重油催化裂化工艺
炼油工艺学第十章第八节渣油催化裂化

2020/6/3
炼油工艺学
小结
催化裂化分馏塔的特点:进料是带有催化剂粉尘的过热
油气,分馏塔底部设有脱过热段。全塔剩余热量较多, 一般设有多个循环回流(顶循环回流、一中循环回流、 二中循环回流和塔底油浆循环回流)。塔顶回流采用循 环回流而不用冷回流。
吸收稳定系统的作用:利用吸收和精馏的方法将富气和
③ 硫含量较低,有利于提高产品质量
2020/6/3
炼油工艺学
一、渣油催化裂化的主要技术困难
1.原料与瓦斯油的差异
① 重油不仅分子量大,而且芳烃、尤其是稠环芳烃含量
高,残碳含量高、胶质和沥青质含量高;
② Ni、V、Fe、Cu等重金属含量高; ③ 重油中含S、N的化合物较多;
④ 馏程变重,粘度大,原料的汽化性能下降,因此渣油 催化裂化是一个汽-液-固三相催化反应过程
高再生效率
2020/6/3
炼油工艺学
技术关键之二:控制金属对催化剂 的污染和提高催化剂本身的抗污染 能力
② 金属污染催化剂 钠:具有碱性;与钒形成共熔体 镍:脱氢催化剂 钒:脱氢作用;破坏催化剂的基体
金属污染催化剂的后果: a.焦炭产率高,轻油收率下降; b.氢气产率上升,干气密度下降; c.产品中含S、N量高
⑤ 作为微孔孔经只有8~9埃的分子筛来说,渣油中所含
有的胶质、沥青质分子团(25~300埃)是不可能进入
分子筛催化剂的内表面进行催化裂化反应的,需要
在催化剂载体上预裂化
2020/6/3
炼油工艺学
渣油和瓦斯油组成对比
减压瓦斯油
残炭值,w% 含镍量,ppm
常压重油
残炭值,w% 含镍量,ppm
大庆
0.23 <0.02
催化裂化是目前石油炼制工业中最重要的二次加工过程,也是

(1)环境空气 根据建设项目可能对大气环境造成的影响程度和范围以及项目所在地区的 环境敏感程度,确定评价工作等级如下: 拟建项目装置产生的主要大气污染物为烟尘、SO2、NOx,根据《环境影响 评价技术导则—大气环境》(HJ/T2.2-2008)中的估算模式对项目的大气环境评价 工作进行分级。根据项目的工程分析结果,选择 TSP 和 SO2 来确定评价工作等 级,计算最大地面浓度占标率 Pi,及第 i 个污染物的地面浓度达标准限值 10%时 所对应的最远距离 D10%。 根据估算模式的计算结果,Pmax=4.308%<10%,最大浓度出现的距离(1.9km)
(3)声环境
根据《兰州市饮用水源保护区、大气、噪声功能区划图》,声环境兰新铁路 以南为一类区,兰新铁路以北,化工街、生产街、广河路、合水北路、西固东路 以南地区及兰州石化分公司东区专用铁路以东,环行东路以西,西固东路以北的 三角地带为二类区,其余地区为三类区,主要交通干线两侧为四类区。
1.3.2 环境质量标准
西固路以北的工业区(西起西柳沟,东至水上公园,北至黄河,南至西固路)为大 气三类区,其余部分均为二类区。根据《国务院关于酸雨控制区和二氧化硫污染 控制区有关问题的批复》(国函(1998)5 号),兰州市区为 SO2 控制区。
(2)地表水环境
根据《兰州市城市生活饮用水的保护区区划方案》,地表水在一水厂排泥口 以上为Ⅱ类水域,以下为Ⅲ类水域。
厂界外声环境功能区类别
昼间夜间Biblioteka 36555
表 1.6-9
施工阶段
土石方 打桩 结构 装修
建筑施工场界噪声限值(GB12523-1990) 单位:dB(A)
主要噪声源
噪声限值
昼间
夜间
推土机、挖掘机、装载机
催化裂化工艺流程

任务布置
1.绘制重油催化裂化工艺原则流程图。 2.口头复述工艺流程。
注意事项: 1.催化裂化设备的简要画法。 2.催化裂化装置一般几部分构成?
知识拓展
催化裂化的发展历程 催化裂化自1936年实现工业化至今经历了四个阶段: 固定床、移动床、流化床和提升管。
Fixed Bed
Moving Bed
Fluid Bed
同学们上节课已经学习了催化裂化原料、产品、化学反应及 催化剂。 检查同学们掌握的情况: 1、催化裂化的主要化学反应有哪些? 2、催化裂化催化剂的组成是什么?
提出问题
催化裂化反应及产品分离是通过什么工艺实现的?催 化剂是如何参与反应并再生的?
催化裂化
催化裂化工艺流程框图
图2-1 催化裂化生产工艺方框流程图
此流程是如何实现?
催化裂化工艺原则流程图
图2-2 重油催化裂化工艺原则流程图 1 原料加热炉 2 提升管反应器 3 沉降器 4 再生器 5 辅助燃烧室 6 外取热器 7 分馏塔 9 油气分离器 10 柴油汽提塔 11 气压机 12 吸收塔 13 气压机出口油气分离器 14 解吸塔 15 再吸收塔 16 稳定塔 17 稳定塔回流罐 18 液化气碱洗罐
任务布置
1.绘制重油催化裂化工艺原则流程图。 2.口头复述工艺流程。
注意事项: 1.催化裂化设备的简要画法。 2.催化裂化装置一般几部分构成?
知识拓展
催化裂化的发展历程 催化裂化自1936年实现工业化至今经历了四个阶段: 固定床、移动床、流化床和提升管。
Fixed Bed
Moving Bed
Fluid Bed
图22重油催化裂化工艺原则流程图油气分离器10柴油汽提塔11气压机12吸收塔13气压机出口油气分离器14解吸塔15再吸收塔16稳定塔17稳定塔回流罐18液化气碱洗罐催化裂化工艺原则流程图任务布置任务布置1
催化裂化

催化裂化催化裂化是目前石油炼制工业中最重要的二次加工过程,也是重油轻质化的核心工艺,是提高原油加工深度、增加轻质油收率的重要手段。
催化裂化原料:重质馏分油(减压馏分油、焦化馏分油)、常压重油、减渣(掺一部分馏分油)、脱沥青油。
产品分布及特点:★气体: 10~20%,气体中主要是C3、C4,烯烃含量很高★汽油: 产率在30~60%之间,ON高,RON可达90左右★柴油: 产率在0~40%,CN较低,需调和或精制★油浆:产率在0~10%★焦炭: 产率在5%~10%,C:H=1:0.3~1催化裂化的工艺特点催化裂化过程是以减压馏分油、焦化柴油和蜡油等重质馏分油或渣油为原料,在常压和450℃~510℃条件下,在催化剂的存在下,发生一系列化学反应,转化生成气体、汽油、柴油等轻质产品和焦炭的过程。
催化裂化过程具有以下几个特点:⑴轻质油收率高,可达70%~80%;⑵催化裂化汽油的辛烷值高,马达法辛烷值可达78,汽油的安定性也较好;⑶催化裂化柴油十六烷值较低,常与直馏柴油调合使用或经加氢精制提高十六烷值,以满足规格要求;⑷催化裂化气体,C3和C4气体占80%,其中C3丙烯又占70%,C4中各种丁烯可占55%,是优良的石油化工原料和生产高辛烷值组分的原料。
根据所用原料,催化剂和操作条件的不同,催化裂化各产品的产率和组成略有不同,大体上,气体产率为10%~20% ,汽油产率为30%~50%,柴油产率不超过40%,焦炭产率5%~7%左右。
由以上产品产率和产品质量情况可以看出,催化裂化过程的主要目的是生产汽油。
我国的公共交通运输事业和发展农业都需要大量柴油,所以催化裂化的发展都在大量生产汽油的同时,能提高柴油的产率,这是我国催化裂化技术的特点。
在同一条件下,剂油比大,表明原料油能与更多的催化剂接触。
㈡影响催化裂化反应深度的主要因素影响催化裂化反应转化率的主要因素有:原料性质、反应温度、反应压力、反应时间。
1、原料油的性质原料油性质主要是其化学组成。
催化裂化

胜利
0.23 0.29 <0.02 0.2~0.4 4.7 8.5 4.8 39.2
2.以重油为裂化原料时会遇到以下技术困难: ①焦炭产率高 原因是:
重油的H/C比较低,含稠环芳烃多,胶质沥青质含量高;
重金属污染催化剂 引起一系列的问题,主要有: 再生器烧焦负荷大 焦炭产率过高,会大大破坏装置的热平衡 装置能耗增大
5~10
6~8
二:催化裂化的发展过程
分解等反应生成气体、汽油等小分子产物
催化裂化反应
缩合反应生成焦炭
反应:吸热过程
催化裂化 再生:放热过程
催化裂化的发展可以分成以下几个阶段:
1.天然白土和固定床催化裂化 2.合成硅铝催化剂和移动床催化裂化
①移动床催化裂化
②流化床催化裂化
3.分子筛催化剂和提升管催化裂化
次反应
二次反应并非对我 们的生产都有利,应 适当加以控制
为了获得较高轻质油收率,不追求反应深度过大,而是在
适当反应深度的基础上对未反应原料进行回炼 “未反应原料”是指反应产物中沸点范围与原料相当的那 一部分,称回炼油或循环油 目前我国的催化裂化装置采用的反应温度一般比国外低
三:渣油催化裂化
芳香基原料油、催化裂化循环油或油浆(其中含有较多的稠
环芳烃)较难裂化,要选择合适的反应条件或者先通过预处理
来减少其中的稠环芳烃而使其成为优质的裂化原料,如循环 油可作如下处理: 加氢→含环烷烃较多→优质裂化原料 溶剂抽提分理出芳烃(化工原料)→裂化
2.复杂的平行—顺序反应
重质石油馏分
中间馏分
烷烃
烯烃
①反应速度比烷烃快得多; ②氢转移显著,产物中烯烃、尤其 是二烯烃较少。
①反应速度与异构烷烃相似; ②氢转移显著,同时生成芳烃。 ①反应速度比烷烃快得多; ②在烷基侧链与苯环连接的键上断 裂。
催化裂化的工艺特点及基本原理

教案叶蔚君5.1催化裂化的工艺特点及基本原理[引入]:先提问复习,再从我国催化裂化汽油产量所占汽油总量的比例引入本章内容。
[板书]:催化裂化一、概述1、催化裂化的定义、反应原料、反应产物、生产目的[讲述]:1.催化裂化的定义(重质油在酸性催化剂存在下,在470~530O C的温度和0.1~0.3MPa的条件下,发生一系列化学反应,转化成气体、汽油、柴油等轻质产品和焦炭的过程。
)、反应原料:重质油;(轻质油、气体和焦炭)、(轻质油);[板书]2.催化裂化在炼油厂申的地位和作用:[讲述]以汽油为例,据1988年统计,全世界每年汽油总消费量约为6.5亿吨以上,我国汽油总产量为1750万吨,从质量上看,目前各国普通级汽油一般为90-92RON、优质汽油为96-98RON,我国1988年颁布车用汽油指标有两个牌号,其研究法辛烷值分别为不低于90和97。
但是,轻质油品的来源只靠直接从原油中蒸馏取得是远远不够的。
一般原油经常减压蒸馏所提供的汽油、煤油和柴油等轻质油品仅有10-40%,如果要得到更多的轻质产品以解决供需矛盾,就必须对其余的生质馏分以及残渣油进行二次加工。
而且,直馏汽油的辛烷值太低,一般只有40-60MON,必须与二次加工汽油调合使用。
国内外常用的二次加工手段主要有热裂化、焦化、催化裂化和加氢裂化等。
而热裂化由于技术落后很少发展,而且正逐渐被淘汰,焦化只适用于加工减压渣油,加氢裂化虽然技术上先进、产品收率高、质量好、灵活性大,但设备复杂,而且需大量氢气,因此,技术经济上受到一定限制,所以,使得催化裂化在石油的二次加工过程中占居着重要地位(在各个主要二次加工工艺中居于首位)。
特别是在我国,车用汽油的组成最主要的是催化裂化汽油,约占近80%。
因此,要改善汽油质量提高辛烷值,首先需要把催化裂化汽油辛烷值提上去。
目前我国催化裂化汽油辛烷值RON偏低,必须采取措施改进工艺操作,提高催化剂质量,迅速赶上国际先进水平。
催化裂化工艺原理
ห้องสมุดไป่ตู้
(3)氢转移反应 两个烯烃分子之间发生氢转移,变成烷烃和 二烯烃; 环烷烃或环烷-芳烃放出氢使烯烃饱和而自 身变成稠环芳烃。
8
(4)芳构化反应 烯烃环化脱氢生成芳烃。
C-C-C-C-C=C-C
CH3
9
3、环烷烃 (1)环断裂生成烯烃,烯烃继续反应; (2)长侧链断裂; (3)通过氢转移转化为芳烃;
RCH2 +
正碳离子的基本来源是由一个烯烃分子获得一
个氢离子而生成,如:
CnH2n + H+
CnH2n+1 +
12
1、正碳离子的形成
(1)烯烃与质子酸(H+)作用
RCH=CH2 + H+
+ RCHCH3
(2)芳烃与质子酸(H+)作用
+ H+
+
13
(3)烷烃在非质子酸中心脱去H-
RCH2CH2 + L
+ RCHCH2CH3
+ RC—CH3
CH3
15
正碳离子进一步异构化和β-断裂, 导致气体中C3、C4含量很高
(2)β-断裂反应
正碳离子裂解生成烯烃和碳数较少的正碳离子。
RCH2CH2CH+CH3 (3)氢转移反应
RC+H2 +CH2=CHCH3
16
17
(三)石油馏分的催化裂化反应特征
1. 各烃类的吸附竞争和对反应的阻滞作用
22
2. 复杂的平行——顺序反应
重质石油馏分 中间馏分
汽油 气体
缩合产物
焦炭
23
二、催化裂化催化剂
催化剂的作用: (1)促进化学反应,提高反应器的处理能力 催化剂能使反应活化能降低,提高反应速率,如 石油馏分的热裂化反应的活化能约为210~293kJ/mol, 而催化裂化反应其活化能降至42~125 kJ/mol,从而 大大提高反应速率。
石油炼化常用的七种工艺流程
石油炼化常用的七种工艺流程石油炼化是将原油转化为各种石油产品的过程。
在炼油工业中,有许多不同的工艺流程被广泛应用。
下面是石油炼化中常用的七种工艺流程。
1.原油蒸馏原油蒸馏是炼油过程中最常见和最基本的工艺流程。
它通过将原油加热至高温,然后将原油在塔内进行蒸发和冷凝,将原油中的不同组分分离出来。
原油蒸馏产生了多种产品,如汽油、柴油、润滑油和重油等。
2.催化裂化催化裂化是一种重要的石油炼化工艺,用于将高沸点的重油转化为高附加值产品,如汽油和润滑油。
这个过程是在高温和压力下,通过加入催化剂和裂解原料,将原料分解成低碳分子化合物。
3.热裂化热裂化是另一种重要的裂化工艺,它通过在高温下将重质石油产品(如重油)分解为更轻的石油产品。
这种裂化过程产生了大量的轻质产品,如石脑油、柴油和液化石油气。
4.加氢裂化加氢裂化是一种通过在高温和低压下添加氢气的裂化工艺。
这种工艺可以将重质石油产品转化为更轻的油品,并产生高品质的汽油和柴油。
5.精制精制是石油炼化过程中的一种工艺流程,通过去除原油中的杂质和杂质,使原油更加纯净和稳定。
这个过程涉及到物理和化学方法,如溶剂萃取、脱硫和脱氮等。
6.重整重整是一种将低辛烷值的石油产品转化为高辛烷值的工艺流程。
在这个过程中,使用催化剂对低辛烷值的石油产品进行重排,从而产生高辛烷值的汽油。
7.聚合聚合是将轻质石油产品(如乙烯和丙烯)转化为高分子化合物的工艺流程。
这个过程涉及到将小分子石油产品合成为高分子链,形成聚合物,如塑料和橡胶。
总结起来,石油炼化中常用的七种工艺流程包括原油蒸馏、催化裂化、热裂化、加氢裂化、精制、重整和聚合。
这些工艺流程在炼油工业中起着关键作用,使得从原油中提取出各种石油产品成为可能。
催化裂化的装置简介类型及工艺流程
催化裂化的装置简介类型及工艺流程一、装置发展及其类型1.装置发展催化裂化工艺产生于20世纪40年代,是炼油厂提高原油加工深度的一种重油轻质化的工艺。
20世纪50年代初由ESSO公司(美国)推出了Ⅳ型流出催化装置,使用微球催化剂(平均粒径为60—70tan),从而使催化裂化工艺得到极大发展。
1958年我国第一套移动床催化裂化装置在兰州炼油厂投产。
1965年我国自己设计制造施工的Ⅳ型催化装置在抚顺石油二厂投产。
经过近40年的发展,催化裂化已成为炼油厂最重要的加工装置。
截止1999年底,我国催化裂化加工能力达8809。
5×104t/a,占一次原油加工能力的33.5%,是加工比例最高的一种装置,装置规模由(34—60)×104t/a发展到国内最大300×104t/a,国外为675×104t/a。
随着催化剂和催化裂化工艺的发展,其加工原料由重质化、劣质化发展至目前全减压渣油催化裂化。
根据目的产品的不同,有追求最大气体收率的催化裂解装置(DCC),有追求最大液化气收率的最大量高辛烷值汽油的MGG工艺等,为了适应以上的发展,相应推出了二段再生、富氧再生等工艺,从而使催化裂化装置向着工艺技术先进、经济效益更好的方向发展。
2.装置的主要类型催化裂化装置的核心部分为反应—再生单元。
反应部分有床层反应和提升管反应两种,随着催化剂的发展,目前提升管反应已取代了床层反应。
再生部分可分为完全再生和不完全再生,一段再生和二段再生(完全再生即指再生烟气中CO含量为10—6级)。
从反应与再生设备的平面布置来讲又可分为高低并列式和同轴式,典型的反应—再生单元见图2—4、图2—5、图2—6、图2—7,其特点见表2—11。
二、装置单元组成与工艺流程1.组成单元催化裂化装置的基本组成单元为:反应—再生单元,能量回收单元,分馏单元,吸收稳定单元。
作为扩充部分有:干气、液化气脱硫单元,汽油、液化气脱硫醇单元等。
年加工50万吨重油催化裂化反应再生系统工艺设计_毕业设计
年加工50×104吨重油催化裂化反应-再生系统工艺设计前言催化裂化是一项重要的炼油工艺。
其加工能力位于各种转化工艺前茅,其技术复杂程度位居各类炼油工艺首位,但因其投资省,效益好,因而在炼油工业中占有举足轻重的地位,其主要原因和中国原油的性质密切相关,大多书中国原油350℃以前的馏出量只有26%~28%,常压渣油产率70%以上,同时,大多数中国原油都属于石蜡基原油,其常压渣油的沥青质含量低,低硫、低重金属(特别是钒)含量适合于采用催化裂化加工方法,而不需要经加氢处理等费用较高的预处理。
近年来,我过汽车工业飞速发展,2003年全国生产汽车444万辆(其中轿车201万辆),截止2003底.全国汽车保有量达到2420辆。
专家预测2020年汽车保有量将超过1亿辆(此外还有1亿辆摩托车)。
在调整车型结构提高燃油经济性的前提下,汽油需求量超过7400万吨、柴油需求量将超过1亿吨。
我过约80%的商品汽油和30%的商品柴油来自催化裂化,使催化裂化成为我国应输燃料最重要的生产装置。
从以上两个方面可见,催化裂化在实际生产中有很重要的意义,研究其工艺很有价值。
在原油价格居高不下,炼化企业的效益日益恶化的背景下,使用劣质原料来获得优质质,是炼厂的必然选择。
因此,要不断开发催化裂化新技术、新工艺,以增加产品收率、提高产品质量,这也是炼化企业在21世纪可持续发展的重大战略措施。
第一节设计原则1 工程设计采用国内开发的先进可靠的工艺技术,成熟可靠的新设备、新材料等,以达到装置技术先进,经济合理。
2 除少量关键仪表及特殊设备需引进外,其它设备及仪表立足国内。
3 尽量采用―清洁工艺‖减少环境污染。
严格遵循环保、安全、卫生有关法规,确保装置的安全生产。
4 充分吸收国内生产装置长期实践积累的有利于长周期运转,降低能耗以及简化操作等方面的经验,确保装置投产后高水平,安、稳、长、满、优生产。
第二节装置概况1 装置规模设计公称能力为50 × 104t/a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重油催化裂化工艺
重油催化裂化是一种通过催化剂作用使重油分子产生断裂反应的工艺。
该工艺可以将重质石油馏分转化为高附加值的轻质产品,如汽油、柴油和液化石油气等。
重油催化裂化的工艺流程包括以下几个步骤:
1. 原料预处理:将入料重油进行加热和脱盐处理,以去除其中的杂质和水分。
2. 催化剂预处理:将催化剂进行再生和活化处理,以保持其活性和稳定性。
3. 催化裂化反应:将预处理后的重油与催化剂在高温高压下进行接触反应。
催化剂通过吸附和解吸附作用,使重油分子发生断裂,并生成轻质烃类化合物。
4. 轻质产品分离:通过分馏、冷凝和干燥等操作将反应产物中的轻质产品(如汽油、柴油和液化石油气)与重质产物(如焦油、渣油)进行分离。
5. 催化剂再生:经过一定时间的使用后,催化剂会失活,需要进行再生处理。
再生过程包括热氧化和脱焦等步骤,以恢复催化剂的活性。
重油催化裂化工艺具有高转化率、高选择性和低能耗的特点,
可以有效地利用重油资源,提高石油产品的附加值。
这一工艺在石油炼制行业中得到广泛应用。