2013年高考文科数学试题 全国新课标2卷
2013年高考文科数学真题及答案全国卷

2013年高考文科数学真题及答案全国卷1本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(2013课标全国Ⅰ,文1)已知集合A ={1,2,3,4},B ={x |x =n 2,n ∈A },则A ∩B =( ).A .{1,4}B .{2,3}C .{9,16}D .{1,2} 【答案】A【考点】本题主要考查集合的基本知识。
【解析】∵B ={x |x =n 2,n ∈A }={1,4,9,16}, ∴A ∩B ={1,4}.2.(2013课标全国Ⅰ,文2)212i1i +(-)=( ).A.B .11+i 2- C . D .【答案】B【考点】本题主要考查复数的基本运算。
【解析】212i 12i 12i i 2i 1i 2i 22++(+)-+===(-)-=11+i 2-.3.(2013课标全国Ⅰ,文3)从1,2,3,4中任取2个不同的数,则取出的2个数之差的绝对值为2的概率是( ).A .12B .13C .14D .16【答案】B【考点】本题主要考查列举法解古典概型问题的基本能力。
【解析】由题意知总事件数为6,且分别为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),满足条件的事件数是2,所以所求的概率为13. 4.(2013课标全国Ⅰ,文4)已知双曲线C :2222=1x y a b-(a >0,b >0)的离心率为52,则C 的渐近线方程为( ).A .B .C .12y x =±D .【答案】C【考点】本题主要考查双曲线的离心率、渐近线方程。
【解析】∵5e =5c a =2254c a =.∵c 2=a 2+b 2,∴2214b a =.∴12b a =.∵双曲线的渐近线方程为by x a=±,∴渐近线方程为12y x =±.故选C.5.(2013课标全国Ⅰ,文5)已知命题p :?x ∈R,2x <3x ;命题q :?x ∈R ,x 3=1-x 2,则下列命题中为真命题的是( ).A .p ∧qB .⌝p ∧qC .p ∧⌝qD .⌝p ∧⌝q 【答案】B【考点】本题主要考查常用逻辑用语等基本知识。
2013年天津市高考数学试卷(文科)及答案(word版)

2013 年一般高等学校招生全国一致考试 (天津卷 )文科数学本试卷分第Ⅰ卷 (选择题) 和第Ⅱ卷 (非选择题 )两部分 , 共 150 分 . 考试用时 120 分钟 . 第Ⅰ卷1至2页, 第Ⅱ卷 3至 5页.答卷前 , 考生务势必自己的姓名、准考据号填写在答题卡上 , 并在规定地点粘贴考试用条形码 . 答卷时 , 考生务势必答案凃写在答题卡上 , 答在试卷上的无效 . 考试结束后 , 将本试卷和答题卡一并交回 .祝各位考生考试顺利 !第Ⅰ卷注意事项:1.每题选出答案后 , 用铅笔将答题卡上对应题目的答案标号涂黑 .如需变动,用橡皮擦洁净后 , 再选凃其余答案标号 .2.本卷共 8小题, 每题 5分, 共40分.参照公式 :·假如事件 A, B 互斥 , 那么 P(A B) P(A) P( B)·棱柱的体积公式 V = Sh , 此中 S 表示棱柱的底面面积 , h 表示棱柱的高 . ·假如事件 A, B 互相独立 , 那么 P( AB) P (A)P( B)·球的体积公式 V4R 3. 此中 R 表示球的半径 .3一.选择题 : 在每题给出的四个选项中 ,只有一项为哪一项切合题目要求的 .(1) 已知会合 A = {x ∈ R | | x| ≤ 2},B = {x ∈R | x ≤ 1},则 A B(A) ( ,2] (B) [1,2] (C) [- 2,2] (D) [- 2,1]3x y 6 0,(2) 设变量 x, y 知足拘束条件x y 2 0, 则目标函数 z = y - 2xy 30,的最小值为(A) -7 (B) - 4(C) 1(D) 2(3) 阅读右侧的程序框图 , 运转相应的程序 , 则输出 n 的值为(A) 7 (B) 6 (C) 5(D) 4(4) 设 a, b R , 则 “(a b)a20 a b ”的”是 “(A) 充分而不用要条件(B) 必需而不充分条件(C)充要条件(D)既不充分也不用要条件(5) 已知过点 P(2,2) 的直线与圆 ( x 1)2 y2 5相切, 且与直线 ax y 1 0 垂直 , 则 a(A) 1(B) 1 2(C) 2 (D) 1 2(6) 函数 f (x) sin 2 x 在区间0, 上的最小值是4 2(A) 1 (B)2 2(C) 2(D) 0 2(7) 已知函数 f (x) 是定义在R 上的偶函数,且在区间[0, ) 上单一递加. 若实数 a 知足f (log 2 a ) f (log1 a ) 2 f (1) , 则 a 的取值范围是2(A) [1,2] (B) 0,12(C)1(D) (0,2] ,22(8) 设函数f ( x) e x x 2, g( x) ln x x2 3 .若实数a, b知足 f (a) 0, g( b) 0 , 则(A) g (a) 0 f (b) (B) f (b) 0 g (a )(C) 0 g (a) f (b) (D) f (b ) g (a) 0。
2013年高考数学全国卷(2)试卷及答案 (理科+文科)

2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)数 学 (理科)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题。
每小题5分,共50分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1、已知集合2{|(1)4,}M x x x R =-<∈,{1,0,1,2,3}N =-,则MN =( )(A ){0,1,2} (B ){1,0,1,2}- (C ){1,0,2,3}- (D ){0,1,2,3} 2、设复数z 满足(1)2i z i -=,则z =( )(A )1i -+ (B )1i -- (C )1i + (D )1i -3、等比数列{}n a 的前n 项和为n S ,已知32110S a a =+,59a =,则1a =( ) (A )13 (B )13- (C )19 (D )19- 4、已知,m n 为异面直线,m ⊥平面α,n ⊥平面β。
直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( )(A )//αβ且//l α (B )αβ⊥且l β⊥(C )α与β相交,且交线垂直于l (D )α与β相交,且交线平行于l5、已知5(1)(1)ax x ++的展开式中2x 的系数为5,则a =( )(A )4- (B )3- (C )2- (D )1- 6、执行右面的程序框图,如果输入的10N =,那么输出的S =( )(A )11112310+++⋅⋅⋅+ (B )11112!3!10!+++⋅⋅⋅+(C )11112311+++⋅⋅⋅+ (D )11112!3!11!+++⋅⋅⋅+7、一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到正视图可以为( )(A)(B)(C)(D)8、设3log 6a =,5log 10b =,7log 14c =,则( )(A )c b a >> (B )b c a >> (C )a c b >> (D )a b c >>9、已知0a >,,x y 满足约束条件1,3,(3)x x y y a x ≥⎧⎪+≤⎨⎪≥-⎩,若2z x y =+的最小值为1,则a =( )(A )14 (B )12(C )1 (D )2 10、已知函数32()f x x ax bx c =+++,下列结论中错误的是( ) (A )0x R ∃∈,0()0f x =(B )函数()y f x =的图象是中心对称图形(C )若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减 (D )若0x 是()f x 的极值点,则0'()0f x =11、设抛物线2:3(0)C y px p =≥的焦点为F ,点M 在C 上,||5MF =,若以MF 为直径的圆过点(0,3),则C 的方程为( )(A )24y x =或28y x = (B )22y x =或28y x = (C )24y x =或216y x = (D )22y x =或216y x =12、已知点(1,0)A -,(1,0)B ,(0,1)C ,直线(0)y ax b a =+>将ABC ∆分割为面积相等的两部分,则b 的取值范围是( ) (A )(0,1) (B )21(1)22-(C )21(1)23- (D )11[,)32第Ⅱ卷本卷包括必考题和选考题,每个试题考生都必修作答。
2013年北京市高考数学试卷(文科)(含解析版)

绝密★本科目考试启用前2013年普通高等学校招生全国统一考试数学(文)(北京卷)本试卷共5页,150分。
考试时长120分钟。
考生务必将答案答在答题卡上,在试卷上作答无效。
考试结束后,将本试卷和答题卡一并交回。
第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1} 2.(5分)设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b3 3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=e﹣x C.y=lg|x|D.y=﹣x2+1 4.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C.D.16.(5分)执行如图所示的程序框图,输出的S值为()A.1B.C.D.7.(5分)双曲线的离心率大于的充分必要条件是()A.B.m≥1C.m>1D.m>28.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px的焦点坐标为(1,0),则p=;准线方程为.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为.11.(5分)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=;前n 项和S n=.12.(5分)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.13.(5分)函数f(x)=的值域为.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=(2cos2x﹣1)sin2x+cos4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.18.(13分)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.19.(14分)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O 是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.20.(14分)给定数列a1,a2,…,a n.对i=1,2,…,n﹣1,该数列前i项的最大值记为A i,后n﹣i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i﹣B i.(Ⅰ)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,a n﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n﹣1是等比数列;(Ⅲ)设d1,d2,…,d n﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,a n﹣1是等差数列.2013年北京市高考数学试卷(文科)参考答案与试题解析一、选择题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.(5分)已知集合A={﹣1,0,1},B={x|﹣1≤x<1},则A∩B=()A.{0}B.{﹣1,0}C.{0,1}D.{﹣1,0,1}【考点】1E:交集及其运算.【专题】5J:集合.【分析】找出A与B的公共元素,即可确定出两集合的交集.【解答】解:∵A={﹣1,0,1},B={x|﹣1≤x<1},∴A∩B={﹣1,0}.故选:B.【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.2.(5分)设a,b,c∈R,且a>b,则()A.ac>bc B.C.a2>b2D.a3>b3【考点】R3:不等式的基本性质.【专题】59:不等式的解法及应用.【分析】对于A、B、C可举出反例,对于D利用不等式的基本性质即可判断出.【解答】解:A、3>2,但是3×(﹣1)<2×(﹣1),故A不正确;B、1>﹣2,但是,故B不正确;C、﹣1>﹣2,但是(﹣1)2<(﹣2)2,故C不正确;D、∵a>b,∴a3>b3,成立,故D正确.故选:D.【点评】熟练掌握不等式的基本性质以及反例的应用是解题的关键.3.(5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是()A.B.y=e﹣x C.y=lg|x|D.y=﹣x2+1【考点】3E:函数单调性的性质与判断;3K:函数奇偶性的性质与判断;3N:奇偶性与单调性的综合.【专题】51:函数的性质及应用.【分析】利用基本函数的奇偶性、单调性逐项判断即可.【解答】解:A中,y=为奇函数,故排除A;B中,y=e﹣x为非奇非偶函数,故排除B;C中,y=lg|x|为偶函数,在x∈(0,1)时,单调递减,在x∈(1,+∞)时,单调递增,所以y=lg|x|在(0,+∞)上不单调,故排除C;D中,y=﹣x2+1的图象关于y轴对称,故为偶函数,且在(0,+∞)上单调递减,故选:D.【点评】本题考查函数的奇偶i性、单调性的判断证明,属基础题,定义是解决该类题目的基本方法,熟记基本函数的有关性质可简化问题的解决.4.(5分)在复平面内,复数i(2﹣i)对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【考点】A4:复数的代数表示法及其几何意义.【专题】5N:数系的扩充和复数.【分析】首先进行复数的乘法运算,得到复数的代数形式的标准形式,根据复数的实部和虚部写出对应的点的坐标,看出所在的象限.【解答】解:∵复数z=i(2﹣i)=﹣i2+2i=1+2i∴复数对应的点的坐标是(1,2)这个点在第一象限,故选:A.【点评】本题考查复数的代数表示法及其几何意义,本题解题的关键是写成标准形式,才能看出实部和虚部的值.5.(5分)在△ABC中,a=3,b=5,sinA=,则sinB=()A.B.C.D.1【考点】HP:正弦定理.【专题】58:解三角形.【分析】由正弦定理列出关系式,将a,b及sinA的值代入即可求出sinB的值.【解答】解:∵a=3,b=5,sinA=,∴由正弦定理得:sinB===.故选:B.【点评】此题考查了正弦定理,熟练掌握正弦定理是解本题的关键.6.(5分)执行如图所示的程序框图,输出的S值为()A.1B.C.D.【考点】EF:程序框图.【专题】5K:算法和程序框图.【分析】从框图赋值入手,先执行一次运算,然后判断运算后的i的值与2的大小,满足判断框中的条件,则跳出循环,否则继续执行循环,直到条件满足为止.【解答】解:框图首先给变量i和S赋值0和1.执行,i=0+1=1;判断1≥2不成立,执行,i=1+1=2;判断2≥2成立,算法结束,跳出循环,输出S的值为.故选:C.【点评】本题考查了程序框图,考查了直到型结构,直到型循环是先执行后判断,不满足条件执行循环,直到条件满足结束循环,是基础题.7.(5分)双曲线的离心率大于的充分必要条件是()A.B.m≥1C.m>1D.m>2【考点】29:充分条件、必要条件、充要条件.【专题】5D:圆锥曲线的定义、性质与方程;5L:简易逻辑.【分析】根据双曲线的标准形式,可以求出a=1,b=,c=.利用离心率e大于建立不等式,解之可得m>1,最后利用充要条件的定义即可得出正确答案.【解答】解:双曲线,说明m>0,∴a=1,b=,可得c=,∵离心率e>等价于⇔m>1,∴双曲线的离心率大于的充分必要条件是m>1.故选:C.【点评】本题虽然小巧,用到的知识却是丰富的,具有综合性特点,涉及了双曲线的标准方程、几何性质等几个方面的知识,是这些内容的有机融合,是一个极具考查力的小题.8.(5分)如图,在正方体ABCD﹣A1B1C1D1中,P为对角线BD1的三等分点,P到各顶点的距离的不同取值有()A.3个B.4个C.5个D.6个【考点】MK:点、线、面间的距离计算.【专题】5F:空间位置关系与距离.【分析】建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,即可得到各顶点的坐标,利用两点间的距离公式即可得出.【解答】解:建立如图所示的空间直角坐标系,不妨设正方体的棱长|AB|=3,则A(3,0,0),B(3,3,0),C(0,3,0),D(0,0,0),A1(3,0,3),B1(3,3,3),C1(0,3,3),D1(0,0,3),∴=(﹣3,﹣3,3),设P(x,y,z),∵=(﹣1,﹣1,1),∴=(2,2,1).∴|PA|=|PC|=|PB1|==,|PD|=|PA1|=|PC1|=,|PB|=,|PD1|==.故P到各顶点的距离的不同取值有,3,,共4个.故选:B.【点评】熟练掌握通过建立空间直角坐标系及两点间的距离公式是解题的关键.二、填空题共6小题,每小题5分,共30分.9.(5分)若抛物线y2=2px的焦点坐标为(1,0),则p=2;准线方程为x=﹣1.【考点】K8:抛物线的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】由抛物线的性质可知,知=1,可知抛物线的标准方程和准线方程.【解答】解:∵抛物线y2=2px的焦点坐标为(1,0),∴=1,p=2,抛物线的方程为y2=4x,∴其标准方程为:x=﹣1,故答案为:2,x=﹣1.【点评】本题考查抛物线的简单性质,属于基础题.10.(5分)某四棱锥的三视图如图所示,该四棱锥的体积为3.【考点】L!:由三视图求面积、体积.【专题】5Q:立体几何.【分析】利用三视图判断几何体的形状,然后通过三视图的数据求解几何体的体积.【解答】解:几何体为底面边长为3的正方形,高为1的四棱锥,所以体积.故答案为:3.【点评】本题考查几何体与三视图的对应关系,几何体体积的求法,考查空间想象能力与计算能力.11.(5分)若等比数列{a n}满足a2+a4=20,a3+a5=40,则公比q=2;前n项和S n=2n+1﹣2.【考点】88:等比数列的通项公式;89:等比数列的前n项和.【专题】54:等差数列与等比数列.【分析】利用等比数列的通项公式和已知即可得出,解出即可得到a1及q,再利用等比数列的前n项和公式即可得出.【解答】解:设等比数列{a n}的公比为q,∵a2+a4=a2(1+q2)=20①a3+a5=a3(1+q2)=40②∴①②两个式子相除,可得到==2即等比数列的公比q=2,将q=2带入①中可求出a2=4则a1===2∴数列{a n}时首项为2,公比为2的等比数列.∴数列{a n}的前n项和为:S n===2n+1﹣2.故答案为:2,2n+1﹣2.【点评】熟练掌握等比数列的通项公式和等比数列的前n项和公式是解题的关键.12.(5分)设D为不等式组表示的平面区域,区域D上的点与点(1,0)之间的距离的最小值为.【考点】7C:简单线性规划.【专题】59:不等式的解法及应用.【分析】首先根据题意作出可行域,欲求区域D上的点与点(1,0)之间的距离的最小值,由其几何意义为点A(1,0)到直线2x﹣y=0距离为所求,代入点到直线的距离公式计算可得答案.【解答】解:如图可行域为阴影部分,由其几何意义为点A(1,0)到直线2x﹣y=0距离,即为所求,由点到直线的距离公式得:d==,则区域D上的点与点(1,0)之间的距离的最小值等于.故答案为:.【点评】本题主要考查了简单的线性规划,以及利用几何意义求最值,属于基础题.13.(5分)函数f(x)=的值域为(﹣∞,2).【考点】34:函数的值域;4L:对数函数的值域与最值.【专题】51:函数的性质及应用.【分析】通过求解对数不等式和指数不等式分别求出分段函数的值域,然后取并集得到原函数的值域.【解答】解:当x≥1时,f(x)=;当x<1时,0<f(x)=2x<21=2.所以函数的值域为(﹣∞,2).故答案为(﹣∞,2).【点评】本题考查了函数值域的求法,分段函数的值域要分段求,最后取并集.是基础题.14.(5分)已知点A(1,﹣1),B(3,0),C(2,1).若平面区域D由所有满足(1≤λ≤2,0≤μ≤1)的点P组成,则D的面积为3.【考点】9S:数量积表示两个向量的夹角.【专题】5A:平面向量及应用.【分析】设P的坐标为(x,y),根据,结合向量的坐标运算解出,再由1≤λ≤2、0≤μ≤1得到关于x、y的不等式组,从而得到如图的平行四边形CDEF及其内部,最后根据坐标系内两点间的距离公式即可算出平面区域D的面积.【解答】解:设P的坐标为(x,y),则=(2,1),=(1,2),=(x﹣1,y+1),∵,∴,解之得∵1≤λ≤2,0≤μ≤1,∴点P坐标满足不等式组作出不等式组对应的平面区域,得到如图的平行四边形CDEF及其内部其中C(4,2),D(6,3),E(5,1),F(3,0)∵|CF|==,点E(5,1)到直线CF:2x﹣y﹣6=0的距离为d==∴平行四边形CDEF的面积为S=|CF|×d=×=3,即动点P构成的平面区域D的面积为3故答案为:3【点评】本题在平面坐标系内给出向量等式,求满足条件的点P构成的平面区域D的面积.着重考查了平面向量的坐标运算、二元一次不等式组表示的平面区域和点到直线的距离公式等知识,属于中档题.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.15.(13分)已知函数f(x)=(2cos2x﹣1)sin2x+cos4x.(1)求f(x)的最小正周期及最大值;(2)若α∈(,π),且f(α)=,求α的值.【考点】GP:两角和与差的三角函数;GS:二倍角的三角函数.【专题】57:三角函数的图像与性质.【分析】(Ⅰ)利用二倍角的正弦函数以及两角和的正弦函数化简函数为一个角的一个三角函数的形式,通过周期公式求f(x)的最小正周期,利用三角函数的最值求出函数的最大值;(Ⅱ)通过,且,求出α的正弦值,然后求出角即可.【解答】解:(Ⅰ)因为==∴T==,函数的最大值为:.(Ⅱ)∵f(x)=,,所以,∴,k∈Z,∴,又∵,∴.【点评】本题考查二倍角的余弦函数正弦函数的应用,两角和的正弦函数,三角函数的周期与最值的求法,以及角的求法,考查计算能力.16.(13分)如图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(Ⅰ)求此人到达当日空气质量优良的概率;(Ⅱ)求此人在该市停留期间只有1天空气重度污染的概率;(Ⅲ)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)【考点】CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】(Ⅰ)由图查出13天内空气质量指数小于100的天数,直接利用古典概型概率计算公式得到答案;(Ⅱ)用列举法写出此人在该市停留两天的空气质量指数的所有情况,查出仅有一天是重度污染的情况,然后直接利用古典概型概率计算公式得到答案;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图直接看出答案.【解答】解:(Ⅰ)由图看出,1日至13日13天的时间内,空气质量优良的是1日、2日、3日、7日、12日、13日共6天.由古典概型概率计算公式得,此人到达当日空气质量优良的概率P=;(Ⅱ)此人在该市停留期间两天的空气质量指数(86,25)、(25,57)、(57,143)、(143,220)、(220,160)(160,40)、(40,217)、(217,160)、(160,121)、(121,158)、(158,86)、(86,79)、(79,37)共13种情况.其中只有1天空气重度污染的是(143,220)、(220,160)、(40,217)、(217,160)共4种情况,所以,此人在该市停留期间只有1天空气重度污染的概率P=;(Ⅲ)因为方差越大,说明三天的空气质量指数越不稳定,由图看出从5日开始连续5、6、7三天的空气质量指数方差最大.【点评】本题考查了古典概型及其概率计算公式,考查了一组数据的方差和标准差,训练了学生的读图能力,是基础题.17.(13分)如图,在四棱锥P﹣ABCD中,AB∥CD,AB⊥AD,CD=2AB,平面PAD⊥底面ABCD,PA⊥AD.E和F分别是CD和PC的中点,求证:(Ⅰ)PA⊥底面ABCD;(Ⅱ)BE∥平面PAD;(Ⅲ)平面BEF⊥平面PCD.【考点】LS:直线与平面平行;LW:直线与平面垂直;LY:平面与平面垂直.【专题】5F:空间位置关系与距离;5Q:立体几何.【分析】(Ⅰ)根据条件,利用平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)根据已知条件判断ABED为平行四边形,故有BE∥AD,再利用直线和平面平行的判定定理证得BE∥平面PAD.(Ⅲ)先证明ABED为矩形,可得BE⊥CD①.现证CD⊥平面PAD,可得CD ⊥PD,再由三角形中位线的性质可得EF∥PD,从而证得CD⊥EF②.结合①②利用直线和平面垂直的判定定理证得CD⊥平面BEF,再由平面和平面垂直的判定定理证得平面BEF⊥平面PCD.【解答】解:(Ⅰ)∵PA⊥AD,平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,由平面和平面垂直的性质定理可得PA⊥平面ABCD.(Ⅱ)∵AB∥CD,AB⊥AD,CD=2AB,E和F分别是CD和PC的中点,故四边形ABED为平行四边形,故有BE∥AD.又AD⊂平面PAD,BE不在平面PAD内,故有BE∥平面PAD.(Ⅲ)平行四边形ABED中,由AB⊥AD可得,ABED为矩形,故有BE⊥CD①.由PA⊥平面ABCD,可得PA⊥AB,再由AB⊥AD可得AB⊥平面PAD,∴CD⊥平面PAD,故有CD⊥PD.再由E、F分别为CD和PC的中点,可得EF∥PD,∴CD⊥EF②.而EF和BE是平面BEF内的两条相交直线,故有CD⊥平面BEF.由于CD⊂平面PCD,∴平面BEF⊥平面PCD.【点评】本题主要考查直线和平面垂直的判定定理,直线和平面平行的判定定理,平面和平面垂直的判定定理、性质定理的应用,属于中档题.18.(13分)已知函数f(x)=x2+xsinx+cosx.(Ⅰ)若曲线y=f(x)在点(a,f(a))处与直线y=b相切,求a与b的值;(Ⅱ)若曲线y=f(x)与直线y=b有两个不同交点,求b的取值范围.【考点】6B:利用导数研究函数的单调性;6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】(I)由题意可得f′(a)=0,f(a)=b,联立解出即可;(II)利用导数得出其单调性与极值即最值,得到值域即可.【解答】解:(I)f′(x)=2x+xcosx=x(2+cosx),∵曲线y=f(x)在点(a,f(a))处与直线y=b相切,∴f′(a)=a(2+cosa)=0,f(a)=b,联立,解得,故a=0,b=1.(II)∵f′(x)=x(2+cosx).令f′(x)=0,得x=0,x,f(x),f′(x)的变化情况如表:x(﹣∞,0)0(0,+∞)f(x)﹣0+f′(x)1所以函数f(x)在区间(﹣∞,0)上单调递减,在区间(0,+∞)上单调递增,f(0)=1是f(x)的最小值.当b≤1时,曲线y=f(x)与直线x=b最多只有一个交点;当b>1时,f(﹣2b)=f(2b)≥4b2﹣2b﹣1>4b﹣2b﹣1>b,f(0)=1<b,所以存在x1∈(﹣2b,0),x2∈(0,2b),使得f(x1)=f(x2)=b.由于函数f(x)在区间(﹣∞,0)和(0,+∞)上均单调,所以当b>1时曲线y=f(x)与直线y=b有且只有两个不同的交点.综上可知,如果曲线y=f(x)与直线y=b有且只有两个不同的交点,那么b的取值范围是(1,+∞).【点评】熟练掌握利用导数研究函数的单调性、极值与最值及其几何意义是解题的关键.19.(14分)直线y=kx+m(m≠0)与椭圆相交于A,C两点,O 是坐标原点.(Ⅰ)当点B的坐标为(0,1),且四边形OABC为菱形时,求AC的长;(Ⅱ)当点B在W上且不是W的顶点时,证明:四边形OABC不可能为菱形.【考点】IR:两点间的距离公式;K4:椭圆的性质.【专题】5D:圆锥曲线的定义、性质与方程.【分析】(I)先根据条件得出线段OB的垂直平分线方程为y=,从而A、C的坐标为(,),根据两点间的距离公式即可得出AC的长;(II)欲证明四边形OABC不可能为菱形,只须证明若OA=OC,则A、C两点的横坐标相等或互为相反数.设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,从而解得,则A、C两点的横坐标相等或互为相反数.于是结论得证.【解答】解:(I)∵点B的坐标为(0,1),当四边形OABC为菱形时,AC⊥OB,而B(0,1),O(0,0),∴线段OB的垂直平分线为y=,将y=代入椭圆方程得x=±,因此A、C的坐标为(,),如图,于是AC=2.(II)欲证明四边形OABC不可能为菱形,利用反证法,假设四边形OABC为菱形,则有OA=OC,设OA=OC=r,则A、C为圆x2+y2=r2与椭圆的交点,故,x2=(r2﹣1),则A、C两点的横坐标相等或互为相反数.从而得到点B是W的顶点.这与题设矛盾.于是结论得证.【点评】本题主要考查了椭圆的简单性质,直线与椭圆的位置关系,考查等价转化思想,属于基础题.20.(14分)给定数列a1,a2,…,a n.对i=1,2,…,n﹣1,该数列前i项的最大值记为A i,后n﹣i项a i+1,a i+2,…,a n的最小值记为B i,d i=A i﹣B i.(Ⅰ)设数列{a n}为3,4,7,1,写出d1,d2,d3的值;(Ⅱ)设a1,a2,…,a n﹣1(n≥4)是公比大于1的等比数列,且a1>0.证明:d1,d2,…,d n﹣1是等比数列;(Ⅲ)设d1,d2,…,d n﹣1是公差大于0的等差数列,且d1>0.证明:a1,a2,…,a n﹣1是等差数列.【考点】8M:等差数列与等比数列的综合.【专题】54:等差数列与等比数列.【分析】(Ⅰ)当i=1时,A1=3,B1=1,从而可求得d1,同理可求得d2,d3的值;(Ⅱ)依题意,可知a n=a1q n﹣1(a1>0,q>1),由d k=a k﹣a k+1⇒d k﹣1=a k﹣1﹣a k(k≥2),从而可证(k≥2)为定值.(Ⅲ)依题意,0<d1<d2<…<d n﹣1,可用反证法证明a1,a2,…,a n﹣1是单调递增数列;再证明a m为数列{a n}中的最小项,从而可求得是a k=d k+a m,问题得证.【解答】解:(Ⅰ)当i=1时,A1=3,B1=1,故d1=A1﹣B1=2,同理可求d2=3,d3=6;(Ⅱ)由a1,a2,…,a n﹣1(n≥4)是公比q大于1的等比数列,且a1>0,则{a n}的通项为:a n=a1q n﹣1,且为单调递增的数列.于是当k=1,2,…n﹣1时,d k=A k﹣B k=a k﹣a k+1,进而当k=2,3,…n﹣1时,===q为定值.∴d1,d2,…,d n﹣1是等比数列;(Ⅲ)设d为d1,d2,…,d n﹣1的公差,对1≤i≤n﹣2,因为B i≤B i+1,d>0,=B i+1+d i+1≥B i+d i+d>B i+d i=A i,所以A i+1=max{A i,a i+1},所以a i+1=A i+1>A i≥a i.又因为A i+1从而a1,a2,…,a n﹣1为递增数列.因为A i=a i(i=1,2,…n﹣1),又因为B1=A1﹣d1=a1﹣d1<a1,所以B1<a1<a2<…<a n﹣1,因此a n=B1.所以B1=B2=…=B n﹣1=a n.所以a i=A i=B i+d i=a n+d i,﹣a i=d i+1﹣d i=d,因此对i=1,2,…,n﹣2都有a i+1即a1,a2,…,a n﹣1是等差数列.【点评】本题考查等差数列与等比数列的综合,突出考查考查推理论证与抽象思维的能力,考查反证法的应用,属于难题.。
2013年高考文科数学全国卷2

2013 年普通高等学校招生全国统一考试(全国新课标卷 2)
PF1 F2 30 ,则 C 的离心率为
A.
( C.
)
文科数学
注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己 的姓名、准考证号填写在答题卡上. 2.回答第Ⅰ卷时,选出每小题答案后,用 2B 铅笔把答题卡上对应题目的答案标号框涂 黑.如需改动,用橡皮擦干净后,再选涂其它答案标号框.写在本试卷上无效. 3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.
π π , C ,则 △ABC 的 6 4
( ) A B C D
(Ⅰ)求 {an } 的通项公式; (Ⅱ)求 a1 a4 +a7 a3 n 2 .
7.执行如图的程序框图,如果输入的 N 4 ,那么输出的 S (
准考证号_____________
第Ⅰ卷
一、选择题:本大题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合 题目要求的. 1.已知集合 M {x| 3 x 1} , N {3, 2, 1,0,1} ,则 M N A. {2, 1,0,1} C. {2, 1,0} 2. | B. {3, 2, 1,0} D. {3, 2, 1} ( ) ( )
2 | 1 i
9.一个四面体的顶点在空间直角坐标系 O xyz 中的坐标分别是 (1,0,1) , (1,1,0) , (0,1,1) ,
3 2 ,底面边长为 3 ,则以 O 为球心, OA 为半径的 2
B.2 C. 2 D.1 x y 1≥0, 3.设 x , y 满足约束条件 x y 1≥0, 则 z 2 x 3 y 的最小值是 x≤3, A. 7 B. 6 C. 5 D. 3
2013年高考文科数学全国新课标卷2word解析版

2021年高考文科数学全国新课标卷2word解析版2021年普通高等学校夏季招生全国统一考试数学文史类(全国卷II新课标)第一卷一、选择题:本大题共12小题,每题5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(2021课标全国Ⅱ,文1)集合M={x|-3<x<1},N={-3,-2,-1,0,1},那么M∩N=( ).A.{-2,-1,0,1} B.{-3,-2,-1,0}C.{-2,-1,0} D..{-3,-2,-1}答案:C解析:由题意可得,M∩N={-2,-1,0}.应选C.22.(2021课标全国Ⅱ,文2)1i =( ).A.22 B.2 C.2 D..1答案:C解析:∵2=1-i,∴ 2 =|1-i|= 2.1 i 1 ix y 1 0,x y 1 0,x 3,那么z=2x-3y 的最小值是( ).3.(2021课标全国Ⅱ,文3)设x,y满足约束条件A.-7 B.-6 C.-5 D.-3答案:B解析:如下图,约束条件所表示的区域为图中的阴影局部,而目标函数可化为y 2x z,先画出3 3l0:y=2x,当z最小时,直线在y轴上的截距最大,故最优点为图中的点x3, 可得C,由y 13 x0,C(3,4),代入目标函数得,z min=2×3-3×4=-6.ππB C 4.(2021课标全国Ⅱ,文4)△ABC的内角A,B,C的对边分别为a,b,c,b=2,6,4,那么△ABC的面积为( ).A.2 3+2 B.3+1C.2 32 D.31答案:B1/112021年高考文科数学全国新课标卷2word解析版解析:A=π-(B+C)=πππ7π,6 4 12由正弦定理得a b,sinA sinBbsinA 2sin7π那么a 12 6 2,sinBsinπ6∴S△ABC=1absinC12( 6 2)231.2 2 25)设椭圆C:x 2y25.(2021课标全国Ⅱ,文 2 2=1(a>b>0)的左、右焦点分别为F1,F2,P是C上的点,a bPF2⊥F1F2,∠PF1F2=30°,那么C的离心率为().A. 3 B.1C.1D. 36 3 2 3答案:D解析:如下图,在Rt△PF1F2中,|F1F2|=2c,设|PF2|=x,那么|PF1|=2x,由tan30°=|PF2|x 32 3,得x c.|F1F2| 2c 3 3而由椭圆定义得,|PF1|+|PF2|=2a=3x,∴a 33c,∴ec c 3.xa 3c 326.(2021课标全国Ⅱ,文6)sin2α=2,那么cos2π=().3 4A.1 1C.1 2 6B.2D.3 3答案:A解析:由半角公式可得,cos2π41 cosπ1221 sin23 1=22 2 2. 67.(2021课标全国Ⅱ,文7)执行下面的程序框图,如果输入N=4,那么输出的S=().的2/112021年高考文科数学全国新课标卷2word解析版A.1+1 1 12 3 41 1 1B.1+3 24 3 22C.1+1 1 1 12 3 4 51 1 1 1D.1+3 24 3 25 4 3 22答案:B解析:由程序框图依次可得,输入N=4,T=1,S=1,k=2;T 1,S1+1,k=3;2 2T 1 ,S=1+1 1 ,k=4;3 2 2 3 2T1,S 1111,k=5;4 3 2 3 2 4 32 2输出S 1 1 1 1.2 3 24 3 28.(2021课标全国Ⅱ,文8)设a=log32,b=log52,c=log23,那么().A.a>c>b B.b>c>aC.c>b>a D.c>a>b答案:D1 1解析:∵log25>log23>1,∴log23>1>log23>log25>0,即log23>1>log32>log52>0,∴c>a >b.9.(2021课标全国Ⅱ,文9)一个四面体的顶点在空间直角坐标系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,那么得到的正视图可以为().3/112021年高考文科数学全国新课标卷2word解析版答案:A解析:如下图,该四面体在空间直角坐标系O-xyz的图像为以下图:那么它在平面zOx的投影即正视图为,应选A.10.(2021课标全国Ⅱ,文10)设抛物线C:y2=4x的焦点为F,直线l过F且与C交于A,B两点.假设|AF| =3|BF|,那么l的方程为( ).A.y=x-1或y=-x+1B.y=3 3(x1)或y=(x1) 33C.y=3 3(x1)或y=(x1) 33D.y=2 2(x1)或y=(x1) 2 2答案:C解析:由题意可得抛物线焦点F(1,0),准线方程为x=-1.当直线l的斜率大于0时,如下图,过A,B两点分别向准线x=-1作垂线,垂足分别为M,N,那么由抛物线定义可得,|AM|=|AF|,|BN|=|BF|.设|AM|=|AF|=3t(t>0),|BN|=|BF|=t,|BK|=x,而|GF|=2,4/112021年高考文科数学全国新课标卷2word 解析版在△AMK 中,由|NB||BK|,得 t x x ,|AM||AK|3t 4t 解得x =2t ,那么cos ∠NBK =|NB|t 1 , |BK|x 2 ∴∠NBK =60°,那么∠GFK =60°,即直线 AB 的倾斜角为60°. ∴斜率k =tan60°= 3,故直线方程为 y = 3(x -1).当直线l 的斜率小于 0时,如下图,同理可得直线方程为 y = 3(x -1),应选C.11.(2021课标全国Ⅱ,文 11)函数 f(x)=x A .?x0∈R ,f(x0)=0 B .函数y =f(x)的图像是中心对称图形C .假设x 0是f(x)的极小值点,那么f(x)在区间D .假设x 0是f(x)的极值点,那么f ′(x 0)=0 3+ax 2+bx +c ,以下结论中错误的选项是 ().(-∞,x0)单调递减 答案:C解析:假设x0是f(x)的极小值点,那么y =f(x)的图像大致如以下图所示,那么在(-∞,x0)上不单调,故C 不正确.12.(2021课标全国Ⅱ,文12)假设存在正数x 使2x(x -a)<1成立,那么a 的取值X 围是().A .(-∞,+∞)B .(-2,+∞)C .(0,+∞)D .(-1,+∞)答案:D1 x解析:由题意可得, (x >0).ax2 x 1 x令f(x)= 2,该函数在(0,+∞)上为增函数,可知 f(x)的值域为(-1,+∞),故a >-1时,存在正数x 使原不等式成立.第二卷本卷包括必考题和选考题两局部。
2013年高考数学全国新课标Ⅱ卷试卷分析与思考
数学教学教学生什么 教构建新概念的方法 教科学研究问题的方法
教学建议 明确高考特点,进行有效复习。平常教学要以 《课程标准》为基点,高三复习要以《考试大纲》、 《考试说明》为指导。
重视课本,做好示范解题。
重视基础知识、基本方法的训练。
加强解题后反思,改进教学方式。
考生答题需改进的方面
数学符号书写一定要规范。 书写字体不宜过小,最好有行间距。 书写要有条理,结论部分切记与前面讨论一致。 数学答卷尽量减少语言叙述,尽可能用数学语言 陈述。
考生对不确定做错部分不要做删除符号,可圈点。 答题时写主要计算过程、步骤,不要太乱。 解题时不用再抄题目,应出现由题意可知等字眼。
西宁市教育科学研究所 王守翰
试卷亮点
严格按照《考试大纲》的内容、范围和要求 命制。
注重对基础知识、基本方法的考查,同时体 现能力立意的原则。
知识点分布合理,重点知识重点考查。
具有较好的区分度,热点题型是近几年高考 热点。
平淡中追求创新。
全省高考数学试卷文、理科填空题、解答题平均分、标准差统计表
出错原因:三角函数公式的展开及计算错误,在 面积最大值的计算中不等号的方向错误,化简错 误。
文科17题属于中等数列试题
出错原因:等差数列求和公式错误,以及在求和过 程中将项与项数混为一谈。
理科18题多数能正确建立空间直角坐标系,但 不能准确地得到点的坐标。文科18题空间直角坐 标系建立困难,不能识别空间立体图形,从而找 不到棱锥的高。
满题 分号
5 13 5 14 5 15 5 16 12 17 12 18 12 19 12 20 12 21 10 22 10 23 10 24
文科
平均分
标准差
3.89
2013年高考北京文科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(北京卷)数学(文科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项.(1)【2013年北京,文1,5分】已知集合{}101A =-,,,{}|11B x x =-≤<,则A B =I ( ) (A ){0} (B ){}10-,(C ){}01, (D ){}101-,, 【答案】B【解析】1,0,11{11,}{|}{}0x x --≤<-I =,故选B . (2)【2013年北京,文2,5分】设a ,b ,c R ∈,且a b >,则( )(A )ac bc > (B )11a b< (C )22a b > (D )33a b >【答案】D 【解析】:A 选项中若c 小于等于0则不成立,B 选项中若a 为正数b 为负数则不成立,C 选项中若a ,b 均为负数则不成立,故选D .(3)【2013年北京,文3,5分】下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )(A )1y x = (B )x y e -= (C )21y x =-+(D )lg y x =【答案】C【解析】A 选项为奇函数,B 选项为非奇非偶函数,D 选项虽为偶函数但在(0)+∞,上是增函数,故选C . (4)【2013年北京,文4,5分】在复平面内,复数i(2i)-对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】A【解析】()i 2i 12i -=+,其在复平面上的对应点为()1,2,该点位于第一象限,故选A .(5)【2013年北京,文5,5分】在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )(A )15 (B )59(C )5 (D )1【答案】B【解析】根据正弦定理,sin sin a b A B =,则515sin sin 339b B A a ==⋅=,故选B . (6)【2013年北京,文6,5分】执行如图所示的程序框图,输出的S 值为( )(A )1 (B )23 (C )1321(D )610987【答案】C【解析】依次执行的循环为1S =,i 0=;23S =,i 1=;1321S =,i 2=,故选C .(7)【2013年北京,文7,5分】双曲线221yx m-=的离心率大于2的充分必要条件是( )(A )12m > (B )1m ≥ (C )1m > (D )2m >【答案】C【解析】该双曲线离心率1me +=,由已知1>2m +,故1m >,故选C .(8)【2013年北京,文8,5分】如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )(A )3个 (B )4个 (C )5个 (D )6个【答案】B【解析】设正方体的棱长为a .建立空间直角坐标系,如图所示.则()0,0,0D ,10,()0D a ,,1()0C a a ,,,,(0)0C a ,,0(,)B a a ,,1()B a a a ,,,(),0,0A a ,1,()0A a a ,,221,,333P a a a ⎛⎫⎪⎝⎭,则PB =u u u r,PD a =u u u r ,1PD ==u u u u r,11PC PA a ==,PC PA ==,1PB u u u r ,故共有4个不同取值,故选B . 第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分.(9)【2013年北京,文9,5分】若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 . 【答案】2;1-【解析】根据抛物线定义12p =,∴2p =,又准线方程为12px =-=-.(10)【2013年北京,文10,5分】某四棱锥的三视图如图所示,则该四棱锥的体积为 . 【答案】3【解析】由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式133133V =⨯⨯⨯=,故该棱锥的体积为3.(11)【2013年北京,文11,5分】若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = . 【答案】2;122n +-【解析】由题意知352440220a a q a a +===+.由222421())10(12a a a q a q q +=+=+=,∴12a =.∴12122212n n n S +(-)==--.(12)【2013年北京,文12,5分】设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 .【解析】区域D 表示的平面部分如图阴影所示:根据数形结合知()1,0到D 的距离最小值为()1,0到直线2x -y =0(13)【2013年北京,文13,5分】函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为_______.【答案】()2-∞,【解析】当1x ≥时,1122log log 1x ≤,即12log 0x ≤,当1x <时,1022x <<,即022x <<;故()f x 的值域为()2-∞,. (14)【2013年北京,文14,5分】向量(1,1)A -,(3,0)B ,(2,1)C ,若平面区域D 由所有满足AP AB ACλμ=+u u u r u u u r u u u r (12λ≤≤,01μ≤≤)的点P 组成,则D 的面积为 . 【答案】3【解析】AP AB AC λμ=+u u u r u u u r u u u r ,()2,1AB =u u u r ,()1,2AC =u u u r .设()P x y ,,则()1,1AP x y =-+u u u r.∴1212x y λμλμ-=+⎧⎨-=+⎩得233233x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩,∵12λ≤≤,01μ≤≤,可得629023x y x y ≤-≤⎧⎨≤-≤⎩,如图.可得()13,0A ,()14,2B ,()16,3C ,21214325A B (-)+==,两直线距离2521d ==+,∴11·3S A B d ==. 三、解答题:共6题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)【2013年北京,文15,13分】已知函数21()(2cos 1)sin 2cos42f x x x x =-+.(1)求()f x 的最小正周期及最大值;(2)若(,)2παπ∈,且2()f α=,求α的值.解:(1)21()(2cos 1)sin 2cos42f x x x x =-+1cos2sin 2cos42x x x =+11sin 4cos422x x =+2sin(4)4x π=+所以,最小正周期242T ππ==,当()4242x k k Z πππ+=+∈,即()216k x k Z ππ=+∈时,max 2()2f x =. (2)因为22()sin(4)4f παα=+=,所以sin(4)14πα+=,因为2παπ<<,所以9174444πππα<+<, 所以5442ππα+=,即916πα=.(16)【2013年北京,文16,13分】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天. (1)求此人到达当日空气质量优良的概率;(2)求此在在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)解法一:根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.解法二:此人停留的两天共有13种选择,分别是:()1,2,()2,3,()3,4,()4,5,()5,6,()6,7,()7,8,()8,9,()9,10,()10,11,()11,12,()12,13,()13,14,其中只有一天重度污染的为()4,5,()5,6,()7,8,()8,9,共4种,所以概率为2413P =. (3)从3月5日开始连续三天的空气质量指数方差最大. (17)【2013年北京,文17,14分】如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA ⊥底面ABCD ; (2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD . 解:(1)因为平面PAD ⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,PA ∴⊥底面ABCD .(2)因为//AB CD ,2CD AB =,E 为CD 的中点,所以//AB DE ,且AB DE =.所以ABED 为平行四边形.所以//BE AD .又因为BE ⊄平面PAD ,AD ⊂平面PAD ,所以//BE 平面PAD .(3)因为AB AD ⊥,而且ABED 为平行四边形,所以BE CD ⊥,AD CD ⊥.由(1)知PA ⊥底面ABCD ,空气质量指数日期14日13日12日11日10日9日8日7日6日1日037798615812116021740160220143572586100150200250所以PA CD ⊥.所以CD ⊥平面PAD .所以CD PD ⊥.因为E 和F 分别是CD 和PC 的中点, 所以//PD EF .所以CD EF ⊥.所以CD ⊥平面BEF .所以平面BEF ⊥平面PCD .(18)【2013年北京,文18,13分】已知函数2()sin cos f x x x x x =++.(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值; (2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围. 解:(1)因为曲线()y f x =在点()()a f a ,处与直线y b =相切,所以()()2cos 0f a a a '=+=,()b f a =.解得0a =,()01b f ==.(2)解法一:令()0f x '=,得0x =.()f x 与()f x '的情况如下:所以函数()f x ()01=是()f x 的最小值. 当1b ≤时,曲线()y f x =与直线y b =最多只有一个交点;当1b >时,()()222421421f b f b b b b b b -=≥-->-->,()01f b =<,所以存在()12,0x b ∈-,()20,2x b ∈,使得()()12f x f x b ==.由于函数()f x 在区间()0-∞,和(0)+∞,上 均单调,所以当1b >时曲线()y f x =与直线y b =有且仅有两个不同交点.综上可知,如果曲线()y f x =与直线y b =有两个不同交点,那么b 的取值范围是(1)+∞,.解法二:因为2cos 0x +>,所以当0x >时'()0f x >,()f x 单调递增;当0x <时'()0f x <,()f x 单调递减. 所以当0x =时,()f x 取得最小值(0)1f =,所以b 的取值范围是(1,)+∞.(19)【2013年北京,文19,14分】直线()0y kx m m =+≠,W :2214x y +=相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设1,2A t ⎛⎫⎪⎝⎭,代入椭圆方程得21144t +=,即t =AC =(2)解法一:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC OB ⊥,所以0k ≠.由2244x y y kx m ⎧+=⎨=+⎩,消y 并整理得()222148440k x kmx m +++-=.设11()A x y ,,22()C x y ,,则1224214x x km k +=-+,121222214y y x x m k m k ++=⋅+=+.所以AC 的中点为224,1414kmm M k k ⎛⎫- ⎪++⎝⎭. 因为M 为AC 和OB 的交点,且0m ≠,0k ≠,所以直线OB 的斜率为14k-.因为114k k ⎛⎫⋅-≠- ⎪⎝⎭,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 解法二:因为四边形OABC 为菱形,所以OA OC =,设()1OA OC r r ==>,则A ,C 两点为圆222x y r +=与椭圆2214x y +=的交点,联立方程2222214x y r x y ⎧+=⎪⎨+=⎪⎩,得224(1)3r x -=,所以A ,C 两点的横坐标相等或 互为相反数.因为点B 在W 上,若A ,C 两点的横坐标相等,点B 应为椭圆的左顶点或右顶点.不合题意.若A ,C 两点的横坐标互为相反数,点B 应为椭圆的上顶点或下顶点.不合题意. 所以四边形OABC 不可能为菱形(20)【2013年北京,文20,13分】给定数列1a ,2a ,L L ,n a .对1,2,3,,1i n =-L ,该数列前i 项的最大值记为i A ,后n i -项1i a +,2i a +,L L ,n a 的最小值记为i B ,i i i d A B =-. (1)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值;(2)设1a ,2a ,L L ,n a (4n ≥)是公比大于1的等比数列,且10a >,证明1d ,2d ,L L ,1n d -是等比数列;(3)设1d ,2d ,L L ,1n d -是公差大于0的等差数列,且10d >,证明1a ,2a ,L L ,1n a -是等差数列.解:(1)111312d A B =-=-=,222413d A B =-=-=,333716d A B =-=-=. (2)因为1a ,2a ,L L ,n a (4n ≥)是公比大于1的等比数列,且10a >,所以11n n a a q -=.所以当1,2,3,,1k n =-L 时,1k k k k k d A B a a +=-=-,所以当2,3,,1k n =-L 时,11111(1)(1)k k k k k k k k d a a a q q q d a a a q +------===--,所以1d ,2d ,L L ,1n d -是等比数列. (3)解法一:若1d ,2d ,L L ,1n d -是公差大于0的等差数列,则1210n d d d -<<<<L , 1a ,2a ,L L ,1n a -应是递增数列,证明如下:设k a 是第一个使得1k k a a -≤的项,则1k k A A -=,1k k B B -≤,所以111k k k k k k d A B A B d ---=-≥-=,与已知矛盾.所以,1a ,2a ,L L ,1n a -是递增数列.再证明n a 数列{}n a 中最小项,否则k n a a <(2,3,,1k n =-L ),则 显然1k ≠,否则11111110d A B a B a a =-=-≤-=,与10d >矛盾;因而2k ≥,此时考虑11110k k k k k d A B a a ----=-=-<,矛盾,因此n a 是数列{}n a 中最小项.综上,()2,3,,1k k k k n d A B a a k n =-=-=-L ,k k n a d a ∴=+,也即1a ,2a ,L L ,1n a -是等差数列. 解法二:设d 为121n d d d -⋯,,,公差.对12i n ≤≤-,1i i B B +≤Q ,0d >,111i i i i i i i i A B d B d d B d A +++=+≥++>+=.又因为11{}i i i A max A a ++=,,所以11i i i i a A A a ++=>≥.从而121n a a a -⋯,,,是递增数列. 因此1,2()1i i A a i n ==⋯-,,.又因为111111B A d a d a =-=-<,所以1121n B a a a -<<<⋯<.因此1n a B =.所以121n n B B B a -==⋯==.所以i i i i n i a A B d a d ==+=+.因此对1,22i n =⋯-,,都有11i i i i a a d d d ++-=-=,即121n a a a -⋯,,,是等差数列.。
2013年高考北京文科数学试题及答案(word解析版)
2013年普通高等学校招生全国统一考试(北京卷)数学(文科)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,选出符合题目要求的一项. (1)【2013年北京,文1,5分】已知集合{}101A =-,,,{}|11B x x =-≤<,则A B = ( )(A ){0} (B ){}10-, (C ){}01, (D ){}101-,, 【答案】B【解析】1,0,11{11,}{|}{}0x x --≤<- =,故选B . (2)【2013年北京,文2,5分】设a ,b ,c R ∈,且a b >,则( )(A )ac bc > (B )11a b< (C )22a b > (D )33a b >【答案】D 【解析】:A 选项中若c 小于等于0则不成立,B 选项中若a 为正数b 为负数则不成立,C 选项中若a ,b 均为负数则不成立,故选D .(3)【2013年北京,文3,5分】下列函数中,既是偶函数又在区间(0,)+∞上单调递减的是( )(A )1y x = (B )x y e -= (C )21y x =-+(D )lg y x =【答案】C【解析】A 选项为奇函数,B 选项为非奇非偶函数,D 选项虽为偶函数但在(0)+∞,上是增函数,故选C . (4)【2013年北京,文4,5分】在复平面内,复数i(2i)-对应的点位于( )(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 【答案】A【解析】()i 2i 12i -=+,其在复平面上的对应点为()1,2,该点位于第一象限,故选A .(5)【2013年北京,文5,5分】在ABC ∆中,3a =,5b =,1sin 3A =,则sinB =( )(A )15 (B )59(C (D )1【答案】B【解析】根据正弦定理,sin sin a b A B =,则515sin sin 339b B A a ==⋅=,故选B . (6)【2013年北京,文6,5分】执行如图所示的程序框图,输出的S 值为( )(A )1 (B )23 (C )1321(D )610987【答案】C【解析】依次执行的循环为1S =,i 0=;23S =,i 1=;1321S =,i 2=,故选C .(7)【2013年北京,文7,5分】双曲线221yx m-= )(A )12m > (B )1m ≥ (C )1m > (D )2m >【答案】C【解析】该双曲线离心率e =1m >,故选C .(8)【2013年北京,文8,5分】如图,在正方体1111ABCD A B C D -中,P 为对角线1BD 的三等分点,则P 到各顶点的距离的不同取值有( )(A )3个 (B )4个 (C )5个 (D )6个 【答案】B【解析】设正方体的棱长为a .建立空间直角坐标系,如图所示.则()0,0,0D ,10,()0D a ,,1()0C a a ,,,,(0)0C a ,,0(,)B a a ,,1()B a a a ,,,(),0,0A a ,1,()0A a a ,,221,,333P a a a ⎛⎫⎪⎝⎭,则PB =,PD a = ,1PD ==,11PC PA a ===,PC PA ==,1PB = ,故共有4个不同取值,故选B . 第二部分(非选择题 共110分)二、填空题:共6小题,每小题5分,共30分.(9)【2013年北京,文9,5分】若抛物线22y px =的焦点坐标为(1,0),则p = ,准线方程为 . 【答案】2;1-【解析】根据抛物线定义12p =,∴2p =,又准线方程为12px =-=-.(10)【2013年北京,文10,5分】某四棱锥的三视图如图所示,则该四棱锥的体积为 . 【答案】3【解析】由三视图知该四棱锥底面为正方形,其边长为3,四棱锥的高为1,根据体积公式133133V =⨯⨯⨯=,故该棱锥的体积为3.(11)【2013年北京,文11,5分】若等比数列{}n a 满足2420a a +=,3540a a +=,则公比q = ;前n 项和n S = . 【答案】2;122n +-【解析】由题意知352440220a a q a a +===+.由222421())10(12a a a q a q q +=+=+=,∴12a =.∴12122212n n n S +(-)==--.(12)【2013年北京,文12,5分】设D 为不等式组02030x x y x y ≥⎧⎪-≤⎨⎪+-≤⎩所表示的平面区域,区域D 上的点与点(1,0)之间的距离的最小值为 .【解析】区域D 表示的平面部分如图阴影所示:根据数形结合知()1,0到D 的距离最小值为()1,0到直线2x -y =0=. (13)【2013年北京,文13,5分】函数12log ,1()2,1x x x f x x ≥⎧⎪=⎨⎪ <⎩的值域为_______.【答案】()2-∞,【解析】当1x ≥时,1122log log 1x ≤,即12l og 0x ≤,当1x <时,1022x <<,即022x <<;故()f x 的值域为()2-∞,. (14)【2013年北京,文14,5分】向量(1,1)A -,(3,0)B ,(2,1)C ,若平面区域D 由所有满足AP AB ACλμ=+(12λ≤≤,01μ≤≤)的点P 组成,则D 的面积为 . 【答案】3【解析】AP AB AC λμ=+ ,()2,1AB = ,()1,2AC = .设()P x y ,,则()1,1AP x y =-+.∴1212x y λμλμ-=+⎧⎨-=+⎩得233233x y y x λμ--⎧=⎪⎪⎨-+⎪=⎪⎩,∵12λ≤≤,01μ≤≤,可得629023x y x y ≤-≤⎧⎨≤-≤⎩,如图.可得()13,0A ,()14,2B ,()16,3C,11A B两直线距离d ==11·3S A B d ==.三、解答题:共6题,共80分.解答应写出文字说明,演算步骤或证明过程.(15)【2013年北京,文15,13分】已知函数21()(2cos 1)sin 2cos42f x x x x =-+.(1)求()f x 的最小正周期及最大值;(2)若(,)2παπ∈,且()f α=α的值.解:(1)21()(2cos 1)sin 2cos42f x x x x =-+1cos2sin 2cos42x x x =+11sin 4cos422x x =+)4x π=+ 所以,最小正周期24T ππ==,当()4242x k k Z πππ+=+∈,即()216k x k Z ππ=+∈时,max ()f x =(2)因为())4f παα=+=,所以sin(4)14πα+=,因为2παπ<<,所以9174444πππα<+<, 所以5442ππα+=,即916πα=.(16)【2013年北京,文16,13分】下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天. (1)求此人到达当日空气质量优良的概率;(2)求此在在该市停留期间只有1天空气重度污染的概率;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明) 解:(1)在3月1日至3月13日这13天中,1日、2日、3日、7日、12日、13日共6天的空气质量优良,所以此人到达当日空气质量优良的概率是613.(2)解法一:根据题意,事件“此人在该市停留期间只有1天空气重度污染”等价于“此人到达该市的日期是4日,或5日,或7日,或8日”.所以此人在该市停留期间只有1天空气重度污染的概率为413.解法二:此人停留的两天共有13种选择,分别是:()1,2,()2,3,()3,4,()4,5,()5,6,()6,7,()7,8,()8,9,()9,10,()10,11,()11,12,()12,13,()13,14,其中只有一天重度污染的为()4,5,()5,6,()7,8,()8,9,共4种,所以概率为2413P =. (3)从3月5日开始连续三天的空气质量指数方差最大. (17)【2013年北京,文17,14分】如图,在四棱锥P ABCD -中,//AB CD ,AB AD ⊥,2CD AB =,平面PAD ⊥底面ABCD ,PA AD ⊥,E 和F 分别是CD 和PC 的中点,求证: (1)PA⊥底面ABCD ; (2)//BE 平面PAD ;(3)平面BEF ⊥平面PCD . 解:(1)因为平面PAD ⊥底面ABCD ,且PA 垂直于这两个平面的交线AD ,PA ∴⊥底面ABCD .(2)因为//AB CD ,2CD AB =,E 为CD 的中点,所以//AB DE ,且AB DE =.所以ABED 为平行四边空气质量指数日期形.所以//BE AD .又因为BE ⊄平面PAD ,AD ⊂平面PAD ,所以//BE 平面PAD .(3)因为AB AD ⊥,而且ABED 为平行四边形,所以BE CD ⊥,AD CD ⊥.由(1)知PA ⊥底面ABCD ,所以PA CD ⊥.所以CD ⊥平面PAD .所以CD PD ⊥.因为E 和F 分别是CD 和PC 的中点, 所以//PD EF .所以CD EF ⊥.所以CD ⊥平面BEF .所以平面BEF ⊥平面PCD .(18)【2013年北京,文18,13分】已知函数2()sin cos f x x x x x =++.(1)若曲线()y f x =在点(,())a f a 处与直线y b =相切,求a 与b 的值; (2)若曲线()y f x =与直线y b =有两个不同的交点,求b 的取值范围. 解:(1)因为曲线()y f x =在点()()a f a ,处与直线y b =相切,所以()()2cos 0f a a a '=+=,()b f a =.解得0a =,()01b f ==.(2)解法一:令()0f x '=,得0x =.()f x 与()f x '的情况如下:所以函数()f x ()01=是()f x 的最小值. 当1b ≤时,曲线()y f x =与直线y b =最多只有一个交点;当1b >时,()()222421421f b f b b b b b b -=≥-->-->,()01f b =<,所以存在()12,0x b ∈-,()20,2x b ∈,使得()()12f x f x b ==.由于函数()f x 在区间()0-∞,和(0)+∞,上 均单调,所以当1b >时曲线()y f x =与直线y b =有且仅有两个不同交点.综上可知,如果曲线()y f x =与直线y b =有两个不同交点,那么b 的取值范围是(1)+∞,. 解法二:因为2cos 0x +>,所以当0x >时'()0f x >,()f x 单调递增;当0x <时'()0f x <,()f x 单调递减. 所以当0x =时,()f x 取得最小值(0)1f =,所以b 的取值范围是(1,)+∞.(19)【2013年北京,文19,14分】直线()0y kx m m =+≠,W :2214x y +=相交于A ,C 两点,O 是坐标原点.(1)当点B 的坐标为(0,1),且四边形OABC 为菱形时,求AC 的长;(2)当点B 在W 上且不是W 的顶点时,证明四边形OABC 不可能为菱形. 解:(1)因为四边形OABC 为菱形,所以AC 与OB 相互垂直平分.所以可设1,2A t ⎛⎫⎪⎝⎭,代入椭圆方程得21144t +=,即t =AC =(2)解法一:假设四边形OABC 为菱形.因为点B 不是W 的顶点,且AC OB ⊥,所以0k ≠.由2244x y y kx m ⎧+=⎨=+⎩,消y 并整理得()222148440k x kmx m +++-=.设11()A x y ,,22()C x y ,,则1224214x x km k +=-+,121222214y y x x m k m k ++=⋅+=+.所以AC 的中点为224,1414kmm M k k ⎛⎫- ⎪++⎝⎭. 因为M 为AC 和OB 的交点,且0m ≠,0k ≠,所以直线OB 的斜率为14k-.因为114k k ⎛⎫⋅-≠- ⎪⎝⎭,所以AC 与OB 不垂直.所以四边形OABC 不是菱形,与假设矛盾.所以当点B 不是W 的顶点时,四边形OABC 不可能是菱形. 解法二:因为四边形OABC 为菱形,所以OA OC =,设()1OA OC r r ==>,则A ,C 两点为圆222x y r +=与椭圆2214x y +=的交点,联立方程2222214x y r x y ⎧+=⎪⎨+=⎪⎩,得224(1)3r x -=,所以A ,C 两点的横坐标相等或 互为相反数.因为点B 在W 上,若A ,C 两点的横坐标相等,点B 应为椭圆的左顶点或右顶点.不 合题意.若A ,C 两点的横坐标互为相反数,点B 应为椭圆的上顶点或下顶点.不合题意. 所以四边形OABC 不可能为菱形(20)【2013年北京,文20,13分】给定数列1a ,2a , ,n a .对1,2,3,,1i n =- ,该数列前i 项的最大值记为i A ,后n i -项1i a +,2i a +, ,n a 的最小值记为i B ,i i i d A B =-.(1)设数列{}n a 为3,4,7,1,写出1d ,2d ,3d 的值;(2)设1a ,2a , ,n a (4n ≥)是公比大于1的等比数列,且10a >,证明1d ,2d , ,1n d -是等比数列;(3)设1d ,2d , ,1n d -是公差大于0的等差数列,且10d >,证明1a ,2a , ,1n a -是等差数列.解:(1)111312d A B =-=-=,222413d A B =-=-=,333716d A B =-=-=. (2)因为1a ,2a , ,n a (4n ≥)是公比大于1的等比数列,且10a >,所以11n n a a q -=.所以当1,2,3,,1k n =- 时,1k k k k k d A B a a +=-=-,所以当2,3,,1k n =- 时,11111(1)(1)k k k k k k k k d a a a q q q d a a a q +------===--,所以1d ,2d , ,1n d -是等比数列. (3)解法一:若1d ,2d , ,1n d -是公差大于0的等差数列,则1210n d d d -<<<< , 1a ,2a , ,1n a -应是递增数列,证明如下:设k a 是第一个使得1k k a a -≤的项,则1k k A A -=,1k k B B -≤,所以111k k k k k k d A B A B d ---=-≥-=,与已知矛盾.所以,1a ,2a , ,1n a -是递增数列.再证明n a 数列{}n a 中最小项,否则k n a a <(2,3,,1k n =- ),则显然1k ≠,否则11111110d A B a B a a =-=-≤-=,与10d >矛盾;因而2k ≥,此时考虑11110k k k k k d A B a a ----=-=-<,矛盾,因此n a 是数列{}n a 中最小项.综上,()2,3,,1k k k k n d A B a a k n =-=-=- ,k k n a d a ∴=+,也即1a ,2a , ,1n a -是等差数列. 解法二:设d 为121n d d d -⋯,,,公差.对12i n ≤≤-,1i i B B +≤ ,0d >,111i i i i i i i i A B d B d d B d A +++=+≥++>+=.又因为11{}i i i A max A a ++=,,所以11i i i i a A A a ++=>≥.从而121n a a a -⋯,,,是递增数列. 因此1,2()1i i A a i n ==⋯-,,.又因为111111B A d a d a =-=-<,所以1121n B a a a -<<<⋯<.因此1n a B =. 所以121n n B B B a -==⋯==.所以i i i i n i a A B d a d ==+=+.因此对1,22i n =⋯-,,都有11i i i i a a d d d ++-=-=,即121n a a a -⋯,,,是等差数列.。
2013年普通高等学校招生全国统1考试数学文试题(新课标II卷,含答案)
绝|密★启用前2021年普通高等学校招生全国统一考试(新课标Ⅱ卷)文科数学考前须知:1. 本试卷分第|一卷 (选择题 )和第二卷 (非选择题 )两局部 .答卷前考生将自己的姓名、准考证号填写在答题卡上 .2. 答复第|一卷时 ,选出每题答案后 ,用铅笔把答题卡上对应题目的答案标号框涂黑 ,如需改动 ,用橡皮擦干净后 ,再选涂其他答案标号框 .写在本试卷上无效 .3. 答第二卷时 ,将答案写在答题卡上 ,写在本试卷上无效 .4. 考试结束 ,将试题卷和答题卡一并交回 .第|一卷一、选择题:本大题共12小题 .每题5分 ,在每个小题给出的四个选项中 ,只有一项为哪一项符合要求的 .(1 )集合M ={x| -3<X<1} ,N ={ -3 , -2 , -1 ,0 ,1} ,那么M∩N = (A ){ -2 , -1 ,0,1} (B ){ -3 , -2 , -1 ,0} (C ){ -2 , -1 ,0} (D ){ -3 , -2 , -1 }(2 )|| =(A )2 (B )2 (C ) (D )1(3 )设x ,y满足约束条件 ,那么z =2x -3y的最|小值是(A ) (B ) -6 (C )(D ) -(4 )△ABC的内角A,B,C的对边分别为a,b,c,b =2 ,B = ,C = ,那么△ABC的面积为(A )2 +2 (B ) (C )2 (D ) -1(5 )设椭圆C: + =1(a>b>0)的左、右焦点分别为F1、F2 ,P是C上的点PF2⊥F1F2 ,∠PF1F2 =30 . ,那么C的离心率为(A ) (B ) (C ) (D )(6 )sin2α = ,那么cos2(α +) =(A ) (B ) (C ) (D )(7 )执行右面的程序框图 ,如果输入的N =4 ,那么输出的S =(A )1(B )1 +(C )1 + + + +(D )1 + + + +(8 )设a =log32,b =log52,c =log23,那么(A )a>c>b (B ) b>c>a (C )c>b>a(D )c>a>b(9 )一个四面体的顶点在点间直角坐系O -xyz中的坐标分别是 (1 ,0 ,1 ) , (1 ,1 ,0 ) , (0 ,1 ,1 ) , (0 ,0 ,0 ) ,画该四面体三视图中的正视图时 ,以zOx平面为投影面 ,那么得到的正视图可为(A ) (B ) (C )(D )( 10)设抛物线C:y2 =4x的焦点为F ,直线L过F且与C交于A, B两点.假设|AF| =3|BF| ,那么L的方程为(A)y =x -1或y = -x +1 (B )y = (X -1 )或y = - (x -1 )(C )y = (x -1 )或y = - (x -1 ) (D )y = (x -1 )或y = - (x -1 )(11 )函数f (x ) =x3 +ax2 +bx +c ,以下结论中错误的选项是(A )(B )函数y =f (x )的图像是中|心对称图形(C )假设x0是f (x )的极小值点 ,那么f (x )在区间 ( -∞ ,x0 )单调递减(D )假设x0是f(x)的极值点 ,那么f , ( x0 ) =0(12 )假设存在正数x使2x (x -a )<1成立 ,那么a 的取值范围是(A ) ( -∞ , +∞ ) (B )( -2, +∞) (C)(0, +∞) (D) ( -1 , +∞ )第二卷本卷包括必考题和选考题两局部 .第13题 -第21题为必考题 ,每个试题考生都必须作答 .第22题 -第24题为选考题 ,考生根据要求作答 .二.填空题:本大题共4小题 ,每题5分 .(13 )从1 ,2 ,3 ,4 ,5中任意取出两个不同的数 ,其和为5的概率是________.(14 )正方形ABCD的边长为2 ,E为CD的中点 ,那么 =________.(15)正四棱锥O -ABCD的体积为 ,底面边长为 ,那么以O为球心 ,OA为半径的球的外表积为________.(16)函数的图像向右平移个单位后 ,与函数y =sin (2x + )的图像重合 ,那么 =___________.三.解答题:解容许写出文字说明 ,证明过程或演算步骤 .(17 ) (本小题总分值12分 )等差数列{an}的公差不为零 ,a1 =25 ,且a1 ,a11 ,a13成等比数列 .(Ⅰ )求{an}的通项公式;(Ⅱ )求a1 +a4 +a7 +… +a3n -2.(18 ) (本小题总分值12分 )如图 ,直三棱柱ABC -A1B1C1中 ,D,E分别是AB ,BB1的中点.(1)证明: BC1//平面A1CD;(2)设AA1 = AC =CB =2 ,AB = ,求三棱锥C一A1DE的体积.(19 ) (本小题总分值12分 )经销商经销某种农产品 ,在一个销售季度内 ,每售出It该产品获利润500元 ,未售出的产品 ,每It亏损300元.根据历史资料 ,得到销售季度内市场需求量的频率分布直图 ,如右图所示.经销商为下一个销售季度购进了130t该农产品.以X (单位:t≤100≤X≤150)表示下一个销售季度内的市场需求量 ,T(单位:元)表示下一个销售季度内经销该农产品的利润.(Ⅰ )将T表示为X的函数;(Ⅱ )根据直方图估计利润T不少于57000元的概率.(20 ) (本小题总分值12分)在平面直角坐标系xOy中 ,己知圆P在x轴上截得线段长为2 ,在Y轴上截得线段长为2.(Ⅰ )求圆心P的轨迹方程;(Ⅱ )假设P点到直线y =x的距离为 ,求圆P的方程.(21 )(本小题总分值12分)己知函数f(X) = x2e -x(I)求f(x)的极小值和极大值;(II)当曲线y = f(x)的切线l的斜率为负数时 ,求l在x轴上截距的取值范围.请从下面所给的22,23,24三题中选定一题作答.并用2 B铅笔在答题卡上将所选题目对应的题号方框涂黑 ,按所涂题号进行评分;不涂、多涂均按所答第|一题评分;多答按所答第|一题评分 .(22) (本小题总分值10分)选修4 -1:几何证明选讲如图 ,CD为△ABC外接圆的切线 ,AB的延长线交直线CD于点D , E ,F分别为弦AB与弦AC上的点 ,且BC·AE =DC·AF ,B, E, F,C四点共圆 .(I)证明:CA是△ABC外接圆的直径;(II)假设DB =BE =EA.求过B, E, F,C四点的圆的面积与△ABC外接圆面积的比值.(23 )(本小题总分值10分)选修4 -4:坐标系与参数方程动点P. Q都在曲线C: (t为参数 )上 ,对应参数分别为t =a与t =2a(0<a<2π ) ,M为PQ的中点 .(I)求M的轨迹的今数方程:(Ⅱ)将M到坐标原点的距离d表示为a的26数 ,并判断M的轨迹是否过坐标原点.(24)(本小题总分值10分)选修4 -5:不等式选讲设a ,b , c均为正数 ,且a +b +c =1 .证明:(Ⅰ )ab +bc +ca≤;(Ⅱ ) +≥1 .。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年普通高等学校招生全国统一考试(新课标Ⅱ卷)
文科数学
注意事项:
1. 本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前考生将自己的姓名、准考证号填写在答题卡上。
2. 回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号框涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号框。
写在本试卷上无效。
3. 答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效。
4. 考试结束,将试题卷和答题卡一并交回。
第Ⅰ卷
一、选择题:本大题共12小题。
每小题5分,在每个小题给出的
四个选项中,只有一项是符合要求的。
(1)已知集合M={x|-3<X<1},N={-3,-2,-1,0,1},则M∩N= (A){-2,-1,0,1}(B){-3,-2,-1,0}(C){-2,-1,0} (D){-3,-2,-1 }
(2)||=
(A)2(B)2 (C)(D)1
(3)设x,y满足约束条件,则z=2x-3y的最小值是(A)(B)-6 (C)
(D)-
(4)△ABC的内角A,B,C的对边分别为a,b,c,已知b=2,B=,C=,则△ABC的面积为
(A)2+2 (B)(C)2(D)-1
(5)设椭圆C:+=1(a>b>0)的左、右焦点分别为F1、F2,P 是C上的点PF2⊥F1F2,∠PF1F2=30。
,则C的离心率为(A)(B)(C)(D)
(6)已知sin2α=,则cos2(α+)=
(A)(B)(C)(D)
(7)执行右面的程序框图,如果输入的N=4,那么输
出的S=
(A)1
(B)1+
(C)1++++
(D)1++++
(8)设a=log32,b=log52,c=log23,则
(A)a>c>b (B)b>c>a (C)c>b>a
(D)c>a>b
(9)一个四面体的顶点在点间直角坐系O-xyz中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的
正视图时,以zOx平面为投影面,则得到的正视图可为
(A)(B)(C)(D)
( 10)设抛物线C:y2=4x的焦点为F,直线L过F且与C交于A, B两点.若|AF|=3|BF|,则L的方程为
(A)y=x-1或y=-x+1 (B)y=(X-1)或y=-(x-1)(C)y=(x-1)或y=-(x-1)(D)y=(x-1)或y=-(x-1)(11)已知函数f(x)=x3+ax2+bx+c ,下列结论中错误的是
(A)
(B)函数y=f(x)的图像是中心对称图形
(C)若x0是f(x)的极小值点,则f(x)在区间(-∞,x0)单调递减
(D)若x0是f(x)的极值点,则f’(x0)=0
(12)若存在正数x使2x(x-a)<1成立,则a 的取值范围是(A)(-∞,+∞)(B)(-2, +∞) (C)(0, +∞) (D)(-1,+∞)
第Ⅱ卷
本卷包括必考题和选考题两部分。
第13题-第21题为必考题,每个试题考生都必须作答。
第22题-第24题为选考题,考生根据要求作答。
二.填空题:本大题共4小题,每小题5分。
(13)从1,2,3,4,5中任意取出两个不同的数,其和为5的概率是________.
(14)已知正方形ABCD的边长为2,E为CD的中点,则=________.
(15)已知正四棱锥O-ABCD的体积为,底面边长为,则以O为球心,OA为半径的球的表面积为________.
(16)函数的图像向右平移个单位后,与函数y=sin(2x+)的图像重合,则=___________.
三.解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列。
(Ⅰ)求{an}的通项公式;
(Ⅱ)求a1+a4+a7+…+a3n-2.
(18)(本小题满分12分)
如图,直三棱柱ABC-A1B1C1中,D,E分别是AB,BB1的中点.
(1)证明:BC1//平面A1CD;
(2)设AA1= AC=CB=2,AB=,求三棱锥C一A1DE的体积.
(19)(本小题满分12分)
经销商经销某种农产品,在一个销售季度
内,每售出It该产品获利润500元,未售
出的产品,每It亏损300元.根据历史资料,得到
销售季度内市场需求量的频率分布直图,如右图
所示.经销商为下一个销售季度购进了130t该农产品.以X(单位:t ≤100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.
(Ⅰ)将T表示为X的函数;
(Ⅱ)根据直方图估计利润T不少于57000元的概率.
(20)(本小题满分12分)
在平面直角坐标系xOy中,己知圆P在x轴上截得线段长为2,在Y轴上截得线
段长为2.
(Ⅰ)求圆心P的轨迹方程;
(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.
(21)(本小题满分12分)
己知函数f(X) = x2e-x
(I)求f(x)的极小值和极大值;
(II)当曲线y = f(x)的切线l的斜率为负数时,求l在x轴上截距的取值范围.
请从下面所给的22,23,24三题中选定一题作答.并用2 B铅笔在答题卡上将所选题目对应的题号方框涂黑,按所涂题号进行评分;不涂、多涂均按所答第一题评分;多答按所答第一题评分。
(22) (本小题满分10分)选修4-1:几何证明选讲
如图,CD为△ABC外接圆的切线,AB的延长线交直线CD 于点D,E,F分别为弦AB与弦AC上的点,且BC·AE=DC·AF,B, E, F,C四点共圆。
(I)证明:CA是△ABC外接圆的直径;
(II)若DB=BE=EA.求过B, E, F,C四点的圆的面积与△ABC外接圆面积的比值.
(23)(本小题满分10分)选修4-4:坐标系与参数方程
已知动点P. Q都在曲线C:(t为参数)上,对应参数分别为t=a与t=2a(0<a<2π),M为PQ的中点。
(I)求M的轨迹的今数方程:
(Ⅱ)将M到坐标原点的距离d表示为a的26数,并判断M的轨迹是否过坐标原点.
(24)(本小题满分10分)选修4-5:不等式选讲
设a,b,c均为正数,且a+b+c=1。
证明:
(Ⅰ)ab+bc+ca≤;
(Ⅱ)+≥1。