高二数学教案(10篇)

合集下载

高二下学期数学教案5篇

高二下学期数学教案5篇

高二下学期数学教案5篇高二下学期数学教案(精选篇1)目的要求:1.复习巩固求曲线的方程的基本步骤;2.通过教学,逐步提高学生求贡线的方程的能力,敏捷把握解法步骤;3.渗透“等价转化”、“数形结合”、“整体”思想,培养学生全面分析问题的能力,训练思维的深刻性、宽阔性及严密性。

教学重点、难点:方程的求法教学方法:讲练结合、讨论法教学过程:一、学点聚集:1.曲线C的方程是f(x,y)=0(或方程f(x,y)=0的曲线是C)实质是①曲线C上任一点的坐标都是方程f(x,y)=0的解②以方程f(x,y)=0的解为坐标的点都是曲线C上的点2.求曲线方程的基本步骤①建系设点;②寻等列式;③代换(坐标化);④化简;⑤证明(若第四步为恒等变形,则这一步骤可省略)二、基础训练题:221.方程x-y=0的曲线是()A.一条直线和一条双曲线B.两个点C.两条直线D.以上都不对2.如图,曲线的方程是()A.x?y?0 B.x?y?0 C.xy?1 D.x?1 y3.到原点距离为6的点的轨迹方程是。

4.到x轴的距离与其到y轴的距离之比为2的点的轨迹方程是。

三、例题讲解:例1:已知一条曲线在y轴右方,它上面的每一点到A?2,0?的距离减去它到y轴的距离的差都是2,求这条曲线的方程。

例2:已知P(1,3)过P作两条互相垂直的直线l1、l2,它们分别和x轴、y轴交于B、C两点,求线段BC的中点的轨迹方程。

2例3:已知曲线y=x+1和定点A(3,1),B为曲线上任一点,点P在线段AB上,且有BP∶PA=1∶2,当点B在曲线上运动时,求点P 的轨迹方程。

巩固练习:1.长为4的线段AB的两个端点分别在x轴和y轴上滑动,求AB中点M的轨迹方程。

22.已知△ABC中,B(-2,0),C(2,0)顶点A在抛物线y=x+1移动,求△ABC的重心G的轨迹方程。

思考题:已知B(-3,0),C(3,0)且三角形ABC中BC边上的高为3,求三角形ABC的垂心H的轨迹方程。

高二数学教案 圆的方程9篇

高二数学教案 圆的方程9篇

高二数学教案圆的方程9篇圆的方程 1§7.6 圆的方程(第二课时)㈠课时目标1.掌握圆的一般式方程及其各系数的几何特征。

2.待定系数法之应用。

㈡问题导学问题1:写出圆心为(a,b),半径为r的圆的方程,并把圆方程改写成二元二次方程的形式。

-2ax-2by+ =0问题2:下列方程是否表示圆的方程,判断一个方程是否为圆的方程的标准是什么?①;② 1③ 0;④ -2x+4y+4=0⑤ -2x+4y+5=0; ⑥ -2x+4y+6=0㈢教学过程[情景设置]把圆的标准方程展开得 -2ax-2by+ =0可见,任何一个圆的方程都可以写成下面的形式:+Dx+Ey+F=0 ①提问:方程表示的曲线是不是圆?一个方程表示的曲线是否为圆有标准吗?[探索研究]将①配方得 : ( ) ②将方程②与圆的标准方程对照.⑴当>0时, 方程②表示圆心在 (- ),半径为的圆.⑵当 =0时,方程①只表示一个点(- ).⑶当<0时, 方程①无实数解,因此它不表示任何图形.结论: 当>0时, 方程①表示一个圆, 方程①叫做圆的一般方程.圆的标准方程的优点在于明确地指出了圆心和半径,而一般方程突出了形式上的特点:⑴和的系数相同,不等于0;⑵没有xy这样的二次项.以上两点是二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件,但不是充分条件[知识应用与解题研究][例1] 求下列各圆的半径和圆心坐标.⑴ -6x=0; ⑵ +2by=0(b≠0)[例2]求经过O(0,0),A(1,1),B(2,4)三点的圆的方程,并指出圆心和半径。

分析:用待定系数法设方程为 +Dx+Ey+F=0 ,求出D,E,F即可。

[例3]已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为的点的轨迹,求此曲线的方程,并画出曲线。

分析:本题直接给出点,满足条件,可直接用坐标表示动点满足的条件得出方程。

反思研究:到O(0,0),A(1,1)的距离之比为定植k(k>0)的点的轨迹又如何?当k=1时为直线,k>0时且k≠1时为圆。

高二数学教案范文【三篇】

高二数学教案范文【三篇】

教案是教师的教学设计和设想。

⼩编整理了⾼⼆数学教案范⽂【三篇】,希望对你有帮助!《函数的极值与导数》⼀、教学⽬标1 知识与技能〈1〉结合函数图象,了解可导函数在某点取得极值的必要条件和充分条件〈2〉理解函数极值的概念,会⽤导数求函数的极⼤值与极⼩值2 过程与⽅法结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。

3 情感与价值感受导数在研究函数性质中⼀般性和有效性,通过学习让学⽣体会极值是函数的局部性质,增强学⽣数形结合的思维意识。

⼆、重点:利⽤导数求函数的极值难点:函数在某点取得极值的必要条件与充分条件三、教学基本流程回忆函数的单调性与导数的关系,与已有知识的联系提出问题,激发求知欲组织学⽣⾃主探索,获得函数的极值定义通过例题和练习,深化提⾼对函数的极值定义的理解四、教学过程〈⼀〉创设情景,导⼊新课1、通过上节课的学习,导数和函数单调性的关系是什么?(提问C类学⽣回答,A,B类学⽣做补充)函数的极值与导数教案 2、观察图1.3.8 表⽰⾼台跳⽔运动员的⾼度h随时间t变化的函数函数的极值与导数教案=-4.9t2+6.5t+10的图象,回答以下问题函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案函数的极值与导数教案(1)当t=a时,⾼台跳⽔运动员距⽔⾯的⾼度,那么函数函数的极值与导数教案在t=a处的导数是多少呢?(2)在点t=a附近的图象有什么特点?(3)点t=a附近的导数符号有什么变化规律?共同归纳: 函数h(t)在a点处h/(a)=0,在t=a的附近,当t<a时,函数函数的极值与导数教案单调递增, 函数的极值与导数教案>0;当t >a时,函数函数的极值与导数教案单调递减, 函数的极值与导数教案<0,即当t在a的附近从⼩到⼤经过a时, 函数的极值与导数教案先正后负,且函数的极值与导数教案连续变化,于是h/(a)=0.3、对于这⼀事例是这样,对其他的连续函数是不是也有这种性质呢?探索研讨函数的极值与导数教案1、观察1.3.9图所表⽰的y=f(x)的图象,回答以下问题:函数的极值与导数教案(1)函数y=f(x)在a.b点的函数值与这些点附近的函数值有什么关系?(2)函数y=f(x)在a.b.点的导数值是多少?(3)在a.b点附近, y=f(x)的导数的符号分别是什么,并且有什么关系呢?2、极值的定义:我们把点a叫做函数y=f(x)的极⼩值点,f(a)叫做函数y=f(x)的极⼩值;点b叫做函数y=f(x)的极⼤值点,f(a)叫做函数y=f(x)的极⼤值。

高二数学最新教案-高二下册数学(人教版)高二下册数学(人教版)典型例题精析(随机事件的概率) 精品

高二数学最新教案-高二下册数学(人教版)高二下册数学(人教版)典型例题精析(随机事件的概率) 精品

典型例题精析DIAN XING LI TI JING XI【例1】箱中有a 个正品,b 个次品,从箱中随机连续抽取3次,在以下两种抽样方式下:(1)每次抽样后不放回;(2)每次抽样后放回.分别求取出的3个全是正品的概率.(a ≥3) 解:(1)若不放回抽样3次看作有顺序,则从a+b 个产品中不放回抽样3次共有3ba A +种方法,从a 个正品中不放回抽样3次共有3a A 种方法,可以取出3个正品的概率3ba 3aA A P +=. 若不放回抽样3次看作无顺序,则从a+b 个产品中不放回抽样3次共有3b a C +种方法,从a 个正品中不放回抽样3次共有3a C 种方法,可以取出3个正品的概率3ba 3a C C P +=.两种方法结果一致.(2)从a+b 个产品中有放回地抽取3次,每次都有a+b 种方法,所以共有(a+b )3种不同的方法,而3个全是正品的抽法共有a 3种,所以3个全是正品的概率333)ba a ()b a (a P +=+=. 【例2】15名新生中有3名优秀生,随机将15名新生平均分配到3个班级中去.(1)每班级各分配到一名优秀生的概率是多少? (2)3名优秀生分配到同一班级的概率是多少?解:(1)将15名新生平均分到甲、乙、丙三个班共有55510515C C C 种不同的方法.每班分配到1名优秀生和4名非优秀生.甲班从3名优秀生中任选1名,从12名非优秀生中任选4名,共有41213C C 种方法,同理乙班共有4812C C 种方法,丙班共有4411C C 种方法.所以每班各分到1名优秀生的概率 9125C C C C C C C C C P 555105154448412111213==. (2)3名优秀生都分到甲班,共有21233C C 种分法,乙班从剩下的10名之中选5名,共有510C 种方法,剩下的5名给丙班,共有5551021233C C C C 种不同的分法.在日常生活和生产中,我们经常会碰到产品抽样问题,此时通过枚举法求n 、m往往不太现实.必须掌握用组合知识来计算n 、m ,从而得到等可能性事件的概率. 关于无放回抽样可以看作有顺序,也可以看作无顺序,其结果是一样的.不论选用哪种方式,确定之后必须按同一方式去解决,否则会产生错误.解与分配问题有关的概率题的关键是:利用分配问题知识正确求出基本总数和A 包含的基本事件数.3n 人平均分配到三个班共有nn n n 2n n 3C C C ∙∙种分配方法.所以3名优秀生都分到同一班的概率 916C C C C C C C 3P 555105155551021233==.。

职高高二数学教案

职高高二数学教案

职高高二数学教案【篇一:职高高二数学数学复数及其应用教案】第三十二课时:复数的概念(一)【教学目标】知识目标:理解复数的有关概念.能力目标:通过复数概念的学习与相关计算,使学生的计算技能与计算工具使用技能得到锻炼和提高.【教学重点】复数的概念.【教学难点】复数的概念.【教学设计】首先给出了复数的定义,然后引入虚数、纯虚数的定义,将实数集推广到复数集.介绍复数a+bi(a,b∈r)的概念时,要注意以下几点:(1)复数的虚部是b,而不是bi,如教材中指出复数z=-3-4i的虚部是-4,而不是-4i.(2)当虚部b=0时,复数a+bi=a就是实数.当虚部b≠0时,复数a+bi是虚数,特别a=0时,虚数bi是纯虚数.(3)a+bi(a,b∈r)中的“+”号有两种作用,第一个作用是连接记号,表示a+bi是一个整体,由实数a和纯虚数bi组成复数;第二个作用是运算符号表示实数a和纯虚数bi相加.例1的作用是帮助学生理解概念.这部分内容学生了解即可,不需要特别强化训练,不介绍关于数系讨论问题的解题技巧.教学中要把握难度,不超过教材的例、习题的难度.讲解复数相等的定义时要强调a1+b1i=a2+b2i等价于a1=a2且b1=b2,只有当a1=a2,b1=b2这两个条件同时成立时a1+b1i才能等于a2+b2i. 复数z=a+bi的共轭复数是z=a-bi.要注意它们的特征:实部相等,虚部互为相反数,教学中可引导学生得出:实数的共轭复数就是它本身.例2的作用是帮助学生理解复数相等的定义.教学中要讲清楚解题的基本思想,分清等号两边复数的实部与虚部,利用复数相等的概念,由“实部与实部相等,虚部与虚部相等”列出一个二元一次方程组,最后求出未知数x、y的值.例3的作用是帮助学生理解共轭复数的概念.要强调互为共轭的两个复数,其实部相等,虚部互为相反数.1课时.【教学过程】创设情境兴趣导入我们知道一元二次方程x=-1在实数范围内无解.更一般地,当根的判别式2?=b2-4ac0时,一元二次方程ax2+bx+c=0(其中a,b,c为实数且a≠0)在实数范围内也无解.动脑思考探索新知为了使方程x=-1有解,引进一个新数i,叫做虚数单位,并且规定数i有如下性质:(1)i的平方等于-1,即 i=-1 ;(2)i与实数进行四则运算时,原有的加法、乘法的运算法则和运算律仍然成立. 由性质(1)知,x=i是方程x=-1的一个解.由性质(2)知, 222(-i)2=(-1?i)2=(-1)2?i2=1?(-1)=-1,故x=-i也是方程x=-1的一个解.【注意】为了与表示电流强度的符号相区别,电学中虚数单位用字母j表示.根据上述性质,i可以与实数b相乘,由于满足乘法交换律,其乘积一般写作bi(规定0?i=0),再将bi与实数a相加,动脑思考探索新知为了使方程x=-1有解,引进一个新数i,叫做虚数单位,并且规定数i有如下性质: 22;(1)i的平方等于-1,即 i=-1(2)i与实数进行四则运算时,原有的加法、乘法的运算法则和运算律仍然成立. 由性质(1)知,x=i是方程x=-1的一个解.由性质(2)知, 22(-i)2=(-1?i)2=(-1)2?i2=1?(-1)=-1,故x=-i也是方程x=-1的一个解.【注意】为了与表示电流强度的符号相区别,电学中虚数单位用字母j表示.根据上述性质,i可以与实数b相乘,由于满足乘法交换律,其乘积一般写作bi(规定0?i=0),再将bi与实数a相加,(转下节) 2第三十三课时:复数的概念(二)知识目标:理解复数的有关概念.能力目标:通过复数概念的学习与相关计算,使学生的计算技能与计算工具使用技能得到锻炼和提高.【教学重点】复数的概念.【教学难点】复数的概念.【课时安排】1课时.【教学过程】(接上节)根据上述性质,i可以与实数b相乘,由于满足乘法交换律,其乘积一般写作bi(规定0?i=0),再将bi与实数a相加由于满足加法交换律,其和一般写作a+bi.形如a+bi(a,b∈r)的数叫做复数,其中a叫做复数的实部,b叫做复数的虚部.复数一般使用小写字母z,w, 等来表示.例如,复数z=-3-4i的实部为-3,虚部为-4.当虚部b=0时,复数a+bi=a就是实数.当虚部b≠0时,复数a+bi叫做虚数,特别a=0时虚数bi叫做纯虚数.例如,4,-1-44i都是复数,其中4是实数,-1-i是纯虚数. 55【想一想】 4的实部、虚部各是多少?全体复数组成的集合叫做复数集,常用大写字母c来表示,即c={zz=a+bi,a,b∈r}.显然,实数集r是复数集c的真子集.引入复数后,数的范围得到扩充:??有理数实数a(b=0)???无理数?复数a+bi? ?(a,b∈r)?纯虚数bi(a=0)?虚数a+bi(b≠0)????非纯虚数a+bi(a≠0)?巩固知识典型例题例1指出下列复数的实部和虚部,并判定它们是实数还是虚数?如果是虚数是否为纯虚数?(1)z1=3-i;(2)z2=3;(3)z3=-1i. 4解 (1) z1的实部a=3,虚部b=-1,它是虚数,但不是纯虚数;(2) z2的实部a=3b=0,它是实数;(3) z3的实部a=0,虚部b=-动脑思考探索新知如果两个复数a+bi(a,b∈r)与c+di(c,d∈r)的实部与虚部分别相等,那么称这两个复数相等.记作a+bi=c+di,即 1,它是虚数,且是纯虚数. 4a+bi=c+di ?a=c且b=d.(3.1)特别地a+bi=0?a=0且b=0.(3.2)巩固知识典型例题例2已知(x-2)+xi=1-(x-3y)i,其中x,y是实数,求x和y的值.解根据公式(3.1) ,得?x-2=1, ?x=-(x-3y),?解方程组得x=3,y=2.例3求复数z1=-20+33i,z2=-解 z1=-20-33i,z2=运用知识强化练习1. 指出下列复数的实部和虚部:(1)2-3i;(2) -32.求下列复数的共轭复数:(1) 11+6i; (2) -3-8i.继续探索活动探究 (1)读书部分:教材(2)书面作业:教材习题3.1(必做);学习与训练训练题3.1(选做) 3i,z3=-7的共轭复数. 43i,z3=-7. 4第三十四课时:复数的几何意义(一)【教学目标】知识目标:(1)理解复数的几何意义.(2)会求复数的模、辐角和辐角主值以及复数的三角形式.能力目标:通过复数的模、辐角和辐角主值以及复数的三角形式的学习,使学生的计算技能得到锻炼和提高.【教学重点】(1)复数的几何表示.(2)复数的三角形式、指数形式、极坐标形式.【教学难点】复数的代数形式转化为三角形式.【教学设计】在讲解复平面和复数的几何表示时,自然的建立了复数z=a+bi与直角坐标平面内的点z(a,b)之间的一一对应关系,于是复数z=a+bi (a,b∈r)可以用直角坐标系平面中的点z(a,b)表示.建立了直角坐标系用来表示复数的平面叫做复平面,在复平面内,x轴叫做实轴,实轴上的点都表示实数,虚轴上除去原点以外的点都表示纯虚数.要y轴叫做虚轴,【课时安排】1课时.【教学过程】动脑思考探索新知1.复数的点表示【篇二:高二数学电子教案】第一章算法初步1.1 算法与程序框图 1.1.1 算法的概念整体设计教学分析算法在中学数学课程中是一个新的概念,但没有一个精确化的定义,教科书只对它作了如下描述:“在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤.”为了让学生更好理解这一概念,教科书先从分析一个具体的二元一次方程组的求解过程出发,归纳出了二元一次方程组的求解步骤,这些步骤就构成了解二元一次方程组的算法.教学中,应从学生非常熟悉的例子引出算法,再通过例题加以巩固. 三维目标1.正确理解算法的概念,掌握算法的基本特点.2.通过例题教学,使学生体会设计算法的基本思路.3.通过有趣的实例使学生了解算法这一概念的同时,激发学生学习数学的兴趣. 重点难点教学重点:算法的含义及应用.教学难点:写出解决一类问题的算法. 课时安排 1课时教学过程导入新课思路1(情境导入)一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量狼就会吃羚羊.该人如何将动物转移过河?请同学们写出解决问题的步骤,解决这一问题将要用到我们今天学习的内容——算法. 思路2(情境导入)大家都看过赵本山与宋丹丹演的小品吧,宋丹丹说了一个笑话,把大象装进冰箱总共分几步?答案:分三步,第一步:把冰箱门打开;第二步:把大象装进去;第三步:把冰箱门关上. 上述步骤构成了把大象装进冰箱的算法,今天我们开始学习算法的概念. 思路3(直接导入)算法不仅是数学及其应用的重要组成部分,也是计算机科学的重要基础.在现代社会里,计算机已成为人们日常生活和工作中不可缺少的工具.听音乐、看电影、玩游戏、打字、画卡通画、处理数据,计算机是怎样工作的呢?要想弄清楚这个问题,算法的学习是一个开始. 推进新课新知探究提出问题(1)解二元一次方程组有几种方法??x-2y=-1,(1)(2)结合教材实例?总结用加减消元法解二元一次方程组的步骤. 2x+y=1,(2)?(3)结合教材实例??x-2y=-1,(1)总结用代入消元法解二元一次方程组的步骤.?2x+y=1,(2)(4)请写出解一般二元一次方程组的步骤. (5)根据上述实例谈谈你对算法的理解. (6)请同学们总结算法的特征. (7)请思考我们学习算法的意义. 讨论结果:(1)代入消元法和加减消元法. (2)回顾二元一次方程组?x-2y=-1,(1)的求解过程,我们可以归纳出以下步骤: ??2x+y=1,(2)35. ?x=1第五步,得到方程组的解为??,?5???y=35.(3)用代入消元法解二元一次方程组??x-2y=-1,(1)2x+y=1,(2)我们可以归纳出以下步骤: ?第一步,由①得x=2y-1.③第二步,把③代入②,得2(2y-1)+y=1.④第三步,解④得y=3535-1=15. ?x=1,第五步,得到方程组的解为???5???y=35.(4)对于一般的二元一次方程组??a1x+b1y=c1,(1)?a2x+b2y=c2,(2)b2c1-b1c2a.1b2-a2b1a1c2-a2c1.a1b2-a2b1b2c1-b1c2?x=,?ab-ab?1221第五步,得到方程组的解为?ac-ac21?y=12.?a1b2-a2b1?(5)算法的定义:广义的算法是指完成某项工作的方法和步骤,那么我们可以说洗衣机的使用说明书是操作洗衣机的算法,菜谱是做菜的算法等等.在数学中,算法通常是指按照一定规则解决某一类问题的明确有限的步骤. 现在,算法通常可以编成计算机程序,让计算机执行并解决问题.(6)算法的特征:①确定性:算法的每一步都应当做到准确无误、不重不漏.“不重”是指不是可有可无的,甚至无用的步骤,“不漏” 是指缺少哪一步都无法完成任务.②逻辑性:算法从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确,“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有穷性:算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制地持续进行.(7)在解决某些问题时,需要设计出一系列可操作或可计算的步骤来解决问题,这些步骤称为解决这些问题的算法.也就是说,算法实际上就是解决问题的一种程序性方法.算法一般是机械的,有时需进行大量重复的计算,它的优点是一种通法,只要按部就班地去做,总能得到结果.因此算法是计算科学的重要基础. 应用示例思路1例1 (1)设计一个算法,判断7是否为质数. (2)设计一个算法,判断35是否为质数. 算法分析:(1)根据质数的定义,可以这样判断:依次用2—6除7,如果它们中有一个能整除7,则7不是质数,否则7是质数. 算法如下:(1)第一步,用2除7,得到余数1.因为余数不为0,所以2不能整除7. 第二步,用3除7,得到余数1.因为余数不为0,所以3不能整除7. 第三步,用4除7,得到余数3.因为余数不为0,所以4不能整除7. 第四步,用5除7,得到余数2.因为余数不为0,所以5不能整除7.第五步,用6除7,得到余数1.因为余数不为0,所以6不能整除7.因此,7是质数. (2)类似地,可写出“判断35是否为质数”的算法:第一步,用2除35,得到余数1.因为余数不为0,所以2不能整除35.第二步,用3除35,得到余数2.因为余数不为0,所以3不能整除35. 第三步,用4除35,得到余数3.因为余数不为0,所以4不能整除35.第四步,用5除35,得到余数0.因为余数为0,所以5能整除35.因此,35不是质数. 点评:上述算法有很大的局限性,用上述算法判断35是否为质数还可以,如果判断1997是否为质数就麻烦了,因此,我们需要寻找普适性的算法步骤. 变式训练请写出判断n(n2)是否为质数的算法.分析:对于任意的整数n(n2),若用i表示2—(n-1)中的任意整数,则“判断n是否为质第三步,用i除n,得到余数r.第四步,判断“r=0”是否成立.若是,则n不是质数,结束算法;否则,将i的值增加1,仍用i表示.第五步,判断“i>(n-1)”是否成立.若是,则n是质数,结束算法;否则,返回第三步.2例2 写出用“二分法”求方程x-2=0 (x0)的近似解的算法.22分析:令f(x)=x-2,则方程x-2=0 (x0)的解就是函数f(x)的零点.2a b. 2第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.于是,开区间(1.414 062 5,1.417 968 75)中的实数都是当精确度为0.005时的原方程的近似解.实际上,上述步骤也是求2的近似值的一个算法.点评:算法一般是机械的,有时需要进行大量的重复计算,只要按部就班地去做,总能算出结果,通常把算法过程称为“数学机械化”.数学机械化的最大优点是它可以借助计算机来完成,实际上处理任何问题都需要算法.如:中国象棋有中国象棋的棋谱、走法、胜负的评判准则;而国际象棋有国际象棋的棋谱、走法、胜负的评判准则;再比如申请出国有一系列的先后手续,购买物品也有相关的手续??思路2例1 一个人带着三只狼和三只羚羊过河,只有一条船,同船可容纳一个人和两只动物,没有人在的时候,如果狼的数量不少于羚羊的数量就会吃羚羊.该人如何将动物转移过河?请设计算法. 分析:任何动物同船不用考虑动物的争斗但需考虑承载的数量,还应考虑到两岸的动物都得保证狼的数量要小于羚羊的数量,故在算法的构造过程中尽可能保证船里面有狼,这样才能使得两岸的羚羊数量占到优势. 解:具体算法如下:算法步骤:第一步:人带两只狼过河,并自己返回. 第二步:人带一只狼过河,自己返回.第三步:人带两只羚羊过河,并带两只狼返回. 第四步:人带一只羊过河,自己返回. 第五步:人带两只狼过河. 点评:算法是解决某一类问题的精确描述,有些问题使用形式化、程序化的刻画是最恰当的.这就要求我们在写算法时应精练、简练、清晰地表达,要善于分析任何可能出现的情况,体现思维的严密性和完整性.本题型解决问题的算法中某些步骤重复进行多次才能解决,在现实生活中,很多较复杂的情境经常遇到这样的问题,设计算法的时候,如果能够合适地利用某些步骤的重复,不但可以使得问题变得简单,而且可以提高工作效率.例2 喝一杯茶需要这样几个步骤:洗刷水壶、烧水、洗刷茶具、沏茶.问:如何安排这几个步骤?并给出两种算法,再加以比较.分析:本例主要为加深对算法概念的理解,可结合生活常识对问题进行分析,然后解决问题.解:算法一:第一步,洗刷水壶. 第二步,烧水. 第三步,洗刷茶具. 第四步,沏茶. 算法二:第一步,洗刷水壶.第二步,烧水,烧水的过程当中洗刷茶具. 第三步,沏茶. 点评:解决一个问题可有多个算法,可以选择其中最优的、最简单的、步骤尽量少的算法.上面的两种算法都符合题意,但是算法二运用了统筹方法的原理,因此这个算法要比算法一更科学.例3 写出通过尺轨作图确定线段ab一个5等分点的算法.分析:我们借助于平行线定理,把位置的比例关系变成已知的比例关系,只要按照规则一步一步去做就能完成任务. 解:算法分析:第一步,从已知线段的左端点a出发,任意作一条与ab不平行的射线ap. 第二步,在射线上任取一个不同于端点a的点c,得到线段ac. 第三步,在射线上沿ac的方向截取线段ce=ac. 第四步,在射线上沿ac的方向截取线段ef=ac. 第五步,在射线上沿ac的方向截取线段fg=ac.第六步,在射线上沿ac的方向截取线段gd=ac,那么线段ad=5ac. 第七步,连结db.【篇三:人教版高二数学教案】【小编寄语】查字典数学网小编给大家整理了人教版高二数学教案,希望能给大家带来帮助!一、教学目标根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节课的教学目标如下:(1)知识与技能目标:1、了解微积分基本定理的含义;2、会用牛顿-莱布尼兹公式求简单的定积分.(2)过程与方法目标:通过直观实例体会用微积分基本定理求定积分的方法.(3)情感、态度与价值观目标:1、学会事物间的相互转化、对立统一的辩证关系,提高理性思维能力;2、了解微积分的科学价值、文化价值.3、教学重点、难点重点:使学生直观了解微积分基本定理的含义,并能正确运用基本定理计算简单的定积分.难点:了解微积分基本定理的含义.二、教学设计复习:1. 定积分定义:其中 --积分号, -积分上限, -积分下限, -被积函数, -积分变量,-积分区间2.定积分的几何意义:一般情况下,定积分的几何意义是介于轴、函数的图形以及直线之间各部分面积的代数和,在轴上方的面积取正号,在轴下方的面积去负号.曲边图形面积: ;变速运动路程: ;3.定积分的性质:性质1性质2性质3性质4二. 引入新课:计算 (1) (2)上面用定积分定义及几何意义计算定积分,比较复杂不是求定积分的一般方法。

高中数学教学计划(精选19篇)

高中数学教学计划(精选19篇)

高中数学教学方案〔精选19篇〕高中数学教学方案〔精选19篇〕高中数学教学方案篇1一、高中数学教学方案指导思想准确把握《教学大纲》和《考试大纲》的各项根本要求,立足于根底知识和根本技能的教学,注重浸透数学思想和方法。

针对学生实际,不断研究数学教学,改进教法,指导学法,奠定立足社会所需要的必备的根底知识、根本技能和根本才能,着力于培养学生的创新精神,运用数学的意识和才能,奠定他们终身学习的基矗。

二、教学建议1、深化钻研教材。

以教材为核心,深化研究教材中章节知识的内外构造,纯熟把握知识的逻辑体系,细致领悟教材改革的精华,逐步明确教材对教学形式、内容和教学目的的影响。

2、准确把握新大纲。

新大纲修改了部分内容的教学要求层次,准确把握新大纲对知识点的根本要求,防止自觉不自觉地对教材加深加宽。

同时,在整体上,要重视数学应用;重视数学思想方法的浸透。

如增加阅读材料(开阔学生的视野),以拓宽知识的广度来求得知识的深度。

3、树立以学生为主体的教育观念。

学生的开展是课程施行的出发点和归宿,教师必须面向全体学生因材施教,以学生为主体,构建新的认识体系,营造有利于学生学习的气氛。

4、发挥教材的多种教学功能。

用好章头图,激发学生的学习兴趣;发挥阅读材料的功能,培养学生用数学的意识;组织好研究性课题的教学,让学生感受社会生活之所需;小结和复习是培养学生自学的好材料。

5、加强课堂教学研究,科学设计教学方法。

根据教材的内容和特征,实行启发式和讨论式教学。

发扬教学民主,师生双方亲密合作,交流互动,让学生感受、理解知识的产生和开展的过程。

教研组要根据教材各章节的重难点制定教学专题,每人每学期指定一个专题,安排一至二次教研课。

年级备课组每周举行一至二次教研活动,积累教学经历。

6、落实课外活动的内容。

组织和加强数学兴趣小组的活动内容,加强对高层次学生的竞赛辅导,培养拔尖人才。

三、教学进度略高中数学教学方案篇2一、指导思想:以开展教育的理念为指引,以学校教务处、教研组、年级组工作方案为指南,加强备课组教师的教育教学理论学习,更新教学观念,落实教学常规,全面进步学生的数学才能,尤其是进步创新意识和理论才能,为社会培养创造型人才。

高中数学教案模板

高中数学教案模板在教学工作者实际的教学活动中,编写教案是必不可少的,教案是保证教学取得成功、提高教学质量的基本条件。

我们应该怎么写教案呢?下面带来高中数学教案模板精选5篇,希望大家喜欢。

高中数学教案模板篇1教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.(2)进一步理解曲线的方程和方程的曲线.(3)初步掌握求曲线方程的方法.(4)通过本节内容的教学,培养学生分析问题和转化的能力.教学重点、难点:求曲线的方程.教学用具:计算机.教学方法:启发引导法,讨论法.教学过程:【引入】1.提问:什么是曲线的方程和方程的曲线.学生思考并回答.教师强调.2.坐标法和解析几何的意义、基本问题.对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程.(2)通过方程,研究平面曲线的性质.事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.【问题】如何根据已知条件,求出曲线的方程.【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.首先由学生分析:根据直线方程的知识,运用点斜式即可解决.解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解.设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上.综合(1)、(2),①是所求直线的方程.至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:解法二:设是线段的垂直平分线上任意一点,也就是点属于集合由两点间的距离公式,点所适合的条件可表示为将上式两边平方,整理得果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.让我们用这个方法试解如下问题:例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.求解过程略.【概括总结】通过学生讨论,师生共同总结:分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;(2)写出适合条件的点的集合;(3)用坐标表示条件,列出方程;(4)化方程为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点.一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.下面再看一个问题:例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合由距离公式,点适合的条件可表示为①将①式移项后再两边平方,得化简得由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.【练习巩固】题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程.分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.根据条件,代入坐标可得化简得①由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为【小结】师生共同总结:(1)解析几何研究研究问题的方法是什么?(2)如何求曲线的方程?(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?【作业】课本第72页练习1,2,3;高中数学教案模板篇2教学准备教学目标数列求和的综合应用教学重难点数列求和的综合应用教学过程典例分析3.数列{an}的前n项和Sn=n2-7n-8,(1)求{an}的通项公式(2)求{|an|}的前n项和Tn4.等差数列{an}的公差为,S100=145,则a1+a3+a5+…+a99=5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=6.数列{an}是等差数列,且a1=2,a1+a2+a3=12(1)求{an}的通项公式(2)令bn=anxn,求数列{bn}前n项和公式7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数8.在等差数列{an}中,a1=20,前n项和为Sn,且S10=S15,求当n为何值时,Sn有最大值,并求出它的最大值.已知数列{an},an∈N,Sn=(an+2)2(1)求证{an}是等差数列(2)若bn=an-30,求数列{bn}前n项的最小值0.已知f(x)=x2-2(n+1)x+n2+5n-7(n∈N)(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列(2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.11.购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)12.某商品在最近100天内的价格f(t)与时间t的函数关系式是f(t)=销售量g(t)与时间t的函数关系是g(t)=-t/3+109/3(0≤t≤100)求这种商品的日销售额的最大值注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值高中数学教案模板篇3一、课程性质与任务数学是研究空间形式和数量关系的科学,是科学和技术的基础,是人类文化的重要组成部分。

高二上册数学教案5篇

高二上册数学教案5篇1.高二上册数学教案篇一教学目标一、知识与技能(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集之间建立的一一对应关系.(6)使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.二、过程与方法创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性.根据弧度制的定义推导并运用弧长公式和扇形面积公式.以具体的实例学习角度制与弧度制的互化,能正确使用计算器.三、情态与价值通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备教学重难点重点:理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.难点:理解弧度制定义,弧度制的运用.2.高二上册数学教案篇二一、教学目标:1、知识与技能目标①理解循环结构,能识别和理解简单的框图的功能。

②能运用循环结构设计程序框图解决简单的问题。

2、过程与方法目标通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。

3、情感、态度与价值观目标通过本节的自主性学习,让学生感受和体会算法思想在解决具体问题中的意义,增强学生的创新能力和应用数学的意识。

二、教学重点、难点重点:理解循环结构,能识别和画出简单的循环结构框图,难点:循环结构中循环条件和循环体的确定。

三、教法、学法本节课我遵循引导发现,循序渐进的思路,采用问题探究式教学。

高二上册数学教案

高二上册数学教案高二上册数学教案1教材分析教材的地位和作用期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计学问做铺垫。

同时,它在市场预料,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响。

教学重点与难点重点:离散型随机变量期望的概念及其实际含义。

难点:离散型随机变量期望的实际应用。

[理论依据]本课是一节概念新授课,而概念本身具有肯定的抽象性,学生难以理解,因此把对离散性随机变量期望的概念的教学作为本节课的教学重点。

此外,学生初次应用概念解决实际问题也较为困难,故把其作为本节课的教学难点。

二、教学目标[学问与技能目标]通过实例,让学生理解离散型随机变量期望的概念,了解其实际含义。

会计算简洁的离散型随机变量的期望,并解决一些实际问题。

[过程与方法目标]经验概念的建构这一过程,让学生进一步体会从特别到一般的.思想,培育学生归纳、概括等合情推理实力。

通过实际应用,培育学生把实际问题抽象成数学问题的实力和学以致用的数学应用意识。

[情感与看法目标]通过创设情境激发学生学习数学的情感,培育其严谨治学的看法。

在学生分析问题、解决问题的过程中培育其主动探究的精神,从而实现自我的价值。

三、教法选择引导发觉法四、学法指导“授之以鱼,不如授之以渔”,注意发挥学生的主体性,让学生在学习中学会怎样发觉问题、分析问题、解决问题。

高二上册数学教案2一、教学目标1、在初中学过原命题、逆命题学问的基础上,初步理解四种命题。

2、给一个比较简洁的命题(原命题),可以写出它的逆命题、否命题和逆否命题。

3、通过对四种命题之间关系的学习,培育学生逻辑推理实力4、初步培育学生反证法的数学思维。

二、教学分析重点:四种命题;难点:四种命题的关系1.本小节首先从初中数学的命题学问,给出四种命题的概念,接着,讲解并描述四种命题的关系,最终,在初中的基础上,结合四种命题的学问,进一步讲解反证法。

高中数学排列组合教案(6篇)

高中数学排列组合教案(6篇)高中数学排列组合教案(精选篇1)教学主题:主要涉及到简洁排列组合问题,相同元素和不同元素排列组合问题。

捆绑法插空法特别元素法特别位置法定序法分组安排教学内容及分析:排列组合问题是高中数学学问的一个重要组成部分,在高考中也是必考内容,难度一般在中等偏上,只要把握的排列组合的几种典型方法,就能快速理解题型题意,快速找到突破口,对症下药,事半功倍,关键是要把握住什么题型用什么方法,通过题型对比分析相同点和不同点,区分易错的,难点。

另外,排列组合在适应新高考有着自然出题优势,由于排列组合更贴近显示生活,可以把我们课本上的抽象概念和数学公式和实际生活联系起来,数学学问走进生活,学问来与是但高于生活,最终回归于生活,才是我们学习学问,专研学问的立足点。

本文就对数学中概率统计中的一小点内容——排列组合,做一个简洁的对比分析。

教学对象及特点:排列组合在高中数学选修2—3。

人教版教材,高二的同学在日常生活中,有许多需要用排列组合来解决的学问。

作为二班级的同学,已有了肯定的生活阅历及解决问题的力量。

因此,在设计中,我通过创设一个完整的、好玩的生活情境来进行教学,力求使同学在经受日常生活最简洁的事例中体验到重要的数学思想方法,从而也感受到数学思想也是依托于生活,来源于生活,是有生命活力的。

教学目标:基于对教材的理解,我把本节课的教学重点定为:在经受简洁事物排列与组合规律的过程中体会排列与组合的数学思想。

教学难点定为:培育同学全面有序的思索问题的意识。

通过观看、猜想、比较、试验等活动,培育同学学习初步的观看、分析力量和有序、全面地思索问题的意识。

培育同学大胆猜想、乐观思维的学习方法,使同学感受学习数学的欢乐,进一步激发同学学习数学的爱好。

教学过程:一、排列问题例1:有4个男生,5个女生站队,在下列条件下,有多少种状况?(1)9个人全部站成一排;(2)9个人站成两排,前排站4人,后排站5人;(3)9个人全部站一排,全部女生站在一起;(捆绑法)(4)9个人全部站一排,全部男生都不相邻;(插空法)(5)9个人全部站一排,甲乙相邻,丙丁不相邻;(6)9个人全部站一排,甲不在两端;(特别元素法,特别位置法)(7)9个人全部站一排,甲不在最左边,乙不在最右边;(8)9个人全部站一排,甲在乙的左边,可以不相邻;(定序)(9)9个人全部站一排,甲在乙的前面,乙在丙的前面,可以不相邻;(10)9个人全部站一排,甲在乙和丙的中间,可以不相邻;二、组合问题例2:有25件产品,其中5件次品,从中任取3件,在下列条件下,有多少种状况?(1)次品甲在内;(2)次品甲不在内;(3)恰有1件次品;(4)至少1件次品;(5)至少2件次品;三、分组安排问题(不同元素)例3:有6名同学安排到三个班级,在下列条件下,有多少种状况?(1)随机安排;(2)每个班表达对一名同学的争取意愿,6名同学实力相当;(3)安排到三个班的人数分别为1、2、3人;(4)安排到三个班的人数分别为1、1、4人;(5)安排到三个班的人数分别为2、2、2人;四、分组安排问题(相同元素)例4:9个相同的乒乓球分给3个不同的人,在下列条件下,有多少种状况?(1)3个人分别分到2个乒乓球,3个乒乓球,4个乒乓球;(2)3个人分别分到2个乒乓球,2个乒乓球,5个乒乓球;(3)3个人平均分,每人得到3个乒乓球;(4)3个人每人至少分到1个乒乓球;(5)3个人每个人至少分到2个乒乓球;(6)3个人随机安排这9个乒乓球;五、分组安排问题(部分元素相同)例5:有外形大小相同,颜色不全相同的乒乓球,其中红色乒乓球,黄色乒乓球,黑色乒乓球分别有5个,从中取出四个乒乓球排一排,在下列条件下,有多少种状况?(1)取3个红色乒乓球,1个黄色乒乓球;(2)取2个红色乒乓球,2个黄色乒乓球;(3)取2个红色乒乓球,1个黑色乒乓球,1个黄色乒乓球;(4)取出的4个乒乓球中刚好3个乒乓球颜色相同;(5)取出的4个乒乓球中刚好2个乒乓球颜色相同,其他两个乒乓球颜色也相同;取出的4个乒乓球中刚好2个乒乓球颜色相同,其他两个乒乓球颜色不同;所选技术以及技术使用的目的:选取的技术是PPT演示文稿,电子文档,交互式电子白板,目的是能和同学共享资源,实时授课,不用边抄题目边讲课,节省时间,集中精力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学优秀教案(10篇)关于高二数学教案篇一【教学目标】1、会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

2、能根据几何结构特征对空间物体进行分类。

3、提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

【教学重难点】教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

教学难点:柱、锥、台、球的结构特征的概括。

【教学过程】1、情景导入教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

2、展示目标、检查预习3、合作探究、交流展示(1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?(2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。

在此基础上得出棱柱的主要结构特征。

(1)有两个面互相平行;(2)其余各面都是平行四边形;(3)每相邻两上四边形的公共边互相平行。

概括出棱柱的概念。

(3)提出问题:请列举身边的棱柱并对它们进行分类(4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

(5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

(6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

(7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

4、质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

(1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)(2)棱柱的任何两个平面都可以作为棱柱的底面吗?(3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?(4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?(5)绕直角三角形某一边的几何体一定是圆锥吗?高二数学优秀教案5 篇二高中数学教案:圆教学目的:掌握圆的标准方程,并能解决与之有关的。

问题教学重点:圆的标准方程及有关运用教学难点:标准方程的灵活运用教学过程:一、导入新课,探究标准方程二、掌握知识,巩固练习练习:⒈说出下列圆的方程⒈圆心(3,-2)半径为5⒈圆心(0,3)半径为3⒈指出下列圆的圆心和半径⒈(x-2)2+(y+3)2=3⒈x2+y2=2⒈x2+y2-6x+4y+12=0⒈判断3x-4y-10=0和x2+y2=4的位置关系⒈圆心为(1,3),并与3x-4y-7=0相切,求这个圆的方程三、引伸提高,讲解例题例1、圆心在y=-2x上,过p(2,-1)且与x-y=1相切求圆的方程(突出待定系数的数学方法)练习:1、某圆过(-2,1)、(2,3),圆心在x轴上,求其方程。

2、某圆过A(-10,0)、B(10,0)、C(0,4),求圆的方程。

例2:某圆拱桥的跨度为20米,拱高为4米,在建造时每隔4米加一个支柱支撑,求A2P2的长度。

例3、点M(x0,y0)在x2+y2=r2上,求过M的圆的切线方程(一题多解,训练思维)四、小结练习P771,2,3,4五、作业P811,2,3,4高二数学优秀教案5 篇三高中数学命题教案命题及其关系1.1.1命题及其关系一、课前小练:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3 ;(3)3 吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子。

二、新课内容:1、命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition)。

上述6个语句中,哪些是命题。

②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition)。

上述5个命题中,哪些为真命题?哪些为假命题?③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨。

(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判断它们的真假。

2、将一个命题改写成“若,则”的形式:三、练习:教材P4 1、2、3四、作业:1、教材P8第1题2、作业本1-10五、课后反思高二数学优秀教案5 篇四课题1.1.1命题及其关系(一)课型新授课目标1)知识方法目标了解命题的概念,2)能力目标会判断一个命题的真假,并会将一个命题改写成“若,则”的形式。

重点难点1)重点:命题的改写2)难点:命题概念的理解,命题的条件与结论区分教法与学法教法:教学过程备注1、课题引入(创设情景)阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3 ;(3)3 吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子。

2、问题探究1)难点突破2)探究方式3)探究步骤4)高潮设计1、命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition)。

上述6个语句中,(1)(2)(4)(5)(6)是命题。

②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition)。

上述5个命题中,(2)是假命题,其它4个都是真命题。

③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨。

(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判断它们的真假。

2、将一个命题改写成“若,则”的形式:①例1中的(2)就是一个“若,则”的命题形式,我们把其中的叫做命题的条件,叫做命题的结论。

②试将例1中的命题(6)改写成“若,则”的形式。

③例2:将下列命题改写成“若,则”的形式。

(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等。

(学生自练个别回答教师点评)3、小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若,则”的形式。

引导学生归纳出命题的概念,强调判断一个语句是不是命题的两个关键点:是否符合“是陈述句”和“可以判断真假”。

通过例子引导学生辨别命题,区分命题的条件和结论。

改写为“若,则”的形式,为后续的学习打好基础。

3、练习提高1. 练习:教材P4 1、2、3师生互动4、作业设计作业:1、教材P8第1题2、作业本1-105、课后反思高二数学优秀教案篇五[核心必知]1、预习教材,问题导入根据以下提纲,预习教材P2~P5,回答下列问题。

(1)对于一般的二元一次方程组a1x+b1y=c1,①a2x+b2y=c2,②其中a1b2-a2b1≠0,如何写出它的求解步骤?提示:分五步完成:第一步,①×b2-②×b1,得(a1b2-a2b1)x=b2c1-b1c2,③第二步,解③,得x=b2c1-b1c2a1b2-a2b1.第三步,②×a1-①×a2,得(a1b2-a2b1)y=a1c2-a2c1,④第四步,解④,得y=a1c2-a2c1a1b2-a2b1.第五步,得到方程组的解为x=b2c1-b1c2a1b2-a2b1,y=a1c2-a2c1a1b2-a2b1.(2)在数学中算法通常指什么?提示:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。

2、归纳总结,核心必记(1)算法的概念12世纪的算法指的是用阿拉伯数字进行算术运算的过程续表数学中的算法通常是指按照一定规则解决某一类问题的明确和有限的步骤现代算法通常可以编成计算机程序,让计算机执行并解决问题(2)设计算法的目的计算机解决任何问题都要依赖于算法。

只有将解决问题的过程分解为若干个明确的步骤,即算法,并用计算机能够接受的“语言”准确地描述出来,计算机才能够解决问题。

[问题思考](1)求解某一个问题的算法是否是的?提示:不是。

(2)任何问题都可以设计算法解决吗?提示:不一定。

高二数学优秀教案5 篇六高中数学菱形教案一、教学目标1、把握菱形的判定。

2、通过运用菱形知识解决具体问题,提高分析能力和观察能力。

3、通过教具的演示培养学生的学习爱好。

4、根据平行四边形与矩形、菱形的从属关系,通过画图向学生渗透集合思想。

二、教法设计观察分析讨论相结合的方法三、重点·难点·疑点及解决办法1、教学重点:菱形的判定方法。

2、教学难点:菱形判定方法的综合应用。

四、课时安排1课时五、教具学具预备教具(做一个短边可以运动的平行四边形)、投影仪和胶片,常用画图工具六、师生互动活动设计教师演示教具、创设情境,引入新课,学生观察讨论;学生分析论证方法,教师适时点拨七、教学步骤复习提问1、叙述菱形的定义与性质。

2、菱形两邻角的比为1:2,较长对角线为,则对角线交点到一边距离为________.引入新课师问:要判定一个四边形是不是菱形最基本的判定方法是什么方法?生答:定义法。

此外还有别的两种判定方法,下面就来学习这两种方法。

讲解新课菱形判定定理1:四边都相等的四边形是菱形。

菱形判定定理2:对角钱互相垂直的平行四边形是菱形。

图1分析判定1:首先证它是平行四边形,再证一组邻边相等,依定义即知为菱形。

分析判定2:师问:本定理有几个条件?生答:两个。

师问:哪两个?生答:(1)是平行四边形(2)两条对角线互相垂直。

师问:再需要什么条件可证该平行四边形是菱形?生答:再证两邻边相等。

(由学生口述证实)证实时让学生注重线段垂直平分线在这里的应用,师问:对角线互相垂直的四边形是菱形吗?为什么?可画出图,显然对角线,但都不是菱形。

菱形常用的判定方法归纳为(学生讨论归纳后,由教师板书): 注重:(2)与(4)的题设也是从四边形出发,和矩形一样它们的题没条件都包含有平行四边形的判定条件。

例4 已知: 的对角钱的垂直平分线与边、分别交于、,如图。

求证:四边形是菱形(按教材讲解)。

总结、扩展1、小结:(1)归纳判定菱形的四种常用方法。

(2)说明矩形、菱形之间的区别与联系。

2、思考题:已知:如图4⒈ 中,,平分,,,交于。

求证:四边形为菱形。

八、布置作业教材P159中9、10、11、13(2)九、板书设计十、随堂练习教材P153中1、2、3高二数学教案篇七一、教学目标:1、知识与技能目标①理解循环结构,能识别和理解简单的框图的功能。

②能运用循环结构设计程序框图解决简单的问题。

2、过程与方法目标通过模仿、操作、探索,学习设计程序框图表达,解决问题的过程,发展有条理的思考与表达的能力,提高逻辑思维能力。

相关文档
最新文档