54 [4]化工学院编:干燥技术进展、第三分册、气流干燥、(1979)(34) [5]毕克侣:气流干燥器的设计、化工技术资料(设计分册)1964(9 [6]永康主编.现代干燥技术.市.化学工业.1998年(36) [7] XX大学化工原理教研室编,《化工原理》上、下册(第二版) [M]. XX: XX科技,1996 (35) [8] 黄少烈、邹华生主编.化工原理(第二版).市.高等教育.2002年月第一版(19) [9] 柳金江, 超锋, 何清凤. 烟丝气流干燥系统气流干燥器的设计[J].化工, 2009,37(6): 173-174. [10]言文.气流干燥器数学模型及分段设计计算方法[J].计算机与应用化学, 2006,(04). [11]高嘉安主编.淀粉与淀粉制品工艺学.市.中国农业.2001(27) [12]匡国柱史启才主编.化工单元过程及设备课程设计.市. 化学工业2002年1月第一版(29) )

[6] 柴诚敬.《化工原理课程设计》[M]. XX: XX科学技术, 2000(45) [7] 工业大学化工系化工原理教研组:对流式干燥设备的设计(1963).(22) 泽勇.气流干燥技术的应用[J].科技, 2000, (5): 71 气流干燥器的设计 一、设计任务 化工原理课程设计任务书二十六

二、设备的简介 气流干燥器一般由空气滤清器、热交换器、干燥管、加料管、旋风分离器、出料器及除尘器等组成。 直管气流干燥器为最普遍的一种。它的工作原理是:物料通过给料器从干燥管的下端进入后,被下方送来的热空气向上吹起,热空气和物料在向上运动中进行充分接触并作剧烈的相对运动,进行传热和传质,从而达到干燥的目的。干燥后的产品从干燥管顶部送出,经旋风分离器回收夹带的粉末产品,而废气便经排气管排入大气中。为了使制品的含水量均匀以及供料连续均匀,在干燥管的出口处常装有测定温度的装置。直管气流干燥器分单管式和双管式两种型号。 旋风分离器是最常用的气固分离设备。对于颗粒直径大于5微米的含尘气体,其分离效率较高,压降一般为1000~2000 Pa。旋风分离器的种类很多,各种类型的旋风分离器的结构尺寸都有一定的比例关系,通常以圆柱直径的若干倍数表示。 三、工艺条件 1.原料:玉米淀粉 2.物料含水量w =25%(质量分数) 1 = 14%(质量分数) 3.产品含水量w 2 4.产品平均粒径 d:0.154㎜ p 5.新鲜空气温度t: 15℃ 6.空气干燥温度1t:90℃ 7.新鲜空气湿度 X:0.0073 1

玻璃器皿气流烘干器使用说明书

玻璃仪器气流烘干器使用说明书 一·玻璃气流烘干器 玻璃仪器气流烘干器,又称为玻璃仪器烘干器、玻璃器皿烘干器,玻璃仪器气流烘干器,玻璃烘干器,气流烘干器、试管烘干器等,是使用玻璃仪器的各类实验室、化验室干燥玻璃仪器的必备烘干器材。 二·功能 玻璃仪器气流烘干器具有快速、节能、无水渍、使用方便、维修简单等优点。该烘干器分B、C型两种型号。B型为改进新型,有调温自动控制装置(可调温40-120℃),C型为全不锈钢调温型。 三·规格 (1) 12孔20孔30孔可依据需要任意选择。 (2)标准管、异形管、粗细长度不等。 四·参数

外形尺寸:(外径×高度,风管不计mm):φ400×400 五·操作方法 (1)根据需烘干的玻璃器皿的大小,将相应规格的风管接插到上盖的出风口上。 (2)将需烘干器皿的水滴甩干,试管口朝下插入支架内烘干。 (3)将温度设定旋钮旋到所需要的温度。使用时将电源插头插入220V交流电源,接通电源开关,则冷风指示绿灯亮,电机工作吹出冷风,再接通热风开关,则热风指示红灯亮,电机工作吹进热风。 (4)当气流温度升至设定温度附近时,热风指示灯灭,加热停止(吹风电机继续工作),当气流温度降到设定温度以下时,热风指示灯亮,继续加热。 (5)当玻璃器皿被烘干后,先关掉热风开关,等玻璃器皿被吹凉后取下,并确定吹出的气流为冷风时,再最后关闭电源开关,切断电源。 六·清洁 每次使用前后对仪器表面做好清洁工作。 七·维护 需按照操作规程正确使用。 八·注意事项 (1)仪器在使用过程中不宜剧烈振动,以免待干燥玻璃器皿损坏。 (2)严禁烘干后直接关闭电源开关,以免剩余热量滞留于设备内部,烧坏电机和其他部件。 (3)电源插座要安装地线,以确保安全。

气流干燥器计算书

气流干燥器计算书 已知:脱水滤饼以9.2t/h (干量)由水分11%(湿基)干燥至完全干燥,取入口热风温度为155℃,干燥管出口(旋风分离器入口)为72℃,产品温度为50℃,物料的比热容为1.05kj/(kg ·k ) 设计计算如下: (1) 干燥必需的热量,干燥前的含水率为W 1=0.11/0.89=0.1236,由于完全干 燥则干燥应去掉的水分为△W=9200×0.1236=1137.12kg/h 取水的蒸发潜热:△H=2365.5kj/kg ,物料的比热容:C S =1.05kj/kg ·℃,则干燥所 需的热量: Q 1=1137.12×2365.5=2689857.36kj/h (2) 所需风量及热量,取干燥器本体热损失为干燥必需热损失的15%。空气 的比热容为1.047kj/kg ·℃ 则所需风量为:() h kg G /1.3559672155047.115.136.2689857=-??= 排气湿度H 2=0.015+1137.12/35596.1=0.015+0.032=0.047kg 水/kg 干空 气 因此所需热量为Q 1=35596.1×1.047×(155-20)=5031330.7545kg/h (3) 干燥管容积,若取热风与物料的平均温度差为加热管入口处与干燥管出 口处的对数平均温差,则 △t ()()1.5350 7250 155ln 507250155=-----=℃ 为了安全起见,取干燥管的热容量系数为h=4186kj/(h ·℃·m 3) 则所需干燥管容积为 31.121 .53418636.2689857m V t =?= 气流干燥器内热风的平均温度和湿度依次为 5.113272155=+= g t ℃ 031.02047.0015.0=+=g H ℃ 所以流经管内的平均风量为

气流式干燥器设计计算

气流式干燥器设计计算

————————————————————————————————作者:————————————————————————————————日期:

气流式干燥器设计计算?设计计算方法及步骤: (1)基本数据包括设计条件、设计者自行确定、自行查询的数据。 ?(2)进行干燥管的物料衡算和热量衡算,确定干燥除水量及干燥 用热空气量L(kg/h)。 (3)干燥管直径D的计算?①湿空气在干燥管中的流速从气流输 送角度来看,只要气流速度大于最大颗粒的沉降速度,则全部物料 便可被夹带出,但为操作安全起见,通常取出口气速为最大颗粒沉 降速度的2倍,或取出口气速比最大颗粒沉降速度大3m/s。至于 干燥管的入口气速,一般取20~30m/s。?②干燥管直径D 干燥管 直径用下式计算:? (4)气流干燥管的高度计算 根据空气至固体颗粒的传热速率方程式,整理得: ? ● 空气传给物料的热量Q由两部分组成,即: —恒速干燥阶段传热量(包括物料预热),其值可用下式计算: —降速干燥阶段的传热量,其值可用下式计算: kW ? kW ● 干燥管内的传热系数α的计算:?颗粒在气流干燥器中的传热系数的研究工作尚不充分。对于空气-水系统, 颗粒在等速运动段,可用下式估算。●??单位干燥管体积内的干燥表面积a,可用下式简化 ??(5)气流干燥系统的压力损失?气流干燥各部分的压力损失可按下述数值估算:90~290 Pa 旋风分离器 790~1200 Pa 干燥管1200~2500 Pa 总压力降 2500~4500 Pa?粉碎机 290~490 设计示例:[例]现有含水W1=2%的某晶体物料,物料平均颗粒直径dp=0.6mm,颗粒最大直 径dp max=1mm,密度ρs=2490kg/,经实验测定其临界含水量Wc=1%,干物料的定压比热 c m=1.005kJ/kgo℃,要求产品量为730kg/h,干燥后产品含水W2=0.03%(均为湿基)。 已知物料进入干燥器的温度为15℃,离开干燥器的温度为60℃(实测值),使用空气作干 燥介质,空气进入预热器的温度为15℃,相对湿度φ=80%,进入干燥器的温度为146℃,离 开干燥器的温度为64℃。试设计一气流干燥器完成此干燥任务。

喷雾干燥器设计计算.

工业大学课程设计任务书 一、课程设计的容 1.设计任务与要求 设计一喷雾干燥装置以干燥某种物料悬浮液。干燥介质为空气,热源为蒸气和电;雾化器采用旋转型压力喷嘴,选用热风-雾滴(或颗粒)并流向下的操作方式。 2.概述、原理、优点、流程 通过查阅喷雾干燥有关资料,熟悉喷雾干燥基本原理、优点和工艺流程。 3.根据计算的最主要尺寸绘制流程示意图 二、课程设计的要求与数据 料液处理量1G =300h kg / 料液含水量1ω=80%(湿基,质量分数) 产品含水量ω=2%(湿基,质量分数) 料液密度L ρ=11003/m kg 产品密度D ρ=9003/m kg 热风入塔温度 t 1=300℃ 热风出塔温度t 2=100℃ 料液入塔温度1θ=20℃ 产品出塔温度2θ=90℃ 产品平均粒径dp =125μm 干物料比容热m c =2.5kJ/(kg.·℃) 加热蒸汽压力(表压)0.4MPa 料液雾化压力(表压)4MPa 年平均空气温度12℃ 年平均空气相对湿度 70% 注意:以上数据仅作为例子,每个学生设计时应按下表要求独立自选参数3个,并登记入点名册,所选参数完全一致的学生无效,上述示例数据不能选。 三、课程设计应完成的工作 1、通过查阅喷雾干燥有关资料,熟悉喷雾干燥基本原理、优点和工艺流程。 2、工艺计算 3、主要设备尺寸的设计 4、绘制工艺流程 5、撰写课程设计说明书 四、课程设计进程安排

五、应收集的资料及主要参考文献 英南玉兰主编. 常用化工单元设备的设计. 华东理工大学2005年第一版。 发出任务书日期:2009年6月22日 指导教师签名: 计划完成日期: 2009年7月2日 基层教学单位责任人签章: 主管院长签章: 摘要 物料在加工成为成品之前,必须除去其中超过规定的湿分。化学工业中常用干燥法除湿,它是利用热能使湿物料中的水分汽化,并排出生成的蒸汽,以获得湿含量达到要求的产品。干燥过程中物料表面的水汽压强必须大于干燥介质中的水汽的分压,两者差别越大,干燥操作进行得越快。所以干燥介质应及时将汽化的水汽带走,以维持一定的扩散推动力。

脉冲气流旋流干燥机

◎脉冲气流旋流干燥机 电源缺相,加热器不能全部加热,处理方法是维修或更换固态继电器。而加热器的局部断路,也将使加热不能全部工作,造成加热过程过于缓慢。维修或更换加热器。将故障问题完全处理好。闭合循环烘箱空气开关,按照该烘箱的操作说明书运行其程序,经过2.5h的升 工作原理 湿物料经输送机与加热后的空气同时进入干燥器,松散的粉粒状物料分散悬浮于热空气中,二者充分混和,在气流夹带的过程中瞬间脱除水分。通过气流干燥器管径的大小交替变化,使得物料颗粒在干燥的目的、干燥后的成品从旋风分离器排出,一小部分飞粉由二级旋风除尘器或布袋除尘器得到回收利用根据干燥作业形式不同,有以下四种系列产品:1、F系列2、z系列3、x系列4、sz系列。F型是负压操作,物料经过风机带有粉碎作用,X型为多级尾气循环型,SZ型是集闪蒸干燥与气流干燥为一体的强化型气流干燥器,式我公司根据用户要求设计的新型干燥设备。 产品特点 ● 适用于粒径范围在5um~5mm之间的粉粒状物料表面水的干燥; ● 干燥强度大、设备投资省:占地面积小。 ● 自动化程度高、产品质量好,干燥时间极短,产品不与外界接触,污染小,质量好。 ● 设备成套供应、热源自由选择,用户可根据需要添置除尘器或其他辅助设备。 在加热方式选择上,气流干燥设备有较大的适应性,用户可以根据所在地区的条件选用蒸汽、点、热风炉加热、同时又可根据物料耐热温度(或热风温度)选择:≤150℃时。可选用蒸汽加热;≤200时,电加热(或蒸汽加热,电补偿或导热油加热);≤300℃时,热媒热风炉;≤600℃时,燃油热风炉。 技术咨询及试验 气流干燥式一种批量大、热效率较高的快速连续瞬间干燥设备,虽然其适用于多种物料的干燥,如糯米粉、糟渣类、南瓜子皮等饲料颗粒、A.B.C中间体、白炭黑、苯吡唑酮、茶粕、草酸催化剂、沉淀碳粉、对乙酰氮基苯磺酰氨、对氨基水杨酸、哆耳玛托、对苯二酸、二乙

干燥机设计说明书

摘要 筒体是卧式滚筒软化干燥机的机体。筒体内既进行热和质的传递又输送物料,筒体的大小标志着卧式滚筒软化干燥机的规格和生产能力。筒体应具有足够的刚度和强度。在安装和运转中必须保持轴线的直线性和截面的圆度。筒体的材料一般用Q235钢和普通低合金钢。提高了传热效率,充分发挥了蒸汽的潜能,降低了蒸汽消耗;提高了滚筒软化干燥机加热列管的管壁温度,增加设备处理量,提高物料软化效率。应根据油料的种类和含水量的不同,制定软化温度;当油料含水量低时,软化温度应相应高些,反之,应低些。根据油料含水量的不同,可进行加热润湿或加热去水。根据轧呸效果调整软化条件。轴的设计工作中的另一个重要方面是一根轴与另一根轴之间的直接联接方法。这由刚性或者弹性联轴器来实现的。联轴器是用来把相邻的两个轴端联接起来的装置。在机械结构中,联轴器被用来实现相邻的两根转轴之间的半永久性联接。 关键词:滚筒;软化;效率; 联轴器

Title The Softening kettle Abstract:T he tube body is the machine body that the softening kettle. The tube body inside since carry on heat and qualities' deliver and transport the material, the size of the tube body symbolizes the specification and the production ability that the softening kettle. The tube body should have enough of just degree and strength.Must keep the straight line of the stalk line and cut a degree of the noodles in install and revolve.The material of the tube body uses the low metal alloy steel of Q235 steel and commonness generally. Raised to transmit heat the efficiency, developed the potential of the steam well, lower the steam to eliminate Consume; raised the roller to soften the tube wall temperature of a pot of heating row tube, increase the equipments processing quantity, raise the material to soften the efficiency. Should according to the category and dissimilarity with amount of waters that oil anticipate, draw up to soften the temperature;When the oil anticipates to contain the amount of water low, soften the temperature and should correspond a little higher, whereas, should be a little lower. Anticipate the dissimilarity with amount of water according to the oil, can carry on heat smooth wet or heat to the water. A djust to soften the condition according to the force result. Another important aspect of shaft design is the method of directly connecting one shaft to another. This is accomplished by devices such as rigid and flexible couplings. A coupling is a device for connecting the ends of adjacent shafts. In machine construction, couplings are used to effect a semi permanent connection between adjacent rotating shafts. Keywords:Rotary Drum;Softening;efficiency; coupling

XFG-1F吸附式氢气干燥器使用说明书要点

氢冷式发电机及氢站配套设备 XFG-1F吸附式氢气干燥器 使用说明书 牡丹江市北方电站设备有限公司

目录 一、工作原理——1 二、主要技术参数————2 三、设备型号说明————3 四、设备的安装————3 五、设备启动前注意事项————4 六、启动运行程序步骤————5 七、设备控制箱的净化说明————7 八、设备的净化过程————8 九、人机界面按键使用说明————9 十、设备的拆卸维护和安装————15 十一、设备的预防性维护程序————17 十二、附安装图、工艺流程图、运行记录表————19

XFG-1F吸附式氢气干燥器使用说明 一、工作原理 XFG-1F型氢气干燥器是清除汽轮发电机内氢气中水蒸汽的专用设备。 氢气干燥器对氢气进行干燥处理的原理是利用活性氧化铝的吸收性能。活性氧化铝是一种固态干燥剂,清除水分是将湿度高的氢气通过填满活性氧化铝的吸收塔来实现的。高疏松度的活性氧化铝具有非常大的表面积和强吸湿能力,对绝大多数气体和水蒸气来说,使用活性氧化铝作为干燥剂主要是利用它的化学惰性和它无毒的特性。当活性氧化铝吸收水分达到饱和后,它的“再生”可通过加热来清除自身的水蒸气,从而恢复它的吸收能力,并且活性氧化铝的性能和效率并不受重复再生的影响。 氢气干燥器中,利用埋入式的电加热器加热干燥剂使束缚的水分汽化,与此同时一股封装的氢气流过吸附层带走释放出的水蒸气,干燥剂恢复最初的特性,然后将氢气(含有水蒸气)冷却,冷凝水通过分离器排出,一般情况下,活性氧化铝的吸湿性能可通过加热的方式来完成它的再生,并可以重复进行。 干燥器本身有两个吸收塔,当其中一个吸收塔处于吸湿过程中,另一个则处于再生过程,所以干燥器能够连续的工作。 在预定的工作周期,控制器自动地控制着四通阀门,并把氢气流从已饱和的吸收塔自动的转换到完成再生过程的吸收塔中。与此同时自动地将已吸湿饱和的吸收塔置于再生循环中,完全实现了设备的自动化工作。 XFG-1F型氢气干燥器 二、主要技术参数

喷雾干燥法-2

喷雾干燥热风分布器的设计原则 王宗濂,韩磊,唐金鑫,黄春明 (中国林业院林产化工研究所,中国南京 210042) 摘要:喷雾干燥装置中的热风分布器与干燥的传热传质密切相关。指出,干燥的传热传质系数与R e数有关并呈0.8次方关系。文中列出了工业中常见的三种不正确的分布形式,并提出三条设计热风分布器的原则。 关键词:喷雾干燥;热风;分布器 由于喷雾干燥具有流程简短、可处理热敏性物料、易大型化等优越性,已经在许多领域得到应用。改革开放以后,我国出现了一大批专业化的干燥设备企业。近十年内喷雾干燥技术已取得了长足进步,产品质量已可与世界著名厂商相媲美,不仅满足了国内轻化工、环保行业的需要,而且已向国外市场拓展。 长期以来,对喷雾干燥装置的注意,一般着力于: ⑴雾化器(机)的选择; ⑵足够风量和热量的配置; ⑶粉末回收及排放。 王喜忠等指出:“一个成功的喷雾干燥器的设计,应包括与雾化器相适应的热风进出口的方式和热风分布装置”[1]。K.Master’s也提到在干燥塔内水分蒸发速率随着雾滴与热风的相对速度增加而增加[2]。 唐金鑫等在热风分布器设计要求中,提出三条重要的原则[3],都强调了热风分布对喷雾干燥的重要性。 在随后出现的装置中,发现大多数企业仍然没有给予足够的重视,只是从结构上做到“形似”而实质仍未掌握,以致出现以下情况: ⑴在塔内同一截面上温度差较大,导致物料局部粘壁; ⑵由于气液两相接触不合理,使干燥强度大为下降,于是干燥塔的体积越做越大; ⑶在一台比原设计处理量大为减小的干燥塔中,未注意热风分布的流速范围,降低了干燥强度,物料仍然大量粘壁; ⑷热效率很低,出塔风温难以下降。 因此,我们认为热风分布器的设计正确与否,直接影响到干燥系统运行的成败。本文拟在以前知识的基础上,提出气液两相接触的合理方式,以求对热风分布器设计有正确的分析和指导。———————————————————— 作者简介:王宗濂,男,研究员。

气流干燥器设计说明书

第一章气流干燥的设计原则..............................错误!未定义书签。 干燥的目的及各种不同干燥方式 ........................错误!未定义书签。 气流干燥过程及适用范围 .............................错误!未定义书签。 气流干燥过程..................................错误!未定义书签。 气流干燥器适用对象..............................错误!未定义书签。 对流干燥流程、设备和某些操作条件的确定 ..............错误!未定义书签。 干燥流程的主体设备 .............................错误!未定义书签。 干燥对象氯酸钠的特性................................错误!未定义书签。第二章气流干燥器的设计基础 .............................错误!未定义书签。 颗粒在气流干燥管中的运动............................错误!未定义书签。 加速运动与等速运动及其特征 ......................错误!未定义书签。 球形颗粒在气流中的运动速度 .....................错误!未定义书签。 颗粒在气流干燥器中的对流传热系数 ...................错误!未定义书签。 颗粒在气流干燥器中的对流传热速率 ...................错误!未定义书签。 加速运动阶段....................................错误!未定义书签。 等速运动阶段....................................错误!未定义书签。第三章气流干燥器的设计计算 .............................错误!未定义书签。 物料、热量衡算......................................错误!未定义书签。 设计条件........................................错误!未定义书签。 干燥器的物料衡算................................错误!未定义书签。 干燥器的热量衡算................................错误!未定义书签。 气流干燥管直径和高度的计算 ..........................错误!未定义书签。 干燥管管径的计算................................错误!未定义书签。 干燥管高度计算..................................错误!未定义书签。 气流干燥管的压降....................................错误!未定义书签。 气固相与干燥管壁的摩擦损失 ......................错误!未定义书签。 克服位能提高所需压降 ............................错误!未定义书签。 颗粒加速所引起的压降损失 ........................错误!未定义书签。 局部阻力损失....................................错误!未定义书签。 辅助设备的选型......................................错误!未定义书签。 风机............................................错误!未定义书签。 预热器..........................................错误!未定义书签。 及壁厚的核算....................................错误!未定义书签。第四章后记.............................................错误!未定义书签。 设计心得体会........................................错误!未定义书签。 符号说明............................................错误!未定义书签。附录....................................................错误!未定义书签。 参考文献............................................错误!未定义书签。

脉冲式气流干燥器的设计

毕业设计(论文) 题目 学院名称 指导教师 职称 班级 学号 学生姓名 目录 1 概述 (3) 1.1干燥技术现状及进展 (3) 1.1.1干燥技术的概况 (3) 1.1.2干燥技术现状 (3) 1.2气流干燥器的简介 (4) 1.2.1气流干燥器的简介 (4)

1.2.2脉冲式气流干燥器的简介 (5) 2.设计任务及要求 (5) 2.1设计题目 (5) 2.2设计任务及操作条件 (5) 2.3设计内容 (5) 3.干燥器主体工艺尺寸计算计算 (6) 3.1基本参数的确定 (6) 3.2 物料衡算和能量衡算 (6) 3.2.1物料衡算和热量衡算 (6) 3.2.2气流干燥管直径的计算 (7) 3.2.3气流干燥管长度的计算 (8) 4.辅助设备的选型及核算 (17) 4.1鼓风机 (18) 4.2加热器 (18) 4.3进料器 (18) 4.4分离器 (19) 4.5除尘器 (19) 5.设计结果汇总 (19) 6 结论 (19) 参考文献 (19) 致谢……………………………………………………………………………… 附图 一. 概述: 1.1 干燥技术现状及进展 人们通常把采用热物理方式将热量传给含水的物料并将此热量作为潜热而是水分蒸发、分离操作的过程称为干燥。其特征是采用加热、降温、减压或其他能量传递的方式使物料中的水分挥发,冷凝、升华等相变过程与物料分离以达到去湿的目的。 干燥技术的应用,在我国具有十分悠久的历史,文明于世界的造纸技术,就显示了干燥技术的应用,现代干燥技术在国民生产中应用的程度与一个国家的综合国力和国民生活质量的水平密切相关,从某种意义上来说,它标志着这个国家国民经济和社会文明的发达程度。 1.1.1干燥技术的概况 干燥技术的目的是除去某些原料、半成品中的水分或溶剂,就化学工业而言

相关文档
最新文档