导数测试试卷及答案

合集下载

(压轴题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)

(压轴题)高中数学高中数学选修2-2第三章《导数应用》测试(含答案解析)

一、选择题1.已知函数x y a =(1a >)与log ay x =(1a >)的图象有且仅有两个公共点,则实数a 的取值范围是( )A .1e 1e a << B .1e a <<C .1e e e a <<D .e a >2.函数()[)(](),00,sin xf x x x xππ=∈--的图象大致是( )A .B .C .D .3.已知函数322()f x =x ax bx a +++在1x =处的极值为10,则a b -=( ). A .6-B .15-C .15D .6-或154.若函数()2ln f x ax x x =+-存在增区间,则实数a 的取值范围为( ) A .1,4⎛⎫-∞-⎪⎝⎭ B .1,4⎛⎫-+∞ ⎪⎝⎭ C .1,8⎛⎫-+∞ ⎪⎝⎭D .1,8⎛⎫-∞- ⎪⎝⎭5.若1201x x ,则( )A .2121ln ln xxe e x x ->- B .2121ln ln x x e e x x -<-C .1221xxx e x e > D .1221xxx e x e <6.已知可导函数()f x 的定义域为(,0)-∞,其导函数()'f x 满足()2()0xf x f x '->,则不等式2(2020)(2020)(1)0f x x f +-+-<的解集为( ) A .(,2021)-∞- B .(2021,2020)-- C .(2021,0)-D .(2020,0)-7.若实数a ,b 满足0a >,0b >,则“a b >”是“ln ln a a b b +>+”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件8.内接于半径为R 的球且体积最大的圆柱体的高为( ) A 23B 3C 33D 3 9.奇函数()f x 满足0x ≥时,()cos 0f x x '+<,且()3,2f π=-则不等式()cos 22f x x π+>--的解集为( )A .(,0)-∞B .(,)π-∞-C .(,)2π-∞-D .(,)π-∞10.若函数1()21xf x e x =--(e 为自然对数的底数),则()y f x =图像大致为( ) A . B .C .D .11.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.已知函数()24ln f x ax ax x =--,则()f x 在()1,3上不单调的一个充分不必要条件是( )A .1,6a ⎛⎫∈-∞ ⎪⎝⎭B .1,2a ⎛⎫∈-+∞ ⎪⎝⎭C .1,2a ⎛⎫∈+∞ ⎪⎝⎭D .11,26a ⎛⎫∈- ⎪⎝⎭二、填空题13.已知函数()2e 2=++xf x ax a ,若不等式()()1≥+f x ax x 对任意[]2,5x ∈恒成立,则实数a 的取值范围是____________.14.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____.15.已知关于x 的方程20--=x e x k 有2个不相等的实数根,则k 的取值范围是___________.16.已知函数()2xe f x ax x =-,()0,x ∈+∞,当21x x >时,不等式()()12210f x f x x x -<恒成立,则实数a 的取值范围为________. 17.321313y x x x =--+的极小值为______. 18.已知函数2()f x x a =+,ln ()2e xg x x x=+,其中e 为自然对数的底数,若函数()y f x =与函数()y g x =的图象有两个交点,则实数a 的取值范围是________.19.设()22,0ln ,0x mx x f x x mx x ⎧-+<=⎨->⎩,若方程()f x x =恰有三个零点,则实数m 的取值范围为______.20.设函数3()32()f x ax x x =-+∈R ,若对于任意[1,1]x ∈-,都有()0f x ≥成立,则实数a 的取值范围是_________.三、解答题21.已知函数()2f x x ax b =++,不等式()0f x ≤的解集为[]1,3-.(1)求函数()f x 的解析式; (2)求方程()4ln f x x x =根的个数. 22.已知函数()()2ln 1f x ax x =-+()0a ≠.(1)讨论()f x 的极值点的个数;(2)当0a >时,设()f x 的极值点为0x ,若()()00121f x x >-+,求a 的取值范围.23.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性. (2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;24.已知函数()2(1)xf x x e ax =--,(a R ∈).(1)若12a =,求()f x 的极值; (2)若0x ≥时,()0f x ≥,求实数a 的取值范围. 25.设函数()ln 1x f x x+=, (1)求曲线()y f x =在点()(),e f e 处的切线方程;(2)当1≥x 时,不等式()()211a x f x x x--≥恒成立,求a 的取值范围. 26.已知函数()22x bg x ax +=+,()1,1x ∈-,从下面三个条件中任选一个条件,求出,a b的值,并解答后面的问题.①已知函数()3f x b x a=+-,满足()()220f x f x -++=;②已知函数()()0,1xf x a b a a =+>≠在[]1,2上的值域为[]2,4③已知函数()24f x x ax =-+,若()1f x +在定义域[]1,1b b -+上为偶函数.(1)证明()g x 在()1,1-上的单调性; (2)解不等式()()120g t g t -+<.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】 将问题转化为()1xy a a =>的图象与y x =有两个公共点,即ln ln xa x=有两解,再构造新函数()ln xf x x=,根据()f x 的单调性和取值分析ln a 的取值即可得到结果. 【详解】因为函数()()1,log 1xa y aa y x a =>=>的图象关于直线y x =对称,所以两个图象的公共点在y x =上,所以()1xy a a =>的图象与y x =有两个公共点,即x x a =有两解,即ln ln x x a =有两解,即ln ln xa x=有两解, 令()ln x f x x =,所以()21ln xf x x -'=, 当()0,x e ∈时,()0f x '>,()f x 单调递增,当(),x e ∈+∞时,()0f x '<,()f x 单调递减,()f x 大致图象如下图所示:所以()10ln a f e e<<=,所以11e a e <<, 故选:A. 【点睛】结论点睛:函数图象的交点个数、方程根的数目、函数的零点个数之间的关系: 已知()()()h x f x g x =-,则有()h x 的零点个数⇔方程()()f x g x =根的数目⇔函数()f x 与函数()g x 的图象的交点个数. 2.B解析:B 【分析】首先判断函数的奇偶性,再利用导数研究函数的单调性即可得解; 【详解】 解:因为()[)(](),00,sin xf x x x xππ=∈--,定义域关于原点对称,又()()()sin sin x x f x f x x x x x --===----,所以()[)(](),00,sin x f x x x xππ=∈--为偶函数,函数图象关于y 轴对称,所以排除A 、D ; ()()()()()22sin sin cos sin sin sin x x x x x xx x xf x x x x x ''----'==--令()cos sin g x x x x =-,则()sin g x x x '=-,所以当(]0,x π∈时()0g x '≤,所以()cos sin g x x x x =-在(]0,x π∈上单调递减,又()00g =,所以()0g x <在(]0,x π∈上恒成立,所以()0f x '<在(]0,x π∈上恒成立,即函数()sin xf x x x=-在(]0,π上单调递减,故排除C ,故选:B 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.C解析:C 【分析】 由题,可得(1)0(1)10f f '=⎧⎨=⎩,通过求方程组的解,即可得到本题答案,记得要检验.【详解】因为322()f x =x ax bx a +++,所以2()32f x x ax b '=++,由题,得(1)0(1)10f f '=⎧⎨=⎩,即2320110a b a b a ++=⎧⎨+++=⎩,解得411a b =⎧⎨=-⎩或33a b =-⎧⎨=⎩,因为当3,3a b =-=时,2()3(1)0f x x '=-≥恒成立,()f x 在R 上递增,无极值,故舍去,所以4(11)15a b -=--=.故选:C 【点睛】本题主要考查含参函数的极值问题,得到两组解后检验,是解决此题的关键.4.C解析:C 【分析】先假设函数()f x 不存在增区间,则()f x 单调递减,利用()f x 的导数恒小于零列不等式,将不等式分离常数后,利用配方法求得常数a 的取值范围,再取这个取值范围的补集,求得题目所求实数a 的取值范围. 【详解】若函数()f x 不存在增区间,则函数()f x 单调递减, 此时()1210f x ax x'=+-≤在区间()0,∞+恒成立, 可得2112a x x ≤-,则22111111244x x x ⎛⎫-=--≥- ⎪⎝⎭,可得18a ≤-,故函数存在增区间时实数a 的取值范围为1,8⎛⎫-+∞ ⎪⎝⎭.故选C. 【点睛】本小题主要考查利用导数研究函数的单调性,考查不等式恒成立问题的求解策略,属于中档题.5.C解析:C 【分析】令()x e f x x=,(01)x <<,()()ln 01xg x e x x =-<<,求出函数的导数,通过讨论x的范围,求出函数的单调区间,从而判断结论. 【详解】令()x e f x x =,(01)x <<,则2(1)()0x e x f x x-'=<, 故()f x 在(0,1)递减,若1201x x ,则12()()f x f x >,故1212x x e e x x >,即1221x xx e x e >,故C 正确,D 不正确;令()()ln 01xg x e x x =-<<,则11()x xxe g x e x x-'=-=,令()1x h x xe =-,可知()h x 在()0,1单调递增,且(0)10,(1)10h h e =-<=->,则存在()00,1x ∈,使得0()0h x =, 则当()00,x x ∈时,()0h x <,即()0g x '<,()g x 在()00,x 单调递减, 当()0,1x x ∈时,()0h x >,即()0g x '>,()g x 在()0,1x 单调递增, 所以()g x 在()0,1不单调,故A ,B 错误. 故选:C. 【点睛】本题考查了函数的单调性问题,考查导数的应用,是一道中档题.6.B解析:B 【分析】由题可得当(,0)x ∈-∞时,()2()0xf x f x '->,进而构造函数2()()f x g x x =,可判断()g x 在(,0)-∞上的单调性,进而可将不等式转化为(2020)(1)g x g +<-,利用()g x 的单调性,可求出不等式的解集. 【详解】解:构造2()()(0)f x g x x x =<,则243()2()()2()()x f x x f x xf x f x g x x x''⋅-⋅-'==,因为()2()0xf x f x '->,则()0g x '<∴函数()g x 在(,0)-∞上是减函数,∵不等式2(2020)(2020)(1)0f x x f +-+-<,且()2(1)(1)(1)1f g f --==--,等价于()()()()()2220201120201f x f g x +-<=-+-,即为(2020)(1)g x g +<-,所以2020120200x x +>-⎧⎨+<⎩,解得20212020x -<<-.故选:B 【点睛】本题考查函数单调性的应用,构造函数2()()f x g x x =是解决本题的关键,属于中档题. 7.C解析:C 【解析】构造函数1ln ,0,10y x x x y x+='=>+> ,故函数ln y x x =+在0,上单调递增,即由“0a b >>” 可得到“ln ln a a b b +>+”,反之,由“ln ln a a b b +>+”亦可得到“0a b >>” 选C8.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得2303h R <<,故此时()V h 单调递增, 令()0V h '<232h R <<,故此时()V h 单调递减. 故()23max V h V ⎫=⎪⎪⎝⎭.即当23h =时,圆柱的体积最大.故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.9.A解析:A 【分析】构造函数()()sin h x f x x =+,根据其单调性,求解目标不等式即可. 【详解】不妨令()()sin h x f x x =+,因为()()cos 0h x f x x =+'<'在[)0,+∞恒成立, 即()h x 在[)0,+∞单调递减;又()f x 是奇函数,sin y x =是奇函数, 故()h x 是奇函数,且()h x 是R 上的单调减函数. 由()3,2f π=-故可得22h π⎛⎫=-⎪⎝⎭, 又()cos 22f x x π+>--,即22h x h ππ⎛⎫⎛⎫+> ⎪ ⎪⎝⎭⎝⎭, 故22x ππ+<,则0x <.故选:A . 【点睛】本题考查构造函数法,涉及利用导数研究函数单调性以及利用单调性解不等式,属综合中档题.10.C解析:C 【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-, 当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<,所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x ,即x →+∞时,()0f x >,则D 错误. 故选:C. 【点睛】本题考查了函数图象的识别,属于中档题.11.B解析:B 【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解. 【详解】构造()()g x f x x =+,则()()1g x f x ''=+, 又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=, 所以()(1)g e g <,即()0f e e +<, 所以()f e e <-. 故选:B 【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.C解析:C 【分析】本题首先可根据题意得出2241ax ax fxx,令2241g xax ax ,然后根据()f x 在()1,3上不单调得出函数()g x 与x 轴在()1,3上有交点,最后分为0a =、0a ≠两种情况进行讨论,即可得出结果. 【详解】()2124124ax ax f x ax a x x--'=--=, 若()f x 在()1,3上不单调, 令2241g xax ax ,对称轴为1x =,则函数2241g xax ax 与x 轴在()1,3上有交点,当0a =时,显然不成立;当0a ≠时,则()()21680130a a g g ⎧∆=+>⎪⎨⋅<⎪⎩,解得16a >或12a <-,易知()f x 在()1,3上不单调的一个充分不必要条件是1,2a ⎛⎫∈+∞ ⎪⎝⎭, 故选:C. 【点睛】关键点点睛:本题考查函数单调性问题,若函数在否个区间内不单调,则函数的导函数在这个区间内有零点且穿过x 轴,考查二次函数性质的应用,考查充分条件与必要条件的判定,是中档题.二、填空题13.【分析】原不等式可化为当时该不等式恒成立当时不等式可化为从而构造函数求导并判断单调性可求出令即可【详解】由题意不等式可化为当时恒成立;当时不等式可化为令则求导得所以在上单调递减在上单调递增所以则综上 解析:(3,e ⎤-∞⎦【分析】原不等式可化为()e 2xa x ≥-,当2x =时,该不等式恒成立,当(]2,5x ∈时,不等式可化为e 2x a x ≥-,从而构造函数()e 2xg x x =-,求导并判断单调性,可求出()min g x ,令()min g x a ≥即可.【详解】由题意,不等式()2e 21x ax a ax x ++≥+可化为()e 2xa x ≥-,当2x =时,()e 2xa x ≥-恒成立;当(]2,5x ∈时,不等式可化为e 2xa x ≥-, 令()e 2xg x x =-,(]2,5x ∈,则()min g x a ≥,求导得()()()2e 32x x g x x -'=-,所以()g x 在()2,3上单调递减,在[]3,5上单调递增,所以()()3min 3e g x g ==,则3e a ≤,综上所述,实数a 的取值范围是(3,e ⎤-∞⎦. 故答案为:(3,e ⎤-∞⎦.【点睛】关键点点睛:本题考查不等式恒成立问题,解题关键是将原不等式转化为e 2xa x ≥-,通过构造函数()e 2xg x x =-,令()min g x a ≥,可求出a 的取值范围.考查学生的逻辑推理能力,计算求解能力,属于中档题.14.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.15.【分析】把关于x 的方程有2个不相等的实数根转化为与函数的图象有两个不同的交点利用导数求得函数的单调性与极值即可求解【详解】由题意关于x 的方程有2个不相等的实数根即函数与函数的图象有两个不同的交点设则 解析:(22ln2,)-+∞【分析】把关于x 的方程20--=x e x k 有2个不相等的实数根,转化为y k =与函数2x y e x =-的图象有两个不同的交点,利用导数求得函数()2x f x e x =-的单调性与极值,即可求解. 【详解】由题意,关于x 的方程20--=x e x k 有2个不相等的实数根, 即函数y k =与函数2x y e x =-的图象有两个不同的交点,设()2x f x e x =-,则()2x f x e '=-,令()20x f x e '=-=,解得ln 2x =, 所以函数的减区间为(,ln 2)-∞,增区间为(ln 2,)+∞, 所以函数()f x 的最小值为(ln 2)22ln 2f =-,且当x →-∞时,()f x →+∞,当x →∞时,()f x →+∞, 要使得2x e x k -=有2个不相等的实数根,所以22ln 2k >-. 即实数k 的取值范围是(22ln2,)-+∞. 故答案为:(22ln2,)-+∞. 【点睛】本题主要考查了利用导数研究方程的根,其中解答中把方程根的个数转化为两个函数的图象的交点的个数,利用导数求得函数的单调性与极值是解答的关键,着重考查转化思想,以及运算与求解能力.16.【分析】由当时不等式恒成立变形得到当时不等式恒成立即在上是增函数然后由在上是恒成立求解【详解】因为当时不等式恒成立即当时不等式恒成立所以在上是增函数所以在上是恒成立即在上是恒成立令所以当时当时所以当解析:2,12e ⎛⎤-∞ ⎥⎝⎦【分析】由当21x x >时,不等式()()12210f x f x x x -<恒成立,变形得到当21x x >时,不等式()()1122x f x x f x <恒成立,即()()g x xf x =,在()0,x ∈+∞上是增函数,然后由()0g x '≥,在()0,x ∈+∞上是恒成立求解.【详解】因为当21x x >时,不等式()()12210f x f x x x -<恒成立,即当21x x >时,不等式()()1122x f x x f x <恒成立, 所以()()g x xf x =,在()0,x ∈+∞上是增函数, 所以()230xg x e ax '=-≥,在()0,x ∈+∞上是恒成立,即23xe a x ≤,在()0,x ∈+∞上是恒成立,令2()3xe h x x=,所以()32()3x e x h x x-'=, 当02x <<时,()0h x '<,当2x >时,()0h x '>,所以当2x =时,()h x 取得最小值,最小值为212e,所以实数a 的取值范围为2,12e ⎛⎤-∞ ⎥⎝⎦.故答案为:2,12e ⎛⎤-∞ ⎥⎝⎦.【点睛】本题主要考查导数与函数的单调性,还考查了转化化归的思想和运算求解的能力,属于中档题.17.【分析】求导根据导数正负得到函数单调区间得到函数的极小值为计算得到答案【详解】则当和时函数单调递增;当时函数单调递减故函数极小值为故答案为:【点睛】本题考查了利用导数求极值意在考查学生的计算能力和应 解析:8-【分析】求导,根据导数正负得到函数单调区间得到函数的极小值为()3f ,计算得到答案. 【详解】()321313y f x x x x ==--+,则()()()2'2331f x x x x x =--=-+, 当()3,x ∈+∞和(),1x ∈-∞-时,()'0f x >,函数单调递增; 当()1,3x ∈-时,()'0f x <,函数单调递减, 故函数极小值为()32313333183f ⨯--⨯+=-=. 故答案为:8-. 【点睛】本题考查了利用导数求极值,意在考查学生的计算能力和应用能力.18.【分析】将已知等价转化为函数与函数的图象有两个交点分别作出图象观察其只需满足二次函数顶点低于函数的顶点从而构建不等式解得答案【详解】函数与函数的图象有两个交点等价于函数与函数的图象有两个交点对函数求解析:21,e e ⎛⎫-∞+ ⎪⎝⎭【分析】将已知等价转化为函数22y x ex a =-+与函数ln xy x=的图象有两个交点,分别作出图象,观察其只需满足二次函数顶点低于函数ln xy x=的顶点,从而构建不等式,解得答案. 【详解】函数()y f x =与函数()y g x =的图象有两个交点, 等价于函数22y x ex a =-+与函数ln xy x=的图象有两个交点, 对函数ln x y x =求导,得21ln xy x-'=,()0,x e ∈,0y '>, 函数ln xy x=单调递增;(),x e ∈+∞,0y '<, 函数ln xy x =单调递减,在x e =处取得极大值,也是最大值为1e, 对二次函数22y x ex a =-+,其对称轴为x e =,顶点坐标为()2,e a e -分别作出图象,其若要有两个交点,则2211a e a e e e-<⇒<+故答案为:21,e e ⎛⎫-∞+ ⎪⎝⎭【点睛】本题考查由函数图象的交点个数求参数的取值范围,属于中档题.19.【分析】将问题转化为与图像交点个数有3个的问题利用导数研究函数单调性和最值数形结合即可求得结果【详解】当时等价于;当时等价于;令则方程恰有三个零点等价于与直线有三个交点当时则令解得故该函数在区间单调 解析:221m <-【分析】将问题转化为()2,0,0x x xh x lnx x x⎧+<⎪⎪=⎨⎪>⎪⎩与1y m =+图像交点个数有3个的问题,利用导数研究函数单调性和最值,数形结合即可求得结果. 【详解】当0x <时,22y x mx x =-+=,等价于21x m x+=+; 当0x >时,y lnx mx x =-=,等价于1lnxm x=+; 令()2,0,0x x xh x lnx x x ⎧+<⎪⎪=⎨⎪>⎪⎩,则方程()f x x =恰有三个零点,等价于()y h x =与直线1y m =+有三个交点. 当lnx y x =时,则21lnx y x-=',令0y '=,解得x e =, 故该函数在区间()0,e 单调递增,在(),e +∞单调递减. 且x e =时,1y e=;又x e >时,0y >; 而当2y x x=+时,由对勾函数性质,容易知: 当2x =-时,函数取得最大值22y =-. 故()h x 的图像如下所示:数形结合可知,要满足题意,只需122m +<-, 解得221m <-. 故答案为:221m <-. 【点睛】本题考查由方程根的个数求参数范围,涉及利用导数研究函数单调性,对勾函数,属综合中档题.20.【分析】求出时的值讨论函数的增减性得到的最小值让最小值大于等于0即可求出的范围【详解】解:由可得当时令解得且①当时为递增函数②当时为递减函数③当时为递增函数所以即解得故答案为:【点睛】考查学生理解函 解析:15a ≤≤【分析】求出()0f x '=时x 的值,讨论函数的增减性得到()f x 的最小值,让最小值大于等于0即可求出a 的范围. 【详解】解:由(1)0f ≥可得1a ≥,2'()33f x ax =-, 当1a ≥时,令2'()330f x ax =-=解得x =,且1>-<①当1x -<<()0,()f x f x '>为递增函数, ②当x <<()0,()f x f x '<为递减函数, ③1x <<时,()f x 为递增函数.所以()010f f ⎧≥⎪⎨⎝⎭⎪-≥⎩,即3320320a a ⎧⎪-+≥⎨⎝⎭⎝⎭⎪-++≥⎩, 解得15a ≤≤. 故答案为:15a ≤≤. 【点睛】考查学生理解函数恒成立时取条件的能力,以及利用导数求函数最值的能力.三、解答题21.(1)()223f x x x =--;(2)有且只有一个根.【分析】(1)根据不等式的解集与方程根的对应关系,列出关于,a b 的方程组,从而求解出,a b 的值,则()f x 的解析式可求; (2)将问题转化为求方程34ln 20x x x---=根的数目,构造新函数()34ln 2g x x x x=---,利用导数分析()g x 的单调性和极值,由此判断出()g x 的零点个数,从而方程()4ln f x x x =根的个数可确定.【详解】解:(1)∵不等式()0f x ≤的解集为[]1,3-, ∴20x ax b ++=的两个根分别为1-和3. ∴()()1313a b ⎧-=-+⎪⎨=-⨯⎪⎩.即2a =-,3b =-,故函数()f x 的解析式为()223f x x x =--.(2)由(1),设()22334ln 4ln 2x x g x x x x x x--=-=---,∴()g x 的定义域为()0,∞+,()()()2213341x x g x x x x--'=+-=, 令()0g x '=,得11x =,23x =.当x 变化时,()g x ',()g x 的取值变化情况如下表:当03x <≤时,140g x g ≤=-<, 当3x >时,()55553ee202212290eg =--->--=>. 又因为()g x 在()3,+∞上单调递增,因而()g x 在()3,+∞上只有1个零点, 故()g x 仅有1个零点.即方程()4ln f x x x =有且只有一个根. 【点睛】思路点睛:利用导数分析方程根的个数的思路: (1)将方程根的个数问题转化为函数零点的个数问题;(2)将原方程变形,构造新函数,分析新函数的单调性、极值、最值;(3)根据新函数的单调性、极值、最值得到新函数的零点个数,则方程根的个数可确定.22.(1)答案见解析;(2)⎛⎫⎪+∞⎪⎭. 【分析】(1)()21221211ax ax f x ax x x +-'=-=++,令()2221g x ax ax =+-,分两种情况讨论,判断方程()0g x =根的个数即可;(2)由(1)知()00g x =,即202210ax ax +-=,()20012a x x =+,先求得01x ,进而可得答案即可.【详解】(1)()21221211ax ax f x ax x x +-'=-=++,令()2221g x ax ax =+- 当0a >时,由()10g -<知,()g x 在()1,-+∞有唯一零点, 故()f x 在()1,-+∞有一个极值点;当0a <时,()10g -<,()g x 的对称轴为12x =-,若方程()0g x =的0∆>,即2480a a +>,2a <-时,()g x 在()1,-+∞有两个零点,()f x 在()1,-+∞有两个极值点;若方程()0g x =的0∆≤,即2480a a +≤,20a -≤<时,()0g x ≤,()f x 在()1,-+∞上单减,无极值点.(2)由(1)知()00g x =,即2002210ax ax +-=,()20012a x x =+……(*) 由0a >且010x +>得00x >,又∵()()00121f x x >-+,∴()()20001ln 121ax x x -+>-+代入(*)式,()()()00001ln 12121x x x x -+>-++, 即()01ln 102x -+>解得01x <,∴001x <<, ∴.()20012a x x ⎛⎫⎪=∈+∞⎪+⎭. 【点睛】求函数()f x 极值的步骤:(1) 确定函数的定义域;(2) 求导数fx ;(3) 解方程()0,f x '=求出函数定义域内的所有根;(4) 列表检查fx 在0fx的根0x 左右两侧值的符号,如果左正右负(左增右减),那么()f x 在0x 处取极大值,如果左负右正(左减右增),那么()f x 在0x 处取极小值. 23.(1)答案见解析;(2)[)1,+∞. 【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果. 【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x ah x x x x x+'=+=>, 当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>;()h x ∴在(上单调递减,在)+∞上单调递增.(2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-, 即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2at x x x'=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200ax x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max21x x -+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用. 24.(1)极大值是112e-,()f x 的极小值是0(2)1a ≤ 【分析】(1)()()2112xx f x e x =--,求导()()()110x f x x e '=+-=,判断()f x ',()f x 变化求得极值;(2)解法一:分离a,求最值得a 的范围,解法二: ()xf x e a '=-,讨论a 的范围得解 【详解】 (1)当12a =时,()()2112xx f x e x =-- ()()()110x f x x e '=+-=时,则1x =-,0x =.当x 变化时,()f x ',()f x 变化状态如下表:所以()f x 的极大值是()12f e-=-,()f x 的极小值是()00f = (2))等价于当0x ≥时,()()10xf x x e ax =--≥恒成立解法一: 当0x =,等号成立,当x>0,()10x e f x a x -≥⇔≤,设()1x e g x x-=()min a g x ≤,由经典不等式1x e x >+ ∴1a ≤或者()21x x xe e g x x-+'=,()1x x x xe e ϕ=-+,()0x x x xx e xe e xe ϕ='+-=> ()x ϕ↑,()()00ϕϕ>=x ∴()0g x '>,()g x ↑,又()0,1x g x →→ ∴1a ≤解法二: ()xf x e a '=-,0x ≥,1x e ≥若1a ≤,则()0xf x e a ='-≥,()f x ↑,∴()()00f x f ≥=,即不等式恒成立.(充分性)若1a >,()0xf x e a '=-= ∴0ln 0x a =>()00,x x ∈,()0f x '<,()f x ↓,()()00f x f ≤=,这与当0x ≥时,()10xf x e ax =--≥恒成立相矛盾(必要性)【点睛】本题考查函数与导数的极值,考查不等式恒成立,考查转化化归能力,考查计算能力,是中档题25.(1)230x e y e +-=(2)(,0]-∞ 【详解】试题分析:(1)先求函数导数,再根据导数几何意义得切线斜率为()'f e ,最后根据点斜式求切线方程(2)构造函数()()2ln 1g x x a x =--,利用导数并按0a ≤,10<2a <,12a ≥进行分类讨论,通过函数的单调性以及最值进行与0比较,可得结果. 试题(1)根据题意可得,()2f e e=, ()2ln 'xf x x -=,所以()22ln 1'e f e e e -==-,即21k e =-, 所以在点()(),e f e 处的切线方程为()221y x e e e-=--,即230x e y e +-=. (2)根据题意可得,()()()221ln 110a x x a x f x x x x-----=≥在1≥x 恒成立,令()()2ln 1g x x a x =--,()1x ≥,所以()12g x ax x-'=, 当0a ≤时,()0g x '>,所以函数()y g x =在[)1,+∞上是单调递增, 所以()()10g x g ≥=, 所以不等式()()21a x f x x->成立,即0a ≤符合题意;当0a >时,令120ax x-=,解得x =1=,解得12a =,当10<2a <1,所以()g x '在⎛ ⎝上()0g x '>,在+⎫∞⎪⎪⎭上()0g x '<,所以函数()y g x =在⎛ ⎝上单调递增,在+⎫∞⎪⎪⎭上单调递减,21111ln 1ln g a a a a a a a ⎛⎫⎛⎫⎛⎫=--=--+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令()1ln h a a a a =--+,()222111'10a a h a a a a-+=-++=>恒成立,则()h a 在10,2⎛⎫ ⎪⎝⎭单调递增 所以()1111ln 2ln2202222h a h ⎛⎫<=--+=+-<⎪⎝⎭,所以存在10g a ⎛⎫< ⎪⎝⎭, 所以102a <<不符合题意; ②当12a ≥1≤ ()0g x '≤在[)1,+∞上恒成立,所以函数()y g x =在[)1,+∞上是单调递减,所以()()10g x g ≤= 显然12a ≥不符合题意; 综上所述,a 的取值范围为{}|0a a ≤26.选法见解析;2a =,0b =;(1)证明见解析;(2)103t <<. 【分析】(1)根据函数的对称性,定义域和值域,奇偶性计算得到2a =,0b =,再求导证明单调性.(2)利用函数的奇偶性和单调性解不等式得到答案. 【详解】(1)①由()()220f x f x -++=得()f x 对称中心为()2,0即得2a =,0b =; ②(i )当1a >时,()xf x a b =+在[]1,2上单调递增,则有224a b a b +=⎧⎨+=⎩得220a a --=, 得2a =,0b =;(ii )当01a <<时,()xf x a b =+在[]1,2上单调递减,则242a b a b +=⎧⎨+=⎩得220a a -+=,无解,所以2a =,0b =;③由()24f x x ax =-+得()()2125f x x a x a +=+-+-,因为()1f x +在[]1,1b b -+上是偶函数,则202a -=,且()()110b b -++=, 所以2a =,0b =; 由①或②或③得()222xg x x =+,()1,1x ∈-,()()222121x g x x -'=+, 由11x -<<得()0g x '>,则()g x 在()1,1-上单调递增. (2)因为()()222xg x g x x --==-+,则()g x 为奇函数.由()()120g t g t -+<即()()21g t g t <-又因为()g x 在()1,1-上单调递增,则121,111,21,t t t t -<<⎧⎪-<-<⎨⎪<-⎩解得103t <<.【点睛】本题考查了函数对称性,奇偶性,单调性,函数的定义域和值域,解不等式,意在考查学生对于函数知识的综合应用.。

(好题)高中数学选修二第二单元《一元函数的导数及其应用》测试卷(含答案解析)(3)

(好题)高中数学选修二第二单元《一元函数的导数及其应用》测试卷(含答案解析)(3)

一、选择题1.已知函数222,0()11,0x x x f x x x ⎧++≤⎪=⎨-+>⎪⎩,若()f x ax ≥恒成立,则实数a 的取值范围是( )A .222,1⎡⎤-⎣⎦B .(],1-∞C .()222,0-D .222,0⎡⎤-⎣⎦2.若幂函数()f x 的图象过点21,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()e x f x g x =的递减区间为( ) A .()0,2 B .(),0-∞和()2,+∞ C .()2,0-D .()(),02,-∞+∞3.已知定义在R 上的奇函数()f x 满足()()2f x xf'x 0->(x 0>),则( )A .()()()6f 13f 22f 3->->-B .()()()2f 33f 26f 1->->-C .()()()6f 12f 33f 2->->-D .()()()3f 22f 36f 1->->-4.设函数()'f x 是奇函数()()f x x R ∈的导函数,当0x >时,()()ln 'x x f x f x ⋅<-,则使得()()240x f x ->成立的x 的取值范围是( ) A .()()2,00,2-⋃ B .()(),22,-∞-⋃+∞ C .()()2,02,-⋃+∞D .()(),20,2-∞-⋃5.定义域为R 的函数()f x 的导函数为()f x ',满足()()f x f x '<,若()01f =,则不等式()xf x e >的解集为( )A .()01,B .()1+∞,C .()1-∞,D .()0-∞,6.设函数()f x 在R 上可导,其导函数为()f x ',且函数()()1y x f x '=+⋅的图象如图所示,则下列结论中一定成立的是( )A .函数()f x 有极大值()3f -和极小值()2fB .函数()f x 有极大值()1f -和极小值()2fC .函数()f x 在()3,2x ∈--单调递增D .函数()f x 在()1,2x ∈单调递增 7.函数()3sin cos 2xxf x x x =+在[]2,2ππ-的图象大致为( ) A . B .C .D .8.已知函数()32114332f x x mx x =-+-在区间[]1,2上是增函数,则实数m 的取值范围为( ) A .45m ≤≤B .24m ≤≤C .2m ≤D .4m ≤9.已知函数()f x 在R 上连续可导,导函数为()'f x ,(0)1f =,其满足()()01f x f x x '->-,函数()()x f x g x e=,下列结论错误..的是( ) A .函数()g x 在(1,)+∞上为单调递增函数 B .0x ≤时,不等式()x f x e ≥恒成立 C .函数()g x 有最小值,无最大值 D .1x =是函数()g x 的极大值点10.已知奇函数()f x 在R 上是增函数且当0x ≥时()0f x ≥ ,()()g x xf x =.若()2log 5.1a g =-,()0.82b g =,()3c g =,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .b a c <<D .b c a <<11.已知函数()ln f x x x =,则()f x ( ) A .在()0,∞+上递增B .在()0,∞+上递减C .在10,e ⎛⎫⎪⎝⎭上递增D .在10,e ⎛⎫⎪⎝⎭上递减12.已知函数()xe f x ax x=-,()0,x ∈+∞,当21x x >时,不等式()()1221f x f x x x <恒成立,则实数a 的取值范围为( ) A .(],e -∞B .(),e -∞C .,2e ⎛⎫-∞ ⎪⎝⎭D .,2e ⎛⎤-∞ ⎥⎝⎦二、填空题13.若函数3213()(4)32xf x e x kx kx =--+只有一个极值点,则k 的取值范围为________ 14.函数()sin cos f x x x x =+在,6ππ⎡⎤⎢⎥⎣⎦上的最大值为________. 15.函数32()22=-f x x x 在区间[1,2]-上的最大值是___________.16.sin ),()sin cos ,(0)a x dx f x x x x x a ==+≤≤,则()f x 的最大值为_____________.17.若点()()()112212,,,A x y B x y x x <是函数1,1()ln ,1x e x f x x x ⎧-+=⎨>⎩的图象上任意两点,且函数()f x 分别在点A 和点B 处的切线互相垂直,则12x x 的最小值为______.18.已知位移和时间的关系是321()2533s t t t t =++-,则2t =时的瞬时速度是_______ 19.已知()f x 是定义在R 上的奇函数,(1)0f =,且对任意0x >都有()()0x f x f x '⋅->成立,则不等式2()0x f x ⋅>的解集是______.20.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)=f ________三、解答题21.已知函数1()(2)ln 2f x a x ax x=-++, (1)当2a =时,求函数()f x 的极值; (2)当0a <时,讨论函数()f x 的单调性;(3)若对a ∀∈(-3,-2),12,x x ∈[1,3] ,不等式12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,求实数m 的取值范围.22.已知函数()ln f x x ax b =-+的图象在1x =处的切线方程为30x y +-=. (1)求a 和b 的值;(2)对0x ∀>,()e 3xf x x x m ≤-+成立,求实数m 的取值范围.23.已知函数())2f x x ax =-.(1)当1a =时,求()f x 的单调区间; (2)若()f x 在区间[]0,2的最小值为23-,求a . 24.设函数()(1)ln(1)f x x x x =-++ (1)求函数()f x 的极值; (2)若方程()f x t =在1,12⎡⎤-⎢⎥⎣⎦有两个实数解,求t 的取值范围; (3)证明:当0m n >>时,(1)(1)n mm n +<+.25.设函数()()2ln 2f x a x x a x =+-+,其中.a R ∈(1)若曲线()y f x =在点()()22f ,处切线的斜率为1,求a 的值;(2)已知导函数()f x '在区间()1e ,上存在零点,证明:当()1,x e ∈时,()2f x e >-. 26.设函数()()2ln 23f x x x =++.(1)讨论()f x 的单调性; (2)求()f x 在区间31,44⎡⎤-⎢⎥⎣⎦上的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】作出函数()f x 的图象,利用数形结合的思想判断a 的范围,找出临界点即相切时a 的取值,进而得出a 的范围. 【详解】作出()f x 的图象,如图,由图象可知: 要使()f x ax 恒成立,只需函数()g x ax =的图象恒在图象()f x 的下方, 可得1a ,设()g x ax =与函数2()22(0)f x x x x =++相切于点(),(0)P m n m <, 由()f x 的导数为22x +,可得切线的斜率为22m +, 即有22a m =+,222am m m =++, 解得2m =-,222a =-由图象可得222a -,综上可得a 的范围是[22-1]. 故选:A 【点睛】解决此类问题的关键是作出函数图象,根据数形结合的思想处理问题,本题关键找出相切时刻这一临界位置,利用直线与抛物线相切即可求解.2.B解析:B 【分析】根据条件先求解出()f x 的解析式,然后利用导数求解出()()e xf xg x =的单调递减区间. 【详解】因为()f x 为幂函数,且过点21,22⎛⎫ ⎪ ⎪⎝⎭,所以设()f x x α=,所以21=22α⎛ ⎝⎭,所以2α=,所以()2f x x =,所以2()ex x g x =,则(2)()e xx x g x '-=, 当2x >或0x <时,()0g x '<;当02x <<时,()0g x '>, 所以()()ex f x g x =的递减区间为(),0-∞和()2,+∞,故选:B. 【点睛】关键点点睛:解答本题的关键是求解完()f x 的解析式之后,根据()0f x '<去分析()f x 的单调递减区间.3.B解析:B 【分析】根据条件的结构特点构造函数,利用导数以及已知条件判断函数的单调性,然后转化求解即可. 【详解】设g (x )=()2x f x ,定义在R 上的奇函数f (x ),所以g (x )是奇函数,x >0时,g′(x )=()()()()22'x f x xf x fx -,因为函数f (x )满足2f (x )﹣xf'(x )>0(x >0),所以g′(x )>0,所以g (x )是增函数,g (g =()11f -,可得:((()2361f f f ->>. 故选B . 【点睛】本题主要考查了函数的单调性的应用,其中解答中构造新函数()()2x g x f x =,利用导数得到函数()g x 的单调性,利用函数的单调性进行比较是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.4.D解析:D 【分析】构造函数()ln (),g x xf x = 根据()g x '的符号判断函数单调性,结合函数单调性的特点,得当0x >时,f (x )<0, 当0x <时,f (x )>0,再解不等式即可. 【详解】构造函数()ln (),g x xf x =则()()()()ln ()ln f x f x x xf x g x xf x xx+''=+'=,已知当0x >时,()()ln 'x x f x f x ⋅<-,所以在x>0时,()g x '<0,即g (x )在(0,+∞)上是减函数,因为y=lnx 在(0,+∞)上是增函数,所以f (x )在(0,+∞)上是减函数已知()()f x x R ∈是奇函数,所以f (x )在(-∞,0)上也是减函数,f (0)=0, 故当0x >时,f (x )<0, 当0x <时,f (x )>0,由()()240x f x ->得224040()0()0x x f x f x ⎧⎧->-<⎨⎨><⎩⎩或 ,解得x<-2或0<x<2 故选D. 【点睛】本题考查了函数的导数与函数的单调性的关系,考查了奇函数,以及不等式的解法,关键是构造函数,根据函数单调性分析f (x )>0与f (x )<0的解集.5.D解析:D 【分析】构造函数()()xf xg x e=,用导数法得到()g x 在R 上递减,然后由()01f =,得到()01g =,再利用函数的单调性定义求解.【详解】 令()()x f x g x e=,因为()()f x f x '<, 则()()()0xf x f xg x e'-'=<, 所以()g x 在R 上递减, 又()01f =,则()01g =, 不等式()xf x e >等价于()()10xf xg e>= , 所以0x <. 故选:D 【点睛】本题主要考查函导数与函数的单调性以及函数单调性解不等式,还考查了构造函数求解问题的能力,属于中档题.6.A解析:A 【分析】根据图象判断出导函数()f x '的符号,由此求得()f x 的单调区间、极大值、极小值. 【详解】 当3x <-时,()()()10010x f x f x x ⎧+<⇒>⎨+<'⎩',()f x 递增;当31x -<<-时,()()()10010x f x f x x ⎧+>⇒<⎨+<'⎩',()f x 递减; 当12x -<<时,()()()10010x f x f x x ⎧+<⇒<⎨+>'⎩';当2x >时()()()10010x f x f x x ⎧+>⇒>⎨+>'⎩',()f x 递增; 综上:函数()f x 有极大值()3f -和极小值()2f . 故选:A 【点睛】本小题主要考查利用图象判断函数的单调性和极值,属于中档题.7.C解析:C 【分析】 利用()()'2,0f f π确定正确选项.【详解】()23sin 222cos 2202f ππππππ=+⋅=>,由此排除BD 选项. 当0x ≥时,()3sin cos 2xxf x x x =+, ()'3cos 3ln 2sin cos sin 2xx xf x x x x -⋅=+-,()'031040f =+-=>,由此排除A 选项.故选:C 【点睛】本小题主要考查函数图象识别,考查导数的运用.8.D解析:D 【分析】求出函数的导数,利用函数的单调性,推出不等式,利用基本不等式求解函数的最值,即可得结果 【详解】 解:由()32114332f x x mx x =-+-,得'2()4f x x mx =-+, 因为函数()32114332f x x mx x =-+-在区间[]1,2上是增函数, 所以240x mx -+≥在[]1,2上恒成立,得4m x x≤+恒成立因为44x x +≥=,当且仅当4x x =,即2x =时取等号,所以4m ≤, 故选:D 【点睛】此题考查导数的应用,考查函数最值的求值,考查基本不等式应用,考查转化思想,属于中档题9.D解析:D 【分析】 对()()xf xg x e =求导,由条件可判断单调性,即可依次判断每个选项的正误. 【详解】()()x f x g x e =,()()()xf x f xg x e-=''∴,当1x >时,()()0f x f x '->,即()0g x '>,故()g x 在(1,)+∞上单调递增,故A 正确,不符合题意;当1x <时,()()0f x f x '-<,即()0g x '<,故()g x 在(,1)-∞上单调递减,1x ∴=是函数()g x 的极小值点,故D 错误,符合题意;()g x 在(,0]-∞上单调递减,(0)()(0)1f g x g e∴≥==,即()1x f x e ≥,()x f x e ∴≥,故B 正确,符合题意;可知()g x 在1x =处取得极小值即最小值,无最大值,故C 正确,不符合题意.故选:D. 【点睛】本题考查导数的应用,属于中档题.10.C解析:C 【分析】可判断函数()g x 为偶函数,再利用导数可证明()g x 在[)0,+∞为增函数,利用指数函数和对数函数的单调性可得0.823log 5.12>>,从而可得三个函数值之间的大小关系.【详解】因为()()()g x xf x xf x -=--=,故()f x 为偶函数, 当0x ≥时,因为()()()0g x f x f x ''=+≥(不恒为零), 故()g x 在[)0,+∞为增函数, 又()()22log 5.1log 5.1a g g =-=,因为0.82223log 8log 5.1log 422=>>=>,所以c a b >>,故选:C. 【点睛】本题考查函数的单调性、奇偶性和指数、对数的大小比较,注意两个增函数的乘积不一定是增函数,另外函数值的大小比较一般要利用函数的单调性来处理,本题属于中档题.11.D解析:D 【分析】确定函数的定义域,求导函数,根据导函数的正负确定函数的单调性. 【详解】函数的定义域为(0,+∞) 求导函数,可得f′(x )=1+lnx 令f′(x )=1+lnx=0,可得x=1e, ∴0<x <1e 时,f′(x )<0,x >1e时,f′(x )>0 ∴在10,e ⎛⎫ ⎪⎝⎭上递减, 在1,e⎛⎫+∞ ⎪⎝⎭上递增 故选D . 【点睛】这个题目考查了导数在函数的单调性中的应用,判断函数的单调性常用的方法是:求导,根据导函数的正负得到函数的单调区间.导函数为正的区间是增区间,导函数为负的区间是减区间.12.D解析:D 【分析】由题意得出()()1122x f x x f x <,构造函数()2xg x e ax =-,可知函数()y g x =在区间()0,∞+上单调递增,可得出()20x g x e ax '=-≥对任意的0x >恒成立,利用参变量分离法可得出2x e a x ≤,利用导数求得函数()2xe h x x=在区间()0,∞+上的最小值,由此可求得实数a 的取值范围. 【详解】函数()xe f x ax x=-的定义域为()0,∞+,当21x x >时,()()1221f x f x x x <恒成立, 即()()1122x f x x f x <,构造函数()()2xg x xf x e ax ==-,则()()12g x g x <,所以,函数()2xg x e ax =-在区间()0,∞+上为增函数,则()20xg x e ax '=-≥对任意的0x >恒成立,2x ea x∴≤,令()2xe h x x=,其中0x >,则()min a h x ≤.()()212x e x h x x-'=,当01x <<时,()0h x '<,此时函数()y h x =单调递减; 当1x >时,()0h x '>,此时函数()y h x =单调递增. 所以,函数()y h x =的最小值为()()min 12e h x h ==,2e a ∴≤.因此,实数a 的取值范围是,2e ⎛⎤-∞ ⎥⎝⎦.故选:D. 【点睛】本题考查利用函数在区间上的单调性求参数,根据不等式的结构特征构造合适的函数是解题的关键,考查分析问题和解决问题的能力,属于中等题.二、填空题13.【分析】函数有只有一个极值点函数只有一个变号零点分别讨论三种情况数形结合分析整理即可得答案【详解】函数有只有一个极值点函数只有一个变号零点则易知①当时显然不合题意;②当时当时为减函数当时为增函数所以解析:[]310,3e e ⎧⎫⋃⎨⎬⎩⎭【分析】函数()f x 有只有一个极值点⇔函数()'f x 只有一个变号零点,分别讨论0k <、0k =、0k >三种情况,数形结合,分析整理,即可得答案. 【详解】函数()f x 有只有一个极值点⇔函数()'f x 只有一个变号零点,则2()(3)3(3)()x xf x e x k k x k x x x e =--+-=-',易知(3)0,(0)3f f ''==-,①当0k <时,,()0,,()0x f x x f x →-∞>→+∞>,显然不合题意; ②当0k =时,()(3)x f x e x -'=,当3x <时()0f x '<,()f x 为减函数, 当3x >时()0f x '>,()f x 为增函数, 所以3x =为函数()f x 唯一极值点,满足题意;③当0k >时,若3x =为()'f x 唯一的零点2(3)30x e x kx kx ⇒--+=,0k >只有唯一解,则3x =,可得0-=xe kx 无解,即(3)xe k x x=≠无解,设()x e h x x =,则2(1)()x e x h x x-'=,当1x <时,()0h x '<,()h x 为减函数, 当1x >时,()0h x '>,()h x 为增函数,min ()(1)h x h e ==, 所以0k e <<,经验证满足题意;④当0k >,若3x =不是()'f x 唯一的零点,()'f x 可能有2个或3个零点,当()'f x 有3个零点时候显然不合题意,当()'f x 有两个零点时,()xe h x x=有一个零点时,k e =,当()x e h x x =有两个零点时,结合题意,3x =为其中一个零点,所以33e k =,经验证满足题意;故答案为:[]310,3k e e ⎧⎫∈⋃⎨⎬⎩⎭【点睛】解题的关键是将()f x 只有一个极值点等价为函数()'f x 只有一个变号零点,分析()'f x 解析式,数形结合,可得答案,易错点为,x=3为x-3=0和0-=x e kx 共同零点时,也符合题意,属中档题.14.【分析】先求导根据单调性求函数最大值即可【详解】因为当时函数递增当时函数递减所以故答案为:【点睛】易错点睛:求函数的最值注意要把极值和端点函数值比较取其最小或最大不确定时要分类讨论解析:2π【分析】先求导,根据单调性求函数最大值即可. 【详解】因为()sin cos sin cos f x x x x x x x '=+-=,当,62x ππ⎡⎤∈⎢⎥⎣⎦时,()0f x '≥,函数()f x 递增, 当,2x π⎛⎤∈π⎥⎝⎦时,()0f x '<,函数()f x 递减, 所以max ()sin cos 22222f x f πππππ⎛⎫==+= ⎪⎝⎭. 故答案为:2π. 【点睛】易错点睛:求函数的最值注意要把极值和端点函数值比较,取其最小或最大,不确定时要分类讨论.15.8【分析】对函数求导由导数确定单调区间由单调性确定极值再比较极值与函数端点值即可确定函数最值【详解】f′(x)=6x2-4x=2x(3x-2)已知x ∈-12当2≥x>或-1≤x<0时f′(x)>0f解析:8 【分析】对函数求导,由导数确定单调区间,由单调性确定极值,再比较极值与函数端点值,即可确定函数最值. 【详解】f ′(x )=6x 2-4x = 2x (3x -2), 已知x ∈[-1,2],当2 ≥ x >23或-1 ≤ x <0时, f ′(x )>0, f (x )单调递增区间是2[1,0),(,2]3-, 当0<x <23时,f ′(x )<0, f (x )单调递减区间是2(0,)3,故函数在0x =处取极大值,f (0)=0,又f (2)=8,故 f (x )的最大值是8. 故答案为:8 【点睛】本题考查了利用导数求函数的最值,考查了计算能力,属于基础题目.16.【分析】根据定积分的几何意义以及定积分性质求得再求得利用导数分析函数单调性即可求得最大值【详解】令则又即故为半径为的半圆面积故;又是奇函数根据定积分性质则故则故当时单调递增;当时单调递减故故答案为:解析:2π【分析】根据定积分的几何意义以及定积分性质,求得a ,再求得fx ,利用导数分析函数单调性,即可求得最大值. 【详解】令m =,)n x dx =,则a m n =+,又y =222x y +=,故m的半圆面积,故212m ππ=⨯=;又y sinx =是奇函数,根据定积分性质,则0n =.故a π=.则()(),0f x xsinx cosx x π=+≤≤,()f x xcosx =',故当0,2x π⎛⎫∈ ⎪⎝⎭时,0f x,()f x 单调递增;当,2x ππ⎛⎫∈⎪⎝⎭时,0f x,()f x 单调递减.故()22max f x f ππ⎛⎫== ⎪⎝⎭. 故答案为:2π 【点睛】本题考查利用定积分的几何意义求定积分,以及定积分的性质,涉及利用导数求函数的最大值,属综合中档题.17.【分析】先判定再根据切线相互垂直可得的关系利用该关系式把转化为一元函数利用导数可求其最小值【详解】当时当时因为故所以即其中又令则当时;当时故故答案为:【点睛】本题考查导数的几何意义以及导数在函数最值解析:1e-【分析】先判定()()12,1,1,x x ∈-∞∈+∞,再根据切线相互垂直可得12,x x 的关系,利用该关系式把12x x 转化为一元函数,利用导数可求其最小值.【详解】当1x <时,()0xf x e '=-<,当1x >时,()10f x x'=>, 因为()()121f x f x ''=-,故()()12,1,1,x x ∈-∞∈+∞,所以1211x e x -⨯=-即12x x e =,其中11<x .又1121xx x x e =,令(),1tg t te t =<,则()()1,1tg t t e t '=+<,当1t <-时,()0g t '<;当11t -<<时,()0g t '>, 故()()min 11g t g e=-=-, 故答案为:1e-. 【点睛】本题考查导数的几何意义以及导数在函数最值中的应用,注意根据导数的性质确定切点的位置,而多元函数的最值问题一般可转化为一元函数的最值问题,后者可利用导数来处理.18.17【分析】先求导再根据导数的定义求得时的瞬时速度是得解【详解】则时的瞬时速度故答案为:17【点睛】本题考查导数的定义在物理中的应用函数在处的瞬时变化率称函数在处的导数解析:17 【分析】先求导,再根据导数的定义求得2t =时的瞬时速度是(2)s ',得解. 【详解】321()2533s t t t t =++-,22()45=(2)1s t t t t '∴=++++则2t =时的瞬时速度2(2)(22)117v s '==++= 故答案为:17 【点睛】本题考查导数的定义在物理中的应用函数(=)y f x 在0=x x 处的瞬时变化率称函数(=)y f x 在0=x x 处的导数.19.【分析】令可证为偶函数且为上的增函数考虑当时的解及当时的解它们的并是所求不等式的解集【详解】等价于令则当时有故为上的增函数而故当时的解为故当时的解为因故为偶函数当时等价于因为偶函数故当时的解为即当时 解析:(1,0)(1,)【分析】 令()()f xg x x=,可证()g x 为偶函数且为()0,∞+上的增函数,考虑当0x >时,()0g x >的解及当0x <时,()0g x <的解,它们的并是所求不等式的解集.【详解】2()0x f x ⋅>等价于0()0x f x ≠⎧⎨>⎩,令()()f x g x x =,则()()()2''xf x f x g x x-=, 当0x >时,有()'0g x >,故()g x 为()0,∞+上的增函数,而()10g =, 故当0x >时,()0g x >的解为()1,+∞, 故当0x >时,()0f x >的解为()1,+∞, 因()()()()f x f x g x g x x x--===-,故()g x 为偶函数, 当0x >时,()0f x >等价于()0g x <,因()g x 为偶函数,故当0x <时,()0g x <的解为()1,0-即当0x <时,()0f x >的解为()1,0-,综上,2()0x f x ⋅>的解集是(1,0)(1,),填(1,0)(1,).【点睛】如果题设中有关于函数()f x 及其导数()'f x 的不等式,我们应具体该式的形式构建新函数并且新函数的单调性可根据题设中的不等式得到,构建新函数时可借鉴导数的运算规则.20.-1【解析】【分析】首先对函数求导然后利用方程思想求解的值即可【详解】由函数的解析式可得:令可得:则【点睛】本题主要考查导数的运算法则基本初等函数的导数公式方程的数学思想等知识意在考查学生的转化能力解析:-1 【解析】 【分析】首先对函数求导,然后利用方程思想求解()'1f 的值即可. 【详解】由函数的解析式可得:()()1'2'1f x f x=+, 令1x =可得:()()1'12'11f f =+,则()'11f =-. 【点睛】本题主要考查导数的运算法则,基本初等函数的导数公式,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)极小值为4,无极大值(2)答案见解析(3)133m ≤- 【分析】(1)利用导数可求得结果; (2)求导后,令()0f x '=得1x a =-或12x =,对1a -与12的大小分类讨论可求得结果;(3)转化为12max (ln3)2ln3()()m a f x f x +->-1max 2min ()()f x f x =-,根据(2)中的单调性求出1max ()f x 和2min ()f x 代入后得2(4)03m a +->对a ∀∈(-3,-2)恒成立,列式23(4)0322(4)03m m ⎧-+-≥⎪⎪⎨⎪-+-≥⎪⎩可解得结果. 【详解】(1)当2a =时,1()4f x x x =+(0)x >,222141()4x f x x x-'=-=, 当102x <<时,()0f x '<,当12x >时,()0f x '>,所以()f x 在1(0,)2上递减,在1(,)2+∞上递增, 所以()f x 在12x =处取得极小值1()42f =,无极大值.(2)当0a <时,1()(2)ln 2f x a x ax x=-++,定义域为(0,)+∞, 221()2a f x a x x -=-+'222(2)1ax a x x+--=2(1)(21)ax x x +-=, 令()0f x '=得1x a =-或12x =, 当112a ->,即20a -<<时,由()0f x '<得102x <<或1x a >-,由()0f x '>得112x a<<-, 所以()f x 在1(0,)2和1(,)a -+∞上单调递减,在11(,)2a-上单调递增, 当112a -=,即2a =-时,22(21)()x f x x--'=0≤,所以()f x 在(0,)+∞上单调递减, 当112a -<,即2a <-时,由()0f x '<得10x a<<-或12x >,由()0f x '>得112x a -<<, 所以()f x 在1(0,)a -和1(,)2+∞上单调递减,在11(,)2a -上单调递增, (3)由(2)可知对a ∀∈(-3,-2),()f x 在[1,3]上单调递减,因为不等式12(ln 3)2ln 3|()()|m a f x f x +->-恒成立,等价于12max (ln3)2ln3()()m a f x f x +->-1max 2min ()()f x f x =-, 而1max ()(1)12f x f a ==+,2min 1()(3)(2)ln 363f x f a a ==-++, 所以1(ln 3)2ln 312(2)ln 363m a a a a +->+----, 即2(4)03m a +->对a ∀∈(-3,-2)恒成立, 所以23(4)0322(4)03m m ⎧-+-≥⎪⎪⎨⎪-+-≥⎪⎩,解得133m ≤-.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .22.(1)2a =,4b =;(2)3m ≥. 【分析】 (1)求导()1f x a x'=-,再根据函数()f x 的图象在1x =处的切线方程为30x y +-=,由()12f a b =-+=,()111f a '=-=-求解.(2)将对0x ∀>,()e 3xf x x x m ≤-+成立,转化为ln 4x m x x xe ≥+-+恒成立,令()ln 4x g x x x xe =+-+,0x >,用导数法求得其最大值,由()maxm g x ≥求解. 【详解】(1)因为()ln f x x ax b =-+, 所以()1f x a x'=-, 又因为函数()f x 的图象在1x =处的切线方程为30x y +-=, 所以()12f a b =-+=,()111f a '=-=-, 解得2a =,4b =.(2)因为对0x ∀>,()e 3xf x x x m ≤-+成立,所以ln 4x m x x xe ≥+-+恒成立,令()ln 4xg x x x xe =+-+,0x >则()()()()11111x x x xe g x x e xx+-'=+-+=,设()00g x '=,00x >,则01x ex =,从而00ln x x =-, 因为()13102g ⎛'=> ⎝⎭,()()1210g e '=-<, 所以()()1102g g '⋅<,因为()g x '的图象在1,12⎡⎤⎢⎥⎣⎦上是不间断的,所以01,12x ⎛⎫∃∈⎪⎝⎭,满足()00g x '=, 当()00,x x ∈时,()0g x '>,()g x 单调递增; 当()0,x x ∈+∞时,()0g x '<,()g x 单调递减.从而()g x 在0x x =时取得最大值()00000ln 4143xg x x x x e =+-+=-+=,所以m 的取值范围为3m ≥. 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.23.(1)单调递减区间为30,5⎡⎫⎪⎢⎣⎭,单调递增区间为3,5⎛⎫+∞ ⎪⎝⎭;(2)53. 【分析】(1)由1a =得()5322f x x x =-,0x ≥,对函数求导,解对应的不等式,即可得出单调区间;(2)先对函数求导,分别讨论0a ≤,3025a <≤,325a >三种情况,利用导数的方法研究函数在区间[]0,2上的单调性,求出最值,列出等式求解,即可得出结果. 【详解】(1)当1a =时,())53222f x x x x x =-=-,0x ≥,所以())3122535322f x x x x '=-=-, 由()0f x '>可得35x >;由()0f x '<可得305x ≤<,所以函数()f x 的单调递减区间为30,5⎡⎫⎪⎢⎣⎭,单调递增区间为3,5⎛⎫+∞ ⎪⎝⎭;(2)因为())53222f x x ax x ax =-=-,[]0,2x ∈,所以())3122535322f x x ax x a '=-=-,由()0f x '=得35x a =;若0a ≤时,())530f x x a '-≥在[]0,2上恒成立,所以()f x 在[]0,2上单调递增, 最小值为()00f =不满足题意;若3025a <≤,即1003a <≤时,当30,5x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,则函数()f x 单调递减;当3,25x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,则函数()f x 单调递增;所以()222min 393625255253f x f a a a a ⎛⎫⎫==-=-=- ⎪⎪⎝⎭⎭,则29125a , 即52315a ⎛⎫= ⎪⎝⎭,所以53a =,满足1003a <≤; 若325a >,即103a >时,()0f x '<在[]0,2上恒成立,所以函数()f x 在[]0,2上单调递减,因此()())min 22423f x f a =-=-,解得2a =,不满足103a >;综上,53a =. 【点睛】 方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.24.(1)0;(2)11[ln 2,0)22-+;(3)证明见详解. 【分析】 (1)首先明确定义域,再求导()ln(1)f x x '=-+,所以()f x 在()1,0-上单调递增,在()0,∞+上单调递减,即可得解;(2)实际研究直线x t =与函数()y f x =图像交点有两个的情况,由(1)知()f x 在1[,0]2-上单调递增,在[0,1]上单调递减,且1(1)()2f f <-,所以当11[,ln 2,0)22t ∈-+时,方程()f x t =有两解.(3)首先将两变量分离,这要用到取对数,即ln(1)ln(1),n m m n +<+因此只需证ln(1)ln(1)m n m n++<,即证ln(1)(),(0)x g x x x +=>为单调减函数,可利用导数2ln(1)1()x x x g x x -+'+=,再结合(1)的结论可证.【详解】(1)由()(1)ln(1)f x x x x =-++,定义域为()1,-+∞,()ln(1)f x x '=-+,()ln(1)00f x x x '=-+=⇒=,当10x -<<时,()()0,f x f x '>单调递增,当0x >时,()()0,f x f x '<单调递减,所以0x =为函数的极大值点,则函数()f x 的极值为(0)0(01)ln(01)0f =-++=.(2)由(1)知,()f x 在1[,0]2-上单调递增,在(]0,1上单调递减, 又111(0)0,(1)1ln 4,()ln 2222f f f ==--=-+, ∴ 135(1)()ln 20222f f --=-<. ∴ 当11[ln 2,0)22t ∈-+时,方程()f x t =有两解. (3)∵ 0m n >>.∴ 要证:(1)(1)n m m n +<+只需证ln(1)ln(1)n m m n +<+, 只需证:ln(1)ln(1)m n m n++<.设ln(1)(),(0)x g x x x+=>, 则22ln(1)(1)ln(1)1()(1)x x x x x x g x x x x -+-+++=+'=. 由(1)知()(1)ln(1)f x x x x =-++在(0,)+∞单调递减,又()00f =,∴ (1)ln(1)0x x x -++<,即()g x 是减函数,而m n >.∴ ()()g m g n <,故原不等式成立.【点睛】关键点睛:要证:(1)(1)n m m n +<+只需证ln(1)ln(1)n m m n +<+,只需证:ln(1)ln(1)m n m n ++<,构造函数ln(1)(),(0)x g x x x+=>是解决本题的关键. 25.(1)2a =;(2)证明见解析.【分析】(1)由导数的几何意义运算即可得解;(2)结合导函数的零点可得02a x =,再由函数()f x 的单调性,进而可转化条件为()20000min 2ln 2f x x x x x =--,设()()22,21ln ,g x x x e x x x =--∈,通过导数证明()2g x e >-即可得证.【详解】(1)因为()()2ln 2f x a x x a x =+-+,所以()()22a f x x a x'=+-+, 所以()()42212a f a '=+-+=,解得2a =; (2)证明:由题意,()()()()1222x x a a f x x a x x--'=+-+=, 因为导函数()f x '在区间()1,e 上存在零点,设零点为()00,1,x x e ∈,则()0222,e a x ∈=,所以()f x 在()01,x 上单调递减,在()0,x e 上单调递增,故()()()()0220000i 0000m n ln 22ln 22a x x a x x x f x f x x x x +-+=+-+== 200002ln 2x x x x =--,设()()22,21ln ,g x x x e x x x =--∈,则()2ln 2g x x x '=-, 设()()()2ln 21,,h x g x x e x x '==-∈,则()220h x x'=-<,()h x 单调递减,又()()112h g '==-,故()2ln 20g x x x '=-<在()1,e 上恒成立,故()g x 单调递减, 所以()()2g x g e e >=-, 故当()1,x e ∈时,()2f x e >-. 【点睛】关键点点睛:解决本题的关键是利用导函数的零点即函数的极值点转化条件为证明2200002ln 2x x x x e -->-.26.(1)单调递增区间为31,1,,22⎛⎤⎡⎫---+∞ ⎪⎥⎢⎝⎦⎣⎭;单调递减区间为11,2⎛⎫-- ⎪⎝⎭;(2)最大值为17ln 162+,最小值为1ln 24+. 【分析】(1)先根据对数定义求出函数的定义域,然后令()0f x '=求出函数的稳定点,当导函数大于0得到函数的增区间,当导函数小于0得到函数的减区间,即可得到函数的单调区间;(2)根据(1)知()f x 在区间31,44⎡⎤-⎢⎥⎣⎦的最小值为12f ⎛⎫- ⎪⎝⎭求出得到函数的最小值,又因为31044f f ⎛⎫⎛⎫--< ⎪ ⎪⎝⎭⎝⎭,得到()f x 在区间31,44⎡⎤-⎢⎥⎣⎦的最大值为14f ⎛⎫ ⎪⎝⎭求出得到函数的最大值.【详解】解:(1)由题意得()()141232223232x x f x x x x x ⎛⎫++ ⎪⎛⎫⎝⎭'=+=>- ⎪++⎝⎭. 令()0f x '≥,解得21x ≥-或312x -<≤-;令()0f x '<,解得112x -<<-. 所以函数()f x 单调递增区间为31,1,,22⎛⎤⎡⎫---+∞ ⎪⎥⎢⎝⎦⎣⎭;单调递减区间为11,2⎛⎫-- ⎪⎝⎭. (2)由(1)可得:函数()f x 在区间31,42⎡⎤--⎢⎥⎣⎦内单调递减,在11,24⎡⎤-⎢⎥⎣⎦内单调递增. 所以当12x =-时,函数()f x 取得最小值11ln 224f ⎛⎫-=+ ⎪⎝⎭. 又393ln 4162f ⎛⎫-=+ ⎪⎝⎭,117ln 4162f ⎛⎫=+ ⎪⎝⎭,而319317131ln ln ln ln 044162162272f f ⎛⎫⎛⎫--=+--=+<+= ⎪ ⎪⎝⎭⎝⎭, 所以当14x =时,函数()f x 取得最大值为:17ln 162+.即()f x 在区间31,44⎡⎤-⎢⎥⎣⎦上的最大值为17ln 162+,最小值为1ln 24+. 【点睛】 利用导数研究函数的单调性;利用导数求闭区间上函数的最值,属于中档题.。

人教版高中数学选修二第二单元《一元函数的导数及其应用》测试题(答案解析)(1)

人教版高中数学选修二第二单元《一元函数的导数及其应用》测试题(答案解析)(1)

一、选择题1.已知函数()()221sin 1x xf x x ++=+,其中()f x '为函数()f x 的导数,则()()()()2020202020192019f f f f ''+-+--=( )A .0B .2C .2019D .20202.已知函数2()ln f x a x x =+,0a >,若曲线()y f x =在点(1,1)处的切线是曲线()y f x =的所有切线中斜率最小的,则a =( )A .12B .1CD .23.已知()21ln (0)2f x a x x a =+>,若对任意两个不等的正实数1x ,2x ,都有()()12122f x f x x x ->-恒成立,则a 的取值范围是( )A .(]0,1B .()1,+∞C .()0,1D .[)1,+∞4.已知函数()=x e xf x x+,1(ln )a f e =,1()2b f =,1()c f e =,则( )A .a b c >>B .c b a >>C .b a c >>D .b c a >>5.记函数()cos2f x x =的导函数为()f x ',则函数()()()g x x f x '=+在[0,]x π∈内的单调递增区间是( )A .0,2π⎡⎤⎢⎥⎣⎦B .,2ππ⎡⎤⎢⎥⎣⎦C .511,1212ππ⎡⎤⎢⎥⎣⎦D .5,12ππ⎡⎤⎢⎥⎣⎦6.设函数()21ln 2f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为( ) A .()1,0- B .()1,-+∞ C .()0,∞+ D .()(),10,-∞-+∞7.已知函数()2ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .8.已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-9.已知定义在R 上的函数()f x 满足(3)16f =,且()f x 的导函数'()41f x x <-,则不等式2()21f x x x <-+的解集为( ) A .{}|33x x -<< B .{}|3x x >- C .{}|3x x >D .{|3x x <-或3x10.已知函数()f x 的导函数()f x ,且满足2()32(2)f x x xf '=+,则(5)f '=( ) A .5B .6C .7D .-1211.已知函数2()sin cos f x x x x x =++,则不等式1(ln )(ln )2(1)0f x f f x+-<的解集为( ) A .(,)e +∞B .(0,)eC .1(,)e eD .1(0,)(1,)e e12.已知定义在(0,)+∞上的函数()f x 的导函数()f x '满足()1xf x '>,则( ) A .()()21ln 2f f -< B .()()21ln 2f f -> C .()()211f f -<D .()()211f f ->二、填空题13.已知函数()f x 是定义在R 上的偶函数,其导函数为()f x ',若对任意的正实数,()()()()220,xf x f x g x x f x '+<=,则不等式()(12x g g ->的解集为______ 14.已知()f x 是定义在R 上的奇函数,当0x >时,()()xf x f x '<,若()10f =,则不等式()0f x x>的解集为________. 15.函数32()22=-f x x x 在区间[1,2]-上的最大值是___________.16.若点()()()112212,,,A x y B x y x x <是函数1,1()ln ,1x e x f x x x ⎧-+=⎨>⎩的图象上任意两点,且函数()f x 分别在点A 和点B 处的切线互相垂直,则12x x 的最小值为______. 17.设(1+ax )2020=a 0+a 1x +a 2x 2+……+a 2019x 2019+a 2020x 2020,若a 1+2a 2+3a 3+…+2019a 2019+2020a 2020=2020a ,则实数a =_______. 18.已知函数()331xf x x e =++,其导函数为()f x ',则()()()()2020202020192019f f f f ''+-+--的值为_______.19.已知函数()f x axlnx =,()x 0,∞∈+,其中a 为实数,()f'x 为()f x 的导函数,若()f'e 2(e 2.71828==⋯是自然对数的底数),则a 的值为______.20.函数sin x y x e =+在点(0,1)处的切线方程是__________.三、解答题21.已知函数()1ex f x a +=,()ln1xg x a=-,其中0a >. (1)若1a =,在平面直角坐标系xOy 中,过坐标原点O 分别作函数()y f x =与()y g x =的图象的切线1l ,2l ,求1l ,2l 的斜率之积;(2)若()()f x g x ≥在区间()0,∞+上恒成立,求a 的最小值. 22.已知函数()331f x x x =-+.(1)求曲线()y f x =在点()()0,0f 处的切线方程; (2)求函数()f x 的单调区间.(3)求函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值和最小值.23.设函数32()23(1)6f x x a x ax b =-+++,其中,a b ∈R .(1)若曲线()y f x =在(1,(1))f --的切线方程为123y x =+,求a ,b 的值; (2)若()f x 在3x =处取得极值,求a 的值; (3)若()f x 在(,0)-∞上为增函数,求a 的取值范围.24.已知函数()3ln 42x a f x x x =+--,其中a R ∈,且曲线()y f x =在点()()1,1f 处的切线垂直于直线12y x =. (1)求a 的值;(2)求函数()f x 的单调区间.25.已知函数()ln f x ax x b =+,()23g x x kx =++,曲线()y f x =在()()1,1f 处的切线方程为1y x =-,a ,b ,R k ∈.(1)若函数()f x 在(),b m 上有最小值,求a ,b 的值及m 的取值范围; (2)当1,x e e⎡⎤∈⎢⎥⎣⎦时,其中 2.718e =⋅⋅⋅,e 为自然对数的底数,若关于x 的不等式()()20f x g x +≥有解,求k 的取值范围.26.已知函数f (x )=ax 3+bx +c 在x =2处取得极值为c ﹣16. (1)求a 、b 的值;(2)若f (x )有极大值28,求f (x )在[﹣3,3]上的最大值和最小值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】将函数解析式变形为()22sin 11x xf x x +=++,求得()f x ',进而可求得所求代数式的值. 【详解】()()222221sin 12sin 2sin 1111x x x x x x x f x x x x ++++++===++++,所以,()()()()()2222020sin 202022020sin 202020202020222020120201f f ⨯-+-⨯++-=++=+-+, ()()()()()2222cos 122sin 1x x x x x f x x++-+'=+,函数()f x '的定义域为R ,()()()()()2222cos 122sin 1x x x x x f x x ⎡⎤⎡⎤⎡⎤+-⋅-++-+-⎣⎦⎣⎦⎣⎦-=⎡⎤-+⎣⎦'()()()()()2222cos 122sin 1x x x x x f x x ++-+'==+, 所以,函数()f x '为偶函数,因此,()()()()20202020201920192f f f f ''+-+--=. 故选:B. 【点睛】结论点睛:本题考查利用函数奇偶性求值,关于奇函数、偶函数的导函数的奇偶性,有如下结论:(1)可导的奇函数的导函数为偶函数; (2)可导的偶函数的导函数为奇函数. 在应用该结论时,首先应对此结论进行证明.2.D解析:D 【分析】()y f x =的所有切线的斜率即为()2af x x x'=+(0x >)的值域,由题意知当1x =时()f x '取得最小值,由基本不等式可知()2a x f x x '=+≥=,当且仅当2ax x =即22a x =时()f x '取得最小值,可得2a = 【详解】 因为2()ln f x a x x =+,定义域为()0,∞+,所以()2af x x x'=+, 由导数的几何意义可知:当1x =时()f x '取得最小值, 因为0a >,0x >,所以()2a x f x x '=+≥=, 当且仅当2ax x=即22a x =时()f x '取得最小值, 又因为1x =时()f x '取得最小值,所以2212a =⨯=, 故选:D 【点睛】关键点点睛:本题的关键点是由导数的几何意义可得当1x =时()2af x x x'=+取得最小值,再利用基本不等式求()f x '取得最小值时满足2ax x=即22a x =,即可求出a 的值. 3.D解析:D 【分析】根据条件()()12122f x f x x x ->-可变形为112212()2[()]20f x x f x x x x --->-,构造函数()21()2ln ()202g x f x x a x a x x =-=+>-,利用其为增函数即可求解. 【详解】 根据1212()()2f x f x x x ->-可知112212()2[()]20f x x f x x x x --->-, 令()21()2ln ()202g x f x x a x a x x =-=+>- 由112212()2[()]20f x x f x x x x --->-知()g x 为增函数, 所以()()'200,0ag x x x a x=+-≥>>恒成立, 分离参数得()2a x x ≥-,而当0x >时,()2x x -在1x =时有最大值为1, 故1a ≥. 故选:D 【点睛】关键点点睛:本题由条件()()12122f x f x x x ->-恒成立,转化为112212()2[()]20f x x f x x x x --->-恒成立是解题的关键,再根据此式知函数()21()2ln ()202g x f x x a x a x x =-=+>-为增函数,考查了推理分析能力,属于中档题. 4.B解析:B 【分析】求出()f x 的导数,根据导数判断出函数的单调性,再根据111ln ,,2e e的大小关系即可判断. 【详解】()=x e xf x x+,0x ≠()()()()2211xx x e x e x e x f x x x+-+-'∴==, 当(),0x ∈-∞时,()0f x '<,则()f x 单调递减, 当()0,1x ∈时,()0f x '<,则()f x 单调递减, 当()1,x ∈+∞时,()0f x '>,则()f x 单调递增,11012e <<<,112f f e ⎛⎫⎛⎫∴< ⎪ ⎪⎝⎭⎝⎭,且1112f ⎛⎫=> ⎪⎝⎭, 1ln 10e =-<,()11ln 111f f e e ⎛⎫∴=-=-< ⎪⎝⎭,111ln 2f f f e e ⎛⎫⎛⎫⎛⎫∴>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即c b a >>.故选:B. 【点睛】易错点睛:本题考查利用函数单调性判断大小,注意函数的定义域为{}0x x ≠,故单调区间有3个,故在判断1(ln )a f e=的大小的时候应从函数值判断,而不能直接利用单调性.5.C解析:C 【分析】先对函数()f x 求导,再利用辅助角公式化简,然后利用正弦函数图像和性质即可分增区间. 【详解】()cos2f x x =, ()'2sin 2f x x ∴=-,2()2sin 24sin 23g x x x x π⎛⎫=-=+ ⎪⎝⎭,令2222232k x k πππππ-+≤+≤+, 解得71212k x k ππππ-+≤≤-+, ()g x ∴在[]0,π内的递增区间为511,1212ππ⎡⎤⎢⎥⎣⎦. 故选:C . 【点睛】本题主要考查的是正弦复合函数的单调性以及单调区间的求解,以及复合函数的导数的求法,熟练掌握正弦函数图像和性质是解决本题的关键,是中档题.6.B解析:B 【详解】()21ln 2f x x ax bx =--,,,由得,()()()1111ax x f x ax a x x+-=-+-=-', 若,由,得,当时,,此时单调递增;1x > 时,,此时单调递减;所以是的极大值点.若,则由,得或.时的极大值点, ,解得.综上:,的取值范围时.故选B .【点晴】本题是一道关于函数极值的题目,考虑运用导数求函数的极值.对求导,得,由得,将代入到导函数中,可得()()()1111ax x f x ax a x x+-=-+-=-',接下来分和两种情况,结合函数的单调性,分别求出的极大值点,从而建立的不等式求解即可.7.A解析:A 【分析】利用函数的定义域和函数的值域排除BD ,通过函数的单调性排除C ,推出结果即可. 【详解】令()ln 1g x x x =--,则11()1x g x x x-'=-=, 由()0g x '>得1x >,即函数()g x 在(1,)+∞上单调递增, 由()0g x '<得01x <<,即函数()g x 在(0,1)上单调递减, 所以当1x =时,()()min 10g x g ==, 于是对任意(0,1)(1,)x ∈+∞,有()0g x >,则()0f x >,故排除BD ,因为函数()g x 在()0,1单调递减,则函数()f x 在()0,1递增,故排除C.【点睛】本题考查利用导数对函数图象辨别,属于中档题.8.D解析:D 【分析】作出函数()y f x =的图像,和函数y ax =的图像,结合图像可知直线y ax =介于l 与x 轴之间,利用导数求出直线l 的斜率,数形结合即可求解. 【详解】由题意可作出函数()y f x =的图像,和函数y ax =的图像.由图像可知:函数y ax =的图像是过原点的直线, 当直线介于l 与x 轴之间符合题意,直线l 为曲线的切线,且此时函数()y f x =在第二象限的部分的解析式为22y x x =-,求其导数可得22y x '=-,因为0x ≤,故2y '≤-, 故直线l 的斜率为2-,故只需直线y ax =的斜率a []2,0∈-. 故选:D 【点睛】本题考查了不等式恒成立求出参数取值范围,考查了数形结合的思想,属于中档题.9.C解析:C 【分析】根据题意,设2()()21g x f x x x =-+-,求导分析可得()0g x '<,即函数()g x 在R 上为减函数,则原不等式可以转化为()()3g x g <,结合函数的单调性分析可得答案.解:根据题意,设2()()21g x f x x x =-+-,其导数()()41g x f x x '='-+, 又由()41f x x '<-,即()410f x x '-+<, 则()0g x '<,即函数()g x 在R 上为减函数,又由f (3)16=,则g (3)f =(3)18310-+-=, ()()22()21()2103f x x x f x x x g x g <-+⇒-+-<⇒<,又由函数()g x 为减函数,则有3x >,则不等式2()21f x x x <-+的解集为{|3}x x >; 故选:C . 【点睛】本题考查函数的导数与函数单调性的关系,涉及不等式的求解,根据条件构造函数,利用函数的单调性和导数之间的关系是解决本题的关键,属于中档题.10.B解析:B 【分析】将()2f '看出常数利用导数的运算法则求出()f x ',令2x =求出()2f '代入()f x ',令5x =求出()5f '即可.【详解】 解:()2()322f x x xf '=+,()()622f x x f '∴=+', ()(2)1222f f '∴=+'(2)12f '∴=- ()624f x x '∴=- (5)65246f '∴=⨯-=故选B . 【点睛】本题主要考查了导数的运算法则,解题的关键是弄清()2f '是常数,属于基础题.11.C解析:C 【分析】先判断出()f x 为R 上的偶函数,再利用当0x >时,()'0f x >得到函数的单调性,从而可解原不等式. 【详解】因为()()()()22()sin cos sin cos f x x x x x x x x x f x -=--+-+-=++=,所以()f x 为R上的偶函数,又1(ln )(ln )2(1)0f x f f x+-<等价于(ln )(ln )2(1)0f x f x f +--<即:(ln )(1)f x f <,()'()sin cos sin 22cos f x x x x x x x x =+-+=+,当0x >时,()'0f x >,故()f x 在()0,∞+为增函数,故(ln )(1)f x f <等价于ln 1x <即1ln 1x -<<即1x e e <<,故不等式的解集为1e e ⎛⎫⎪⎝⎭,,故选C.【点睛】对于偶函数()f x ,其单调性在两侧是相反的,并且()()()f x fx f x ==-,对于奇函数()g x ,其单调性在两侧是相同的.另外解函数不等式要利用函数的单调性去掉对应法则f .12.B解析:B 【解析】分析:根据题意,由()1xf x '>可得()()'1f x lnx x='>,构造函数()()g x f x lnx =-,可得()()()110xf x g x f x x x-=-=''>',故()g x 单调递增,根据单调性可得结论. 详解:令()(),0g x f x lnx x =->, ∴()()()11xf x g x f x x x=''-'-=, ∵()1xf x '>, ∴()0g x '>,∴函数()g x 在()0,+∞上单调递增, ∴()()21g g >,即()()2211f ln f ln ->-, ∴()()21ln2f f ->. 故选B .点睛:本题考查对函数单调性的应用,考查学生的变形应用能力,解题的关键是根据题意构造函数()()g x f x lnx =-,通过判断函数的单调性得到函数值间的关系,从而达到求解的目的.二、填空题13.【分析】根据条件可得函数为偶函数且在单调递减从而可得不等式【详解】当时且为偶函数在单调递减解得:故答案为:【点睛】求解的关键在于构造什么样的函数再利用导数研究函数的单调性进而将不等式进行等价转化解析:1322x x ⎧⎫<<⎨⎬⎩⎭【分析】根据条件可得函数()g x 为偶函数,且在(0,)+∞单调递减,从而可得不等式. 【详解】当0x >时,()''(()2())0g x x xf x f x =+<,且()g x 为偶函数,∴()g x 在(0,)+∞单调递减, ∴()(()111122222x x x g g g g--->⇔>⇔<112x ⇔-<, 解得:1322x <<, 故答案为:1322x x ⎧⎫<<⎨⎬⎩⎭. 【点睛】求解的关键在于构造什么样的函数,再利用导数研究函数的单调性,进而将不等式进行等价转化.14.【分析】令对其求导由时可知从而在上单调递减由的奇偶性可得是定义域上的偶函数从而可得出在上的单调性再结合可求出的解集【详解】由题意令则因为时则故在上单调递减又是定义在上的奇函数所以所以即是上的偶函数根 解析:()()1,00,1-【分析】 令()()f xg x x=,对其求导,由0x >时,()()xf x f x '<,可知()0g x '<,从而()g x 在()0,∞+上单调递减,由()f x 的奇偶性,可得()g x 是定义域上的偶函数,从而可得出()g x 在(),0-∞上的单调性,再结合()()110g g -==,可求出()0g x >的解集.【详解】 由题意,令()()f x g x x =,则()()()2xf x f x g x x'-'=, 因为0x >时,()()xf x f x '<,则()()()20xf x f x g x x'-'=<,故()g x 在()0,∞+上单调递减,又()f x 是定义在R 上的奇函数,所以()()f x f x -=-, 所以()()()()()f x f x f x g x g x x x x---====--,即()g x 是()(),00,-∞⋃+∞上的偶函数,根据偶函数的对称性,可知()g x 在(),0-∞上单调递增,且()()()11101f g g -===,所以()()1,00,1x ∈-时,()0g x >.故答案为:()()1,00,1-.【点睛】关键点点睛:本题考查不等式的解集,解题关键是求出函数的单调性.本题通过构造函数()()f xg x x=,求导并结合当0x >时,()()xf x f x '<,可求出函数()g x 在()0,∞+上的单调性,再结合函数的奇偶性,可求出()g x 在定义域上的单调性.考查了学生的运算求解能力,逻辑推理能力,属于中档题.15.8【分析】对函数求导由导数确定单调区间由单调性确定极值再比较极值与函数端点值即可确定函数最值【详解】f′(x)=6x2-4x=2x(3x-2)已知x ∈-12当2≥x>或-1≤x<0时f′(x)>0f解析:8 【分析】对函数求导,由导数确定单调区间,由单调性确定极值,再比较极值与函数端点值,即可确定函数最值. 【详解】f ′(x )=6x 2-4x = 2x (3x -2), 已知x ∈[-1,2],当2 ≥ x >23或-1 ≤ x <0时, f ′(x )>0, f (x )单调递增区间是2[1,0),(,2]3-, 当0<x <23时,f ′(x )<0, f (x )单调递减区间是2(0,)3,故函数在0x =处取极大值,f (0)=0,又f (2)=8,故 f (x )的最大值是8. 故答案为:8 【点睛】本题考查了利用导数求函数的最值,考查了计算能力,属于基础题目.16.【分析】先判定再根据切线相互垂直可得的关系利用该关系式把转化为一元函数利用导数可求其最小值【详解】当时当时因为故所以即其中又令则当时;当时故故答案为:【点睛】本题考查导数的几何意义以及导数在函数最值解析:1e-【分析】先判定()()12,1,1,x x ∈-∞∈+∞,再根据切线相互垂直可得12,x x 的关系,利用该关系式把12x x 转化为一元函数,利用导数可求其最小值.【详解】当1x <时,()0xf x e '=-<,当1x >时,()10f x x'=>, 因为()()121f x f x ''=-,故()()12,1,1,x x ∈-∞∈+∞,所以1211x e x -⨯=-即12x x e =,其中11<x . 又1121xx x x e =,令(),1tg t te t =<,则()()1,1tg t t e t '=+<,当1t <-时,()0g t '<;当11t -<<时,()0g t '>, 故()()min 11g t g e=-=-, 故答案为:1e-. 【点睛】本题考查导数的几何意义以及导数在函数最值中的应用,注意根据导数的性质确定切点的位置,而多元函数的最值问题一般可转化为一元函数的最值问题,后者可利用导数来处理.17.0【分析】结合所求式子与已知的式子特点可以对原函数求导然后利用赋值法求解即可【详解】对已知的式子两边同时求导可得:2020a (1+ax )2019令x =1则:2020a (1+a )2019=a1+2a2解析:0 【分析】结合所求式子与已知的式子特点,可以对原函数求导,然后利用赋值法求解即可. 【详解】对已知的式子两边同时求导可得:2020a (1+ax )2019220191232020232020a a x a x a x =++++,令x =1则:2020a (1+a )2019=a 1+2a 2+3a 3+…+2020a 2020, 又因为:a 1+2a 2+3a 3+…+2019a 2019+2020a 2020=2020a , 所以(1+a )2019=1,所以a =0. 故答案为:0. 【点睛】本题考查了二项式定理的系数的性质、赋值法的应用.同时考查了学生的运算能力,属于中档题.18.3【分析】根据解析式可得到解析式可求得;求导后可得到从而代入的值可求得结果【详解】故答案为:【点睛】本题考查根据函数的性质求解函数值的问题涉及到导数的运算关键是能够通过函数解析式得到原函数和导函数的解析:3 【分析】根据()f x 解析式可得到()f x -解析式,可求得()()3f x f x -+=;求导后可得到()()f x f x ''-=,从而代入x 的值可求得结果.【详解】()333311x x x e f x x x e e --=-=-++ ()()3f x f x ∴-+=()()202020203f f ∴+-=()()222223333332121xx x x x x x e e f x x x x e e e e e ---'=+=+=-++++++ ()()f x f x ''∴-= ()()201920190f f ''∴--= ()()()()20202020201920193f f f f ''∴+-+--=故答案为:3 【点睛】本题考查根据函数的性质求解函数值的问题,涉及到导数的运算,关键是能够通过函数解析式得到原函数和导函数的性质.19.1【分析】根据题意求出函数的导数将代入计算可得解可得a 的值即可得答案【详解】根据题意函数则函数若则解可得;故答案为1【点睛】本题考查导数的计算关键是掌握导数的计算公式属于基础题解析:1 【分析】根据题意,求出函数()'f x 的导数,将x e =代入计算可得()'ln 22f e a e a a =+==,解可得a 的值,即可得答案. 【详解】根据题意,函数()ln f x ax x =,则函数()()()''ln ln 'ln f x a x x ax x a x a =+=+, 若()'2f e =,则()'ln 22f e a e a a =+==, 解可得1a =; 故答案为1. 【点睛】本题考查导数的计算,关键是掌握导数的计算公式,属于基础题.20.【解析】分析:求出函数的导数求得切线的斜率由斜截式方程即可得到所求切线的方程详解:的导数为在点(01)处的切线斜率为即有在点(01)处的切线方程为故答案为点睛:近几年高考对导数的考查几乎年年都有利用解析:210x y -+=【解析】分析:求出函数sin xy x e =+的导数,求得切线的斜率,由斜截式方程,即可得到所求切线的方程.详解:sin x y x e =+的导数为'cos x y x e =+, 在点(0,1)处的切线斜率为0cos02k e =+=, 即有在点(0,1)处的切线方程为210x y -+=. 故答案为210x y -+=.点睛:近几年高考对导数的考查几乎年年都有,利用导数的几何意义,求曲线的切线方程是导数的重要应用之一,曲线()y f x =在点0x 的导数0'()f x 就是曲线在该点的切线的斜率,我们通常用导数的这个几何意义来研究一些与曲线的切线有关的问题,用导数求切线方程的关键在于求切点坐标和斜率,分清是求在曲线某点处的切线方程,还是求过某点处的曲线切线方程.三、解答题21.(1)1;(2)21e. 【分析】(1)利用导数的运算法则和公式求得1()e x f x +'=,1()g x x'=,得到切线1l ,2l 的斜率∴111ex l k +=,221l k x =,根据两切线都经过原点,求得121,e x x ==,进而求得两直线的斜率之积;(2)问中是典型的无法分离参数的情况,进行转化并构造函数,1()e x F x x +=,转化为()ln 1x F x F a ⎛⎫≥- ⎪⎝⎭,分类讨论,并注意利用导数进一步研究函数()F x 的单调性,当ln 10,x a ->转化为1max ln 1e x x x x a a +⎛⎫≥-⇒≥ ⎪⎝⎭,进而再次造函数令1()ex x x ϕ+=,利用导数研究单调性并求得其最大值,即得a 的最小值. 【详解】解:(1)当1a =时,()1x f x e=+,()ln 1g x x =-设过原点O 的直线分别切()f x ,()g x 于点()111,P x y ,()222,P x y1()e x f x +'=,1()g x x'=, ∴111e x l k +=,221l k x =且11111122222e e 1e ln 11x x x x x x x x ++⎧=⎪=⎧⎪⇒⎨⎨=-⎩⎪=⎪⎩ ∴12221e 1el l k k ⋅=⋅=. (2)由1eln 1x xa a+≥-在(0,)+∞上恒成立得∵0a >,∴111eln x x a a a+≥- ln 1eln 1ln 1e (*)xx ax x x x a a a +⎛⎫⎛⎫≥-=-⋅ ⎪ ⎪⎝⎭⎝⎭令1()e x F x x +=,∴()ln1x F x F a ⎛⎫≥- ⎪⎝⎭①当ln 10xa-≤时,(*)左边0,>右边0,≤显然成立 ②当ln10,xa->注意到1()(1)e 0x F x x +'=+> ∴()F x 在(0,)+∞上∴1maxln1e x x x x a a +⎛⎫≥-⇒≥ ⎪⎝⎭ 令1()e x x x ϕ+=,11221e e 1()e ex x x x x x x ϕ++++--'==,令()0x ϕ'= 得01x <<时,()0x ϕ'>,()x ϕ↗; 当1x >时,()0x ϕ'<,()x ϕ↘ ∴max 21()(1)x e ϕϕ==,∴21a e ≥.【点睛】本题考查求曲线上某点处的切线的斜率问题和利用导数研究不等式恒成立问题,属中档题,难度一般.关键是要熟练掌握导数的运算法则和求导公式,这是一切导数问题的基础,第(2)问中将不等式整理为为ln 1eln 1ln 1e (*)xx ax x x x a a a +⎛⎫⎛⎫≥-=-⋅ ⎪ ⎪⎝⎭⎝⎭令1()e x F x x +=,转化为()ln 1x F x F a ⎛⎫≥- ⎪⎝⎭,是难点也是解决问题的关键点,多次构造函数,并利用函数思想进行转化和求解是本题的显著特点,值得好好体会.22.(1)310x y +-=;(2)()f x 的单调递增区间为(),1-∞-和()1,+∞,单调递减区间为()1,1-;(3)最大值为3,最小值为1-. 【分析】(1)对()f x 求导, ()0k f '=,计算()0f 求切点,利用点斜式即可写出切线方程; (2)令()0f x '>可得单调递增区间,令()0f x '<可得单调递减区间; (3)求出()f x 在1,22⎡⎤⎢⎥⎣⎦上单调性,即可利用单调性求出最值.【详解】()()()233311f x x x x ==+'--,()03k f '==-,因为()01f =,所以切点为()0,1,所以切线方程为()130y x -=--, 即310x y +-=,(2)由()()()2333110f x x x x '=-=+->可得1x >或1x <-,由()()()2333110f x x x x '=-=+-<可得11x -<<,所以函数()f x 的单调递增区间为(),1-∞-和()1,+∞, 单调递减区间为()1,1-,(3)由(2)知()f x 在1,12⎡⎤⎢⎥⎣⎦单调递减,[]1,2单调递增,所以31113312228f ⎛⎫⎛⎫=-⨯+=- ⎪ ⎪⎝⎭⎝⎭,()3223213f =-⨯+=, ()3113111f =-⨯+=-,所以()()min 11f x f ==- ,()()max 23f x f == , 所以函数()f x 在1,22⎡⎤⎢⎥⎣⎦上的最大值为3,最小值为1-, 【点睛】方法点睛:求函数()f x 在区间[],a b 上的最值的方法:(1)若函数在区间[],a b 上单调递增或递减,则()f a 与()f b 一个为最大值,另一个为最小值;(2)若函数在区间[],a b 内有极值,则要先求出函数在[],a b 上的极值,再与()f a ,()f b 比较,最大的为最大值,最小的为最小值;(3)函数()f x 在区间(),a b 上有唯一一个极值点,这个极值点就是最大(或最小)值点,此结论在导数的实际应用中经常用到.23.(1)0a =,4b =-;(2)3a =;(3)[0,)a ∈+∞.(1)利用导数的几何意义,可得(1)12f '-=,(1)9f -=-,计算整理,即可求得a ,b 的值;(2)令'(3)0f =,即可求得a 的值,检验可得3x =为极值点,即可得答案; (3)令'()0f x =,解得1x a =,21x =,分别求得1a <和1a ≥时,()f x 的单调区间,结合题意,分析推理,即可得答案. 【详解】(1)因为32()23(1)6f x x a x ax b =-+++,所以2()66(1)6f x x a x a '=-++,由题设可得(1)121212f a '-=+=,(1)959f a b -=-+-=-, 解得0a =,4b =-.(2)因为()f x 在3x =取得极值, 所以(3)12360f a '=-+=,解得3a =.当3a =时,'2()624186(1)(3)f x x x x x =-+=--, 令'()0f x =,解得x=1或3,所以3x =为()f x 的极值点,故3a =满足题意. (3)令()6()(1)0f x x a x '=--=, 得1x a =,21x =. 当1a <时,若(,)(1,)x a ∈-∞+∞,则()0f x '>,所以()f x 在(,)a -∞和(1,)+∞上为增函数, 故当01a ≤<时,()f x 在(,0)-∞上为增函数恒成立. 当0a <时,()f x 在(,)a -∞上为增函数,不符合题意, 当1a ≥时,若(,1)(,)x a ∈-∞+∞,则()0f x '>,所以()f x 在(,1)-∞和(,)a +∞上为增函数, 从而()f x 在(,0)-∞上也为增函数,满足题意.综上所述,当[0,)a ∈+∞时,()f x 在(,0)-∞上为增函数. 【点睛】本题考查导数的几何意义、利用导数求函数的单调区间和极值点问题,考查计算求值,分类讨论的能力,属中档题. 24.(1)54a =;(2)单调递减区间是()0,5,单调递增区间是()5,+∞. 【分析】(1)求导,使()12f '=-求解a 的值;(2)将(1)中所求a 的值代入,求解()0f x '>和()0f x '<的区间,从而得出函数()f x 的单调区间.(1)对()f x 求导得()2114a f x x x=--', 由()f x 在点()()1,1f 处的切线垂直于直线12y x =, 知()3124f a '=--=-,解得54a =. (2)由(1)知()()53ln 0442x f x x x x =+-->,则()22454x x f x x'--=, 令()0f x '=,解得1x =-或5x =,因为1x =-不在()f x 的定义域()0,∞+内,所以舍去. 当()0,5x ∈时,()0f x '<,故()f x 在()0,5内单调递减; 当()5,x ∈+∞时,()0f x '>,故()f x 在()5,+∞内单调递增. 故()f x 的单调递减区间是(0,5),单调递增区间是()5,+∞. 【点睛】本题考查导数的几何意义,考查函数单调区间的求解,难度一般.25.(1)1,0,a b =⎧⎨=⎩;1,e ⎛⎫+∞ ⎪⎝⎭;(2)2321e e k e -+≥-. 【分析】(1)求出函数的导数,得到关于a ,b 的方程组,求出a ,b 的值,解关于导函数的不等式,求出函数的最小值,进而可得m 的取值范围;(2)问题等价于不等式22ln 3x x x k x++≥-在1,x e e ⎡⎤∈⎢⎥⎣⎦上有解,设()22ln 3x x x h x x ++=-,1,x e e ⎡⎤∈⎢⎥⎣⎦,求导可得函数的最值,进而可得k 的取值范围. 【详解】(1)()()ln 1f x a x '=+,由题意得()()1011f f ⎧=⎪⎨='⎪⎩,解得:10a b =⎧⎨=⎩, 故()ln 1f x x '=+, 当()0f x '>,即1x e>时,()f x 单调递增, 当()0f x '<,即10x e<<时,()f x 单调递减, 因为()f x 在()0,m 上有最小值, 所以m 的取值范围是1,e ⎛⎫+∞ ⎪⎝⎭;(2)关于x 的不等式()()20f x g x +≥在1,x e e⎡⎤∈⎢⎥⎣⎦上有解, 即232ln 0x x x kx ++≥+在1,x e e ⎡⎤∈⎢⎥⎣⎦上有解, 等价于不等式22ln 3x x x k x++≥-在1,x e e ⎡⎤∈⎢⎥⎣⎦上有解, 设()22ln 3x x x h x x ++=-,1,x e e ⎡⎤∈⎢⎥⎣⎦, ()2223x x h x x+-'∴=-, 当()0h x '>,即11x e<<时,()h x 单调递增, 当()0h x '<,即1x e <<时,()h x 单调递减, 又21321e h e e e -+⎛⎫=- ⎪⎝⎭,()2e 2e 3e e h ++=-, 所以()()22222211233212420e e e e e e e e h h e e e e e e ---++-+-++⎛⎫-=-==< ⎪⎝⎭, 故()2min 1321e e h x h e e -+⎛⎫==- ⎪⎝⎭, 所以2321e e k e-+≥-. 【点睛】本题考查函数的单调性,最值问题,考查导数的应用,是一道中档题.26.(1)1,12a b ==-;(2)最小值为4-,最大值为28.【分析】(1)先对函数()f x 进行求导,根据(2)0f '=,(2)16f c =-,求出a ,b 的值.(2)根据导数可知()f x 在2x =-处取得极大值,即可求出c ,再求出端点处的函数值,即可判断.【详解】(1)因3()f x ax bx c =++ ,故2()3f x ax b '=+,由于()f x 在点2x =处取得极值,故有(2)0(2)16f f c ==-'⎧⎨⎩,即1208216a b a b c c +=⎧⎨++=-⎩ ,解得112a b =⎧⎨=-⎩; (2)由(1)知 3()12f x x x c =-+,2()312f x x '=-令()0f x '= ,得122,2x x =-=,当(,2)x ∈-∞-时,()0f x '>故()f x 在(,2)-∞-上为增函数; 当(2,2)x ∈- 时,()0f x '< 故()f x 在(2,2)- 上为减函数, 当(2,)x ∈+∞ 时()0f x '> ,故()f x 在(2,)+∞ 上为增函数. 由此可知()f x 在12x =- 处取得极大值(2)16f c -=+,()f x 在22x = 处取得极小值(2)16f c =-,由题设条件知1628c += ,得12c =,此时(3)921f c -=+=,(3)93f c =-+=,(2)164f c =-=-, 因此()f x 上[3,3]-的最小值为(2)4f =-,最大值为28.【点睛】本题主要考查函数的导数与极值,最值之间的关系,属于导数的应用.。

(北师大版)深圳市高中数学选修2-2第三章《导数应用》测试题(含答案解析)

(北师大版)深圳市高中数学选修2-2第三章《导数应用》测试题(含答案解析)

一、选择题1.设函数()3xf x xe =,若存在唯一的负整数0x ,使得()00f x kx k <-,则实数k 的取值范围是( ) A .23,0e ⎡⎫-⎪⎢⎣⎭B .30,2e ⎡⎫⎪⎢⎣⎭C .236,e e ⎛⎫--⎪⎝⎭D .223,2e e ⎡⎫⎪⎢⎣⎭2.已知函数()2ln f x x ax x =-+有两个不同的零点,则实数a 的取值范围是( )A .0,1B .(),1-∞C .0,D .11,e ⎛⎫ ⎪⎝⎭3.已知函数()()()21=)1ln 2(,1+f x x a x a a b x -+->,函数2x b y +=的图象过定点0,1(),对于任意()1212,0,,x x x x ∈+∞>,有()()1221f x f x x x ->-,则实数a 的范围为( ) A .15a <≤ B .25a <≤ C .25a ≤≤D .35a <≤4.已知函数()32f x x bx cx =++的图象如图所示,则2212x x +等于( )A .23B .43C .83D .1635.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭6.当01x <<时,()ln xf x x=,则下列大小关系正确的是( ) A .()()()22fx f x f x <<B .()()()22f x fx f x << C .()()()22f x f x f x <<D .()()()22f x f x f x <<7.已知()321233y x bx b x =++++是R 上的单调增函数,则b 的取值范围是( ) A . 1b <-或2b > B .1,b ≤-或b 2≥C .12b -<<D .12b -≤≤8.内接于半径为R 的球且体积最大的圆柱体的高为( )ABCD9.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e ) 10.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<11.如果不等式3310x ax ++≥对于[]1,1x ∈-恒成立,则实数a 的取值范围是( )A.⎡⎤⎢⎥⎣⎦B .2,03⎡⎤-⎢⎥⎣⎦C.2,3⎡-⎢⎣⎦D .2,3⎛⎤-∞- ⎥⎝⎦12.已知函数()3242xxf x x x e e =-+-,其中e 是自然对数的底数,若()()2210f a f a +--≤,则实数a 的取值范围为( )A .1,12⎡⎤-⎢⎥⎣⎦B .11,2⎡⎤-⎢⎥⎣⎦C .[]2,1-D .[]1,2-二、填空题13.已知函数f (x )是定义在R 上的奇函数,当x >0时,f (x )+xf '(x )>0,且f (3)=0,则不等式xf (x )>0的解集是_____. 14.已知()(sin )x f x e x a =+在0,2π⎡⎤⎢⎥⎣⎦上是单调增函数,则实数a 的取值范围是________.15.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.16.函数()f x 在(0,+∞)上有定义,对于给定的正数K ,定义函数()()()(),,K f x f x K f x K f x K⎧≤⎪=⎨>⎪⎩,取函数()2253ln 2f x x x x =-,若对任意x ∈(0,+∞),恒有()()K f x f x =,则K 的最小值为______.17.已知函数()f x 是定义在(0,)+∞上的单调函数,()f x '是()f x 的导函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,若函数()()2()3F x xf x f x '=--的一个零点0(,1)x m m ∈+,则整数m 的值是__________.18.下列五个命题:①“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件; ②函数()3113f x x x =++有两个零点; ③集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是13; ④动圆C 即与定圆()2224x y -+=相外切,又与y 轴相切,则圆心C 的轨迹方程是()280y x x =≠⑤若对任意的正数x ,不等式x e x a ≥+ 恒成立,则实数的取值范围是1a ≤ 其中正确的命题序号是_____. 19.已知函数2()2ln af x x x =+,其中0a >,若()2f x ≥恒成立,则实数a 的取值范围为________.20.已知()3226f x x x a =-+(a 为常数)在[]22-,上有最小值3,则()f x 在[]22-,上的最大值为______三、解答题21.设函数()22f x x x k x =++,k ∈R . (Ⅰ)当1k =-时,解不等式()3f x >;(Ⅱ)若对任意[]1,2x ∈时,直线21y x =+恒在曲线()y f x =的上方,求k 的取值范围. 22.已知函数()()2ln 0,1xf x a x x a a a =+->≠.(1)求函数()f x 的单调增区间;(2)若存在[]12,1,1x x ∈-,使得()()121f x f x e -≥-(e 是自然对数的底数),求a 的取值范围.23.已知函数()321f x x bx cx =++-的图象在()()1,1f 处的切线经过点()2,4,且()f x 的一个极值点为-1.(1)求()f x 的极值;(2)已知方程()0f x m -=在[]22-,上恰有一个实数根,求m 的取值范围.24.某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚I 内的地块形状为矩形ABCD ,大棚II 内的地块形状为CDP ,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP 的面积,并确定sin θ的取值范围;(2)若大棚I 内种植甲种蔬菜,大棚II 内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.25.设函数()f x =311x x++,[0,1]x ∈.证明: (Ⅰ)()f x 21x x ≥-+; (Ⅱ)34<()f x 32≤. 26.已知函数32()f x x ax bx c =+++.f (x )在点x=0处取得极值,并且在区间[0,2]和[4,5上具有相反的单调性. (1)求实数b 的值; (2)求实数a 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用到函数研究其图象,令3x y xe =,y kx k =-,从而讨论两个函数的性质作出3x y xe =与y kx k =-的图象,从而结合图象可得解. 【详解】()3x f x xe =,令y kx k =-,()3(1)x f x e x '=+,()3x f x xe ∴=在(-∞,1]-上是减函数,在(1,)-+∞上是增函数,又y kx k =-是恒过点(1,0)的直线,∴作()3x f x xe =与y kx k =-的图象如下:当直线y kx k =-与()3x f x xe =相切时, 设切点为(,3)x x xe ,3331xx x xe e xe x =+-, 则152x -=,152x +=;令()3x g x xe kx k =-+ 结合图象可知:(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩解得:2232k e e<故选:D【点睛】关键点睛:解答本题的关键是数形结合思想的灵活运用.作出两个函数的图象后,通过观察分析得到存在唯一的负整数01x =-,使得()00f x kx k <-,即(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩.2.A解析:A 【分析】分离参数,求函数的导数,根据函数有两个零点可知函数的单调性,即可求解. 【详解】 由题意得2ln x xa x +=有两个零点2431(1)(ln (2)12ln x x x x x x x a x x +-+-='-=) 令()12ln (0)g x x x x =--> ,则2()10g x x'=--<且(1)0g = 所以(0,1),()0,0x g x a ∈>'>,2ln x xa x+=在(0,1)上为增函数, 可得),(1a ∈-∞,当(1,),()0,0x g x a ∈+∞<<',2ln x xa x+=在(1,)+∞上单调递减, 可得(0,1)∈a , 即要2ln x xa x +=有两个零点有两个零点,实数a 的取值范围是()0,1. 故选:A 【点睛】方法点睛:已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.3.A解析:A 【分析】由图象过定点可得0b =,设()()F x f x x =+,结合已知条件可得()F x 在()0,∞+递增,求()F x 的导数,令()()211g x x a x a =--+-,由二次函数的性质可得102a g -⎛⎫≥ ⎪⎝⎭,从而可求出实数a 的范围. 【详解】解:因为2x b y +=的图象过定点0,1(),所以21b =,解得0b =,所以()()()21=1ln ,12f x x ax a x a -+->,因为对于任意()1212,0,,x x x x ∈+∞>, 有()()1221f x f x x x ->-,则()()1122f x x x f x +>+,设()()F x f x x =+, 即()()()()()22111ln =11ln 22F x ax a x x x f x x x a x a x =+=-+-+--+-, 所以()()()21111x a x a a F x x a x x--+--'=--+=,令()()211g x x a x a =--+-,因为1a >,则102a x -=>,所以要使()0F x '≥在()0,∞+恒成立,只需102a g -⎛⎫≥ ⎪⎝⎭, 故()21111022a a a a --⎛⎫⎛⎫--+-≥ ⎪ ⎪⎝⎭⎝⎭,整理得()()150a a --≤,解得15a <≤, 故选:A. 【点睛】 关键点睛:本题的关键是由已知条件构造新函数()()F x f x x =+,并结合导数和二次函数的性质列出关于参数的不等式.4.C解析:C 【分析】先利用函数的零点,计算b 、c 的值,确定函数解析式,再利用函数的极值点为x ,xz ,利用导数和一元二次方程根与系数的关系计算所求值即可 【详解】由图可知,()0f x =的3个根为0,1,2,()()110,28420f b c f b c ∴=++==++=,解得3,2b c =-=,又由图可知,12,x x 为函数f (x )的两个极值点,()23620f x x x ∴=-+='的两个根为12,x x ,121222,3x x x x ∴+==, ()222121212482433x x x x x x ∴+=+-=-=, 故选:C 【点睛】本题主要考查了导数在函数极值中的应用,一元二次方程根与系数的关系,整体代入求值的思想方法.5.B解析:B 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x-==-,可得21()1f x x '=+,0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.6.D解析:D 【分析】由01x <<得到2x x <,要比较()f x 与()2f x 的大小,即要判断函数是增函数还是减函数,可求出()'f x 利用导函数的正负决定函数的增减项,即可比较出()f x 与()2f x 的大小,利用对数的运算法则以及式子的性质,从式子的符号可以得到()f x 与()2f x 的大小,从而求得最后的结果. 【详解】根据01x <<得到201x x <<<,而()21ln 'xf x x-=, 所以根据对数函数的单调性可知01x <<时,1ln 0x ->,从而可得()'0f x >,函数()f x 单调递增,所以()()()210f x f x f <<=, 而()222ln 0x f x x ⎛⎫=> ⎪⎝⎭,所以有()()()22f x f x f x <<.故选D. 【点睛】本题主要考查函数的值的大小比较,在解题的过程中,注意应用导数的符号研究函数的单调性,利用函数单调性和导数之间的关系是解决本题的关键.7.D解析:D 【分析】利用三次函数()321233y x bx b x =++++的单调性,通过其导数进行研究,求出导数,利用其导数恒大于0即可解决问题. 【详解】∵()321233y x bx b x =++++,∴222y x bx b '=+++, ∵函数是R 上的单调增函数,∴2220x bx b +++≥在R 上恒成立, ∴0∆≤,即244(2)0b b -+≤.∴12b -≤≤ 故选:D. 【点睛】本题考查根据导函数研究函数的单调性,属于中档题.可导函数在某一区间上是单调函数,实际上就是在该区间上()0f x '≥(或()0f x '≤)(()'f x 在该区间的任意子区间都不恒等于0)恒成立,然后分离参数,转化为求函数的最值问题,从而获得参数的取值范围,本题是根据相应的二次方程的判别式0∆≤来进行求解.8.A解析:A 【分析】根据圆柱的高,底面半径以及球半径之间的关系,建立圆柱的高与圆柱体积之间的函数关系,利用导数求体积取得最大值时对应的自变量即可. 【详解】根据题意,设圆柱底面半径为r ,圆柱的高为h ,作出示意图如下所示:显然满足2224h r R =-,故圆柱的体积()23214h r h h R h πππ=⨯=-+,故可得()223,(02)4V h h R h R ππ<'=-+<,令()0V h '>,解得230h <<,故此时()V h 单调递增,令()0V h '<2h R <<,故此时()V h 单调递减. 故()max V h V ⎫=⎪⎪⎝⎭.即当h =时,圆柱的体积最大. 故选:A . 【点睛】本题考查圆柱的外接球以及利用导数求体积的最大值,属综合中档题.9.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x=有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x =有两个交点, 又由()312ln xg x x -'=, 令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=,若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.10.D解析:D 【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2ax =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2ax =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <,综上:a 的取值范围为28a <<故选:D 【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.11.A解析:A 【分析】分0x =、10x -≤<、01x <≤三种情况讨论,利用参变量分离法计算出实数a 在各种情况下的取值范围,综合可得出实数a 的取值范围. 【详解】由已知,不等式3310x ax ++≥对于[]1,1x ∈-恒成立. ①当0x =时,则有10≥恒成立,此时a R ∈; ②当10x -≤<时,由3310x ax ++≥可得213a x x≤--, 令()21f x x x =--,()32211220x f x x x x-'=-+=>, 所以,函数()f x 在区间[)1,0-上为增函数,则()()min 10f x f =-=,则30a ≤,得0a ≤;③当01x <≤时,由3310x ax ++≥可得213a x x≥--,令()32120x f x x -'==可得x =,列表如下:2()2max22f x ⎛=-= ⎝⎭3a ∴≥a ≥.综上所述,实数a的取值范围是⎡⎤⎢⎥⎣⎦. 故选:A. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.12.A解析:A 【分析】先求得函数()f x 是R 上的奇函数,把不等式转化为()22(1)f a f a ≤+,再利用导数求得函数的单调性,在把不等式转化为221a a ≤+,即可求解. 【详解】由题意,函数32()42xxf x x x e e =-+-的定义域为R , 又由3322()42e (42)()e x xx xf x x x x x e f x e -=-++-=--+-=-, 所以()f x 是R 上的奇函数,又因为2222()3423430x x f x x e x x e '=-++≥-+=≥, 当且仅当0x =时取等号,所以()f x 在其定义域R 上的单调递增函数,因为()22(1)0f a f a +--≤,可得()22(1)(1)f a f a f a ≤---=+,所以221a a ≤+,解得112a ≤≤, 故实数a 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.故选:A 【点睛】利用函数的基本性质求解与函数有关的不等式的方法及策略: 1、求解函数不等式的依据是函数的单调性的定义. 具体步骤:①将函数不等式转化为12()()f x f x >的形式;②根据函数()f x 的单调性去掉对应法则“f ”转化为形如:“12x x >”或“12x x <”的常规不等式,从而得解.2、利用函数的图象研究不等式,当不等式问题不能用代数法求解时,常将不等式问题转化为两函数的图象上、下关系问题,从而利用数形结合求解.二、填空题13.(﹣∞﹣3)∪(3+∞)【分析】令当x >0时可得x ∈(0+∞)上函数单调递增由可得由函数是定义在R 上的奇函数可得函数是定义在R 上的偶函数进而得出不等式的解集【详解】解:令当x >0时∴x ∈(0+∞)上解析:(﹣∞,﹣3)∪(3,+∞) 【分析】令()()g x xf x =,()()()g x f x xf x ''+=,当x >0时,()()0f x xf x '+>,可得x ∈(0,+∞)上,函数()g x 单调递增.由()30f =,可得()30g =.由函数()f x 是定义在R 上的奇函数,可得函数()g x 是定义在R 上的偶函数.进而得出不等式的解集. 【详解】解:令()()g x xf x =,()()()g x f x xf x ''+= 当x >0时,()()0f x xf x '+>∴x ∈(0,+∞)上,函数()g x 单调递增.()30f =,∴()30g =.∵函数()f x 是定义在R 上的奇函数, ∴函数()g x 是定义在R 上的偶函数. 由()()03g x g >=,即()()3g x g >, ∴|x |>3,解得x >3,或x <﹣3.∴不等式()0xf x >的解集是()(),33-,-∞⋃+∞. 故答案为:()(),33-,-∞⋃+∞. 【点睛】本题考查了利用导数研究函数的单调性、方程与不等式的解法、等价转化方法,考查了推理能力与计算能力,属于中档题.14.【分析】利用在上恒成立等价于在上恒成立利用正弦函数的性质得出在的最小值即可得出的范围【详解】在上恒成立即在上恒成立则故答案为:【点睛】本题主要考查了由函数的单调性求参数的范围属于中档题 解析:[)1,-+∞【分析】利用()0f x '≥在0,2π⎡⎤⎢⎥⎣⎦4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立,利用4x π⎛⎫+ ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦的最小值,即可得出a 的范围. 【详解】()(sin )cos (sin cos )04x x x x f x e x a e x e x x a e x a π⎤⎛⎫'=++=++=++≥ ⎪⎥⎝⎭⎦在0,2π⎡⎤⎢⎥⎣⎦上恒成立4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立 0,2x π⎡⎤∈⎢⎥⎣⎦,3,444x πππ⎡⎤∴+∈⎢⎥⎣⎦sin 42x π⎤⎛⎫∴+∈⎥ ⎪⎝⎭⎣⎦,4x π⎛⎫⎡+∈ ⎪⎣⎝⎭则1,1a a ≥-≥- 故答案为:[)1,-+∞ 【点睛】本题主要考查了由函数的单调性求参数的范围,属于中档题.15.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论解析:(1)(3)(4) 【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论. 【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称,()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦,所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减; 当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误; 对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解; 令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增,22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4). 【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.16.【分析】根据题意利用导数求出函数的最大值即可【详解】由得当时函数单调递减当时函数单调递增所以函数的最大值为:即所以要想恒有只需所以的最小值为故答案为:【点睛】本题考查了利用导数求函数最大值问题考查了解析:2332e【分析】根据题意,利用导数求出函数()2253ln 2f x x x x =-的最大值即可. 【详解】 由()2253ln 2f x x x x =-得()()213ln f x x x '=-, 当13x e >时,()0f x '<,函数()f x 单调递减, 当130x e <<时,()0f x '>,函数()f x 单调递增,所以函数()y f x =的最大值为:231332e f e ⎛⎫= ⎪⎝⎭,即()2332f x e ≤,所以要想恒有()()K f x f x =,只需2332K e ≥,所以K 的最小值为2332e .故答案为:2332e【点睛】本题考查了利用导数求函数最大值问题,考查了学生的数学阅读和运算求解能力.17.2【分析】先通过已知求出得到再利用导数研究得到函数在内没有零点函数的零点在内即得的值【详解】因为函数是定义在上的单调函数且对任意的都有所以是一个定值设所以所以或(舍去)所以所以所以所以函数在是增函数解析:2 【分析】先通过已知求出2()=+1,f x x 得到3()33F x x x =--,再利用导数研究得到函数()F x 在(0,1)内没有零点,函数()F x 的零点在(2,3)内,即得m 的值.【详解】因为函数()f x 是定义在(0,)+∞上的单调函数,且对任意的(0,)x ∈+∞都有2(())2f f x x -=,所以2()f x x -是一个定值,设2()f x x t -=, 所以2()=+f x x t ,()2f t =所以2()=+2,1f t t t t =∴=或2t =-(舍去). 所以2()=+1,()2f x x f x x '=,所以23()(1)22333F x x x x x x =+-⨯-=--, 所以2()33=3(1)(1)F x x x x '=-+-,所以函数()F x 在(1,)+∞是增函数,在(0,1)是减函数,因为(0)30,(1)50F F =-<=-<,所以函数()F x 在(0,1)内没有零点.因为(2)86310,(3)2712150F F =--=-<=-=>,函数()F x 在(1,)+∞是增函数, 所以函数()F x 的零点在(2,3)内, 所以2m =. 故答案为:2 【点睛】本题主要考查函数的单调性的应用,考查利用导数求函数的单调区间,考查利用导数研究零点问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.18.①③⑤【分析】①通过导数研究函数的单调性可得结论正确;②利用导数可知函数为增函数函数最多一个零点;③根据古典概型求得概率为;④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立可得的范围【详解】对解析:①③⑤ 【分析】①通过导数研究函数的单调性可得结论正确; ②利用导数可知函数为增函数,函数最多一个零点; ③根据古典概型求得概率为13; ④根据条件直接求得轨迹方程;⑤利用导数研究不等式恒成立,可得a 的范围. 【详解】对于①,当2a >时,()cos f x a x '=-0>恒成立,所以,()sin f x ax x =-为R 上的增函数;而当12a ≤≤时,()cos f x a x '=-0>也恒成立,()sin f x ax x =-在R 上也是增函数,所以“2a >”是“()sin f x ax x =-为R 上的增函数”的充分不必要条件是正确的; 对于②,2()10f x x '=+>恒成立,所以()f x 在R 上为增函数,最多只有一个零点,故②是错误的;对于③,所有基本事件为:21,22,23,31,32,33++++++共6个, 其中和为4的有22,31++共2个,根据古典概型可得所求概率为2163=,故③正确;对于④,设(,)(0)C x y x ≠||x =2+,两边平方并化简得244||y x x =+,当0x >时,得28y x =,当0x <时,得0y =,所以所求轨迹方程是:28(0)y x x =>或0,0y x =<,故④不正确;对于⑤,依题意得x a e x ≤-对任意的正数x 恒成立,令()x f x e x =-,则()1x f x e =-',因为0x >,所以()0f x '>,所以()x f x e x =-在(0,)+∞上为增函数,所以()(0)1f x f >=,所以1a ≤,故⑤时正确的. 故答案为:①③⑤ 【点睛】本题考查了;利用导数研究函数的单调性,考查了利用导数处理不等式恒成立,考查了古典概型,考查了两圆外切,考查了求曲线的轨迹方程,属于中档题.19.【分析】恒成立只需即可求出得出单调区间进而求出求解即可得出结论【详解】由得又函数的定义域为且当时;当时故是函数的极小值点也是最小值点且要使恒成立需则∴的取值范围为故答案为:【点睛】本题考查应用导数求 解析:[),e +∞【分析】()2f x ≥恒成立,只需min ()2f x ≥即可,求出()f x ',得出单调区间,进而求出min ()f x ,求解即可得出结论.【详解】由2()2ln a f x x x =+,得()233222()x a a f x x x x-'=-+=, 又函数()f x 的定义域为(0,)+∞且0a >,当0x <<()0f x '<;当x ()0f x '>,故x =()f x 的极小值点,也是最小值点,且ln 1f a =+,要使()2f x ≥恒成立,需ln 12a +≥,则a e ≥, ∴a 的取值范围为[),e +∞. 故答案为:[),e +∞. 【点睛】本题考查应用导数求函数的最值,恒成立问题等价转化为函数的最值,考查计算求解能力,属于中档题.20.43【分析】通过函数的导数可判断出在上单调递增在上单调递减比较和的大小从而可得在上的最小值再结合已知其最小值为3即可求出的值进而可求出函数在上的最大值【详解】因为所以当时;当时所以函数在上单调递增在解析:43 【分析】通过函数()f x 的导数可判断出()f x 在(2,0)-上单调递增,在(0,2)上单调递减,比较(2)f -和(2)f 的大小,从而可得()f x 在[2,2]-上的最小值,再结合已知其最小值为3,即可求出a 的值,进而可求出函数()f x 在[2,2]-上的最大值.【详解】因为32()26f x x x a =-+,所以2()6126(2)f x x x x x '=-=-, 当(2,0)x ∈-时,()0f x '>;当(0,2)x ∈时,()0f x '<, 所以函数()f x 在(2,0)-上单调递增,在(0,2)上单调递减, 所以()f x 的最大值为(0)f a =,又(2)40f a -=-+,(2)8f a =-+,因为(8)(40)320a a -+--+=>, 所以408a a -+<-+,所以()f x 在[2,2]-上的最小值为(2)403f a -=-+=, 所以43a =,所以()f x 的最大值为(0)43f =. 故答案为:43 【点睛】本题考查利用导数求闭区间上的函数最值问题.一般地,如果在区间[,]a b 上函数()y f x =的图象是一条连续不断的曲线,最值必在端点处或极值点处取得.三、解答题21.(Ⅰ)()1,+∞;(Ⅱ)31,4⎛⎫-- ⎪⎝⎭. 【分析】(Ⅰ)由1k =-时,不等式为223x x x -+>,然后分2x ≥,2x <讨论求解. (Ⅱ)将任意[]1,2x ∈时,不等式()21f x x <+恒成立,转化为112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立求解.【详解】(Ⅰ)当1k =-时,不等式()3f x >,即223x x x -+>, 所以2(2)23x x x x ≥⎧⎨-+>⎩,或2(2)23x x x x <⎧⎨-+>⎩,,即得223x x ≥⎧⎨>⎩,或22430x x x <⎧⎨-+<⎩,, 解得2x ≥或12x <<, 所以原不等式的解集是()1,+∞;(Ⅱ)因为对任意[]1,2x ∈时,不等式()21f x x <+恒成立,即21x x k +<当[]1,2x ∈时恒成立,即12x k x+<,即111122x k x x x ⎛⎫⎛⎫-+<<-+ ⎪ ⎪⎝⎭⎝⎭,故只要112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立即可, 即当[]1,2x ∈时,只要k 大于112x x ⎛⎫-+ ⎪⎝⎭的最大值且k 小于112x x ⎛⎫-+ ⎪⎝⎭的最小值,因为当[]1,2x ∈时,211111022x x x '⎡⎤⎛⎫⎛⎫-+=--≤ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,max 1112x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 211111022x x x '⎡⎤⎛⎫⎛⎫-+=-+< ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,min 11324x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 故所求k 的取值范围是31,4⎛⎫-- ⎪⎝⎭. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<;22.(1)()0,∞+(2)[)10,,a e e ⎛⎤∈+∞ ⎥⎝⎦【解析】试题分析:(1)先求原函数的导数得:f'(x )=()ln 2ln 21ln x xa a x a x a a +-=+-,再对a 进行讨论,得到f'(x )>0,从而函数f (x )在(0,+∞)上单调递增.(2)f (x )的最大值减去f (x )的最小值大于或等于e ﹣1,由单调性知,f (x )的最大值是f (1)或f (﹣1),最小值f (0)=1,由f (1)﹣f (﹣1)的单调性,判断f (1)与f (﹣1)的大小关系,再由f (x )的最大值减去最小值f (0)大于或等于e ﹣1求出a 的取值范围. 试题(1)由于()()ln 2ln 21ln 0x xf x a a x a x a a =+'-=+->,1° 当1,2a y x >=单调递增,ln 0a >,所以()1ln xy a a =-单调递增, 故()21ln xy x a a =+-单调递增,∴()()21ln 201ln 0x x a a a a +->⨯+-=,即()()0f x f '>',所以0x >,故函数()f x 在()0,+∞上单调递增;2° 当01,2a y x <<=单调递增,ln 0a <,所以()1ln xy a a =-单调递增,故()21ln x y x a a =+-单调递增,∴()()21ln 201ln 0x x a a a a +->⨯+-=,即()()0f x f '>',所以0x >,故函数()f x 在()0,+∞上单调递增;综上,函数()f x 的单调增区间为()0,+∞. (2)因为存在[]12,1,1x x ∈-,使得()()121f x f x e -≥-, 所以当[]1,1x ∈-时,()()()()()()()()maxmin max min 1f x f x f x f x e -=-≥-,由(1)知,()f x 在[]10-,上递减,在[]0,1上递增, 所以当[]1,1x ∈-时()()()()()()(){}minmax01,max 1,1f x f f x f f ===-,而()()()11111ln 1ln 2ln f f a a a a a a a ⎛⎫--=+--++=-- ⎪⎝⎭, 记()()12ln 0g t t t t t =-->,因为()22121110g t t t t ⎛⎫=+-=-≥ ⎪⎝⎭'(当2t =时取等号),所以()12ln g t t t t=--在()0,t ∈+∞上单调递增,而()10g =.1° 当1a >时,()0g a >, ∴()()11f f >-, ∴当1a >时,()()101f f e -≥-, 即ln 1a a e -≥-,易知:ln y a a =-,在()1,a ∈+∞上递增, ∴a e ≥. 2° 当01a <<时,()0g a <, ∴()()()()111,101,ln 1f f f f e a e a<---≥-+≥-, 易知1ln y a a =+在()0,1a ∈上递减, ∴10,a e ⎛⎤∈ ⎥⎝⎦,综上:[)10,,a e e ⎛⎤∈⋃+∞ ⎥⎝⎦. 23.(1)()0f x =极大值,()3227f x -=极小值.(2)(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭【分析】(1)首先求出函数的导函数,求出函数在()()1,1f 处的切线方程,由点()2,4过切线,即可得到321b c +=,再由函数的一个极值点为1-则()'1320f b c -=-+=,即可求出函数解析式,最后利用导数求出函数的极值;(2)依题意可得函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点,结合函数图象,即可得解; 【详解】解:(1)∵()2'32f x x bx c =++,∴()'132f b c =++,∴()f x 的图象在()()1,1f 处的切线方程为()()()321y b c b c x -+=++-.∵该切线经过点()2,4,∴()()()43221b c b c -+=++-,即321b c +=①. 又∵()f x 的一个极值点为-1,∴()'1320f b c -=-+=②. 由①②可知1b =,1c =-,故()321f x x x x =+--.()2'321f x x x =+-,令()'0f x =,得1x =-或13x =.当x 变化时,()'f x ,()f x 的变化情况如下表:故()()10f x f =-=极大值,()327f x f ⎛⎫==-⎪⎝⎭极小值. (2)∵方程()0f x m -=在[]22-,上恰有一个实数根, ∴函数()y f x =的图象与直线y m =在[]22-,上恰有一个交点. ∵()23f -=-,()29f =,结合函数()f x 的图象,∴(]323,0,927m ⎡⎫∈--⎪⎢⎣⎭.【点睛】本题考查利用导数研究函数的极值,函数与方程思想,数形结合思想的应用,属于中档题. 24.(1)()8004cos cos sin θθθ+, ()1600cos cos ,sin θθθ- 1,14⎡⎫⎪⎢⎣⎭;(2)6π. 【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定sin θ的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO 并延长交MN 于H ,则PH ⊥MN ,所以OH =10. 过O 作OE ⊥BC 于E ,则OE ∥MN ,所以∠COE =θ, 故OE =40cos θ,EC =40sin θ,则矩形ABCD 的面积为2×40cos θ(40sin θ+10)=800(4sin θcos θ+cos θ),△CDP 的面积为12×2×40cos θ(40–40sin θ)=1600(cos θ–sin θcos θ). 过N 作GN ⊥MN ,分别交圆弧和OE 的延长线于G 和K ,则GK =KN =10. 令∠GOK =θ0,则sin θ0=14,θ0∈(0,π6). 当θ∈[θ0,π2)时,才能作出满足条件的矩形ABCD , 所以sin θ的取值范围是[14,1). 答:矩形ABCD 的面积为800(4sin θcos θ+cos θ)平方米,△CDP 的面积为 1600(cos θ–sin θcos θ),sin θ的取值范围是[14,1). (2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为3k (k >0), 则年总产值为4k ×800(4sin θcos θ+cos θ)+3k ×1600(cos θ–sin θcos θ) =8000k (sin θcos θ+cos θ),θ∈[θ0,π2). 设f (θ)= sin θcos θ+cos θ,θ∈[θ0,π2), 则()()()()222'sin sin 2sin 1211f cos sin sin sin θθθθθθθθ=--=-+-=--+.令()'=0f θ,得θ=π6, 当θ∈(θ0,π6)时,()'>0f θ,所以f (θ)为增函数; 当θ∈(π6,π2)时,()'<0f θ,所以f (θ)为减函数, 因此,当θ=π6时,f (θ)取到最大值. 答:当θ=π6时,能使甲、乙两种蔬菜的年总产值最大. 点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.25.(Ⅰ)证明详见解析;(Ⅱ)证明详见解析. 【解析】试题分析:本题主要考查函数的单调性与最值、分段函数等基础知识,同时考查推理论证能力、分析问题和解决问题的能力.第一问,利用放缩法,得到41111x x x-≤++,从而得到结论;第二问,由01x ≤≤得3x x ≤,进行放缩,得到3()2f x ≤, 再结合第一问的结论,得到3()4f x >, 从而得到结论. 试题(Ⅰ)因为44231()11,1()1x x x x x x x----+-==--+ 由于[0,1]x ∈,有411,11x x x-≤++即23111x x x x -+-≤+, 所以2()1.f x x x ≥-+ (Ⅱ)由01x ≤≤得3x x ≤,故31133(1)(21)33()11222(1)22x x f x x x x x x -+=+≤+-+=+≤+++ , 所以3()2f x ≤. 由(Ⅰ)得22133()1()244f x x x x ≥-+=-+≥, 又因为,所以3()4f x >. 综上,33().42f x <≤ 【考点】函数的单调性与最值、分段函数.【思路点睛】(Ⅰ)先用等比数列前n 项和公式计算231x x x -+-,再用放缩法可得23111x x x x-+-≤+,进而可证()21f x x x ≥-+;(Ⅱ)由(Ⅰ)的结论及放缩法可证()3342f x <≤. 26.(1)0b =(2)63a -≤≤- 【分析】(1)根据()f x 在点0x =处取得极值,可得(0)0f '=,建立等量关系,求出参数b 即可. (2)由条件“在单调区间[0,2]和[4,5]上具有相反的单调性”可知函数的极值点应介于[2,4]即可. 【详解】(1)2()32f x x ax b '=++,因为()f x 在点0x =处取得极值, 所以()0f x '=,即得0b =;经检验可知:b =0符合题意. (2)令(0)0f '=,即2320x ax +=, 解得0x =或23x a =-. 依题意有203a ->.因为在函数在单调区间[0,2]和[4,5]上具有相反的单调性,所以应有243a ≤-≤, 解得63a -≤≤-. 【点睛】本小题主要考查运用导数研究函数的单调性及极值等基础知识,考查综合分析和解决问题的能力.。

合肥市育英中学选修二第二单元《一元函数的导数及其应用》测试题(答案解析)

合肥市育英中学选修二第二单元《一元函数的导数及其应用》测试题(答案解析)

一、选择题1.已知函数ln,1 ()1,12x xf x xx≥⎧⎪=⎨-<⎪⎩,若()[()1]F x f f x m=++两个零点1x,2x,则12x x⋅的取值范围是()A.(),e-∞B.(),e+∞C.(],42ln2-∞-D.[)42ln2,-+∞2.已知函数()()221sin1x xf xx++=+,其中()f x'为函数()f x的导数,则()()()()2020202020192019f f f f''+-+--=()A.0B.2C.2019D.20203.已知奇函数()f x在(),-∞+∞上单调递减,且()11f=-,则“1x>-”是“()1xf x<”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件.4.已知函数2()85f x x x=---,()xe exg xex+=,实数m,n满足0m n<<,若1x∀∈[],m n,2x∃∈()0,∞+,使得()()12f xg x=成立,则n m-的最大值为()A.7 B.6 C.25D.235.已知函数()f x与()f x'的图象如图所示,则函数()()xf xg xe=(其中e为自然对数的底数)的单调递减区间为()A.()0,4B.()4,1,43⎛⎫-∞⋃ ⎪⎝⎭C.40,3⎛⎫⎪⎝⎭D.()0,1,()4,+∞6.已知a R∈,0b≠,若x b=是函数()()()2f x x b x ax b=-++的极小值点,则实数b的取值范围为()A.1b<且0b≠B.1b>C.2b<且0b≠D.2b>7.某堆雪在融化过程中,其体积V(单位:3m)与融化时间t(单位:h)近似满足函数关系:31()1010V t H t ⎛⎫=- ⎪⎝⎭(H 为常数),其图象如图所示.记此堆雪从融化开始到结束的平均融化速度为()3m /h v .那么瞬时融化速度等于()3m /h v 的时刻是图中的( ).A .1tB .2tC .3tD .4t8.定义在R 上的偶函数f (x )的导函数为f ′(x ),若∀x ∈R ,都有2f (x )+xf ′(x )<2,则使x 2f (x )-f (1)<x 2-1成立的实数x 的取值范围是( ) A .{x |x ≠±1} B .(-1,0)∪(0,1) C .(-1,1)D .(-∞,-1)∪(1,+∞)9.已知函数()f x 的图象如图所示,则()f x 可以为( )A .()3x x f x e=B .()x x xf x e e -=- C .()xx f x e = D .()xf x xe =10.已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-11.已知点M 在函数()x f x e =图象上,点N 在函数()ln g x x =图象上,则||MN 的最小值为( ) A .1B 2C .2D .312.已知定义在(0,)+∞上的函数()f x 的导函数()f x '满足()1xf x '>,则( ) A .()()21ln 2f f -< B .()()21ln 2f f -> C .()()211f f -<D .()()211f f ->二、填空题13.函数()2ln 2x f x x =-在其定义域内的一个子区间[]1,1k k -+内不是单调函数,则k的取值范围是______________.14.曲线()1xf x e x=-在点()()1,1f 处的切线的方程为_______. 15.已知曲线()f x lnx =在点00())(x f x ,处的切线经过点(0,1),则0x 的值为___. 16.已知()y f x =是奇函数,当(0,2)x ∈时,1()()2f x lnx ax a =->,当(2,0)x ∈-时,()f x 的最小值为1,则a =________.17.已知抛物线2y ax bx c =++过点()1,1,且在点()2,1-处与直线3y x =-相切,则a =__________,b =____________,c =_________________.18.已知函数()ln 2f x x x =-+,存在(]00,4x ∈,使得()0f x m ≥成立,则实数m 的取值范围是________.19.在二维空间中,正方形的一维测度(周长)(为正方形的边长),二维测度(面积);在三维空间中,正方体的二维测度(表面积)(为正方形的边长),三维测度(体积);应用合情推理,在四维空间中,“超立方”的三维测度,则其四维测度__________.20.已知函数()f x sinx cosx =+,()'f x 是()f x 的导函数,若()()00'2f x f x =,则2020012sin x cos x sin x +=-______.三、解答题21.已知函数()ln f x x ax b =-+的图象在1x =处的切线方程为30x y +-=. (1)求a 和b 的值;(2)对0x ∀>,()e 3xf x x x m ≤-+成立,求实数m 的取值范围.22.已知函数())2f x x x ax =-.(1)当1a =时,求()f x 的单调区间; (2)若()f x 在区间[]0,2的最小值为23-,求a . 23.设函数22()ln 2x f x k x =-,0k >.(Ⅰ)求()f x 的单调区间和极值;(Ⅱ)证明:若()f x 存在零点,则()f x 在区间(1,e]上仅有一个零点.24.已知函数()3233f x x x bx c =-++在0x =处取得极大值1.(1)求函数()y f x =的图象在1x =处切线的方程; (2)若函数()f x 在[],2t t +上不单调,求实数t 的取值范围.25.已知函数()ln 1xf x ae x =--.(1)设2x =是()f x 的极值点,求a 的值; (2)证明;当1a e≥时,()0f x ≥. 26.已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值. (1)求a ,b 的值与函数()f x 的单调区间;(2)若对[]1,2x ∈,不等式()2f x c <恒成立,求c 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题中条件,得到()1mf x e-=-有两个根1x ,2x ,不妨设12x x <;令112m t e -=->,得到()122t x x e x =-,12t >,设()()22tg t e t =-,对其求导,判定其单调性,求出值域,即可得出结果. 【详解】 当1≥x 时,()ln 0f x x =>,∴()11f x +≥, 当1x <时,()1122x f x ->=,()312f x +>; ∴()()1ln 1f f x f x +=+⎡⎤⎡⎤⎣⎦⎣⎦,所以()[()1]F x f f x m =++两个零点1x ,2x ,等价于方程()()1ln 10F f x f x m +=++=⎡⎤⎡⎤⎣⎦⎣⎦有两个根1x ,2x , 则()1mf x e-+=,即()1mf x e-=-有两个根1x ,2x (不妨设12x x <),则1≥x 时,2ln 1mx e -=-;当1x <时,1112m x e --=-, 令112mt e-=->,则2ln x t =,112x t -=;所以2tx e =,122x t =-; 则()122t x x e x =-,12t >,设()()22tg t e t =-,12t >,则()2tg t te '=-,当1,2t ⎛⎫∈+∞⎪⎝⎭时,()0g t '<显然恒成立, 所以函数()g t 单调递减,则()12g t g ⎛⎫<=⎪⎝⎭所以()g x的值域为(-∞,即12x x的取值范围为(-∞. 故选:A. 【点睛】 关键点点睛:求解本题的关键在于根据函数零点个数结合函数解析式,得到()1mf x e-=-有两个根为1x 和2x ,再构造函数,利用导数的方法求解即可.2.B解析:B 【分析】将函数解析式变形为()22sin 11x xf x x +=++,求得()f x ',进而可求得所求代数式的值. 【详解】()()222221sin 12sin 2sin 1111x x x x x x x f x x x x ++++++===++++,所以,()()()()()2222020sin 202022020sin 202020202020222020120201f f ⨯-+-⨯++-=++=+-+, ()()()()()2222cos 122sin 1x x x x x f x x++-+'=+,函数()f x '的定义域为R ,()()()()()2222cos 122sin 1x x x x x f x x ⎡⎤⎡⎤⎡⎤+-⋅-++-+-⎣⎦⎣⎦⎣⎦-=⎡⎤-+⎣⎦'()()()()()2222cos 122sin 1x x x x x f x x ++-+'==+, 所以,函数()f x '为偶函数,因此,()()()()20202020201920192f f f f ''+-+--=. 故选:B. 【点睛】结论点睛:本题考查利用函数奇偶性求值,关于奇函数、偶函数的导函数的奇偶性,有如下结论:(1)可导的奇函数的导函数为偶函数;(2)可导的偶函数的导函数为奇函数. 在应用该结论时,首先应对此结论进行证明.3.B解析:B 【分析】根据奇函数的定义和单调性可确定()f x 和()f x '的符号,由奇偶性定义可知()g x 为偶函数,利用导数可确定()g x 单调性;根据()()111g g =-=,利用单调性可求得()1xf x <的解集,根据推出关系可确定结论. 【详解】()f x 为(),-∞+∞上的奇函数,∴()00f =,又()f x 单调递减,∴当0x <时,()0f x >;当0x >时,()0f x <,且()0f x '≤, 令()()g x xf x =,则()()()()g x xf x xf x g x -=--==,()g x ∴为偶函数, 当0x ≥时,()0xf x ≤;当0x <时,()0xf x <;()()g x xf x ∴=-,()()()()()g x f x xf x f x xf x '''∴=--=-+⎡⎤⎣⎦当0x ≥时,()0f x ≤,()0g x '∴≥,()g x ∴在[)0,+∞上单调递增, 由偶函数对称性知:()g x 在(],0-∞上单调递减;()()()1111g g f =-=-=,∴由()()1g x xf x =<得:11x -<<,()()1,11,≠-⊂-+∞,∴“1x >-”是“()1xf x <”的必要不充分条件.故选:B. 【点睛】结论点睛:本题考查充分条件与必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件, 则q 对应的集合与p 对应集合互不包含.4.B解析:B 【分析】先用导数法研究()y g x =,然后的同一坐标系中作出函数()y f x =与()y g x =的图象,根据[]1,x m n ∀∈,()20,x ∃∈+∞,使得()()12f x g x =成立求解. 【详解】因为()x e exg x ex+=,所以()()211x x e x e g x ex ex '-⎛⎫'=+= ⎪⎝⎭, 当01x <<时,()0g x '<,当1x >时,()0g x '>,()10g '=, 所以()g x 在1x =处取得极小值,且为定义域内唯一极值,()()min 12g x g ∴==.()22185()4111f x x x x -==---++≤,作函数()y f x =与()y g x =的图象, 如图所示:当()2f x =时,方程两根分别为7-和1-, 则n m -的最大值为:()176---=. 故选:B 【点睛】关键点睛:利用导数和二次函数的性质,作出图像,利用数形结合进行求解,考查了转化化归的的思想、运算求解,以及数形结合的能力,属于中档题.5.D解析:D 【分析】利用图象求得不等式()()0f x f x '-<的解集,求得()()()xf x f xg x e'-'=,解不等式()0g x '<即可得出函数()g x 的单调递减区间.【详解】由图象可知,不等式()()0f x f x '-<的解集为()()0,14,+∞,因为()()x f x g x e =,所以,()()()()()()2x x x x f x e f x e f x f x g x e e ''--'==, 解不等式()0g x '<,可得()()0f x f x '-<,解得()()0,14,x ∈+∞,因此,函数()g x 的单调递减区间为()0,1,()4,+∞. 故选:D. 【点睛】易错点睛:本题考查利用导数求解函数的单调递减区间,通过解不等式()0g x '<得到()()0,14,x ∈+∞,但需要注意的是,函数()g x 的两个单调递减区间不能取并集,而应分开表示.6.B解析:B 【分析】由x b =既是()f x 的极小值点,又是零点,且()f x 的最高次项系数为1,因此可设2()()()f x x b x m =-+,这样可求得1m =-,然后求出()'f x ,求得()'f x 的两个零点,一个零点是b ,另一个零点2x 必是极大值点,由2b x >可得b 的范围. 【详解】因为()0f b =,x b =是函数()f x 的极小值点,结合三次函数的图象可设2()()()f x x b x m =-+,又2()()()f x x b x ax b =-++,令0x =得22b m b =-,1m =-,即2()(1)()f x x x b =--,22()3(42)2f x x b x b b '=-+++()(32)x b x b =---,由()0f x '=得1x b =,223b x +=, x b =是极小值点,则23b +是极大值点,23b b +>,所以1b >. 故选:B . 【点睛】本题考查导数与极值点的关系,解题关键是结合零点与极值点,设出函数表达式,然后再求极值点,由极小值点大于极大值点可得所求范围.7.C解析:C 【分析】根据题意可知,平均融化速度为(100)(0)1000V V v -=-,反映的是()V t 图象与坐标轴交点连线的斜率,通过观察某一时刻处瞬时速度(即切线的斜率),即可得到答案. 【详解】解:平均融化速度为(100)(0)1000V V v -=-,反映的是()V t 图象与坐标轴交点连线的斜率,观察可知3t 处瞬时速度(即切线的斜率)为平均速度一致, 故选:C .【点睛】本题考查了图象的识别,瞬时变化率和切线斜率的关系,理解平均速度表示的几何意义(即斜率)是解题的关键.8.D解析:D 【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出0x <的取值范围. 【详解】解:当0x >时,由2()()20f x xf x +'-<可知:两边同乘以x 得:22()()20xf x x f x x +'-< 设:22()()g x x f x x =-则2()2()()20g x xf x x f x x '=+'-<,恒成立:()g x ∴在(0,)+∞单调递减,由()()21x f x f -21x <-()()2211x f x x f ∴-<-即()()1g x g < 即1x >;当0x <时,函数是偶函数,同理得:1x <-综上可知:实数x 的取值范围为(-∞,1)(1-⋃,)+∞, 故选:D . 【点睛】主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,属于中档题.9.A解析:A 【分析】由图象可知,函数()y f x =为R 上的奇函数,且在()0,∞+上先增后减,然后逐项分析各选项中函数()y f x =的定义域、奇偶性及其在区间()0,∞+上的单调性,结合排除法可得出正确选项. 【详解】由图象可知,函数()y f x =为R 上的奇函数,且在()0,∞+上先增后减. 对于A 选项,函数()3x x f x e =的定义域为R ,()()x xx xf x f x e e---==-=-,该函数为奇函数,当0x >时,()xx f x e=,()1x xf x e -'=. 当01x <<时,()0f x '>,此时函数()y f x =单调递增;当1x >时,()0f x '<,此时函数()y f x =单调递减,合乎题意; 对于B 选项,函数()x xxf x e e-=-的定义域为{}0x x ≠,不合乎题意; 对于C 选项,函数()xx f x e =的定义域为R,()1f e -=-,()11f e =,()()11f f -≠-,该函数不是奇函数,不合乎题意;对于D 选项,函数()xf x xe =的定义域为R ,当0x >时,()xf x xe =,()()10x f x x e '=+>,该函数在区间()0,∞+上单调递增,不合乎题意.故选:A. 【点睛】本题考查函数图象的识别,一般从函数的定义域、奇偶性、单调性、零点以及函数值符号来判断,结合排除法求解,考查分析问题和解决问题的能力,属于中等题.10.D解析:D 【分析】作出函数()y f x =的图像,和函数y ax =的图像,结合图像可知直线y ax =介于l 与x 轴之间,利用导数求出直线l 的斜率,数形结合即可求解. 【详解】由题意可作出函数()y f x =的图像,和函数y ax =的图像.由图像可知:函数y ax =的图像是过原点的直线, 当直线介于l 与x 轴之间符合题意,直线l 为曲线的切线,且此时函数()y f x =在第二象限的部分的解析式为22y x x =-,求其导数可得22y x '=-,因为0x ≤,故2y '≤-, 故直线l 的斜率为2-,故只需直线y ax =的斜率a []2,0∈-. 故选:D 【点睛】本题考查了不等式恒成立求出参数取值范围,考查了数形结合的思想,属于中档题.11.B解析:B 【分析】根据函数()xf x e =与函数()lng x x =互为反函数,将问题转化为求函数()xf x e =的图象与直线y x =平行的切线的切点00(,)x y 到直线y x =的距离的两倍,利用导数求出切点坐标,根据点到直线的距离公式可得结果. 【详解】因为函数()x f x e =与函数()ln g x x =互为反函数,它们的图象关于直线y x =对称,所以||MN 的最小值为函数()xf x e =的图象上的点M 到直线y x =的距离的2倍,即为函数()xf x e =的图象与直线y x =平行的切线的切点00(,)x y 到直线y x =的距离的两倍,因为()xf x e '=,所以函数()xf x e =的图象上与直线y x =平行的切线的斜率01x k e ==,所以00x =,所以切点为(0,1),它到直线y x =的距离2211d ==+, 所以||MN 2故选:B. 【点睛】本题考查了互为反函数的图象的对称性,考查了导数的几何意义,属于中档题.12.B解析:B 【解析】分析:根据题意,由()1xf x '>可得()()'1f x lnx x='>,构造函数()()g x f x lnx =-,可得()()()110xf x g x f x x x-=-=''>',故()g x 单调递增,根据单调性可得结论. 详解:令()(),0g x f x lnx x =->, ∴()()()11xf x g x f x x x=''-'-=, ∵()1xf x '>, ∴()0g x '>,∴函数()g x 在()0,+∞上单调递增, ∴()()21g g >,即()()2211f ln f ln ->-, ∴()()21ln2f f ->. 故选B .点睛:本题考查对函数单调性的应用,考查学生的变形应用能力,解题的关键是根据题意构造函数()()g x f x lnx =-,通过判断函数的单调性得到函数值间的关系,从而达到求解的目的.二、填空题13.【分析】求出函数的定义域利用导数求出函数的极值点由题意可知函数的极值点在区间内结合题意可得出关于实数的不等式组由此可解得实数的取值范围【详解】函数的定义域为令可得列表如下: 极 解析:()1,2【分析】求出函数()f x 的定义域,利用导数求出函数()f x 的极值点,由题意可知,函数()f x 的极值点在区间()1,1k k -+内,结合题意可得出关于实数k 的不等式组,由此可解得实数k 的取值范围. 【详解】函数()2ln 2x f x x =-的定义域为()0,∞+,()211x f x x x x ='-=-. 令()0f x '=,0x ,可得1x =,列表如下:所以,函数f x 在1x =处取得极小值,由于函数()2ln 2x f x x =-在其定义域内的一个子区间[]1,1k k -+内不是单调函数,则()11,1k k ∈-+,由题意可得111110k k k -<⎧⎪+>⎨⎪->⎩,解得12k <<.因此,实数k 的取值范围是()1,2. 故答案为:()1,2. 【点睛】结论点睛:利用函数的单调性求参数,可按照以下原则进行:(1)函数()f x 在区间D 上单调递增()0f x '⇔≥在区间D 上恒成立; (2)函数()f x 在区间D 上单调递减()0f x '⇔≤在区间D 上恒成立; (3)函数()f x 在区间D 上不单调()f x '⇔在区间D 内存在极值点;(4)函数()f x 在区间D 上存在单调递增区间x D ⇔∃∈,使得()0f x '>成立; (5)函数()f x 在区间D 上存在单调递减区间x D ⇔∃∈,使得()0f x '<成立.14.【分析】求得函数的导数得到结合直线的点斜式方程即可求解【详解】由题意函数可得所以即所求切线的斜率为又由所以所求切线的方程为可得即所以所求切线的方程为故答案为:【点睛】本题主要考查了利用导数的几何意义 解析:20ex x y +--=【分析】求得函数的导数()21'xf x e x=+,得到()'11f e =+,结合直线的点斜式方程,即可求解. 【详解】由题意,函数()1xf x e x =-,可得()21'xf x e x=+,所以()'11f e =+, 即所求切线的斜率为1k e =+,又由()11f e =-,所以所求切线的方程为()()1'1y f k x f -=-⎡⎤⎣⎦, 可得()()()111y e e x --=+-,即()()()111y e e x e --=+-+. 所以所求切线的方程为20ex x y +--=. 故答案为:20ex x y +--=. 【点睛】本题主要考查了利用导数的几何意义求解曲线在某点处的切线方程,其中解答中熟记导数的几何意义,以及曲线在某点处的切线方程的求法是解答的关键,着重考查推理与运算能力.15.e2【分析】求导得则斜率为写出切线方程切线经过原点代入化简即可得出结果【详解】函数的导数为所以切线斜率为所以切线方程为因为切线过点所以代入切线方程得解得故答案为:【点睛】本题主要考查导数的运算及其几解析:e 2【分析】 求导得1()f x x'=,则斜率为001()k f x x '==,写出切线方程,切线经过原点(0,1)代入化简即可得出结果. 【详解】函数的导数为1()f x x'=,所以切线斜率为001()k f x x '==, 所以切线方程为0001ln ()y x x x x -=-,因为切线过点(0,1), 所以代入切线方程得0ln 2x =,解得20x e =.故答案为:2e . 【点睛】本题主要考查导数的运算及其几何意义,属于基础题.16.1【分析】根据函数的奇偶性确定在上的最大值为求导函数确定函数的单调性求出最值即可求得的值【详解】是奇函数时的最小值为1在上的最大值为当时令得又令则在上递增;令则在上递减得故答案为:1【点睛】本题考查解析:1 【分析】根据函数的奇偶性,确定()f x 在(0,2)上的最大值为1-,求导函数,确定函数的单调性,求出最值,即可求得a 的值. 【详解】()f x 是奇函数,(2,0)x ∈-时,()f x 的最小值为1,()f x ∴在(0,2)上的最大值为1-,当(0,2)x ∈时,1()f x a x'=-, 令()0f x '=得1x a =,又12a >,102a ∴<<,令()0f x '>,则1x a <,()f x ∴在1(0,)a 上递增;令()0f x '<,则1x a>, ()f x ∴在1(a,2)上递减,111()()1max f x f ln aaaa ∴==-=-,10ln a∴=,得1a =. 故答案为:1. 【点睛】本题考查函数单调性与奇偶性的结合,考查导数知识的运用,考查学生的计算能力,属于中档题.17.3-119【分析】先求函数的导函数再由题意知函数过点且在点处的切线的斜率为1即分别将三个条件代入函数及导函数解方程即可【详解】解:由于抛物线过点则又因为点处与直线相切即切线的斜率为1即又因为切点为把解析:3 -11 9 【分析】先求函数2y ax bx c =++的导函数'()f x ,再由题意知,函数过点(1,1),(2,1)-,且在点(2,1)-处的切线的斜率为1,即()'21f =,分别将三个条件代入函数及导函数,解方程即可. 【详解】解:由于抛物线2y ax bx c =++过点()1,1,则()11f =,1a b c ∴++=, 又'()2f x ax b =+,因为2y ax bx c =++点()2,1-处与直线3y x =-相切,即切线的斜率为1,即()21f '=, 41a b ∴+=.又因为切点为(2,1)-,421a b c ∴++=-.把①②③联立得方程组14142 1.a b c a b a b c ++=⎧⎪+=⎨⎪++=-⎩,解得:3119a b c =⎧⎪=-⎨⎪=⎩,即3a =,11b =-,9c =. 故答案为:3,-11,9.【点睛】本题考查导数的几何意义及其应用,利用方程的思想求参数的值,考查计算能力.18.【分析】由题意可得利用导数求出函数在区间上的最大值即可得出实数的取值范围【详解】存在使得成立等价为令得当时函数是增函数;当时函数是减函数当时函数在处取得最大值所以因此实数的取值范围是故答案为:【点睛解析:1,2e ⎛⎤-∞+ ⎥⎝⎦【分析】由题意可得()max m f x ≤,利用导数求出函数()y f x =在区间(]0,4上的最大值,即可得出实数m 的取值范围. 【详解】()ln 2f x x x =-+,存在(]00,4x ∈,使得()0f x m ≥成立等价为()max f x m ≥. ()ln 1f x x '=--,令()0f x '=,得1x e=. 当10,e x ⎛⎫∈ ⎪⎝⎭时,()0f x '>,函数()ln 2f x x x =-+是增函数;当1,4x e⎛⎤∈ ⎥⎝⎦时,()0f x '<,函数()ln 2f x x x =-+是减函数,当(]0,4x ∈时,函数()ln 2f x x x =-+在1x e =处取得最大值12e +,所以12m e≤+. 因此,实数m 的取值范围是1,2e ⎛⎤-∞+ ⎥⎝⎦. 故答案为:1,2e ⎛⎤-∞+⎥⎝⎦. 【点睛】本题考查利用导数研究不等式能成立问题,结合题意转化为与函数最值相等的不等式问题是解答的关键,考查计算能力,属于中等题.19.12a4【解析】【分析】依据类比推理得到不同维度空间中两个测度具有一定的关系(高维测度的导数的两倍为低维测度)从而得到W=2a3从而得到W=12a4【详解】在二维空间中二维测度S=a2与一维测度(周 解析:【解析】 【分析】依据类比推理得到不同维度空间中两个测度具有一定的关系(高维测度的导数的两倍为低维测度),从而得到,从而得到.【详解】在二维空间中,二维测度与一维测度(周长)的关系是;在三维空间中,三维测度与二维测度的关系是,故在四维空间中,若“超立方”的三维测度,则其四维测度满足,所以,故(为常数),类比各个维度测度的解析式的形式可得,故,填.【点睛】本题考查类比推理,属于基础题.20.【分析】求出导函数后由可得再结合可得又化简可得代入求值可得即为所求【详解】∵∴由得∴∵由得又∴把代入得:∴故答案为【点睛】本题考查同角三角函数关系式解题时注意公式的灵活应用和变形同时注意整体代换在解解析:1115【分析】求出导函数后由()()00'2f x f x =可得003cosx sinx =-,再结合22001sin x cos x +=可得20110sin x =.又化简可得22002200011215sin x sin x cos x sin x sin x ++=-+,代入求值可得20201111515sin x sin x +=+,即为所求. 【详解】∵()f x sinx cosx =+, ∴()'f x cosx sinx =-,由()()00'2f x f x =,得000022cosx sinx sinx cosx -=+, ∴003cosx sinx =-, ∵()2222000022220000000001111.21212315sin x sin x sin x sin x cos x sin x sin x sinx cosx sin x sinx sinx sin x ++++===---⋅---+①由003cosx sinx =-,得22009cos x sin x =, 又22001sin x cos x +=,∴201.10sin x =② 把②代入①得:20201111515sin x sin x +=+.∴20200111215sin x cos x sin x +=-.故答案为1115. 【点睛】本题考查同角三角函数关系式,解题时注意公式的灵活应用和变形,同时注意整体代换在解题中的作用,属于基础题.三、解答题21.(1)2a =,4b =;(2)3m ≥. 【分析】 (1)求导()1f x a x'=-,再根据函数()f x 的图象在1x =处的切线方程为30x y +-=,由()12f a b =-+=,()111f a '=-=-求解.(2)将对0x ∀>,()e 3xf x x x m ≤-+成立,转化为ln 4x m x x xe ≥+-+恒成立,令()ln 4x g x x x xe =+-+,0x >,用导数法求得其最大值,由()maxm g x ≥求解.【详解】(1)因为()ln f x x ax b =-+, 所以()1f x a x'=-, 又因为函数()f x 的图象在1x =处的切线方程为30x y +-=, 所以()12f a b =-+=,()111f a '=-=-, 解得2a =,4b =.(2)因为对0x ∀>,()e 3xf x x x m ≤-+成立,所以ln 4x m x x xe ≥+-+恒成立,令()ln 4xg x x x xe =+-+,0x >则()()()()11111x x x xe g x x e x x+-'=+-+=,设()00g x '=,00x >,则01x ex =,从而00ln x x =-, 因为()13102g ⎛'=> ⎝⎭,()()1210g e '=-<,所以()()1102g g '⋅<,因为()g x '的图象在1,12⎡⎤⎢⎥⎣⎦上是不间断的,所以01,12x ⎛⎫∃∈⎪⎝⎭,满足()00g x '=, 当()00,x x ∈时,()0g x '>,()g x 单调递增; 当()0,x x ∈+∞时,()0g x '<,()g x 单调递减.从而()g x 在0x x =时取得最大值()00000ln 4143xg x x x x e =+-+=-+=,所以m 的取值范围为3m ≥. 【点睛】方法点睛:恒成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.22.(1)单调递减区间为30,5⎡⎫⎪⎢⎣⎭,单调递增区间为3,5⎛⎫+∞ ⎪⎝⎭;(2)53. 【分析】(1)由1a =得()5322f x x x =-,0x ≥,对函数求导,解对应的不等式,即可得出单调区间;(2)先对函数求导,分别讨论0a ≤,3025a <≤,325a >三种情况,利用导数的方法研究函数在区间[]0,2上的单调性,求出最值,列出等式求解,即可得出结果. 【详解】(1)当1a =时,())53222f x x x x x =-=-,0x ≥,所以())3122535322f x x x x '=-=-, 由()0f x '>可得35x >;由()0f x '<可得305x ≤<,所以函数()f x 的单调递减区间为30,5⎡⎫⎪⎢⎣⎭,单调递增区间为3,5⎛⎫+∞ ⎪⎝⎭;(2)因为())53222f x x ax x ax =-=-,[]0,2x ∈,所以())3122535322f x x ax x a '=-=-,由()0f x '=得35x a =;若0a ≤时,())530f x x a '-≥在[]0,2上恒成立,所以()f x 在[]0,2上单调递增, 最小值为()00f =不满足题意;若3025a <≤,即1003a <≤时,当30,5x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,则函数()f x 单调递减;当3,25x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,则函数()f x 单调递增;所以()222min 393625255253f x f a a a a ⎛⎫⎫==-=-=- ⎪⎪⎝⎭⎭,则29125a , 即52315a ⎛⎫= ⎪⎝⎭,所以53a =,满足1003a <≤; 若325a >,即103a >时,()0f x '<在[]0,2上恒成立,所以函数()f x 在[]0,2上单调递减,因此()())min 22423f x f a =-=-,解得2a =,不满足103a >;综上,53a =. 【点睛】 方法点睛:利用导数研究函数单调性的方法:(1)确定函数()f x 的定义域;求导函数()'f x ,由()0f x '>(或()0f x '<)解出相应的x 的范围,对应的区间为()f x 的增区间(或减区间);(2)确定函数()f x 的定义域;求导函数()'f x ,解方程()0f x '=,利用()0f x '=的根将函数的定义域分为若干个子区间,在这些子区间上讨论()'f x 的正负,由符号确定()f x 在子区间上的单调性.23.(Ⅰ)()f x 的单调递减区间是(0,)k ,单调递增区间是(,)k +∞;()f x 极小值2(12ln )2k k -;(Ⅱ)证明见解析. 【分析】(Ⅰ)求函数导数,分析函数的单调性即可得极值;(Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为2(12ln )()2k k f k -=,由()0f k ≤得k k =k >.【详解】(Ⅰ)由22()ln 02 ()x f x k x k >=-得222()k x k f x x x x-'=-=. 由()0f x '=解得x k =.()f x 与()'f x 在区间(0,)+∞上的情况如下:x (0,)k k (,)k +∞ ()'f x- 0 + ()f x ↘ 极小值↗ 所以,()f x 的单调递减区间是(0,)k ,单调递增区间是(,)k +∞;()f x 在x k =处取得极小值2(12ln )()2k k f k -=,无极大值. (Ⅱ)由(Ⅰ)知,()f x 在区间(0,)+∞上的最小值为2(12ln )()2k k f k -=. 因为()f x 存在零点,所以2(12ln )02k k -≤,从而e k ≥. 当e k =时,()f x 在区间(1,e)上单调递减,且(e)0f =,所以e x =是()f x 在区间(1,e]上的唯一零点.当e k >时,()f x 在区间(0,e)上单调递减,且1(1)02f =>, 2e (e)02k f -=<, 所以()f x 在区间(1,e]上仅有一个零点.综上可知,若()f x 存在零点,则()f x 在区间(1,e]上仅有一个零点.【点睛】方法点睛:利用导数解决函数零点问题的方法:先求出函数的单调区间和极值,根据函数的性质画出图像,然后将问题转化为函数图像与轴交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合的思想和分类讨论的思想;构造新函数,将问题转化为研究两函数的图像的交点问题;分离参变量,即由()0f x =分离参变量,得()a x ϕ=,研究直线y a =与()y x ϕ=的图像的交点问题.24.(1)320x y +-=;(2)20t -<<或02t <<.【分析】(1)先对函数求导,利用题意列出方程组()()0001f f ⎧=⎪⎨='⎪⎩,从而求得函数解析式,之后利用导数的几何意义,结合直线方程点斜式求得切线方程;(2)先令导数等于零,求得函数的极值点,函数在给定区间上不单调的等价结果是零点在区间上,得到参数的范围.【详解】(1)因为()2363f x x x b '=-+,由题意可得()()00,01,f f ⎧=⎪⎨='⎪⎩解得0b =,1c =,所以()3231f x x x =-+; 经检验,适合题意,又()11f =-,()13f '=-,所以函数()y f x =图象在1x =处切线的方程为()()131y x --=--,即320x y +-=.(2)因为()236f x x x '=-,令2360x x -=,得0x =或2x =.当0x <时,()0f x '>,函数()f x 为增函数,当02x <<时,()0f x '<,函数()f x 为减函数,当2x >时,()0f x '>,函数()f x 为增函数.因为函数()f x 在[],2t t +上不单调,所以02t t <<+或22t t <<+,所以20t -<<或02t <<.【点睛】思路点睛:该题考查的是有关应用导数研究函数的问题,解决该题的思路如下: (1)对函数求导,利用题意,列出方程组,求得函数解析式;(2)利用导数的几何意义,结合直线方程点斜式求得切线方程;(3)函数在给定区间上不单调等价结果是极值点在区间内.25.(1)212a e=;(2)见解析. 【分析】(1)由题意得出()20f '=,可求得a 的值,然后对函数()y f x =是否在2x =取得极值进行验证,进而可求得实数a 的值; (2)当21a e ≥时,()ln 1x e f x x e ≥--,构造函数()ln 1xe g x x e=--,利用导数证明出当0x >时,()0g x ≥恒成立,即可证得结论成立.【详解】(1)函数()ln 1x f x ae x =--的定义域为()0,∞+,()1x f x ae x'=-.由题设知,()20f '=,所以212a e =,此时()212x e f x x-'=-, 则函数()y f x '=在()0,∞+上为增函数,当02x <<时,()0f x '<;当2x >时,()0f x '>.此时,函数()y f x =在2x =处取得极小值,合乎题意. 综上所述,212a e =; (2)当1a e ≥时,()ln 1xe f x x e≥--, 设()ln 1x e g x x e =--,则()1x e g x e x'=-. 由于函数()y g x '=在()0,∞+上单调递增,且()10g '=.当01x <<时,()0g x '<,此时,函数()y g x =单调递减;当1x >时,()0g x '>,此时,函数()y g x =单调递增.所以,函数()y g x =在1x =处取得极小值,亦即最小值,()()min 10g x g ∴==. 因此,当1a e≥时,()0f x ≥. 【点睛】本题考查利用函数的极值点求参数,同时也考查了利用导数证明函数不等式,考查推理能力与计算能力,属于中等题. 26.(1)122a b ⎧=-⎪⎨⎪=-⎩,()f x 的递增区间是2,3⎛⎫-∞- ⎪⎝⎭和()1,+∞,递减区间是2,13⎛⎫- ⎪⎝⎭;(2)1c <-或2c <.【分析】(1)求出()f x 的导数,由题可知23x =-与1x =是()0f x '=的两个根,即可求出,a b ,再利用导数即可求出单调区间;(2)根据(1)中的单调性,求出()f x 在[]1,2x ∈的最大值,令()2max f x c <,即可求出c 的范围.【详解】(1)()232f x x ax b =++', ∴()212403931320f a b f a b ⎧⎛⎫-=-+=⎪ ⎪⎝'⎭⎨⎪=++'=⎩,解得122a b ⎧=-⎪⎨⎪=-⎩,∴()()()332321f x x x x x '=--=+-,令()0f x '>,解得23x <-或1x >;令()0f x '<,解得213x -<<, 所以函数()f x 的递增区间是2,3⎛⎫-∞- ⎪⎝⎭和()1,+∞,递减区间是2,13⎛⎫- ⎪⎝⎭. (2)因为()32122f x x x x c =--+,[]1,2x ∈, 根据(1)函数()f x 的单调性,得()f x 在21,3⎛⎫--⎪⎝⎭上递增,在2,13⎛⎫- ⎪⎝⎭上递减,在()1,2上递增, 所以当23x =-时,()2227f x c =+为极大值,而()222227f c c =+>+,所以()22f c =+为最大值. 要使()2f x c <对[]1,2x ∈-恒成立,须且只需()222c f c >=+,解得1c <-或2c <.【点睛】本题考查已知极值点求参数,考查利用导数求单调性,考查不等式的恒成立,属于中档题.。

厦门双十中学初中部选修二第二单元《一元函数的导数及其应用》测试题(含答案解析)

厦门双十中学初中部选修二第二单元《一元函数的导数及其应用》测试题(含答案解析)

一、选择题1.若幂函数()f x 的图象过点21,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()e x f x g x =的递减区间为( ) A .()0,2 B .(),0-∞和()2,+∞ C .()2,0-D .()(),02,-∞+∞2.函数tan 22tan y x x =-42x ππ⎛⎫<< ⎪⎝⎭的最大值为( )A .33-B .3C .0D .3-3.已知a R ∈,0b ≠,若x b =是函数()()()2f x x b x ax b =-++的极小值点,则实数b 的取值范围为( )A .1b <且0b ≠B .1b >C .2b <且0b ≠D .2b >4.已知函数[](),1,2,xae f x x x =∈且[]()()12121212,1,2,1f x f x x x x x x x -∀∈≠<-,恒成立,则实数a 的取值范围是( ) A .24,e ⎛⎤-∞ ⎥⎝⎦B .24,e ⎡⎫+∞⎪⎢⎣⎭C .(],0-∞D .[)0+,∞ 5.定义在R 上的偶函数f (x )的导函数为f ′(x ),若∀x ∈R ,都有2f (x )+xf ′(x )<2,则使x 2f (x )-f (1)<x 2-1成立的实数x 的取值范围是( ) A .{x |x ≠±1} B .(-1,0)∪(0,1) C .(-1,1) D .(-∞,-1)∪(1,+∞)6.已知函数()2ln 1f x x x =--,则()y f x =的图象大致为( )A .B .C .D .7.已知函数22,0()ln(1),0x x x f x x x ⎧-+≤=⎨+>⎩,若|()|f x ax ≥,则a 的取值范围是( )A .(,0]-∞B .(,1]-∞C .[2,1]-D .[2,0]-8.已知函数()[]1sin ,0,3f x x x x π=-∈且[]001cos ,0,3x x π=∈那么下列命题中真命题的序号是( )①()f x 的最大值为()0f x ; ②()f x 的最小值为()0f x ; ③()f x 在上[]0,π是减函数; ④()f x 在上[]0,x π上是减函数. A .①③ B .①④C .②③D .②④9.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7B .4C .0D .﹣410.已知函数2()f x x ax =-(1x e e≤≤,e 为自然对数的底数)与()x g x e =的图象上存在关于直线y x =对称的点,则实数a 的取值范围是( )A .11,e e⎡⎤+⎢⎥⎣⎦B .11,e e ⎡⎤-⎢⎥⎣⎦C .11,e e e e ⎡⎤-+⎢⎥⎣⎦D .1,e e e ⎡⎤-⎢⎥⎣⎦11.已知定义在[),e +∞上的函数()f x 满足()()ln 0f x xf x x '+<且()40f =,其中fx 是函数()f x 的导函数,e 是自然对数的底数,则不等式()0f x >的解集为( )A .[),4eB .[)4,+∞C .(),e +∞D .[),e +∞12.已知函数f x =x+cosx (),则f'=6π⎛⎫⎪⎝⎭( ) A .12B .32C .31D 3第II 卷(非选择题)请点击修改第II 卷的文字说明参考答案二、填空题13.已知x y ,均为正实数.1x y +=.则1y x y+的最小值为________. 14.已知函数2ln ()a xf x x x=-,对于12,[2,2020]x x ∈,且当21x x >时,恒有()()12210f x f x x x ->,则实数a 的取值范围为__________. 15.已知()32f x x ax bx =++,在1x =处有极值1-,则2+a b =_______16.已知位移和时间的关系是321()2533s t t t t =++-,则2t =时的瞬时速度是_______ 17.设定义在上的奇函数满足:时,(其中为常数).若,,,则,,的大小关系是_________.(用“”连接)18.在二维空间中,正方形的一维测度(周长)(为正方形的边长),二维测度(面积);在三维空间中,正方体的二维测度(表面积)(为正方形的边长),三维测度(体积);应用合情推理,在四维空间中,“超立方”的三维测度,则其四维测度__________.19.已知函数()()221f x x xf '=+,则()1f 的值为__________. 20.曲线2ln(1)y x =+在点(0,0)处的切线方程为__________.三、解答题21.已知函数()3212f x x x bx c =-++,且()f x 在1x =处取得极值. (Ⅰ)求b 的值;(Ⅱ)若当[]1,2x ∈-时,()2f x c <恒成立,求c 的取值范围; (Ⅲ)对任意的[]12,1,2x x ∈-,()()1272f x f x -≤是否恒成立?如果成立,给出证明;如果不成立,请说明理由.22.已知函数()3f x x ax b =-+在1x =处的切线方程为0y =.(1)求实数a 、b 的值;(2)求函数()f x 在区间[]1,2-上的最大值与最小值之和. 23.设函数32()23(1)6f x x a x ax b =-+++,其中,a b ∈R .(1)若曲线()y f x =在(1,(1))f --的切线方程为123y x =+,求a ,b 的值; (2)若()f x 在3x =处取得极值,求a 的值;(3)若()f x 在(,0)-∞上为增函数,求a 的取值范围.24.已知函数32()f x x ax bx c =+++的图象如图所示,x 轴与曲线相切于原点,所围成的区域(阴影)面积为2764.(1)求()f x 的解析式;(2)求函数()f x 在区间[,]()m m >00上的值域. 25.已知函数()ln 1xf x ae x =--.(1)设2x =是()f x 的极值点,求a 的值; (2)证明;当1a e≥时,()0f x ≥. 26.(1)求曲线2xy x =+在点()1,1--处的切线方程. (2)求函数()316f x x x =+-过点()0,0的切线方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据条件先求解出()f x 的解析式,然后利用导数求解出()()e xf xg x =的单调递减区间. 【详解】因为()f x 为幂函数,且过点212⎫⎪⎪⎝⎭,所以设()f x x α=,所以21=22α⎛ ⎝⎭,所以2α=,所以()2f x x =,所以2()ex x g x =,则(2)()e xx x g x '-=, 当2x >或0x <时,()0g x '<;当02x <<时,()0g x '>, 所以()()ex f x g x =的递减区间为(),0-∞和()2,+∞, 故选:B. 【点睛】关键点点睛:解答本题的关键是求解完()f x 的解析式之后,根据()0f x '<去分析()f x 的单调递减区间.2.A解析:A 【分析】化简可得322tan 1tan xy x=-,令tan t x =,()1,t ∈+∞,则3221t y t =-,求出函数导数,利用导数判断函数的单调性即可求出最值. 【详解】可得3222tan 2tan tan 22tan 2tan 1tan 1tan x xy x x x x x =-=-=--, 令tan t x =,则()1,t ∈+∞,则3221t y t=-, 则()()()()()22322222261222311t t t t t t y t t --⨯--'==--,当(t ∈时,0y '>,函数单调递增,当)t ∈+∞时,0y '<,函数单调递减,所以当t =时,()3max 221y ⨯==--.故选:A. 【点睛】关键点睛:本题考查函数最值的求解,解题的关键是利用换元法将函数化为3221t y t =-,然后利用导数讨论其单调性即可求出最值.3.B解析:B 【分析】由x b =既是()f x 的极小值点,又是零点,且()f x 的最高次项系数为1,因此可设2()()()f x x b x m =-+,这样可求得1m =-,然后求出()'f x ,求得()'f x 的两个零点,一个零点是b ,另一个零点2x 必是极大值点,由2b x >可得b 的范围. 【详解】因为()0f b =,x b =是函数()f x 的极小值点,结合三次函数的图象可设2()()()f x x b x m =-+,又2()()()f x x b x ax b =-++,令0x =得22b m b =-,1m =-,即2()(1)()f x x x b =--,22()3(42)2f x x b x b b '=-+++()(32)x b x b =---,由()0f x '=得1x b =,223b x +=, x b =是极小值点,则23b +是极大值点,23b b +>,所以1b >. 故选:B . 【点睛】本题考查导数与极值点的关系,解题关键是结合零点与极值点,设出函数表达式,然后再求极值点,由极小值点大于极大值点可得所求范围.4.A解析:A 【分析】根据条件变形可知()()F x f x x =-在区间[]1,2上单调递减,转化()0F x '≤恒成立,即可求解. 【详解】 不妨设()()121212,1,f x f x x x x x -<<-可得()()1122.f x x f x x ->-令()(),F x f x x =-则()F x 在区间[]1,2上单调递减, 所以()0F x '≤在区间[]1,2上恒成立,()()2110,x ae x F x x--≤'=当1x =时,,a R ∈当(]1,2x ∈时,()()21xx a g x e x ≤=-, 而()()()222201x x x x g x e x -'-+=<-,所以()g x 在区间[]1,2上单调递减,则()()2min 42g x g e==,所以24,a e ⎛⎤∈-∞ ⎥⎝⎦. 故选:A 【点睛】关键点点睛:本题中[]()()12121212,1,2,1f x f x x x x x x x -∀∈≠<-,恒成立,可转化为函数()()F x f x x =-递减是解题的关键,突破此点后,利用导数()0F x '≤在区间[]1,2上恒成立,分离参数就可求解.5.D解析:D 【分析】根据已知构造合适的函数,对函数求导,根据函数的单调性,求出函数的取值范围,并根据偶函数的性质的对称性,求出0x <的取值范围. 【详解】解:当0x >时,由2()()20f x xf x +'-<可知:两边同乘以x 得:22()()20xf x x f x x +'-< 设:22()()g x x f x x =-则2()2()()20g x xf x x f x x '=+'-<,恒成立:()g x ∴在(0,)+∞单调递减,由()()21x f x f -21x <-()()2211x f x x f ∴-<-即()()1g x g < 即1x >;当0x <时,函数是偶函数,同理得:1x <-综上可知:实数x 的取值范围为(-∞,1)(1-⋃,)+∞, 故选:D . 【点睛】主要根据已知构造合适的函数,函数求导,并应用导数法判断函数的单调性,偶函数的性质,属于中档题.6.A解析:A 【分析】利用函数的定义域和函数的值域排除BD ,通过函数的单调性排除C ,推出结果即可. 【详解】令()ln 1g x x x =--,则11()1x g x x x-'=-=,由()0g x '>得1x >,即函数()g x 在(1,)+∞上单调递增, 由()0g x '<得01x <<,即函数()g x 在(0,1)上单调递减, 所以当1x =时,()()min 10g x g ==, 于是对任意(0,1)(1,)x ∈+∞,有()0g x >,则()0f x >,故排除BD ,因为函数()g x 在()0,1单调递减,则函数()f x 在()0,1递增,故排除C. 故选:A. 【点睛】本题考查利用导数对函数图象辨别,属于中档题.7.D解析:D 【分析】作出函数()y f x =的图像,和函数y ax =的图像,结合图像可知直线y ax =介于l 与x 轴之间,利用导数求出直线l 的斜率,数形结合即可求解. 【详解】由题意可作出函数()y f x =的图像,和函数y ax =的图像.由图像可知:函数y ax =的图像是过原点的直线, 当直线介于l 与x 轴之间符合题意,直线l 为曲线的切线,且此时函数()y f x =在第二象限的部分的解析式为22y x x =-,求其导数可得22y x '=-,因为0x ≤,故2y '≤-, 故直线l 的斜率为2-,故只需直线y ax =的斜率a []2,0∈-. 故选:D 【点睛】本题考查了不等式恒成立求出参数取值范围,考查了数形结合的思想,属于中档题.8.B解析:B 【解析】本题考查导数及函数的最值、单调性 由()1sin 3f x x x =-得()/1cos 3f x x =- 令()/1cos 03fx x =-=有1cos 3x =;因为01cos 3x =,则0x 为函数()1sin 3f x x x =-的一个极值点.当[]0,x π∈时,函数cos y x =递减,所以当()00,x x ∈时()/0f x >,函数递增,则③错误,;当()0,x x π∈时()/0fx <,函数递减,④正确.故0x 是函数的一个极大值点且唯一,故此点也是最大值点,①正确,②错误. 故正确答案为①④ 所以本题选B9.A解析:A 【解析】()()()(),'1'f x x g x f x g x =-∴=-,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A . 10.A解析:A 【分析】根据题意可将问题转化为方程2ln x ax x -=在1,e e ⎡⎤⎢⎥⎣⎦上有解,分离参数可得2ln x x a x -=,令()2ln x xh x x-=,利用导数求出()h x 值域即可求解. 【详解】因为函数2()f x x ax =-(1x e e≤≤)与()x g x e =的图象上存在关于直线y x =对称的点, 则函数2()f x x ax =-(1x e e≤≤,e 为自然对数的底数) 与函数()ln g x x =的图象有交点, 即2ln x ax x -=在1,e e⎡⎤⎢⎥⎣⎦上有解,即2ln x x a x-=在1,e e ⎡⎤⎢⎥⎣⎦上有解,令()2ln x xh x x-=,(1x e e ≤≤),()221ln x x h x x-+'=, 当11x e≤<时,()0h x '<,函数为减函数, 当1x e <≤时,()0h x '>,函数为增函数, 故1x =时,函数取得最小值1, 当1=x e 时,11h e e e ⎛⎫=+ ⎪⎝⎭,当x e =时,()h e e =,故实数a 的取值范围是11,e e ⎡⎤+⎢⎥⎣⎦. 故选:A 【点睛】本题考查了利用导数求函数的最值,考查了转化与化归的思想,考查了计算求解能力,属于中档题.11.A解析:A 【分析】根据条件构造函数()()g x f x lnx =,求函数的导数,研究函数的单调性,将不等式()0f x >等价为()()4g x g >,进行求解即可.【详解】 解:x e ,1lnx ∴,则不等式()()0f x xf x lnx '+<等价为()()0f x f x lnx x'+<, 设()()g x f x lnx =, 则()()()0f x g x f x lnx x'='+<, 即()g x 在[e ,)+∞上为减函数,f (4)0=,g ∴(4)f =(4)40ln =,则不等式()0f x >等价为()0lnxf x >, 即()()04g x g >=,()g x 在[e ,)+∞上为减函数,4e x ∴<,即不等式()0f x >的解集为[e ,4), 故选:A . 【点睛】本题主要考查不等式 的求解,根据条件构造函数,通过导数研究函数的单调性是解决本题的关键.属于中档题.12.A解析:A 【分析】 求导,将6x π=代入即可求出6f π⎛⎫⎪⎝⎭'.. 【详解】已知函数f x =x+cosx,'x =1-sinx,f ∴()() 则 11sin .662f ππ⎛⎫=-'= ⎪⎝⎭故选A. 【点睛】本题考查函数在一点处的导数的求法,属基础题.二、填空题13.【分析】均为正实数可得所以再利用导数研究单调性极值与最值即可求解【详解】因为所以所以令则令即解得此时单调递增令即解得此时单调递减所以时所以时的最小值为3故答案为:【点睛】本题主要考查了利用导数求函数 解析:3【分析】x y ,均为正实数,1x y +=,可得10x y =->,所以01y <<, ()11111y f y x y y y+=+-=-再利用导数研究单调性极值与最值即可求解. 【详解】因为1x y +=,所以1x y =-, 所以()11111111111y y y x y y y y y y y--++=+=+=+----, 令()1111f y y y=+--, 则()()()222211211y f y y y y y -'=-+=--令()0f y '>,即210y ->,解得112y << ,此时()f y 单调递增,令()0f y '<,即210y -<,解得102y <<,此时()f y 单调递减, 所以12y =时,()min 11131122f y =+-=,所以12x y ==时1y x y+的最小值为3, 故答案为:3 【点睛】本题主要考查了利用导数求函数的最值,属于中档题.14.【分析】依题意构造函数则函数在上单调递减利用导数研究函数的单调性则恒成立再根据参变分离即可得解【详解】解:由可知则函数在上单调递减∴∵∴∴实数a 的取值范围为故答案为:【点睛】本题考查函数的求导构造函 解析:(,24]-∞【分析】依题意,构造函数()()F x xf x =,则函数在[2,2020]上单调递减,利用导数研究函数的单调性,则()0F x '≤恒成立,再根据参变分离,即可得解. 【详解】解:由()()12210f x f x x x ->,2120202x x ≥>≥,可知()()1122x f x x f x >,则函数()()F x xf x =在[2,2020]上单调递减.32()()ln ,()30aF x xf x a x x F x x x'==-=-≤,∴33a x ≤.∵[2,2020]x ∈,∴33224a ≤⨯=,∴实数a 的取值范围为(,24]-∞. 故答案为:(,24]-∞. 【点睛】本题考查函数的求导、构造函数、根据函数的单调性求参数的取值范围,属于中档题.15.【分析】求出由题意求出即得答案【详解】在处有极值即解得经检验当时在处有极值符合题意故答案为:【点睛】本题考查函数的极值点与极值属于中档题 解析:3-【分析】 求出()'fx .由题意,()()'10,11f f ==-,求出,a b ,即得答案.【详解】()()32'2,32f x x ax bx f x x ax b =++∴=++. ()f x 在1x =处有极值1-,()()'10,11f f ∴==-,即32011a b a b ++=⎧⎨++=-⎩,解得1a b ==-.经检验,当1a b ==-时,()32f x x x x -=-在1x =处有极值1-,符合题意.1a b ∴==-,23a b ∴+=-.故答案为:3-. 【点睛】本题考查函数的极值点与极值,属于中档题.16.17【分析】先求导再根据导数的定义求得时的瞬时速度是得解【详解】则时的瞬时速度故答案为:17【点睛】本题考查导数的定义在物理中的应用函数在处的瞬时变化率称函数在处的导数解析:17 【分析】先求导,再根据导数的定义求得2t =时的瞬时速度是(2)s ',得解. 【详解】321()2533s t t t t =++-,22()45=(2)1s t t t t '∴=++++则2t =时的瞬时速度2(2)(22)117v s '==++= 故答案为:17 【点睛】本题考查导数的定义在物理中的应用函数(=)y f x 在0=x x 处的瞬时变化率称函数(=)y f x 在0=x x 处的导数.17.a<c<b 【解析】【分析】先利用f0=0求出t 构建新函数gx=xfx 利用导数可判断gx 为-∞0上的增函数从而得到g-e<g-2<g-1即-ef-e<2f2<f1故可得a<c<b 【详解】因为fx 为R 上 解析:【解析】 【分析】 先利用求出,构建新函数,利用导数可判断为上的增函数,从而得到即,故可得.【详解】 因为为上的奇函数,故,而,所以,故当时,,令,则为上的偶函数, 当时,,,当时,则,所以,故,所以为上的增函数,所以 ,即,所以,故.填.【点睛】判断给定的各数的大小,我们可依据它们的形式构建具体的函数,通过函数的单调性来判断它们的大小,而单调性可根据导数的符号来讨论.18.12a4【解析】【分析】依据类比推理得到不同维度空间中两个测度具有一定的关系(高维测度的导数的两倍为低维测度)从而得到W=2a3从而得到W=12a4【详解】在二维空间中二维测度S=a2与一维测度(周 解析:【解析】 【分析】依据类比推理得到不同维度空间中两个测度具有一定的关系(高维测度的导数的两倍为低维测度),从而得到,从而得到.【详解】在二维空间中,二维测度与一维测度(周长)的关系是;在三维空间中,三维测度与二维测度的关系是,故在四维空间中,若“超立方”的三维测度,则其四维测度满足,所以,故(为常数),类比各个维度测度的解析式的形式可得,故,填.【点睛】本题考查类比推理,属于基础题.19.-3【解析】由函数则令所以解得即所以解析:-3 【解析】由函数()()221f x x xf =+',则()()221f x x f +''=,令1x =,所以()()1221f f =+'',解得()12f '=-,即()24f x x x =-,所以()211413f =-⨯=-.20.【分析】先求导数再根据导数几何意义得切线斜率最后根据点斜式求切线方程【详解】【点睛】求曲线的切线要注意过点P 的切线与在点P 处的切线的差异过点P 的切线中点P 不一定是切点点P 也不一定在已知曲线上而在点P 解析:2y x =【分析】先求导数,再根据导数几何意义得切线斜率,最后根据点斜式求切线方程. 【详解】2222101y k y x x =∴==∴=+'+ 【点睛】求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点.三、解答题21.(Ⅰ)2b =-;(Ⅱ)c 的取值范围是()(),12,-∞-+∞.(Ⅲ)成立,证明见解析.【分析】(Ⅰ)由题意得f (x )在x =1处取得极值所以f ′(1)=3﹣1+b =0所以b =﹣2. (Ⅱ)利用导数求函数的最大值即g (x )的最大值,则有c 2>2+c ,解得:c >2或c <﹣1.(Ⅲ)对任意的x 1,x 2∈[﹣1,2],|f (x 1)﹣f (x 2)|72≤恒成立,等价于|f (x 1)﹣f (x 2)|≤f (x )max ﹣f (x )min 72=. 【详解】(Ⅰ)∵f (x )=x 312-x 2+bx +c , ∴f ′(x )=3x 2﹣x +b .∵f (x )在x =1处取得极值, ∴f ′(1)=3﹣1+b =0. ∴b =﹣2.经检验,符合题意.(Ⅱ)f (x )=x 312-x 2﹣2x +c . ∵f ′(x )=3x 2﹣x ﹣2=(3x +2)(x ﹣1), 当x ∈(﹣1,23-)时,f ′(x )>0 当x ∈(23-,1)时,f ′(x )<0 当x ∈(1,2)时,f ′(x )>0∴当x 23=-时,f (x )有极大值2227+c .又f (2)=2+c 2227+>c ,f (﹣1)12=+c 2227+<c ∴x ∈[﹣1,2]时,f (x )最大值为f (2)=2+c . ∴c 2>2+c .∴c <﹣1或c >2.(Ⅲ)对任意的x 1,x 2∈[﹣1,2],|f (x 1)﹣f (x 2)|72≤恒成立. 由(Ⅱ)可知,当x =1时,f (x )有极小值32-+c . 又f (﹣1)12=+c 32-+>c ∴x ∈[﹣1,2]时,f (x )最小值为32-+c . ∴|f (x 1)﹣f (x 2)|≤f (x )max ﹣f (x )min 72=,故结论成立. 【点睛】本题考查函数的极值及最值的应用,易错点是知极值点导数为0要检验,结论点睛:|f (x 1)﹣f (x 2)|≤a 恒成立等价为f (x )max ﹣f (x )min ≤a 22.(1)3a =,2b =;(2)4. 【分析】(1)求出切点的坐标,利用切线的斜率和切点的坐标可得出关于实数a 、b 的方程组,进而可解得实数a 、b 的值;(2)利用导数分析函数()f x 在区间[]1,2-上的单调性,可求得该函数在区间[]1,2-上的最大值和最小值,由此可求得结果. 【详解】(1)由已知得切点为()1,0,且()23f x x a '=-,()()110130f a b f a ⎧=-+=⎪∴⎨=-='⎪⎩,解得3a =,2b =;(2)由(1)知()332f x x x =-+,233fxx ,当12x <≤时,()0f x '>,此时函数()f x 单调递增; 当11x -<<时,()0f x '<,此时函数()f x 单调递减. 所以,()()min 10f x f ==,又()14f -=,()24f =,()max 4f x ∴=.因此,函数()f x 在区间[]1,2-上的最大值与最小值之和为4. 【点睛】在利用导数求解函数的最值的问题时,首先要注意区分函数最值与极值的区别.求解函数的最值时,要先求函数()y f x =在[],a b 内所有使()0f x '=的点,再计算函数()y f x =在区间内所有使()0f x '=的点和区间端点处的函数值,最后比较即得. 23.(1)0a =,4b =-;(2)3a =;(3)[0,)a ∈+∞. 【分析】(1)利用导数的几何意义,可得(1)12f '-=,(1)9f -=-,计算整理,即可求得a ,b 的值;(2)令'(3)0f =,即可求得a 的值,检验可得3x =为极值点,即可得答案; (3)令'()0f x =,解得1x a =,21x =,分别求得1a <和1a ≥时,()f x 的单调区间,结合题意,分析推理,即可得答案. 【详解】(1)因为32()23(1)6f x x a x ax b =-+++,所以2()66(1)6f x x a x a '=-++,由题设可得(1)121212f a '-=+=,(1)959f a b -=-+-=-, 解得0a =,4b =-.(2)因为()f x 在3x =取得极值, 所以(3)12360f a '=-+=,解得3a =.当3a =时,'2()624186(1)(3)f x x x x x =-+=--, 令'()0f x =,解得x=1或3,所以3x =为()f x 的极值点,故3a =满足题意. (3)令()6()(1)0f x x a x '=--=, 得1x a =,21x =. 当1a <时,若(,)(1,)x a ∈-∞+∞,则()0f x '>,所以()f x 在(,)a -∞和(1,)+∞上为增函数, 故当01a ≤<时,()f x 在(,0)-∞上为增函数恒成立. 当0a <时,()f x 在(,)a -∞上为增函数,不符合题意, 当1a ≥时,若(,1)(,)x a ∈-∞+∞,则()0f x '>,所以()f x 在(,1)-∞和(,)a +∞上为增函数, 从而()f x 在(,0)-∞上也为增函数,满足题意.综上所述,当[0,)a ∈+∞时,()f x 在(,0)-∞上为增函数. 【点睛】本题考查导数的几何意义、利用导数求函数的单调区间和极值点问题,考查计算求值,分类讨论的能力,属中档题. 24.(1)323()2f x x x =-;(2)答案见解析. 【分析】(1)由图知(0)0f =得0c ,x 轴与曲线相切于原点得(0)0f '=,在利用定积分求阴影面积即可;(2)先求出()f x 在R 上的单调性,再根据m 的位置分类讨论,即可求出. 【详解】(1)由(0)0f =得0c,2()32f x x ax b '=++,由(0)0f '=得0b =,∴322()()f x x ax x x a =+=+,令()0f x =,得0x =或x a =-,由图知0a ->,即0a <,则易知图中所围成的区城(阴影)面积为()4343200()4312aaax ax a f x dx x ax dx ---⎛⎫-⎰=-⎰+=-+= ⎪⎝⎭, 即4271264a =,从而得32a =-, ∴323()2f x x x =-. (2)由(1)知2()333(1)f x x x x x '=-=-,令()0f x '=,解得0x =或1x =,由题310,(1)22f f ⎛⎫==- ⎪⎝⎭,,(),()x f x f x '的变化情况如下表:①当01m <<时,()f x 在0,m 上单调递减,所以()()(0)f m f x f ≤≤,即323()02m m f x -≤≤; ②当312m ≤≤时,()f x 在[0,1)上单调递减,在(1,]m 上单调递增,所以(1)()(0)f f x f ≤≤,即1()02f x -≤≤; ③当32m >时,()f x 在[0,1)上单调递减,在(1,]m 上单调递增,所以(1)()()f f x f m ≤≤,即3213()22f x m m -≤≤-, 综上可知:当01m <<时,()f x 值域为323,02m m ⎡⎤-⎢⎥⎣⎦; 当312m ≤≤时,()f x 值域为1,02⎡⎤-⎢⎥⎣⎦; 当32m >时,()f x 值域为3213,22m m ⎡⎤--⎢⎥⎣⎦.【点晴】此题要抓住图像的特征,找寻特殊点,充分体现了函数部分数形结合思想和分类讨论思想. 25.(1)212a e=;(2)见解析. 【分析】(1)由题意得出()20f '=,可求得a 的值,然后对函数()y f x =是否在2x =取得极值进行验证,进而可求得实数a 的值;(2)当21a e ≥时,()ln 1x e f x x e ≥--,构造函数()ln 1xe g x x e=--,利用导数证明出当0x >时,()0g x ≥恒成立,即可证得结论成立. 【详解】(1)函数()ln 1xf x ae x =--的定义域为()0,∞+,()1xf x ae x'=-. 由题设知,()20f '=,所以212a e =,此时()212x e f x x-'=-,则函数()y f x '=在()0,∞+上为增函数,当02x <<时,()0f x '<;当2x >时,()0f x '>. 此时,函数()y f x =在2x =处取得极小值,合乎题意. 综上所述,212a e =; (2)当1a e ≥时,()ln 1xe f x x e≥--,设()ln 1x e g x x e =--,则()1x e g x e x'=-.由于函数()y g x '=在()0,∞+上单调递增,且()10g '=. 当01x <<时,()0g x '<,此时,函数()y g x =单调递减;当1x >时,()0g x '>,此时,函数()y g x =单调递增.所以,函数()y g x =在1x =处取得极小值,亦即最小值,()()min 10g x g ∴==. 因此,当1a e≥时,()0f x ≥. 【点睛】本题考查利用函数的极值点求参数,同时也考查了利用导数证明函数不等式,考查推理能力与计算能力,属于中等题. 26.(1)21y x =+;(2)13y x = 【分析】(1)对函数求导,代入切点横坐标即可得出斜率,进而可得结果.(2)设切点坐标3000(,16)+-P x x x ,用导数求出切线斜率,再用两点坐标求出斜率,列方程,即可求出切点坐标,进而求出切线方程. 【详解】 (1)()()222222x xy x x +-==++',1|2x k y =-'==切线方程为:(1)2(+1)--=y x ,即2+1=y x(2)设切点为3000(,16)+-P x x x2'()3+1=f x x ,()32000001631x x k f x x x +-=='=+,解得0-2=x(-2,-26)P ,切线方程为:(26)13(2)--=+y x ,即13y x =【点睛】本题考查了导数得几何意义,考查了计算能力,属于基础题目.。

(好题)高中数学选修二第二单元《一元函数的导数及其应用》测试卷(答案解析)(4)

一、选择题1.已知函数ln,1 ()1,12x xf x xx≥⎧⎪=⎨-<⎪⎩,若()[()1]F x f f x m=++两个零点1x,2x,则12x x⋅的取值范围是()A.(),e-∞B.(),e+∞C.(],42ln2-∞-D.[)42ln2,-+∞2.已知函数(),0,,0.lnx xf xkx x>⎧=⎨≤⎩,若x R∃∈使得()()00f x f x-=成立,则实数k的取值范围是()A.(],1-∞B.1,e⎛⎤-∞⎥⎝⎦C.[)1,-+∞D.1,e⎡⎫-+∞⎪⎢⎣⎭3.已知关于x的方程ln2lnx a x-=有三个不等的实数根,则实数a的取值范围是()A.1,2e⎛⎫+∞⎪⎝⎭B.21,4e⎛⎫+∞⎪⎝⎭C.(),e+∞D.()2,e+∞4.已知函数()f x是定义在R上的可导函数,对于任意的实数x,都有()()2xf xef x-=,当0x<时,()()0f x f x+'>,若()()211ae f a f a+≥+,则实数a的取值范围是()A.20,3⎡⎤⎢⎥⎣⎦B.2,03⎡⎤-⎢⎥⎣⎦C.[)0,+∞D.(],0-∞5.对任意的0a b t<<<,都有ln lnb a a b<,则t的最大值为()A.1 B.e C.2e D.1e6.函数y=f(x)的导函数y=f′(x)的图象如图所示,给出下列命题:①-3是函数y=f(x)的极值点;②y=f(x)在区间(-3,1)上单调递增;③-1是函数y=f(x)的最小值点;④y =f (x )在x =0处切线的斜率小于零. 以上正确命题的序号是( ) A .①②B .③④C .①③D .②④7.记函数()cos2f x x =的导函数为()f x ',则函数()23()()g x f x f x '=+在[0,]x π∈内的单调递增区间是( ) A .0,2π⎡⎤⎢⎥⎣⎦B .,2ππ⎡⎤⎢⎥⎣⎦C .511,1212ππ⎡⎤⎢⎥⎣⎦D .5,12ππ⎡⎤⎢⎥⎣⎦8.已知函数f (x )在x =x 0处的导数为12,则000()()lim 3x f x x f x x∆→-∆-=∆( )A .-4B .4C .-36D .369.下列说法正确的是( )A .命题“若21x =,则1x ≠”的否命题是“若21x =,则1x =”B .命题“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x ->”C .“()y f x =在0x 处有极值”是“0()0f x '=”的充要条件D .命题“若函数2()1f x x ax =-+有零点,则“2a ≥或2a ≤-”的逆否命题为真命题 10.若()()21ln 22f x x b x =-++在[)1,-+∞上是减函数,则b 的取值范围是( ) A .[)1,-+∞B .(],1-∞-C .[)1,+∞D .(],1-∞11.函数()22xx f x e-=的图象大致是( ) A . B .C .D .12.已知函数()cos ln f x x x =-+,则()1f '的值为( ) A .sin11- B .1sin1- C .1sin1+ D .1sin1--二、填空题13.若关于x 的不等式220x ax +-<在区间[1,4]上有解,则实数a 的取值范围为________.14.已知()y f x =是奇函数,当(0,2)x ∈时,1()()2f x lnx ax a =->,当(2,0)x ∈-时,()f x 的最小值为1,则a =________.15.已知曲线x xy e=在1x x =处的切线为1l ,曲线ln y x =在2x x =处的切线为2l ,且12l l ⊥,则21x x -的取值范围是_________.16.函数()1ln(12)2xf x x x-=+-的导函数是()f x ',则()f x '=______________. 17.已知函数()f x 的导函数为'()f x ,且满足()2'(1)ln f x xf x =+,则'(1)=f ________18.已知函数f (x )=ln x -f ′ (12)x 2+3x -4,则f ′(1)=________. 19.已知函数()f x 的导函数为()f x ',且满足()()2ln f x xf e x '=+,则()f e =__________.20.已知()5234501234532x a a x a x a x a x a x -=+++++,则0123452345a a a a a a +++++的值为______三、解答题21.已知函数()1ln 1f x x x =+-,()()1x g x f x e x m x ⎡⎤=-+-⎢⎥⎣⎦.(1)求()f x 的单调区间;(2)当1,x e e⎡⎤∈⎢⎥⎣⎦时,判断函数()g x 的零点个数.22.已知函数()ln f x a x ax =+,2()2g x x x =+,其中a R ∈. (1)求函数()()()h x f x g x =+的极值; (2)若()g x 的图像在()()11,A x g x ,()()()2212,0B x g x xx <<处的切线互相垂直,求21x x -的最小值.23.已知函数2()3(6)ln ()f x x a x a x a R =+--∈ (1)求函数()y f x =的单调区间;(2)当1a =时,证明:对任意的20,()352x x f x e x x >+>++.24.已知函数321()23f x x bx x a =-++,2x =是()f x 的一个极值点. (1)求()f x 的单调递增区间; (2)若当[1,3]x ∈时,22()3f x a ->恒成立,求实数a 的取值范围.25.已知函数32()f x x ax bx c =+++的图象如图所示,x 轴与曲线相切于原点,所围成的区域(阴影)面积为2764.(1)求()f x 的解析式;(2)求函数()f x 在区间[,]()m m >00上的值域. 26.已知函数211()ln (,0)22f x x a x a R a =--∈≠. (1)当2a =时,求曲线()y f x =在点(1,(1))f 处的切线方程; (2)求函数()f x 的单调区间;(3)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据题中条件,得到()1mf x e-=-有两个根1x ,2x ,不妨设12x x <;令112m t e -=->,得到()122t x x e x =-,12t >,设()()22tg t e t =-,对其求导,判定其单调性,求出值域,即可得出结果. 【详解】 当1≥x 时,()ln 0f x x =>,∴()11f x +≥, 当1x <时,()1122x f x ->=,()312f x +>; ∴()()1ln 1f f x f x +=+⎡⎤⎡⎤⎣⎦⎣⎦,所以()[()1]F x f f x m =++两个零点1x ,2x ,等价于方程()()1ln 10F f x f x m +=++=⎡⎤⎡⎤⎣⎦⎣⎦有两个根1x ,2x , 则()1mf x e-+=,即()1mf x e-=-有两个根1x ,2x (不妨设12x x <),则1≥x 时,2ln 1mx e -=-;当1x <时,1112m x e --=-, 令112mt e-=->,则2ln x t =,112x t -=;所以2tx e =,122x t =-; 则()122t x x e x =-,12t >,设()()22tg t e t =-,12t >,则()2tg t te '=-,当1,2t ⎛⎫∈+∞⎪⎝⎭时,()0g t '<显然恒成立, 所以函数()g t 单调递减,则()12g t g ⎛⎫<= ⎪⎝⎭所以()g x的值域为(-∞,即12x x的取值范围为(-∞. 故选:A. 【点睛】 关键点点睛:求解本题的关键在于根据函数零点个数结合函数解析式,得到()1mf x e-=-有两个根为1x 和2x ,再构造函数,利用导数的方法求解即可.2.D解析:D 【分析】由已知建立方程,反解出k ,将问题转化为求函数值域问题,然后利用函数的性质求出最值即可求解. 【详解】由题意可得:存在实数00x ≠,使得()()00 f x f x -=成立,假设00x >,则00x -<, 所以有00ln kx x -=, 则0ln x k x =-, 令()ln xh x x=-, 则()2ln 1x h x x -'=, 令()0h x '>,即ln 1x >, 解得x e >,令()0h x '<,即ln 1x <, 解得0x e <<,则()h x 在()0,e 上单调递减,在(),e +∞上单调递增, 所以()()()ln 1min e h x h x h e e e≥==-=-, 所以1k e≥-, 故选:D. 【点睛】关键点睛:本题考查了分段函数的存在性问题,构造函数,利用导函数求最值是解决本题的关键.3.B解析:B 【分析】方程有三个解转化直线ln y x a =-与函数2ln y x =有三个交点,作出函数2ln y x =的图象,作出直线ln y x a =-,可知,只要求得直线ln y x a =-与函数2ln y x =的图象相切a 的什值,即可得结论. 【详解】转为直线ln y x a =-与函数2ln y x =有三个交点.显然当0x <时,有一个交点:当0x >时,只需ln y x a =-与2ln y x =有两个交点即可. 由2'1y x==,得2x =,ln y x a =-与2ln y x =相切时,切点坐标为()2,2ln 2, 此时24e a =. 由图象可知,当2,4e a ⎛⎫∈+∞ ⎪⎝⎭时,关于x 的方程ln 2ln x a x -=有三个不等的实数根. 故选:B .【点睛】关键点点睛:本题考查方程根的个数问题,解题方法是转化为直线与函数图象交点个数,进而转化为研究函数的性质,本题是用导数求出函数的切线方程方程.然后结合图象可得结论.4.B解析:B 【分析】构造函数()()xg x e f x =,根据题意,可得函数()g x 的奇偶性,根据0x <时()()0f x f x +'>,对函数()g x 求导,可得函数()g x 的单调性,将()()211a e f a f a +≥+,左右同乘1a e +,可得()()211211a a e f a e f a +++≥+,即()()211g a g a +≥+,利用()g x 的性质,即可求得答案.【详解】∵()()2x f x e f x -=,∴()()()x x xf xe f x e f x e --==-, 令()()xg x e f x =,则()()g x g x -=,即()g x 为偶函数,当0x <时()()0f x f x +'>,∴()()()'0xx e f x f x g '+⎡⎤⎣⎦>=,即函数()g x 在(),0-∞上单调递增.根据偶函数对称区间上单调性相反的性质可知()g x 在()0,∞+上单调递减, ∵()()211ae f a f a +≥+,∴()()211211a a ef a e f a +++≥+,∴()()211g a g a +≥+,即211a a +≤+, 解得,203a -≤≤, 故选:B . 【点睛】解题的关键是将题干条件转化为()()()x x xf x e f x e f x e--==-,根据左右相同的形式,构造函数()()xg x e f x =,再根据题意,求得函数的奇偶性,单调性;难点在于:由于()()211a e f a f a +≥+,不符合函数()g x 的形式,需左右同乘1a e +,方可利用函数()g x 的性质求解,属中档题.5.B解析:B 【分析】令ln xy x=,问题转化为函数在(0,)t 递增,求出函数的导数,求出函数的单调区间,从而求出t 的最大值即可.【详解】0a b t <<<,ln ln b a a b <,∴ln ln a ba b<,()a b <, 令ln xy x=,则函数在(0,)t 递增, 故21ln 0xy x -'=>, 解得:0x e <<,所以(0,)t 是(0,)e 的子集, 可得0t e <≤,故t 的最大值是e , 故选:B . 【点睛】利用单调性求参数的范围的常见方法:① 视参数为已知数,依据函数的图象或单调性定义,确定函数的单调区间,与已知单调区间比较求参数需注意若函数在区间,a b 上是单调的,则该函数在此区间的任意子集上也是单调的; ② 利用导数转化为不等式()'0f x ≤或()'0f x ≥恒成立问题求参数范围.6.A解析:A 【分析】根据导函数图象可判定导函数的符号,从而确定函数的单调性,得到极值点,以及根据导数的几何意义可知在某点处的导数即为在该点处的切线斜率. 【详解】根据导函数图象可知:当(),3x ∈-∞-时,()0f x '<,在()3,1x ∈-时,()0f x '≥∴函数()y f x =在(),3-∞-上单调递减,在()3,1-上单调递增,故②正确;则3-是函数()y f x =的极小值点,故①正确;∵在()3,1-上单调递增,1∴-不是函数()y f x =的最小值点,故③不正确; ∵函数()y f x =在0x =处的导数大于0,∴切线的斜率大于零,故④不正确. 故选:A 【点睛】方法点睛:本题考查导函数图象在函数单调性和极值中的应用,考查导数的几何意义,其中利用导函数判断单调性的步骤为: 先求出原函数的定义域; 对原函数求导;令导数大于零;解出自变量的范围;该范围即为该函数的增区间;同理令导数小于零,得到减区间;若定义域在增区间内,则函数单增;若定义域在减区间内则函数单减,若以上都不满足,则函数不单调.7.C解析:C 【分析】先对函数()f x 求导,再利用辅助角公式化简,然后利用正弦函数图像和性质即可分增区间. 【详解】()cos2f x x =,()'2sin 2f x x ∴=-,2()2sin 24sin 23g x x x x π⎛⎫=-=+⎪⎝⎭, 令2222232k x k πππππ-+≤+≤+, 解得71212k x k ππππ-+≤≤-+, ()g x ∴在[]0,π内的递增区间为511,1212ππ⎡⎤⎢⎥⎣⎦. 故选:C . 【点睛】本题主要考查的是正弦复合函数的单调性以及单调区间的求解,以及复合函数的导数的求法,熟练掌握正弦函数图像和性质是解决本题的关键,是中档题.8.A解析:A 【分析】根据题意,由极限的性质可得则000000()()()()1lim =lim 33x x f x x f x f x f x x x x∆→∆→-∆---∆-∆∆,结合导数的定义计算可得答案. 【详解】根据题意,函数()f x 在0x x =处的导数为12,则000000()()()()112lim=lim 4333x x f x x f x f x f x x x x ∆→∆→-∆---∆-=-=-∆∆;故选:A . 【点睛】本题考查极限的计算以及导数的定义,属于容易题.9.D解析:D 【分析】选项A ,否命题,条件否定,结论也要否定;选项B ,命题的否定,只对结论否定;选项C ,()y f x =在0x 处有极值,既要满足0()0f x '=,也要满足函数在0x 两边的单调性要相反;选项D ,若函数2()1f x x ax =-+有零点,等价于0∆≥,原命题与逆否命题同真假. 【详解】选项A ,命题“若21x =,则1x ≠”的否命题是“若21x ≠,则1x =”,错误;选项B ,命题“0x R ∃∈,2000x x -<”的否定是“x R ∀∈,20x x -≥”,错误;选项C ,0()0f x '=不能得到()y f x =在0x 处有极值,例如3()f x x =在0x =时,导数为0,但0x =不是函数极值点,错误;选项D ,若函数2()1f x x ax =-+有零点,即方程210x ax -+=有解,所以0∆≥,解得2a ≥或2a ≤-,所以原命题为真命题,又因为原命题与逆否命题同真假,所以逆否命题也是真命题,正确.2a ≥或2a ≤- 【点睛】本题主要考查命题真假性的判断,涉及到四个命题、充要条件以及特称命题的否定.10.B解析:B 【分析】先对函数进行求导,根据导函数小于0时原函数单调递减即可得到答案 【详解】由题意可知()02bf x x x '-+≤+=,在[)1x ∈-+∞,上恒成立, 即()2b x x ≤+在[)1x ∈-+∞,上恒成立, 由于()2y x x =+在[)1,-+∞上是增函数且最小值为1-,所以1b ≤-, 故选:B. 【点睛】本题主要考查导数的正负和原函数的增减性的问题,属于中档题.11.D解析:D 【分析】利用函数()f x 的奇偶性和单调性确定正确选项. 【详解】()f x 的定义域为R ,()()22x x f x f x e--==,所以()f x 为偶函数,排除AB 选项.当0x >时,()22xx f x e-=,()2'22xx x f x e-++=,令'0f x 解得1x =,所以()f x 在()1递增,在)1,+∞上递减.所以C 选项不符合,D 选项符合. 故选:D 【点睛】本小题主要考查函数的奇偶性和单调性,考查利用导数研究函数的单调性.12.C解析:C 【分析】根据导数的运算法则先求出函数的导数()f x '的解析式,再把1x =代入()f x '的解析式运算求得结果. 【详解】∵函数()cos ln f x x x =-+,∴()1sin f x x x'=+, ∴()1sin11f ='+,故选C. 【点睛】本题主要考查求函数的导数,导数的加减法则的应用,属于基础题.二、填空题13.【分析】本题现将不等式运用参变分离化简为再构造新函数求最大值最后求实数a 的取值范围【详解】解:∵不等式在区间上有解∴不等式在区间上有解∴不等式在区间上有解令()则∴当时单调递减∴不等式在区间上有解即 解析:(,1)-∞【分析】本题现将不等式220x ax +-<运用参变分离化简为2a x x<-,再构造新函数2()f x x x=-求最大值,最后求实数a 的取值范围. 【详解】解:∵ 不等式220x ax +-<在区间[1,4]上有解, ∴ 不等式22x a x-<在区间[1,4]上有解,∴ 不等式2a x x<-在区间[1,4]上有解, 令2()f x x x =-,(14x ≤≤),则22'()1f x x=--,∴ 当14x ≤≤时,'()0f x <,()f x 单调递减, ∴ max 2()(1)111f x f ==-= 不等式2a x x<-在区间[1,4]上有解,即max ()a f x∴1a <故答案为:(,1)-∞ 【点睛】本题考查不等式存在性问题,借导函数研究原函数单调性求最大值,是中档题.14.1【分析】根据函数的奇偶性确定在上的最大值为求导函数确定函数的单调性求出最值即可求得的值【详解】是奇函数时的最小值为1在上的最大值为当时令得又令则在上递增;令则在上递减得故答案为:1【点睛】本题考查解析:1 【分析】根据函数的奇偶性,确定()f x 在(0,2)上的最大值为1-,求导函数,确定函数的单调性,求出最值,即可求得a 的值. 【详解】()f x 是奇函数,(2,0)x ∈-时,()f x 的最小值为1,()f x ∴在(0,2)上的最大值为1-,当(0,2)x ∈时,1()f x a x'=-, 令()0f x '=得1x a =,又12a >,102a ∴<<,令()0f x '>,则1x a <,()f x ∴在1(0,)a 上递增;令()0f x '<,则1x a>, ()f x ∴在1(a,2)上递减,111()()1max f x f ln aaaa ∴==-=-,10ln a∴=,得1a =. 故答案为:1. 【点睛】本题考查函数单调性与奇偶性的结合,考查导数知识的运用,考查学生的计算能力,属于中档题.15.【分析】由求导根据得到由得到而然后令用导数法求解【详解】令则所以因为故所以因为故又令则当时为减函数故所以在上恒成立故在上为减函数所以即因此的取值范围是故答案为:【点睛】本题主要考查导数的几何意义导数 解析:(),1-∞-【分析】 由()xx f x e=,()ln g x x =,求导,根据12l l ⊥,得到1121x x x e -=,由20x >,得到11x >.而112111x x x x x e --=-,然后令()1,1xx h x x x e -=->,用导数法求解. 【详解】令()x x f x e =,()ln g x x =,则()1x xf x e -'=,()1g x x'=, 所以1111x xk e -=,221k x =, 因为12l l ⊥,故112111x x e x -⨯=-,所以1121x x x e -=, 因为20x >,故11x >.又112111x x x x x e --=-,令()1,1x x h x x x e -=->,则()221xx xx x e h x e e---=-=', 当()1,x ∈+∞时,2xy x e =--为减函数,故12210x x e e --<--<,所以()0h x '<在()1,+∞上恒成立, 故()h x 在()1,+∞上为减函数,所以()()11h x h <=-,即211x x -<-. 因此,21x x -的取值范围是(),1-∞-. 故答案为:(),1-∞-. 【点睛】本题主要考查导数的几何意义,导数与函数的最值,还考查了运算求解的能力,属于中档题.16.【分析】利用基本函数求导公式和导数运算法则求出导数然后代入求值【详解】解:因为由于且解得:且即的定义域为:即:故答案为:【点睛】本题考查基本函数求导公式和导数运算法则以及复合函数求导考查计算能力解析:23242142x x x x -+--+ 【分析】利用基本函数求导公式和导数运算法则,求出导数,然后代入求值. 【详解】 解:因为()1ln(12)2xf x x x-=+-, 由于20x ≠且120x ->,解得:12x <且0x ≠, 即()f x 的定义域为:()1,00,2⎛⎫-∞⋃ ⎪⎝⎭, ()()11()ln 12()ln 1222x x f x x x x x '--⎡⎤''∴=+-='+-⎡⎤⎣⎦⎢⎥⎣⎦2223222(1)14214122122242x x x x x x x x x x -----+-=-+=+=-+---, 即:()23242142x x f x x x -+-'=-+. 故答案为:23242142x x x x-+--+. 【点睛】本题考查基本函数求导公式和导数运算法则,以及复合函数求导,考查计算能力.17.-1【解析】【分析】首先对函数求导然后利用方程思想求解的值即可【详解】由函数的解析式可得:令可得:则【点睛】本题主要考查导数的运算法则基本初等函数的导数公式方程的数学思想等知识意在考查学生的转化能力解析:-1 【解析】 【分析】首先对函数求导,然后利用方程思想求解()'1f 的值即可. 【详解】由函数的解析式可得:()()1'2'1f x f x=+, 令1x =可得:()()1'12'11f f =+,则()'11f =-. 【点睛】本题主要考查导数的运算法则,基本初等函数的导数公式,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.18.-1【分析】根据题意由函数f (x )的解析式对其求导可得在其中令可得再令即可解可得f′(1)的值【详解】根据题意函数f(x)=lnx -f′()x2+3x -4其导数令令则即答案为-1【点睛】本题考查导数解析:-1 【分析】根据题意,由函数f (x )的解析式对其求导可得112'32f x xf x '=-+()() ,在其中令12x = 可得12f ⎛⎫' ⎪⎝⎭,再令1x =即可解可得f′(1)的值,【详解】根据题意,函数f (x )=ln x -f ′ (12)x 2+3x -4, 其导数112'32f x xf x '=-+()(),令12x =,1111152'3,,1222222f f f '=-⨯⨯+∴'=()()() 令1x =,则15213 1.12f x '=-⨯⨯+=-() 即答案为-1. 【点睛】本题考查导数的计算,注意12f ⎛⎫'⎪⎝⎭为常数. 19.-1【解析】分析:先求导数解得代入解得详解:因为所以所以因此点睛:利用导数的几何意义解题主要是利用导数切点坐标切线斜率之间的关系来进行转化解析:-1. 【解析】分析:先求导数,解得()'f e ,代入解得()f e . 详解:因为()()2'ln f x xf e x =+,所以1()2()f x f e x''=+ 所以11()2()(),f e f e f e e e''+∴=-'= 因此1()2()ln 1.f e e e e=-+=-,点睛:利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.20.233【解析】分析:根据题意在(3﹣2x )5=a0+a1x+a2x2+a3x3+a4x4+a5x5中令x=0可得a0=243设y=(3﹣2x )5=a0+a1x+a2x2+a3x3+a4x4+a5x5解析:233 【解析】分析:根据题意,在(3﹣2x )5=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4+a 5x 5中,令x=0可得a 0=243,设y=(3﹣2x )5=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4+a 5x 5,求出其导数,分析可得y '=﹣104(32)x -=a 1+2a 2x+3a 3x 2+4a 4x 3+5a 5x 4,令x=1可得a 1+2a 2+3a 3+4a 4+5a 5的值,将其值相加即可得答案.详解:根据题意,(3﹣2x )5=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4+a 5x 5中, 令x=0可得:35=a 0,即a 0=243,设y=(3﹣2x )5=a 0+a 1x+a 2x 2+a 3x 3+a 4x 4+a 5x 5, 其导数y′=﹣10(3﹣2x )4=a 1+2a 2x+3a 3x 2+4a 4x 3+5a 5x 4, 令x=1可得:﹣10=a 1+2a 2+3a 3+4a 4+5a 5, 则a 0+a 1+2a 2+3a 3+4a 4+5a 5=243﹣10=233; 故答案为:233点睛:(1)本题主要考查二项式定理的应用和导数,意在考查学生对这些基础知识的掌握能力及分析推理能力基本的计算能力. (2)解答本题的关键有两点,其一是想到赋值法,令x=0可得a 0=243,令x=1可得﹣10=a 1+2a 2+3a 3+4a 4+5a 5.其二是要看到0123452345a a a a a a +++++要想到求导.三、解答题21.(1)增区间为(1,)+∞,减区间为(0,1);(2)当112em e e<-+或m e >时,函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上没有零点;当112e e m e e-+≤≤时,函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上有一个零点.【分析】(1)求得函数的导数21()x f x x -'=,根据导函数的符号,即可求得函数的单调区间; (2)当1,x e e⎡⎤∈⎢⎥⎣⎦时,把函数()g x 的零点个数转化为方程(ln 1)xx e x m -+=的根的个数,构造新函数()(ln 1)xh x x e x =-+,利用导数求得函数()h x 的单调性与最值,结合最值,即可求解. 【详解】(1)由题意,函数()1ln 1f x x x=+-的定义域为(0,)+∞ ,且22111()x f x x x x -'=-=令()0f x '>,解得1x >;令()0f x '<,解得01x <<,所以函数()f x 的单调递增区间为(1,)+∞,单调递减区间为(0,1).(2)当1,x e e ⎡⎤∈⎢⎥⎣⎦时,函数()g x 的零点个数等价于方程(ln 1)x x e x m -+=的根的个数,令()(ln 1)xh x x e x =-+,则1()ln 11x h x x e x ⎛⎫'=+-+⎪⎝⎭, 由(1)知,()f x 在1,1e ⎛⎫⎪⎝⎭上单调递减,在(1,)e 上单调递增,所以当1,e e x ⎡⎤∈⎢⎥⎣⎦,()(1)0f x f ≥=,即1ln 10x x +-≥在1,x e e ⎡⎤∈⎢⎥⎣⎦上恒成立, 所以()1ln 11011x h x x e x ⎛⎫'=+-+≥+=⎪⎝⎭. 所以()(ln 1)xh x x e x =-+在1,x e e⎡⎤∈⎢⎥⎣⎦上单调递增,所以1min11()2e h x h e e e ⎛⎫==-+ ⎪⎝⎭,max ()()h x h e e ==,当112em e e<-+或m e>时,函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上没有零点;当112ee m e e-+≤≤时,函数()g x 在1,e e ⎡⎤⎢⎥⎣⎦上有一个零点.【点睛】对于利用导数研究函数的零点问题求解策略:把函数的零点问题转化为两个函数的图象的交点个数或转化为方程根的个数问题; 通常要构造新函数,利用导数研究函数的单调性,求出最值,从而求出参数的取值范围; 利用可分离变量,构造新函数,直接把问题转化为函数的最值问题.求满足函数零点个数的参数范围时,通常解法为从()f x 中分离参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围. 22.(1)答案见解析;(2)1. 【分析】(1)求导2(1)2()2(2)a x x a h x x a x x⎛⎫++ ⎪⎝⎭'=+++=,然后分0a ≥,0a <讨论求解. (2)求导()22g x x '=+,根据()g x 的图像在()()11,A x g x ,()()22,B x g x 处的切线互相垂直,得到()()1222221x x ++=-,即 ()121141x x =--+,然后由()21221141x x x x -=+++,利用基本不等式求解.【详解】(1)函数2()ln (2)h x a x x a x =+++的定义或为(0,)+∞,2(1)2()2(2)a x x a h x x a x x⎛⎫++ ⎪⎝⎭'=+++=, 若0a ≥,()0h x '>恒成立,此时()h x 在(0,)+∞上单调递增,无极值;若0a <时,()0h x '=,解得2a x =-, 当02ax <<-时,()0h x '<,()h x 单调递减; 当2ax >-时,()0h x '>,()h x 单调递增. ∴当2a x =-时,()h x 有极小值2ln 224a a ah a a ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭,无极大值.(2)()22g x x '=+,则()()1222221x x ++=-,其中,120x x <<,1222022x x ∴+<<+,且()121141x x =--+,210x -<<,()212211141x x x x ∴-=++≥=+,当且仅当21(1,0)2x =-∈-时取等号, ∴当212x =-,132x =-时,21x x -取最小值1.【点睛】结论点睛:(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.(2)若函数y =f (x )在区间(a ,b )内有极值,那么y =f (x )在(a ,b )内绝不是单调函数,即在某区间上单调函数没有极值. 23.(1)答案见解析;(2)证明见解析. 【分析】(1)求出导函数()'f x ,分类讨论确定()'f x 的正负,得增减区间;(2)不等式变形为ln 20x e x -->,令()ln 2x h x e x =--,由()h x '的单调确定其有唯一零点0x ,得出0x 为()h x 极小值点,也是最小值点,证明最小值即得. 【详解】(1)由题意知,函数()f x 的定义域为(0,)+∞由已知得26(6)(6)(1)()6(6)a x a x a x a x f x x a x x x+---+=+--==' 当0a 时,()0f x '>,函数()f x 在(0,)+∞上单调递增, 所以函数()f x 的单调递增区间为(0,)+∞ 当0a >时,由()0f x '>,得6a x >,由()0f x '<,得06ax << 所以函数()f x 的单调递增区间为,6a ∞⎛⎫+⎪⎝⎭,单调递减区间为0,6a ⎛⎫ ⎪⎝⎭综上,当0a 时,函数()f x 的单调递增区间为(0,)+∞,0a >时,函数()f x 的单调递增区间为,6a ∞⎛⎫+⎪⎝⎭,单调递减区间为0,6a ⎛⎫⎪⎝⎭. (2)当1a =时,不等式2()352x f x e x x +>++可变为ln 20x e x -->. 令()ln 2xh x e x =--,则1()xh x e x'=-,可知函数()h x '在(0,)+∞单调递增,.. 而131303h e ⎛⎫=-< ⎪'⎝⎭,(1)10h e '=->所以方程()0h x '=在(0,)+∞上存在唯一实根0x ,即01x e x =当()00,x x ∈时,()0h x '<,函数()h x 单调递减;当()0,x x ∈+∞时,()0h x '>,函数()h x 单调递增;所以()00min 00000111()ln 2ln 220x x h x h x e x x x e x ==--=--=+-> 即 ln 20x e x -->在(0,)+∞上恒成立, 所以对任意20,()352x x f x e x x >+>++成立. 【点睛】关键点点睛:本题考查用导数求函数的单调区间,考查不等式恒成立问题.把不等式化简后,引入新函数,由导数得出新函数的最值,证明最值符合不等关系即可证原不等式.这里对导函数的零点不能求得具体数,可以得出其存在性,得出其性质(范围),然后利用导数的零点化简原函数的最值,以证结论. 24.(1)(,1)-∞,(2,+)∞;(2)01a <<. 【分析】(1)根据2x =是()f x 的一个极值点,2x =是2()220f x x bx '=-+=方程的一个根,解得b ,然后令()0f x '>求解. (2)将 [1,3]x ∈时,22()3f x a ->恒成立,转化为22()3f x a >+恒成立,只需2min 2()3f x a >+求解. 【详解】(1)2()22f x x bx '=-+.∵2x =是()f x 的一个极值点, ∴2x =是方程2220x bx -+=的一个根, 解得32b =. 令()0f x '>,则2320x x -+>, 解得1x <或2x >.∴函数()y f x =的单调递增区间为(,?1)-∞,(2,+)∞. (2)∵当(1,2)x ∈时()0f x '<,(2,3)x ∈时()0f x '>, ∴()f x 在(1,2)上单调递减,()f x 在(2,3)上单调递增. ∴(2)f 是()f x 在区间[1,3]上的最小值,且 2(2)3f a =+. 若当[1,?3]x ∈时,要使22()3f x a ->恒成立,只需22(2)3f a >+, 即22233a a +>+, 解得 01a <<. 【点睛】方法点睛:恒(能)成立问题的解法: 若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为:()a f x >(或()a f x <),则 (1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<; (2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<. 25.(1)323()2f x x x =-;(2)答案见解析. 【分析】(1)由图知(0)0f =得0c ,x 轴与曲线相切于原点得(0)0f '=,在利用定积分求阴影面积即可;(2)先求出()f x 在R 上的单调性,再根据m 的位置分类讨论,即可求出. 【详解】(1)由(0)0f =得0c,2()32f x x ax b '=++,由(0)0f '=得0b =,∴322()()f x x ax x x a =+=+,令()0f x =,得0x =或x a =-,由图知0a ->,即0a <,则易知图中所围成的区城(阴影)面积为()4343200()4312aaax ax a f x dx x ax dx ---⎛⎫-⎰=-⎰+=-+= ⎪⎝⎭, 即4271264a =,从而得32a =-, ∴323()2f x x x =-. (2)由(1)知2()333(1)f x x x x x '=-=-,令()0f x '=,解得0x =或1x =, 由题310,(1)22f f ⎛⎫==-⎪⎝⎭,,(),()x f x f x '的变化情况如下表:①当01m <<时,()f x 在0,m 上单调递减,所以()()(0)f m f x f ≤≤,即323()02m m f x -≤≤; ②当312m ≤≤时,()f x 在[0,1)上单调递减,在(1,]m 上单调递增,所以(1)()(0)f f x f ≤≤,即1()02f x -≤≤; ③当32m >时,()f x 在[0,1)上单调递减,在(1,]m 上单调递增,所以(1)()()f f x f m ≤≤,即3213()22f x m m -≤≤-, 综上可知:当01m <<时,()f x 值域为323,02m m ⎡⎤-⎢⎥⎣⎦; 当312m ≤≤时,()f x 值域为1,02⎡⎤-⎢⎥⎣⎦; 当32m >时,()f x 值域为3213,22m m ⎡⎤--⎢⎥⎣⎦.【点晴】此题要抓住图像的特征,找寻特殊点,充分体现了函数部分数形结合思想和分类讨论思想. 26.(1)10x y +-=;(2)答案见解析;(3)()(],00,1-∞.【分析】(1)当2a =时,求出函数的导数,利用导数的几何意义即可求曲线()y f x =在点()1,()f x 处的切线方程;(2)求函数的导数,利用函数单调性和导数之间的关系即可求函数()f x 的单调区间; (3)根据函数的单调性求出函数的最小值即可实数a 的取值范围. 【详解】解:(1)2a =时,211()2ln 22f x x x =--,(1)0f =, 2'()f x x x=- ,'(1)1f =-曲线()y f x =在点(1,(1))f 处的切线方程10x y +-=(2)2'()(0)a x af x x x x x-=-=>①当0a <时,2'()0x af x x-=>恒成立,函数()f x 的递增区间为()0,∞+②当0a >时,令'()0f x =,解得x =x =所以函数()f x 的递增区间为+∞,递减区间为(3)对任意的[1,)x ∈+∞,使()0f x ≥成立,只需任意的[1,)x ∈+∞,min ()0f x ≥ ①当0a <时,()f x 在[1,)+∞上是增函数,所以只需(1)0f ≥ 而11(1)ln1022f a =--= 所以0a <满足题意;②当01a <≤时,01<≤,()f x 在[1,)+∞上是增函数,所以只需(1)0f ≥ 而11(1)ln1022f a =--= 所以01a <≤满足题意;③当1a >1>,()f x 在上是减函数,)+∞上是增函数,所以只需0f ≥即可 而(1)0f f <= 从而1a >不满足题意;综合①②③实数a 的取值范围为()(],00,1-∞.【点睛】本题主要考查函数切线的求解,以及函数单调性和函数最值的求解,综合考查函数的导数的应用,属于中档题.。

人教版导数及其应用多选题测试综合卷检测试卷

人教版导数及其应用多选题测试综合卷检测试卷一、导数及其应用多选题1.已知函数()21xx x f x e+-=,则下列结论正确的是( ) A .函数()f x 存在两个不同的零点 B .函数()f x 既存在极大值又存在极小值C .当0e k -<<时,方程()f x k =有且只有两个实根D .若[),x t ∈+∞时,()2max 5f x e=,则t 的最小值为2 【答案】ABC 【分析】首先求函数的导数,利用导数分析函数的单调性和极值以及函数的图象,最后直接判断选项. 【详解】对于A .2()010f x x x =⇒+-=,解得152x -±=,所以A 正确; 对于B .22(1)(2)()x xx x x x f x e e--+-=-=-', 当()0f x '>时,12x -<<,当()0f x '<时,1x <-或2x >,所以(,1),(2,)-∞-+∞是函数的单调递减区间,(1,2)-是函数的单调递增区间, 所以(1)f -是函数的极小值,(2)f 是函数的极大值,所以B 正确.对于C .当x →+∞时,0y →,根据B 可知,函数的最小值是(1)f e -=-,再根据单调性可知,当0e k -<<时,方程()f x k =有且只有两个实根,所以C 正确;对于D :由图象可知,t 的最大值是2,所以D 不正确. 故选:ABC.【点睛】易错点点睛:本题考查了导数分析函数的单调性,极值点,以及函数的图象,首先求函数的导数,令导数为0,判断零点两侧的正负,得到函数的单调性,本题易错的地方是(2,)+∞是函数的单调递减区间,但当x →+∞时,0y →,所以图象是无限接近轴,如果这里判断错了,那选项容易判断错了.2.关于函数()2ln f x x x=+,下列判断正确的是( ) A .2x =是()f x 的极大值点 B .函数yf xx 有且只有1个零点C .存在正实数k ,使得()f x kx >恒成立D .对任意两个正实数1x ,2x ,且21x x >,若()()12f x f x =,则124x x +> 【答案】BD 【分析】对于A ,利用导数研究函数()f x 的极值点即可; 对于B ,利用导数判断函数y f xx 的单调性,再利用零点存在性定理即得结论;对于C ,参变分离得到22ln xk x x <+,构造函数()22ln x g x x x=+,利用导数判断函数()g x 的最小值的情况;对于D ,利用()f x 的单调性,由()()12f x f x =得到1202x x <<<,令()211x t t x =>,由()()12f x f x =得21222ln t x x t t-+=,所以要证124x x +>,即证2224ln 0t t t -->,构造函数即得. 【详解】A :函数()f x 的定义域为0,,()22212x f x x x x-'=-+=,当()0,2x ∈时,0f x,()f x 单调递减,当()2,x ∈+∞时,0fx,()f x 单调递增,所以2x =是()f x 的极小值点,故A 错误.B :()2ln y f x x x x x=-=+-,22221210x x y x x x -+'=-+-=-<,所以函数在0,上单调递减.又()112ln1110f -=+-=>,()221ln 22ln 210f -=+-=-<,所以函数yf xx 有且只有1个零点,故B 正确.C :若()f x kx >,即2ln x kx x +>,则22ln x k x x <+.令()22ln x g x x x=+,则()34ln x x xg x x-+-'=.令()4ln h x x x x =-+-,则()ln h x x '=-,当()0,1∈x 时,()0h x '>,()h x 单调递增,当()1,∈+∞x 时,()0h x '<,()h x 单调递减,所以()()130h x h ≤=-<,所以0g x,所以()22ln x g x x x=+在0,上单调递减,函数无最小值,所以不存在正实数k ,使得()f x kx >恒成立,故C 错误. D :因为()f x 在()0,2上单调递减,在2,上单调递增,∴2x =是()f x 的极小值点.∵对任意两个正实数1x ,2x ,且21x x >,若()()12f x f x =,则1202x x <<<. 令()211x t t x =>,则21x tx =,由()()12f x f x =,得121222ln ln x x x x +=+, ∴211222ln ln x x x x -=-,即()2121212ln x x x x x x -=,即()11121ln t x t x tx -=⋅,解得()121ln t x t t-=,()2121ln t t x tx t t-==,所以21222ln t x x t t-+=.故要证124x x +>,需证1240x x +->,需证22240ln t t t -->,需证2224ln 0ln t t tt t-->. ∵211x t x =>,则ln 0t t >, ∴证2224ln 0t t t -->.令()()2224ln 1H t t t t t =-->,()()44ln 41H t t t t '=-->,()()()414401t H t t t t-''=-=>>,所以()H t '在1,上是增函数.因为1t →时,()0H t '→,则()0H t '>,所以()H t 在1,上是增函数.因为1t →时,()0H t →,则()0H t >,所以2224ln 0ln t t tt t-->, ∴124x x +>,故D 正确. 故选:BD . 【点睛】关键点点睛:利用导数研究函数的单调性、极值点,结合零点存在性定理判断A 、B 的正误;应用参变分离,构造函数,并结合导数判断函数的最值;由函数单调性,应用换元法并构造函数,结合分析法、导数证明D 选项结论.3.对于函数()2ln 1f x x ax x a =+--+,其中a R ∈,下列4个命题中正确命题有( )A .该函数定有2个极值B .该函数的极小值一定不大于2C .该函数一定存在零点D .存在实数a ,使得该函数有2个零点【答案】BD【分析】求出导函数,利用导数确定极值,结合零点存在定理确定零点个数. 【详解】函数定义域是(0,)+∞,由已知2121()2x ax f x x a x x+-'=+-=,280a ∆=+>,2210x ax +-=有两个不等实根12,x x ,但12102x x =-<,12,x x 一正一负.由于定义域是(0,)+∞,因此()0f x '=只有一个实根,()f x 只有一个极值,A 错; 不妨设120x x <<,则20x x <<时,()0f x '<,()f x 递减,2x x >时,()0f x '>,()f x 递增.所以2()f x 是函数的极小值.222210x ax +-=,22212x a x -=,22222()ln 1f x x ax x a =+--+=222222222222212112ln 12ln 2x x x x x x x x x -+---+=-+--+,设21()2ln 2g x x x x x =-+--+,则22111()22(1)(2)g x x x x x x'=-+-+=-+, 01x <<时,()0g x '>,()g x 递增,1x >时,()0g x '<,()g x 递减,所以()g x 极大值=(1)2g =,即()2g x ≤,所以2()2f x ≤,B 正确; 由上可知当()f x 的极小值为正时,()f x 无零点.C 错;()f x 的极小值也是最小值为2222221()2ln 2f x x x x x =-+--+, 例如当23x =时,173a =-,2()0f x <,0x →时,()f x →+∞,又2422217171714()21()03333f e e e e e =--++=-+>(217()3e >, 所以()f x 在(0,3)和(3,)+∞上各有一个零点,D 正确. 故选:BD . 【点睛】思路点睛:本题考查用导数研究函数的极值,零点,解题方法是利用导数确定函数的单调性,极值,但要注意在函数定义域内求解,对零点个数问题,注意结合零点存在定理,否则不能确定零点的存在性.4.已知函数()1ln f x x x x=-+,()()1ln x x x x g --=,则下列结论正确的是( ) A .()g x 存在唯一极值点0x ,且()01,2x ∈B .()f x 恰有3个零点C .当1k <时,函数()g x 与()h x kx =的图象有两个交点D .若120x x >且()()120f x f x +=,则121=x x 【答案】ACD 【分析】根据导数求得函数()g x '在(0,)+∞上为单调递减函数,结合零点的存在性定,可判定A 正确;利用导数求得函数 ()f x 在(,0)-∞,(0,)+∞单调递减,进而得到函数 ()f x 只有2个零点,可判定B 不正确;由()g x kx =,转化为函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象的交点个数,可判定C 正确;由()()120f x f x +=,化简得到 ()121()f x f x =,结合单调性,可判定D 正确. 【详解】由函数()()1ln x x x x g --=,可得 ()1ln ,0g x x x x '=-+>,则()2110g x x x''=--<,所以()g x '在(0,)+∞上为单调递减函数,又由 ()()110,12ln 202g g '=>=-+<, 所以函数()g x 在区间(1,2)内只有一个极值点,所以A 正确; 由函数()1ln f x x x x=-+, 当0x >时,()1ln f x x x x=-+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(0,)+∞单调递减;又由()10f =,所以函数在(0,)+∞上只有一个零点, 当0x <时,()1ln()f x x x x =--+,可得 ()221x x f x x -+-'=,因为22131()024x x x -+-=---<,所以 ()0f x '<,函数()f x 在(,0)-∞单调递减; 又由()10f -=,所以函数在(,0)-∞上只有一个零点, 综上可得函数()1ln f x x x x=-+在定义域内只有2个零点,所以B 不正确; 令()g x kx =,即()1ln x x x kx --=,即 ()1ln (1)x x k x -=-, 设()()1ln x x x ϕ-=, ()(1)m x k x =-, 可得()1ln 1x x x ϕ'=+-,则 ()2110x x xϕ''=+>,所以函数()x ϕ'(0,)+∞单调递增, 又由()01ϕ'=,可得当(0,1)x ∈时, ()0x ϕ'<,函数()x ϕ单调递减,当(1,)x ∈+∞时,()0x ϕ'>,函数 ()x ϕ单调递增, 当1x =时,函数()x ϕ取得最小值,最小值为()10ϕ=, 又由()(1)m x k x =-,因为1k <,则 10k ->,且过原点的直线,结合图象,即可得到函数()()1ln x x x ϕ-=和 ()(1)m x k x =-的图象有两个交点,所以C 正确;由120x x >,若120,0x x >>时,因为 ()()120f x f x +=,可得()()12222222211111ln ln1f x f x x x f x x x x x ⎛⎫⎛⎫=-=--+=+-= ⎪ ⎪⎝⎭⎝⎭,即()121()f x f x =,因为()f x 在(0,)+∞单调递减,所以 121x x =,即121=x x , 同理可知,若120,0x x <<时,可得121=x x ,所以D 正确. 故选:ACD.【点睛】函数由零点求参数的取值范围的常用方法与策略:1、分类参数法:一般命题情境为给出区间,求满足函数零点个数的参数范围,通常解法为从()f x 中分离参数,然后利用求导的方法求出由参数构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数的取值范围;2、分类讨论法:一般命题情境为没有固定的区间,求满足函数零点个数的参数范围,通常解法为结合函数的单调性,先确定参数分类标准,在每个小范围内研究零点的个数是否符合题意,将满足题意的参数的各个小范围并在一起,即可为所求参数的范围.5.若函数()f x 满足对于任意1x ,2(0,1)x ∈,()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 为“中点凸函数”.则下列函数中为“中点凸函数”的是( )A .2()2f x x x =-B .()tan f x x =C .()sin cos f x x x =-D .()e ln x f x x =-【答案】ABD【分析】 用计算()()121222f x f x x x f ++⎛⎫-⎪⎝⎭的正负值来解,运算量大,比较复杂.我们可分析“中点凸函数”的几何特征,结合图像作答.由已知“中点凸函数”的定义,可得“中点凸函数”的图象形状可能为:【详解】由“中点凸函数”定义知:定义域内12,x x 对应函数值的平均值大于或等于122x x +处的函数值,∴下凸函数:任意连接函数图象上不同的两点所得直线一定在图象上方或与图象重合. 设()()11,Ax f x ,()()22,B x f x 为曲线()f x 在(0,1)上任意两点A 、B 、C 、D 选项对应的函数图象分别如下图示: ①2()2f x x x =-符合题意 ②()tan f x x =符合题意③()sin cos 2sin 4f x x x x π⎛⎫=-=- ⎪⎝⎭放大局部图像可见,在,14段,并不满足12,x x 对应函数值的平均值大于或等于122x x +处的函数值.不合题意④()e ln x f x x =-'1()e x f x x =-,''21()e 0x f x x+=>根据导函数作出图像如下符合题意. 故选:ABD 【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,学生可利用数形结合求解,需要较强的推理与运算能力.6.已知2()ln f x x x =,2()()f x g x x'=,()'f x 是()f x 的导函数,则下列结论正确的是( )A .()f x 在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增. B .()g x 在(0,)+∞上两个零点C .当120x x e <<< 时,221212()()()m x x f x f x -<-恒成立,则32m ≥D .若函数()()h x f x ax =-只有一个极值点,则实数0a ≥【答案】ACD 【分析】求出导函数()'f x ,由()0f x '>确定增区间,判断A ,然后可得()g x ,再利用导数确定()g x 的单调性与极值,结合零点存在定理得零点个数,判断B ,构造函数2()()x f x mx ϕ=-,由()ϕx 在(0,)e 上递减,求得m 范围,判断C ,利用导数研究()h x 的单调性与极值点,得a 的范围,判断D . 【详解】()(2ln 1)(0)f x x x x '=+>,令()0f x '>,得1212ln 10ln 2x x x e -+>⇒>-⇒>,故A 正确2ln 1()x g x x+=, 212ln ()x g x x -'=,令()0g x '>得121ln 2x x e <⇒<,()0g x '<得120x e <<, 故()g x 在120,e ⎛⎫ ⎪⎝⎭上为减函数,在12e ⎛⎫+∞ ⎪⎝⎭上为增函数.当x →时,()g x →-∞;当x →+∞时,()0g x →且g()0x >()g x ∴的大致图象为()g x ∴只有一个零点,故B 错.记2()()x f x mx ϕ=-,则()ϕx 在(0,)e 上为减函数,()(2ln 1)20x x x mx ϕ'∴=+-≤对(0,)x e ∈恒成立22ln 1m x ∴≥+对(0,)x e ∈恒成立23m ∴≥32m ∴≥. 故C 正确.2()()ln h x f x ax x x ax =-=-,()(2ln 1)h x x x a =+'-,设()(2ln 1)H x x x =+,()h x 只有一个极值点, ()h x '0=只有一个解,即直线y a =与()y H x =的图象只有一个交点.()2(ln 1)12ln 3H x x x '=++=+,()H x '在(0,)+∞上为增函数,令()0H x '=,得32x e-=,当0(0,)x x ∈时,()0H x '<;当0(,)x x ∈+∞时,()0H x '>.()H x ∴在0(0,)x 上为减函数,在0(,)x +∞上为增函数,332203()21202H x e e --⎡⎤⎛⎫=⨯-+=-< ⎪⎢⎥⎝⎭⎣⎦,0(0,)x x ∈时,322ln 12ln 120x e -+<+=-<,即()0H x <,且0x →时,()0H x →,又x →+∞时,()H x →+∞,因此()H x 的大致图象如下(不含原点):直线y a =与它只有一个交点,则0a ≥.故D 正确. 故选:ACD . 【点睛】关键点点睛:本题考查用导数研究函数的性质,解题关键是由导数确定函数的单调性,得出函数的极值,对于零点问题,需要结合零点存在定理才能确定零点个数.注意数形结合思想的应用.7.经研究发现:任意一个三次多项式函数32()(0)f x ax bx cx d a =+++≠的图象都只有一个对称中心点()()00,x f x ,其中0x 是()0f x ''=的根,()'f x 是()f x 的导数,()f x ''是()'f x 的导数.若函数32()f x x ax x b =+++图象的对称点为(1,2)-,且不等式(ln 1)x e e mx x -+32()3ef x x x e x ⎡⎤≥--+⎣⎦对任意(1,)x ∈+∞恒成立,则( )A .3a =B .1b =C .m 的值可能是e -D .m 的值可能是1e-【答案】ABC 【分析】求导得()62f x x a ''=+,故由题意得()1620f a ''=-+=-,()1112f a b -=-+-+=,即3,1a b ==,故()3231f x x x x =+++.进而将问题转化为()1ln 1e x x e x e m x --++<+,由于1x e x >+,故ln ln 1ee x x x x e e x e x --+=≥-+,进而得()1ln ln 1ln 1e x x e x e e x ee x x --++--≥=-++,即m e ≤-,进而得ABC 满足条件.【详解】由题意可得()1112f a b -=-+-+=,因为()2321x ax f x =++',所以()62f x x a ''=+,所以()1620f a ''=-+=-,解得3,1a b ==,故()3231f x x x x =+++.因为1x >,所以()()32ln []13xeee mx xf x x x e x -+≥--+等价于()1ln 1e x x e x e m x --++≤+. 设()()10xg x e x x =-->,则()10xg x e '=->,从而()g x 在()0,∞+上单调递增.因为()00g =,所以()0g x >,即1x e x >+, 则ln ln 1ee x xxx e e x e x --+=≥-+(当且仅当x e =时,等号成立),从而()1ln ln 1ln 1e x x e x e e x e e x x --++--≥=-++,故m e ≤-.故选:ABC. 【点睛】本题解题的关键在于根据题意得()3231f x x x x =+++,进而将不等式恒成立问题转化为()1ln 1e x x e x e m x --++≤+恒成立问题,再结合1x e x >+得ln ln 1ee x xxx e e x e x --+=≥-+,进而得m e ≤-.考查运算求解能力与化归转化思想,是难题.8.已知函数()e sin xf x a x =+,则下列说法正确的是( )A .当1a =-时,()f x 在0,单调递增B .当1a =-时,()f x 在()()0,0f 处的切线为x 轴C .当1a =时,()f x 在()π,0-存在唯一极小值点0x ,且()010f x -<<D .对任意0a >,()f x 在()π,-+∞一定存在零点 【答案】AC 【分析】结合函数的单调性、极值、最值及零点,分别对四个选项逐个分析,可选出答案. 【详解】对于A ,当1a =-时,()e sin xf x x =-,()e cos xf x x '=-,因为()0,x ∈+∞时,e 1,cos 1xx >≤,即0fx,所以()f x 在0,上单调递增,故A 正确;对于B ,当1a =-时,()e sin x f x x =-,()e cos xf x x '=-,则()00e sin01f =-=,()00e cos00f '=-=,即切点为0,1,切线斜率为0,故切线方程为1y =,故B 错误;对于C ,当1a =时,()e sin xf x x =+,()e cos xf x x '+=,()e sin xf x x '=-',当()π,0x ∈-时,sin 0x <,e 0x >,则()e sin 0xx f x -'=>'恒成立,即()e cos x f x x '+=在()π,0-上单调递增,又ππ22ππe cos e 220f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝⎭+>,3π3π443π3πe cos e 44f --⎛⎫⎛⎫'-=-= ⎪ ⎪⎝⎭⎝⎭+,因为123π3π421e e 2e ---⎛⎫=<⎪⎭< ⎝,所以3π43πe 024f -⎛⎫'-= ⎪-⎭<⎝,所以存在唯一03ππ,42x ⎛⎫∈-- ⎪⎝⎭,使得()00f x '=成立,所以()f x 在()0π,x -上单调递减,在()0,0x 上单调递增,即()f x 在()π,0-存在唯一极小值点0x ,由()000e cos 0xf x x +'==,可得()000000πe sin cos sin 4x f x x x x x ⎛⎫=+=-+=- ⎪⎝⎭,因为03ππ,42x ⎛⎫∈-- ⎪⎝⎭,所以0π3ππ,44x ⎛⎫-∈-- ⎪⎝⎭,则()00π4f x x ⎛⎫=- ⎪⎝⎭()1,0∈-,故C 正确;对于选项D ,()e sin xf x a x =+,()π,x ∈-+∞,令()e sin 0xf x a x =+=,得1sin ex xa -=, ()sin ex xg x =,()π,x ∈-+∞,则()πcos sin 4e e x xx x x g x ⎛⎫- ⎪-⎝⎭'==, 令0g x ,得πsin 04x ⎛⎫-= ⎪⎝⎭,则ππ4x k =+()1,k k ≥-∈Z ,令0g x,得πsin 04x ⎛⎫-> ⎪⎝⎭,则π5π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递减, 令0g x,得πsin 04x ⎛⎫-< ⎪⎝⎭,则5π9π2π,2π44x k k ⎛⎫∈++ ⎪⎝⎭()1,k k ≥-∈Z ,此时函数()g x 单调递增, 所以5π2π4x k =+()1,k k ≥-∈Z 时,()g x 取得极小值,极小值为5π5π2π2π445π5π2π5π4s 42in si πe e 4n k k g k k ++⎛⎫ ⎪⎛⎫⎝⎭== ⎪⎝⎭++()1,k k ≥-∈Z , 在()g x 的极小值中,3π4sin 3π45π5π42π4eg g -⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝+⎭-最小,当3ππ,4x ⎛⎫∈--⎪⎝⎭时,()g x 单调递减,所以函数()g x的最小值为3π3π445πsin 3π144eg --⎛⎫-==- ⎪⎝⎭,当3π411a--<-时,即3π40a -<<时,函数()g x 与1=-y a无交点,即()f x 在()-+∞不存在零点,故D错误.π,故选:AC.【点睛】本题考查利用导数研究函数的极值、零点、最值,及切线方程的求法,考查学生的推理能力与计算求解能力,属于难题.。

(北师大版)南京市高中数学选修2-2第三章《导数应用》测试卷(有答案解析)

一、选择题1.设函数()3xf x xe =,若存在唯一的负整数0x ,使得()00f x kx k <-,则实数k 的取值范围是( )A .23,0e ⎡⎫-⎪⎢⎣⎭B .30,2e ⎡⎫⎪⎢⎣⎭C .236,e e ⎛⎫-- ⎪⎝⎭D .223,2e e ⎡⎫⎪⎢⎣⎭2.已知函数()ln f x x ax =-有两个零点,则实数a 的取值范围为( )A .1a e<B .0a <C .0a ≤D .10a e<<3.已知函数()()11332cos 1x x x f x --+=+--,则()()0.52310.5log 9log 2f f f -⎛⎫ ⎪⎝⎭、、的大小关系( )A .()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭ B .0.5321(log )(0.5)(log 9)2f f f ->>C .0.5321(0.5)(log )(log 9)2f f f ->>D .0.5231(log 9)(0.5)(log )2f f f ->>4.已知函数()()()21=)1ln 2(,1+f x x a x a a b x -+->,函数2x b y +=的图象过定点0,1(),对于任意()1212,0,,x x x x ∈+∞>,有()()1221f x f x x x ->-,则实数a 的范围为( ) A .15a <≤ B .25a <≤ C .25a ≤≤ D .35a <≤5.函数()[)(](),00,sin xf x x x xππ=∈--的图象大致是( )A .B .C .D .6.已知函数()f x lnx =,若关于x 的方程()f x kx =恰有两个不相等的实数根, 则实数k 的取值范围是( ) A .1(0,)eB .(0,1]eC .1(2eD .1(2e7.已知函数()21x f x x-=,则不等式121()()x x f e f e ﹣﹣>的解集是( )A .2,3⎛⎫-∞-⎪⎝⎭B .2,3⎛⎫-∞ ⎪⎝⎭C .(,0)-∞D .2,3⎛⎫+∞⎪⎝⎭8.设12x <<,则ln x x ,2ln x x ⎛⎫ ⎪⎝⎭,22ln x x 的大小关系是( ) A .222ln ln ln x x x x x x ⎛⎫<< ⎪⎝⎭B .222ln ln ln x x x x x x⎛⎫<< ⎪⎝⎭C .222ln ln ln x x x x x x ⎛⎫<<⎪⎝⎭D .222ln ln ln x x xx x x ⎛⎫<<⎪⎝⎭9.已知函数()3227f x x ax bx a a =++--在1x =处取得极大值10,则ab的值为( ) A .23-B .23或2 C .2D .13-10.已知函数2()cos sin 2f x x x =,若存在实数M ,对任意12,R x x ∈都有()()12f x f x M -≤成立.则M 的最小值为( )A.8B.2C.4D.311.定义在R 上的函数()f x 的导函数为()'f x ,对任意的实数x ,都有()10f x '+<,且(1)1f =-,则( )A .(0)0f <B .()f e e <-C .()(0)f e f >D .(2)(1)f f >12.已知0a >,函数()225,0,2,0,x a x f x x x ⎧+≤⎪=⎨⎪->⎩若关于x 的方程()()2f x a x =-恰有2个互异的实数解,则a 的取值范围为( )A .14a <<B .24a <<C .48a <<D .28a <<二、填空题13.已知函数()ln (1)=+-f x x a x ,当()f x 有最大值,且最大值大于22a -时,则a 的取值范围是__________.14.已知函数()ln 1f x x x =--,()ln g x x =,()()F x f g x =⎡⎤⎣⎦,()()G x g f x =⎡⎤⎣⎦,给出以下四个命题:(1)()y F x =是偶函数;(2)()y G x =是偶函数;(3)()y F x =的最小值为0;(4)()y G x =有两个零点;其中真命题的是______.15.若函数的()1,2ln ,x m x ef x x x x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,其中e 是自然对数的底数,则实数m 的最小值是______.16.如果圆柱轴截面的周长l (单位:cm )为定值,则体积最大值为____________3cm . 17.设动直线x m =与函数()32f x x =,()ln g x x =的图象分别交于点M ,N ,则线段MN 长度的最小值为______.18.关于x 的不等式2ln 0x x kx x -+≥恒成立,实数k 的取值范围是__________.19.已知函数()xf x e =,()g x ex =,若存在12,x x R ∈,使得()()12f x g x m ==,则21x x -的最小值为______.20.已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',且()10f =,当0x <时,()()+0f x f x x'>,则使得()0f x >成立的x 的取值范围是________. 三、解答题21.设函数()22f x x x k x =++,k ∈R . (Ⅰ)当1k =-时,解不等式()3f x >;(Ⅱ)若对任意[]1,2x ∈时,直线21y x =+恒在曲线()y f x =的上方,求k 的取值范围. 22.已知函数)(21ln 2f x x ax x =-+有两个极值点)(1212,x x x x <. (1)求a 的取值范围; (2)求证:21>x 且)(2132f x x <-. 23.如图,在半径为30cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A 、B 在直径上,点C 、D 在圆周上.(1)怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积;(2)若将所截得的矩形铝皮ABCD 卷成一个以AD 为母线的圆柱形罐子的侧面(不计剪裁和拼接损耗),应怎样截取,才能使做出的圆柱形罐子体积最大?并求最大体积.24.已知函数321()13f x x ax =-+.(1)若函数()1y f x =-是奇函数,直接写出a 的值; (2)求函数()f x 的单调递减区间;(3)若()1f x ≥在区间[3,)+∞上恒成立,求a 的最大值.25.设()3221f x x ax bx =+++的导数为()'f x ,若函数()'y f x =的图象关于直线12x =-对称,且()'10f =.(1)实数,a b 的值; (2)求函数()f x 的极值. 26.已知函数()ln ()af x x a R x=+∈.(1)讨论函数()f x 的单调性;(2)当0a >时,若函数()f x 在[1,]e 上的最小值是2,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用到函数研究其图象,令3x y xe =,y kx k =-,从而讨论两个函数的性质作出3x y xe =与y kx k =-的图象,从而结合图象可得解. 【详解】()3x f x xe =,令y kx k =-,()3(1)x f x e x '=+,()3x f x xe ∴=在(-∞,1]-上是减函数,在(1,)-+∞上是增函数,又y kx k =-是恒过点(1,0)的直线,∴作()3x f x xe =与y kx k =-的图象如下:当直线y kx k =-与()3x f x xe =相切时, 设切点为(,3)x x xe ,3331xx x xe e xe x =+-,则12x -=,12x =;令()3x g x xe kx k =-+ 结合图象可知:(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩解得:2232k e e<故选:D【点睛】关键点睛:解答本题的关键是数形结合思想的灵活运用.作出两个函数的图象后,通过观察分析得到存在唯一的负整数01x =-,使得()00f x kx k <-,即(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩.2.D解析:D 【分析】求出()f x 的导数,可得0a ≤时函数单调递增,不满足题意,0a >时,利用()max 0f x >可得.【详解】可知()f x 的定义域为()0,∞+,()11ax f x a x x-'=-=, 当0a ≤时,()0f x '≥恒成立,()f x 单调递增,则()f x 不可能有两个零点; 当0a >时,10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '>,()f x 单调递增;1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减,则()f x 在1x a=处取得极大值即最大值11ln 1f a a ⎛⎫=- ⎪⎝⎭,要满足()ln f x x ax =-有两个零点,则1ln 10a ->,解得10a e<<, 综上,10a e<<. 故选:D. 【点睛】方法点睛:本题考查利用导数研究函数的零点,根据零点个数求参数,一般如下步骤: (1)求出函数的定义域,求出函数的导数;(2)先讨论参数范围(以明显使得导数为正或负为参数界点讨论); (3)利用导数正负讨论函数单调性,得出极值或最值; (4)以极值或最值列出满足条件的等式或不等式,即可求出.3.A解析:A 【分析】首先设函数()(1)332cos x x g x f x x -=+=+-,判断函数是偶函数,利用导数判断函数的单调性,根据平移关系,可判断函数()y f x =的对称性和单调性,再将2log 9,0.50.5-,以及31log 2转化在同一个单调区间,根据单调性比较大小. 【详解】令()(1)332cos x x g x f x x -=+=+-,()()g x g x -=,所以()g x 是偶函数; ()ln3(33)2sin x x g x x -'=-+,当(0,)x π∈时,()0g x '>,()g x 在(0,)π上是增函数, 将()g x 图像向右平移一个单位得到()f x 图像, 所以()f x 关于直线1x =对称,且在(1,1)π+单调递增. ∵23log 94<<,0.50.5-=()3312log 2log 22,32-=+∈, ∴0.52314log 92log 0.512->>->>, ∴()()0.5231log 92log 0.52f f f -⎛⎫>-> ⎪⎝⎭, 又∵()f x 关于直线1x =对称,∴3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,∴()()0.5231log 9log 0.52f f f -⎛⎫>> ⎪⎝⎭. 故选:A 【点睛】思路点睛:本题是一道函数单调性,奇偶性,对称性,判断大小的习题,本题所给函数()()11332cos 1x x x f x --+=+--,看似很复杂,但仔细观察就会发现,通过换元后可判断函数()1y f x =+是偶函数,本题的难点是判断函数的单调性,关键点是能利用对称性,转化3311log 2log 22f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭.4.A解析:A 【分析】由图象过定点可得0b =,设()()F x f x x =+,结合已知条件可得()F x 在()0,∞+递增,求()F x 的导数,令()()211g x x a x a =--+-,由二次函数的性质可得102a g -⎛⎫≥ ⎪⎝⎭,从而可求出实数a 的范围. 【详解】解:因为2x b y +=的图象过定点0,1(),所以21b =,解得0b =,所以()()()21=1ln ,12f x x ax a x a -+->,因为对于任意()1212,0,,x x x x ∈+∞>, 有()()1221f x f x x x ->-,则()()1122f x x x f x +>+,设()()F x f x x =+, 即()()()()()22111ln =11ln 22F x ax a x x x f x x x a x a x =+=-+-+--+-, 所以()()()21111x a x a a F x x a x x--+--'=--+=,令()()211g x x a x a =--+-, 因为1a >,则102a x -=>,所以要使()0F x '≥在()0,∞+恒成立,只需102a g -⎛⎫≥ ⎪⎝⎭, 故()21111022a a a a --⎛⎫⎛⎫--+-≥ ⎪ ⎪⎝⎭⎝⎭,整理得()()150a a --≤,解得15a <≤, 故选:A. 【点睛】 关键点睛:本题的关键是由已知条件构造新函数()()F x f x x =+,并结合导数和二次函数的性质列出关于参数的不等式.5.B解析:B 【分析】首先判断函数的奇偶性,再利用导数研究函数的单调性即可得解; 【详解】 解:因为()[)(](),00,sin xf x x x xππ=∈--,定义域关于原点对称,又()()()sin sin x x f x f x x x x x --===----,所以()[)(](),00,sin x f x x x xππ=∈--为偶函数,函数图象关于y 轴对称,所以排除A 、D ; ()()()()()22sin sin cos sin sin sin x x x x x xx x xf x x x x x ''----'==--令()cos sin g x x x x =-,则()sin g x x x '=-,所以当(]0,x π∈时()0g x '≤,所以()cos sin g x x x x =-在(]0,x π∈上单调递减,又()00g =,所以()0g x <在(]0,x π∈上恒成立,所以()0f x '<在(]0,x π∈上恒成立,即函数()sin xf x x x=-在(]0,π上单调递减,故排除C ,故选:B 【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.6.A解析:A 【分析】f (x )=kx 可变形为k lnxx=,关于x 的方程f (x )=kx 的实数根问题转化为直线y =k 与函数g (x )g (x )lnxx=的图象的交点个数问题,由导数运算可得函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数,又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=,画草图即可得解. 【详解】 设g (x )()f x lnx xx==, 又g ′(x )21lnxx -=, 当0<x <e 时,g ′(x )>0,当x >e 时,g ′(x )<0, 则函数g (x )在(0,e )为增函数,在(e ,+∞)为减函数, 又x →0+时,g (x )→﹣∞,x →+∞时,g (x )→0+,g (e )1e=, 即直线y =k 与函数g (x )的图象有两个交点时k 的取值范围为(0,1e), 故选A .【点睛】本题考查了导数的运算及方程与函数的互化及极限思想,属于中档题.7.B解析:B 【分析】由导数确定函数的单调性,利用函数单调性解不等式即可. 【详解】函数211()x f x x x x-==-,可得21()1f x x '=+,0()x ∈+∞,时,()0f x '>,()f x 单调递增,∵12100x x e e -->>,,故不等式121(())x x f e f e >﹣﹣的解集等价于不等式121x x e e >﹣﹣的解集. 121x x ->-.∴23x <. 故选:B . 【点睛】本题主要考查了利用导数判定函数的单调性,根据单调性解不等式,属于中档题.8.A解析:A 【解析】 试题分析:令,则,所以函数为增函数,所以,所以,即,所以;又因为,所以222ln ln ln ()x x x x x x<<,故应选. 考点:1、导数在研究函数的单调性中的应用.9.A解析:A【分析】求导,根据题意得到()()11010f f ⎧=='⎪⎨⎪⎩,代入数据解得答案,再验证排除即可. 【详解】()3227f x x ax bx a a =++--,则()'232f x x ax b =++,根据题意:()()2117101320f a b a a f a b '⎧=++--=⎪⎨=++=⎪⎩,解得21a b =-⎧⎨=⎩或69a b =-⎧⎨=⎩, 当21a b =-⎧⎨=⎩时,()()()'2341311f x x x x x =-+=--,函数在1,13⎛⎫ ⎪⎝⎭上单调递减,在()1,+∞上单调递增,故1x =处取得极小值,舍去;当69a b =-⎧⎨=⎩时,()()()'23129313f x x x x x =-+=--,函数在(),1-∞上单调递增,在()1,3上单调递减,故1x =处取得极大值,满足.故6293a b -==-. 故选:A.【点睛】本题考查了根据极值求参数,意在考查学生的计算能力和应用能力,多解是容易发生的错误.10.C解析:C【分析】令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()f x h t =,利用导数可求()max 27256h t =,从而得到()f x 的最值,故可得M 的取值范围,从而得到正确的选项. 【详解】 3()2cos sin f x x x =,故622()4cos sin f x x x =,令2sin t x =,则[]0,1t ∈,设()()31h t t t =-,则()2()4f x h t =, 又()()()()()322131114h t t t t t t '=---=--,若10,4t ⎛⎫∈ ⎪⎝⎭,则()0h t '>,故()h t '在10,4⎡⎤⎢⎥⎣⎦为增函数; 若1,14t ⎛⎫∈ ⎪⎝⎭,则()0h t '<,故()h t '在1,14⎛⎤⎥⎝⎦为减函数; 故()max 27256h t =,故2max 27()64f x =,所以max ()f x =min ()f x =,当且仅当1sin 4cos x x ⎧=⎪⎪⎨⎪=⎪⎩时取最大值,当且仅当1sin 4cos x x ⎧=-⎪⎪⎨⎪=⎪⎩故M ≥M的最小值4. 故选:C.【点睛】 本题考查与三角函数有关的函数的最值,注意通过换元法把与三角函数有关的函数问题转化为多项式函数,后者可以利用导数来讨论,本题属于中档题.11.B解析:B【分析】构造()()g x f x x =+,得到函数()g x 在R 上单调递减,由()(1)g e g <即得解.【详解】构造()()g x f x x =+,则()()1g x f x ''=+,又()10f x '+<,所以()0g x '<,所以函数()g x 在R 上单调递减,又(1)(1)1110g f =+=-+=,所以()(1)g e g <,即()0f e e +<,所以()f e e <-.故选:B【点睛】本题主要考查利用导数研究函数的单调性,考查函数单调性的应用,意在考查学生对这些知识的理解掌握水平.12.D解析:D【分析】根据分段函数,看成函数()f x 与直线()2y a x =-的交点问题,分0x =,0x ≤,0x >讨论求解.【详解】当0x =时,()502f a =,对于直线()2y a x =-,2y a =,因为0a >,所以无交点; 当0x ≤时,()2f x x '=,令2x a =-,解得 2a x =-,要使方程()()2f x a x =-恰有2个互异的实数解,则252222a a a a ⎛⎫⎛⎫-+<+ ⎪ ⎪⎝⎭⎝⎭,解得 2a >; 当0x >时,()2f x x '=-,令2x a -=-,解得 2a x =,因为0x ≤时,方程()()2f x a x =-恰有2个互异的实数解,则0x >时,无交点, 则2222a a a ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭,解得 8a <, 综上:a 的取值范围为28a <<故选:D【点睛】关键点点睛:本题关键是由0a >和直线()2y a x =-过定点()2,0,确定方程()()2f x a x =-恰有2个互异的实数解只有一种情况:当0x ≤时,方程恰有2个互异的实数解,当0x >时,方程无实数解.二、填空题13.【解析】的定义域为∴若则∴函数在上单调递增在上无最大值;若则当时当时所以在上单调递增在上单调递减故在取得最大值最大值为∵∴令∵在单调递增∴当时当时∴的取值范围为故答案为点睛:本题考查了导数与函数的单 解析:(0,1)【解析】()()ln 1f x x a x =+-的定义域为∞(0,+), ∴11ax f x a x x-'=-=(), 若0a ≤,则()0f x '>,∴函数()f x 在∞(0,+)上单调递增,()f x 在∞(0,+)上无最大值;若0a >,则当10x a ∈(,)时,()0f x '>,当1x a ∈+∞(,)时,()0f x '<,所以()f x 在10a (,)上单调递增,在1a +∞(,)上单调递减,故()f x 在1x a=取得最大值,最大值为11f lna a a =-+-(),∵122f a a ⎛⎫>- ⎪⎝⎭,∴10lna a +-<,令()1g a lna a =+-,∵()g a 在∞(0,+)单调递增,0g =(1), ∴当01a <<时,()0g a <,当1a >时,()0>g a ,∴a 的取值范围为()0,1,故答案为()0,1.点睛:本题考查了导数与函数的单调性最值的关系,以及参数的取值范围,属于中档题;先求导,再分类讨论,根据导数即可判断函数的单调性,根据单调性求出函数的最大值,再构造函数()1g a lna a =+-,根据函数的单调性即可求出a 的范围.14.(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)(2)的正误;利用导数与复合函数法求得函数的最小值可判断(3)的正误;利用复合函数法与导数求得函数的零点个数可判断(4)的正误综合可得出结论 解析:(1)(3)(4)【分析】利用函数奇偶性的定义可判断(1)、(2)的正误;利用导数与复合函数法求得函数()y F x =的最小值,可判断(3)的正误;利用复合函数法与导数求得函数()y G x =的零点个数,可判断(4)的正误.综合可得出结论.【详解】对于命题(1),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,即1x >,解得1x <-或1x >,所以,函数()y F x =的定义域为()(),11,-∞-⋃+∞,定义域关于原点对称, ()()ln ln g x x x g x -=-==,则()()()()F x f g x f g x F x ⎡⎤⎡⎤-=-==⎣⎦⎣⎦, 所以,函数()y F x =为偶函数,命题(1)正确;对于命题(2),对于函数()()G x g f x ⎡⎤=⎣⎦,()ln 10f x x x =--≠,()111x f x x x'-=-=,令()0f x '=,得1x =,且函数()y f x =的定义域为()0,+∞,当01x <<时,()0f x '<,此时函数()y f x =单调递减;当1x >时,()0f x '>,此时函数()y f x =单调递增.所以,()()min 10f x f ==,则函数()()G x g f x ⎡⎤=⎣⎦的定义域为()()0,11,⋃+∞,定义域不关于原点对称,所以,函数()y G x =是非奇非偶函数,命题(2)错误;对于命题(3),对于函数()()F x f g x ⎡⎤=⎣⎦,()ln 0g x x =>,由(2)知,函数()y f x =的最小值为0,则函数()y F x =的最小值为0,命题(3)正确;对于命题(4),令()()0G x g f x ⎡⎤==⎣⎦,可得()1f x =,则()1f x =或()1f x =-, 由(2)知,()()10f x f ≥=,所以方程()1f x =-无解;令()()1ln 2h x f x x x =-=--,由(2)可知,函数()y h x =在()0,1上单调递减,在()1,+∞上单调递增, 22110h e e⎛⎫=> ⎪⎝⎭,()110h =-<,()42ln422ln20h =-=->, 由零点存在定理可知,函数()y h x =在区间21,1e ⎛⎫ ⎪⎝⎭和()1,4上各有一个零点, 所以,方程()1f x =有两个实根,即函数()y G x =有两个零点,命题(4)正确. 故答案为:(1)(3)(4).【点睛】本题考查函数奇偶性的判断,复合函数最值以及零点个数的判断,考查分析问题和解决问题的能力,属于中等题.15.【分析】利用导数可求得当时函数的值域是;当时函数的值域是从而可得进而可得结果【详解】当时此时函数在上递增值域是当时是减函数其值域是因为函数的值域是所以于是解得即实数的最小值是故答案为:【点睛】本题主 解析:312e - 【分析】利用导数可求得当x e ≥时,函数()f x 的值域是[)1,e -+∞;当x e <时,函数的值域是,2e m ⎛⎫-++∞ ⎪⎝⎭,从而可得,2e m ⎛⎫-++∞⊆ ⎪⎝⎭[)1,e -+∞,进而可得结果. 【详解】当x e ≥时,'1(ln )10,x x x-=->此时函数()f x 在[),e +∞上递增,值域是[)1,e -+∞. 当x e <时,12x m -+是减函数,其值域是,2e m ⎛⎫-++∞ ⎪⎝⎭. 因为函数()1,2,x m x e f x x lnx x e⎧-+<⎪=⎨⎪-≥⎩的值域是[)1,e -+∞,所以,2e m ⎛⎫-++∞⊆ ⎪⎝⎭ [)1,e -+∞. 于是1,2e m e -+≥-解得312e m ≥-,即实数m 的最小值是312e -. 故答案为:312e -.【点睛】本题主要考查分段函数的值域问题,以及利用导数求函数的最值,考查对基础知识掌握的熟练程度以及灵活应用所学知识解答问题的能力,属于中档题.16.【分析】设出圆柱的底面半径和高求出体积表达式通过求导求出体积的最大值【详解】设圆柱底面半径高圆柱轴截面的周长为定值则求导可得:令可得当时当时当时圆柱体积的有最大值圆柱体积的最大值是:故答案为:【点睛 解析:3216l π 【分析】设出圆柱的底面半径和高,求出体积表达式,通过求导求出体积的最大值.【详解】设圆柱底面半径R ,高H ,圆柱轴截面的周长l 为定值,则42R H l +=22l H R ∴=- 22232222l l V SH R H R R R R ππππ⎛⎫∴===-=- ⎪⎝⎭求导可得:26V Rl R ππ'=-令0V '=,可得260Rl R ππ-=,(6)0R l R π∴-=60l R ∴-=6l R ∴=当6l R >时,(6)0V R l R π'=-< 当6l R <时,(6)0V R l R π'=-> 当6l R =时,圆柱体积的有最大值,圆柱体积的最大值是:32322216l l V R R πππ=-= 故答案为:3216l π. 【点睛】本题主要考查了根据导数求最值,解题关键是掌握根据导数求最值的方法,考查了分析能力和计算能力,属于中档题.17.【分析】构造函数利用导数求得的最小值进而求得线段长度的最小值【详解】构造函数则所以在上递增令解得所以在上递增在上递减所以的最小值为也即的最小值为故答案为:【点睛】本小题主要考查利用导数研究函数的最值解析:()11ln 63+ 【分析】构造函数()()()()0h x f x g x x =->,利用导数求得()h x 的最小值,进而求得线段MN 长度的最小值.【详解】构造函数()()()()32ln 0h x f x g x x x x =-=->, 则()()'2''2116,120h x x h x x x x=-=+>, 所以()'h x 在()0,∞+上递增,令()'0h x =解得136x -==. 所以()h x 在130,6-⎛⎫ ⎪⎝⎭上递增,在136,-⎛⎫+∞ ⎪⎝⎭上递减, 所以()h x 的最小值为()3111333111626ln 6ln 61ln 6333h ---⎛⎫⎛⎫=⨯-=+=+ ⎪ ⎪⎝⎭⎝⎭. 也即MN 的最小值为()11ln 63+. 故答案为:()11ln 63+ 【点睛】 本小题主要考查利用导数研究函数的最值,考查化归与转化的数学思想方法,属于中档题. 18.【分析】根据不等式恒成立分离参数并构造函数求得导函数结合导数性质可判断的单调区间与最小值即可求得的取值范围【详解】在恒成立即恒成立即令则当即解得当即解得所以在上为减函数在上增函数所以所以故答案为:【 解析:1,1e ⎛⎤-∞- ⎥⎝⎦ 【分析】根据不等式恒成立,分离参数并构造函数()ln 1g x x x =+,求得导函数()g x ',结合导数性质可判断()g x 的单调区间与最小值,即可求得k 的取值范围.【详解】2ln 0x x kx x -+≥在()0,∞+恒成立,即ln 10x x k -+≥恒成立,即ln 1k x x ≤+, 令()ln 1g x x x =+,则()ln 1g x x '=+,当()0g x '≥,即ln 10x +≥,解得1x e≥,当()0g x '<,即ln 10x +<,解得10x e <<所以()g x 在10,e ⎛⎫ ⎪⎝⎭上为减函数,在1,e ⎡⎫+∞⎪⎢⎣⎭上增函数, 所以()min 1111ln 11g x g e e e e ⎛⎫==+=- ⎪⎝⎭, 所以11k e≤- 故答案为:1,1e ⎛⎤-∞- ⎥⎝⎦. 【点睛】本题考查了分离参数与构造函数法的应用,由导函数求函数的最值及参数的取值范围,属于中档题.19.【分析】由可得则设即求函数的最小值求导得出单调性即可得到答案【详解】由即且所以则设函数则令得令得所以函数在上单调递减在上单调递增则函数的最小值为所以的最小值为故答案为:【点睛】本题考查根据题目条件构 解析:ln 22【分析】由()()12f x g x m ==,可得212ln ,m x m x e ==,则221ln m x x m e-=-,设()2ln x h x x e=-,即求函数()h x 的最小值,求导得出单调性即可得到答案. 【详解】由()()12f x g x m ==,即1x e m ==且0m >. 所以212ln ,m x m x e ==,则221ln m x x m e-=- 设函数()2ln x h x x e =-,则()2212x e h x x e x ex-'=-=.令()0h x '>,得x >,令()0h x '<,得0x <<所以函数()h x 在0⎛ ⎝上单调递减,在⎫+∞⎪⎪⎭上单调递增.则函数()h x 的最小值为11ln 222e h e =⨯-=.所以21x x -的最小值为ln 22 故答案为:ln 22【点睛】 本题考查根据题目条件构造函数,利用导数求函数的最小值,属于中档题.20.【分析】结合所给不等式构造函数可证明在时单调递减根据为偶函数且可得单调性的示意图结合函数图像即可求得使成立的的取值范围【详解】令则由题意可知当时不等式两边同时乘以可得即所以在时单调递减因为定义在上的 解析:()()1,00,1- 【分析】结合所给不等式,构造函数()()g x x f x =⋅,可证明()g x 在0x <时单调递减,根据()f x 为偶函数且()10f =,可得()g x 单调性的示意图,结合函数图像即可求得使()0f x >成立的x 的取值范围.【详解】令()()g x x f x =⋅,则()()()g x f x x f x '=+⋅'由题意可知当0x <时,()()+0f x f x x'>,不等式两边同时乘以x 可得()()+0xf x f x '<,即()0g x '<,所以()()g x x f x =⋅在0x <时单调递减,因为定义在()(),00,-∞⋃+∞上的()f x 为偶函数,所以()()g x x f x =⋅为定义在()(),00,-∞⋃+∞上的奇函数,且()10f =,所以()()110g g =-=,由奇函数性质可得()()g x x f x =⋅函数图像示意图如下图所示:所以当0x <时,()0f x >的解集为()1,0-,当0x >时,()0f x >的解集为()0,1, 综上可知,()0f x >的解集为()()1,00,1- 故答案为:()()1,00,1-.【点睛】本题考查了函数奇偶性及单调性的综合应用,构造函数判断函数的单调性,数形结合法解不等式,属于中档题. 三、解答题21.(Ⅰ)()1,+∞;(Ⅱ)31,4⎛⎫--⎪⎝⎭. 【分析】(Ⅰ)由1k =-时,不等式为223x x x -+>,然后分2x ≥,2x <讨论求解. (Ⅱ)将任意[]1,2x ∈时,不等式()21f x x <+恒成立,转化为112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立求解. 【详解】(Ⅰ)当1k =-时,不等式()3f x >,即223x x x -+>,所以2(2)23x x x x ≥⎧⎨-+>⎩,或2(2)23x x x x <⎧⎨-+>⎩,, 即得223x x ≥⎧⎨>⎩,或22430x x x <⎧⎨-+<⎩,, 解得2x ≥或12x <<,所以原不等式的解集是()1,+∞;(Ⅱ)因为对任意[]1,2x ∈时,不等式()21f x x <+恒成立,即21x x k +<当[]1,2x ∈时恒成立,即12x k x+<,即111122x k x x x ⎛⎫⎛⎫-+<<-+ ⎪ ⎪⎝⎭⎝⎭, 故只要112x k x ⎛⎫-+< ⎪⎝⎭且112k x x ⎛⎫<-+ ⎪⎝⎭在[]1,2x ∈恒成立即可, 即当[]1,2x ∈时,只要k 大于112x x ⎛⎫-+ ⎪⎝⎭的最大值且k 小于112x x ⎛⎫-+ ⎪⎝⎭的最小值,因为当[]1,2x ∈时,211111022x x x '⎡⎤⎛⎫⎛⎫-+=--≤ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,max 1112x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 211111022x x x '⎡⎤⎛⎫⎛⎫-+=-+< ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,112x x ⎛⎫-+ ⎪⎝⎭为减函数,min 11324x x ⎡⎤⎛⎫-+=- ⎪⎢⎥⎝⎭⎣⎦, 故所求k 的取值范围是31,4⎛⎫-- ⎪⎝⎭. 【点睛】方法点睛:恒(能)成立问题的解法:若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<;22.(1)2a >;(2)证明见解析. 【分析】(1)利用题中的条件函数有两个极值点,相当于导数等于零有两个解,对函数求导,对函数加以分析,最后求得结果;(2)构造相应的函数,研究函数的图像,找出其对应的最值,最后求得结果. 【详解】解:(1))(211x ax f x x a x x='-+=-+,即方程210x ax -+=有两相异正根,即方程1a x x =+有两相异正根,由1y x x=+图象可知2a >. (2)要证)(2132f x x <-,只要证2222113ln 22x ax x x -+<-, 1x 、2x 为方程210x ax -+=的两根,121=x x ,2221ax x =+.只要证)(2222221311ln 22xx x x -++<-;只要证3222213ln 22x x x x --+<-; 2x 为方程210x ax -+=的较大根,212ax >>. 令)()(32222221ln 12g x x x x x x =--+>. )()(222223ln 12g x x x x '=-+>,)()(222221301g x x x x =-+<'>';)(22223ln 2g x x x +'=-在)(1,+∞上单调减,所以)(()210g x g ''<<恒成立;)(2g x 在)(1,+∞上单调减,)(()2312g x g <=-.【点睛】:思路点睛:该题属于导数的综合题,在做题的过程中,紧紧抓住导数与函数性质的关系,导数大于零单调增,导数小于零,函数单调减,借用二阶导来进一步研究函数的性质,对于不等式的证明问题,注意转化为最值来处理.23.(1)取BC 为152cm 时,矩形ABCD 的面积最大,最大值为2900cm ;(2)取BC 为103cm 时,做出的圆柱形罐子体积最大,最大值为60003π.【分析】(1)设BC x =,矩形ABCD 的面积为S ,()22229002900S x x x x =-=-,利用基本不等式求解最值;(2)设圆柱底面半径为r ,高为x ,体积为V .由229002AB x r π=-=,得2900x r π-=,()231900V r h x x ππ==-,其中030x <<,利用导函数求解最值.【详解】 (1)连结OC .设BC x =,矩形ABCD 的面积为S . 则22900AB x =-030x <<. 所以()()2222229002900900900S x x xx x x =-=-+-=.当且仅当22900x x =-,即152x =时,S 取最大值为2900cm .所以,取BC 为时,矩形ABCD 的面积最大,最大值为2900cm . (2)设圆柱底面半径为r ,高为x ,体积为V .由2AB r π==,得r =所以()231900V r h x x ππ==-,其中030x <<.由()2190030V x π='-=,得x =因此()31900V x x π=-在(上是增函数,在()上是减函数.所以当x =V .取BC 为3.【点睛】此题考查函数模型的应用:(1)合理设未知数,建立函数关系,需要注意考虑定义域; (2)利用基本不等式求最值,要注意最值取得的条件;(3)利用导函数讨论函数单调性求解最值,注意自变量的取值范围.24.(1)0;(2)当0a =时,无递减区间;当0a >时,()f x 的单调递减区间是(0,2)a ;当0a <时,()f x 的单调递减区间是(2,0)a ;(3)1.【分析】(1)令()32(113)x ax g x f x =-=-,根据函数()1y f x =-是奇函数,由()()g x g x -=-求解.(2)求导2()2f x x ax '=-,分0a =,0a >和0a <三种情况,由()0f x '<求解. (3)将()1f x ≥在区间[3,)+∞上恒成立,转化为13a x ≤在区间[3,)+∞上恒成立求解. 【详解】(1)已知函数321()13f x x ax =-+,所以()32(113)x ax g x f x =-=-, 因为函数()1y f x =-是奇函数, 所以()()g x g x -=-,即32321133x ax x ax ⎛⎫-=-- ⎪⎝⎭-, 所以220ax =, 解得0a =.(2)2()2f x x ax '=-.当0a =时,()0f x '≥,()f x 在(,)-∞+∞内单调递增; 当0a >时,由()0f x '<得:02x a <<; 当0a <时,由()0f x '<得:20a x <<.综上所述,当0a =时,无递减区间;当0a >时,()f x 的单调递减区间是(0,2)a ; 当0a <时,()f x 的单调递减区间是(2,0)a . (3)因为()1f x ≥在区间[3,)+∞上恒成立,即32103x ax -≥在区间[3,)+∞上恒成立. 所以13a x ≤在区间[3,)+∞上恒成立. 因为3x ≥,所以113x ≥. 所以1a ≤.所以若()1f x ≥在区间[3,)+∞上恒成立,a 的最大值为1. 【点睛】方法点睛:恒(能)成立问题的解法: 若()f x 在区间D 上有最值,则(1)恒成立:()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<; (2)能成立:()()max ,00x D f x f x ∃∈>⇔>;()()min ,00x D f x f x ∃∈<⇔<. 若能分离常数,即将问题转化为:()a f x >(或()a f x <),则 (1)恒成立:()()max a f x a f x >⇔>;()()min a f x a f x <⇔<; (2)能成立:()()min a f x a f x >⇔>;()()max a f x a f x <⇔<; 25.(1)12b =-;(2)()f x 的极大值是21,极小值是6-. 【解析】试题分析:(1)先对()f x 求导,()f x 的导数为二次函数,由对称性可求得a ,再由()10f '=即可求出b ;(2)对()f x 求导,分别令()f x '大于0和小于0,即可解出()f x 的单调区间,继而确定函数的极值.试题(1)因()3221f x x ax bx =+++,故()2'62f x x ax b =++,从而()22'666a a f x x b ⎛⎫=++-⎪⎝⎭,即()'y f x =关于直线6a x =-对称,从而由条件可知162a -=-,解得3a =,又由于()'0f x =,即620a b ++=解得12b =-.(2)由(1)知()()()()32223121,'6612612f x x x x f x x x x x =+-+=+-=-+.令()'0f x =,得1x =或2x =-,当(),2x ∈-∞-时,()()'0,f x f x > 在(),2-∞-上是增函数,当()2,1x ∈-时,()()'0,f x f x <在()2,1-上是减函数,当()1,x ∈+∞时,()()'0,f x f x > 在()1,,+∞上是增函数,从而()f x 在2x =-处取到极大值()221f -=, 在1x =处取到极小值()16f =-.考点:利用导数研究函数的单调性;二次函数的性质. 26.(1)见解析;(2),a e =. 【分析】 (1)求得()2x af x x='-,分类讨论,即可求解函数的单调性; (2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,分1a e <<和a e ≥两种情况讨论,求得函数的最小值,即可求解. 【详解】(1)定义域为()0,+∞,求得()221a x a f x x x x='-=-, 当0a ≤时,()0f x '>,故()f x 在()0,+∞单调递增 ,当0a >时,令()0f x '=,得 x a =,所以当()0,x a ∈时,()0f x '<,()f x 单调递减 当(),x a ∈+∞时,()0f x '>,()f x 单调递增.(2)当1a ≤时,由(1)知()f x 在[]1,e 上单调递增,所以 ()()min 12f x f a ===(舍去),当1a e <<时,由(1)知()f x 在[]1,a 单调递减,在[],a e 单调递增 所以()()min ln 12f x f a a ==+=,解得a e = (舍去), 当a e ≥时,由(1)知()f x 在[]1,e 单调递减, 所以()()min ln 12a af x f e e e e==+=+=,解得a e = , 综上所述,a e =. 【点睛】本题主要考查了导数在函数中的应用,其中解答中熟记函数的导数与函数的关系,准确判定函数的单调性,求得函数的最值是解答的关键,着重考查了分类讨论思想,以及推理与运算能力,属于中档试题.。

西安交通大学附属中学分校高中数学选修2-2第三章《导数应用》测试(包含答案解析)

一、选择题1.已知函数()()2xf x ax e x =+-(其中2a >-),若函数()f x 为R 上的单调减函数,则实数a 的取值范围为( ) A .()2,1--B .(]2,0-C .(]1,0-D .(]2,1--2.设函数()3xf x xe =,若存在唯一的负整数0x ,使得()00f x kx k <-,则实数k 的取值范围是( ) A .23,0e ⎡⎫-⎪⎢⎣⎭B .30,2e ⎡⎫⎪⎢⎣⎭C .236,e e ⎛⎫--⎪⎝⎭D .223,2e e ⎡⎫⎪⎢⎣⎭3.已知函数()()()21=)1ln 2(,1+f x x a x a a b x -+->,函数2x b y +=的图象过定点0,1(),对于任意()1212,0,,x x x x ∈+∞>,有()()1221f x f x x x ->-,则实数a 的范围为( ) A .15a <≤ B .25a <≤ C .25a ≤≤D .35a <≤4.已知函数32()f x x bx cx d =+++在区间[1,2]-上是减函数,那么b c + ( ) A .有最小值152 B .有最大值152 C .有最小值152- D .有最大值152-5.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( ) A .()1,+∞ B .[)3,+∞C .(],1-∞D .(],3-∞6.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( ) A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞7.定义域为R 的连续可导函数()f x 满足()()xf x f x e '-=,且()00f =,若方程()()21016m f x f x ++=⎡⎤⎣⎦有四个根,则m 的取值范围是( ) A .2416e e m -<<B .42em <<C .216e m e >-D .2e m >8.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e ) 9.若函数1()21xf x e x =--(e 为自然对数的底数),则()y f x =图像大致为( ) A . B .C .D .10.函数()21xy x e =-的图象大致是( )A .B .C .D .11.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( )A .2eB .eC .1D .1212.对*n N ∈,设n x 是关于x 的方程320nx x n +-=的实数根,[(1)](2,3,...)n n a n x n =+=,其中符号[]x 表示不超过x 的最大整数,则2320202019a a a ++=( )A .1011B .1012C .2019D .2020二、填空题13.已知()(sin )x f x e x a =+在0,2π⎡⎤⎢⎥⎣⎦上是单调增函数,则实数a 的取值范围是________.14.已知直线y kx =与曲线ln y x =有公共点,则k 的取值范围为___________ 15.如图,圆形纸片的圆心为O ,半径为5cm ,该纸片上的等边三角形ABC 的中心为O .D ,E ,F 为圆O 上的点,,,DBC ECA FAB 分别是以BC,CA,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC,CA,AB 为折痕折起,,DBC ECA FAB ,使得D ,E ,F 重合,得到三棱锥.当所得三棱锥体积(单位:3cm )最大时,ABC 的边长为_________(cm ).16.已知函数()e e xxf x -=-,有以下命题:①()f x 是奇函数; ②()f x 单调递增函数;③方程()22f x x x =+仅有1个实数根;④如果对任意(0,)x ∈+∞有()f x kx >,则k 的最大值为2. 则上述命题正确的有_____________.(写出所有正确命题的编号) 17.已知函数32()1f x x ax x =+++在区间21,33⎛⎫-- ⎪⎝⎭内是减函数,则实数a 的取值范围是________.18.已知定义在()(),00,-∞⋃+∞上的偶函数()f x 的导函数为()f x ',且()10f =,当0x <时,()()+0f x f x x'>,则使得()0f x >成立的x 的取值范围是________. 19.已知函数2()2ln af x x x=+,其中0a >,若()2f x ≥恒成立,则实数a 的取值范围为________.20.已知函数()ln f x x x =.存在k Z ∈,使()2f x kx k >--在1x >时恒成立,则整数k 的最大值为________.三、解答题21.设函数()xf x e x =-.(1)求()f x 的单调区间; (2)证明:当0x ≥时,()2112f x x ≥+. 22.已知函数2()ln (2)f x x a x ax =-+-. (1)求函数()f x 的单调区间;(2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,求实数a 的取值范围. 23.已知函数()()ln 0af x x a a x=-+>. (1)若曲线()y f x =在点()()1,1f 处与x 轴相切,求a 的值; (2)求函数()f x 在区间()1,e 上的零点个数;(3)若1x ∀、()21,x e ∈,()()()12120x x f x f x ⎡⎤-->⎣⎦,试写出a 的取值范围.(只需写出结论)24.已知函数()3213f x x ax bx ab =-+++. (1)若()f x 是奇函数,且有三个零点,求b 的取值范围; (2)若()f x 在1x =处有极大值223-,求当[]1,2x ∈-时()f x 的值域. 25.已知函数()xf x mx e =-(e 为自然对数的底数). (1)讨论函数()f x 的单调性;(2)已知函数()f x 在1x =处取得极大值,当[]0,3x ∈时,恒有2()0x f x ex p-+<,求实数p 的取值范围. 26.设函数f (x )=ln x +kx,k ∈R . (1)若曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直,求f (x )的单调性和极小值(其中e 为自然对数的底数);(2)若对任意的x 1>x 2>0,f (x 1)-f (x 2)<x 1-x 2恒成立,求k 的取值范围.【参考答案】***试卷处理标记,请不要删除1.D 解析:D 【分析】令()()(2)1x g x f x ax a e ='=++-,则()(2)x g x ax a e '=++.分0a =,0a >,20a -<<三类讨论,即可求得实数a 的取值范围即可. 【详解】解:令()()(2)1x g x f x ax a e ='=++-,则()(22)x g x ax a e '=++,(ⅰ)当0a =时,()20x g x e '=>,()g x 在R 递增,即()21x f x e '=-在R 递增, 令()0f x '=,解得:2x ln =-,故()f x 在(,2)ln -∞-递减,在(2,)ln -+∞递增,()f x 不单调,与题意不符; (ⅱ)当0a >时,由2()0(2)g x x a '>⇒>-+,2()0(2)g x x a '<⇒<-+,222()(2)10aming x g ae a--∴=--=--<,(0)10g a =+>,∴此时函数()f x '存在异号零点,与题意不符;(ⅲ)当20a -<<,由()0g x '>,可得2(2)x a <-+,由()0g x '<可得2(2)x a>-+,()g x ∴在2(,2)a -∞--上单调递增,在2(2a--,)+∞上单调递减,故222()(2)1amaxg x g ae a--=--=--,由题意知,2210a ae ----恒成立, 令22t a--=,则上述不等式等价于12t e t+,其中1t >, 易证,当0t >时,112tte t >+>+, 当(1t ∈-,0]时12te t+成立, 由2120a-<--,解得21a -<-. 综上,当21a -<-时,函数()f x 为R 上的单调函数,且单调递减; 故选:D .本题主要考查了利用导数研究函数的单调性,突出考查等价转化思想与分类讨论思想的应用,考查逻辑思维能力与推理证明能力,考查参数范围问题及求解函数的值域,属于函数与导数的综合应用.2.D解析:D 【分析】利用到函数研究其图象,令3x y xe =,y kx k =-,从而讨论两个函数的性质作出3x y xe =与y kx k =-的图象,从而结合图象可得解. 【详解】()3x f x xe =,令y kx k =-,()3(1)x f x e x '=+,()3x f x xe ∴=在(-∞,1]-上是减函数,在(1,)-+∞上是增函数,又y kx k =-是恒过点(1,0)的直线,∴作()3x f x xe =与y kx k =-的图象如下:当直线y kx k =-与()3x f x xe =相切时, 设切点为(,3)x x xe ,3331xx x xe e xe x =+-, 则152x -=,152x +=;令()3x g x xe kx k =-+ 结合图象可知:(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩解得:2232k e e<故选:D关键点睛:解答本题的关键是数形结合思想的灵活运用.作出两个函数的图象后,通过观察分析得到存在唯一的负整数01x =-,使得()00f x kx k <-,即(0)0(1)0(2)0g g g ⎧⎪-<⎨⎪-⎩.3.A解析:A 【分析】由图象过定点可得0b =,设()()F x f x x =+,结合已知条件可得()F x 在()0,∞+递增,求()F x 的导数,令()()211g x x a x a =--+-,由二次函数的性质可得102a g -⎛⎫≥ ⎪⎝⎭,从而可求出实数a 的范围. 【详解】解:因为2x b y +=的图象过定点0,1(),所以21b =,解得0b =,所以()()()21=1ln ,12f x x ax a x a -+->,因为对于任意()1212,0,,x x x x ∈+∞>, 有()()1221f x f x x x ->-,则()()1122f x x x f x +>+,设()()F x f x x =+, 即()()()()()22111ln =11ln 22F x ax a x x x f x x x a x a x =+=-+-+--+-, 所以()()()21111x a x a a F x x a x x--+--'=--+=,令()()211g x x a x a =--+-, 因为1a >,则102a x -=>,所以要使()0F x '≥在()0,∞+恒成立,只需102a g -⎛⎫≥ ⎪⎝⎭, 故()21111022a a a a --⎛⎫⎛⎫--+-≥ ⎪ ⎪⎝⎭⎝⎭,整理得()()150a a --≤,解得15a <≤, 故选:A. 【点睛】 关键点睛:本题的关键是由已知条件构造新函数()()F x f x x =+,并结合导数和二次函数的性质列出关于参数的不等式.4.D解析:D 【解析】试题分析:由f (x )在[-1,2]上是减函数,知f′(x )=3x 2+2bx+c≤0,x ∈[-1,2],则f′(-1)=3-2b+c≤0,且f′(2)=12+4b+c≤0,⇒15+2b+2c≤0⇒b+c≤-152,故选D. 考点:本题主要考查了函数的单调性与其导函数的正负情况之间的关系,即导函数大于0时原函数单调递增,当导函数小于0时原函数单调递减.点评:解决该试题的关键是先对函数f (x )求导,然后令导数在[-1,2]小于等于0即可求出b+c 的关系,得到答案.5.B解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.6.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x =-,则()()21ln ln x g x x -=′,令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减,∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 7.A解析:A 【分析】构造函数()()xf x x b e =+,根据()00f =求出0b =,利用导数判断函数的单调性,作出其大致图像,令()t f x =,只需21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭,利用二次函数根的分布即可求解. 【详解】由()()()()()()()()221x xxxxx x f x e f x e f x f x e e f x e ef x e '-'-=-=⇒'=⇒,则()()()()1x x xf x f x x b x x b e e e f ⎡⎤=⇒=+=+⎢⎥⎣⎦⇒, 由()000f b =⇒=,则()xf x e x =⋅.由()()1xf x e x '=+,当()1,x ∈-+∞,()0f x '>,()f x 单调递增;当(),1x ∈-∞-,()0f x '<,()f x 单调递减,当x →-∞,()0f x <,x →+∞,()0f x >,如图所示:令()t f x =,则21016mt t ++=,由已知可得 21016mt t ++=两个不同的根1t ,21,0t e ⎛⎫∈- ⎪⎝⎭, 令()2116g t mt t =++,由12121001016t t m m t t m ⎧+=-<⎪⎪⇒>⎨⎪⋅=>⎪⎩, 则()21000,41601102g e e g m e em ⎧⎛⎫-> ⎪⎪⎝⎭⎪⎛⎫⎪>⇒∈-⎨⎪∆>⎝⎭⎪⎪-<-<⎪⎩. 故选:A 【点睛】本题考查了构造函数判断函数的单调性、根据方程根的个数求参数的取值范围,考查了二次函数根的分布,此题综合性比较强,属于中档题.8.C解析:C【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x=有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案.【详解】 由题意,函数10()ln ,0x x f x x x x⎧⎪⎪=⎨⎪⎪⎩,<>, 要使得函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()()0F x f x kx =-=, 可得2ln x k x =, 要使得()0F x =有两个实数解,即y k =和()2ln x g x x =有两个交点, 又由()312ln x g x x -'=, 令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=, 若直线y k =和()2ln x g x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >, 综上可得,实数k 的取值范围是1(0,)2e . 故选:C.【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.9.C解析:C【分析】代入特殊值()10f <可判断,A B 选项,记()21x g x e x =--,结合函数单调性可得当x →+∞时,()0f x >,从而可选出正确答案.【详解】记()21x g x e x =--,则有()2x g x e '=-,当ln 2x <时,()20x g x e -'=<,()g x 是减函数,当ln 2x >时,()20x g x e -'=>,()g x 是增函数,因为()130g e =-<,所以()10f <,排除,A B 选项;()2250g e =->,所以当x →+∞时,()0>g x , 即x →+∞时,()0f x >,则D 错误.故选:C.【点睛】本题考查了函数图象的识别,属于中档题.10.A解析:A根据函数图象,当12x <时,()210x y x e =-<排除CD ,再求导研究函数单调性得()21x y x e =-在区间1,2⎛⎫-∞- ⎪⎝⎭上单调递减,排除B 得答案. 【详解】 解:因为12x <时,()210x y x e =-<,所以C ,D 错误; 因为()'21xy x e =+, 所以当12x <-时,'0y <, 所以()21x y x e =-在区间1,2⎛⎫-∞-⎪⎝⎭上单调递减, 所以A 正确,B 错误.故选:A.【点睛】 本小题主要考查函数的性质对函数图象的影响,并通过对函数的性质来判断函数的图象等问题.已知函数的解析式求函数的图像,常见的方法是,通过解析式得到函数的值域和定义域,进行排除,由解析式得到函数的奇偶性和轴对称性,或者中心对称性,进行排除,还可以代入特殊点,或者取极限.11.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.12.A解析:A【分析】根据条件构造函数()32f x nx x n =+-,求得函数的导数,判断函数的导数,求出方程根的取值范围,进而结合等差数列的求和公式,即可求解.【详解】设函数()32f x nx x n =+-,则()232f x nx '=+, 当n 时正整数时,可得()0f x '>,则()f x 为增函数,因为当2n ≥时,()323()()2()(1)01111n n n n f n n n n n n n n =⨯+⨯-=⋅-++<++++, 且()120f =>,所以当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n n x n ∈+, 所以(1)1,[(1)]n n n n n x n a n x n <+<+=+=, 因此2320201(2342020)101120192019a a a ++=++++=.故选:A.【点睛】方法点睛:构造新函数()32f x nx x n =+-,结合导数和零点的存在定理,求得当2n ≥时,方程320nx x n +-=有唯一的实数根n x 且(,1)1n n x n ∈+是解答的关键. 二、填空题13.【分析】利用在上恒成立等价于在上恒成立利用正弦函数的性质得出在的最小值即可得出的范围【详解】在上恒成立即在上恒成立则故答案为:【点睛】本题主要考查了由函数的单调性求参数的范围属于中档题解析:[)1,-+∞【分析】利用()0f x '≥在0,2π⎡⎤⎢⎥⎣⎦4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立,利用4x π⎛⎫+⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦的最小值,即可得出a 的范围. 【详解】()(sin )cos (sin cos )04x x x x f x e x a e x e x x a e x a π⎤⎛⎫'=++=++=++≥ ⎪⎥⎝⎭⎦在0,2π⎡⎤⎢⎥⎣⎦上恒成立4x a π⎛⎫+≥- ⎪⎝⎭在0,2π⎡⎤⎢⎥⎣⎦上恒成立 0,2x π⎡⎤∈⎢⎥⎣⎦,3,444x πππ⎡⎤∴+∈⎢⎥⎣⎦sin 42x π⎤⎛⎫∴+∈⎥ ⎪⎝⎭⎣⎦,4x π⎛⎫⎡+∈ ⎪⎣⎝⎭ 则1,1a a ≥-≥-故答案为:[)1,-+∞【点睛】本题主要考查了由函数的单调性求参数的范围,属于中档题.14.【分析】直线与曲线有公共点等价于方程在时有解即有解构造函数利用导数求出函数的取值情况即可求出k 的取值范围【详解】直线与曲线有公共点等价于方程在时有解即有解设则由解得此时函数单调递增由解得此时函数单调解析:1,e ⎛⎤-∞ ⎥⎝⎦【分析】直线y kx =与曲线ln y x =有公共点,等价于方程ln kx x =在0x >时有解,即ln x k x =有解,构造函数()ln x f x x=,利用导数求出函数的取值情况,即可求出k 的取值范围. 【详解】直线y kx =与曲线ln y x =有公共点, ∴等价于方程ln kx x =在0x >时有解, 即ln x k x=有解, 设()ln x f x x =, 则()21ln x f x x-'=, 由()0f x '>,解得0x e <<,此时函数单调递增,由()0f x '<,解得x e >,此时函数单调递减,当x e =时,函数()f x 取得极大值,同时也是最大值()ln 1e f e e e ==, 所以()1f x e ≤,1k e∴≤, 即k 的取值范围为1,e ⎛⎤-∞ ⎥⎝⎦. 故答案为:1,e ⎛⎤-∞ ⎥⎝⎦【点睛】本题考查了利用导数求函数的最值,考查了等价转化的思想,属于中档题.15.【分析】连接交于点设求出构造函数利用导数研究函数的单调性从而得出时所得三棱锥体积最大时进而得解【详解】如图连接交于点连接由题意知所以所以设则三棱锥的高则三棱锥的体积令则令即解得所以当时在上单调递增; 解析:43【分析】连接OD ,交BC 于点G ,设OG x =,求出23BC x =,4532510V x x =⨯-,构造函数,利用导数研究函数的单调性,从而得出2x =时,所得三棱锥体积最大时,进而得解.【详解】如图,连接OD ,交BC 于点G ,连接OB ,由题意,知OD BC ,12BG BC =,30OBG ∠=︒, 所以,133tan 302OG BG BC BC =⨯︒==,所以23BC OG =, 设OG x =,则23BC x =,5DG x =-,三棱锥的高()222252510h DG OG x x x =-=--=-21233332ABC S x x x =⨯⨯=△, 则三棱锥的体积245113325103251033ABC V S h x x x x =⨯=⨯-=-△,令()452510f x x x =-502x ⎛⎫<< ⎪⎝⎭, 则()3410050f x x x =-′, 令()0f x '=,即34100500x x -=,解得2x =,所以,当02x <<时,()0f x >′,()f x 在()0,2上单调递增; 当522x <<时,()0f x <′,()f x 在52,2⎛⎫ ⎪⎝⎭上单调递减, 所以,当2x =时,()f x 取得极大值,也是最大值,此时,BC ==,所以,当所得三棱锥体积最大时,ABC 的边长为故答案为:【点睛】本题考查三棱锥体积的计算及利用导数研究函数的最值问题,考查学生对这些知识的掌握能力,本题的解题关键是掌握根据导数求极值的方法,属于中档题.16.①②④【分析】根据题意依次分析4个命题对于①由奇函数的定义分析可得①正确;对于②对函数求导分析可得分析可得②正确;对于③分析可得即方程有一根进而利用二分法分析可得有一根在之间即方程至少有2跟故③错误解析:①②④【分析】根据题意,依次分析4个命题,对于①、由奇函数的定义分析可得①正确;对于②、对函数()x x f x e e -=-求导,分析可得()0f x '>,分析可得②正确;对于③、2()2x x g x e e x x -=---,分析可得(0)0g =,即方程2()2f x x x =+有一根0x =,进而利用二分法分析可得()g x 有一根在(3,4)之间,即方程2()2f x x x =+至少有2跟,故③错误,对于④、由函数的恒成立问题的分析方法,分析可得④正确,综合可得答案.【详解】解:根据题意,依次分析4个命题:对于①、()x x f x e e -=-,定义域是R ,且()()x x f x e e f x --=-=-,()f x 是奇函数;故①正确;对于②、若()x x f x e e -=-,则()0x x f x e e -'=+>,故()f x 在R 递增;故②正确; 对于③、2()2f x x x =+,令2()2x x g x e e x x -=---,令0x =可得,(0)0g =,即方程2()2f x x x =+有一根0x =,()3313130g e e =--<,()4414200g e e =-->,则方程2()2f x x x =+有一根在(3,4)之间,故③错误;对于④、如果对任意(0,)x ∈+∞,都有()f x kx >,即0x x e e kx --->恒成立, 令()x x h x e e kx -=--,且(0)0h =,若()0h x >恒成立,则必有()0x x h x e e k -'=+->恒成立,若0x x e e k -+->,即1x x x x k e ee e -<+=+恒成立, 而12x xe e +,若有2k <, 故④正确;综合可得:①②④正确;故答案为:①②④.【点睛】本题考查函数的奇偶性、单调性的判定,以及方程的根与恒成立问题的综合应用,③关键是利用二分法,属于中档题.17.【分析】求导得转化条件为在区间内恒成立令求导后求得即可得解【详解】函数在区间内是减函数在区间内恒成立即在区间内恒成立令则当时单调递减;当时单调递增;又故答案为:【点睛】本题考查了导数的综合应用考查了 解析:2a ≥【分析】求导得2()321f x x ax '=++,转化条件为1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,求导后求得()max 2g x =即可得解. 【详解】 32()1f x x ax x =+++,∴2()321f x x ax '=++,函数()f x 在区间21,33⎛⎫-- ⎪⎝⎭内是减函数, ∴()0f x '≤在区间21,33⎛⎫-- ⎪⎝⎭内恒成立,即1223x x a --≥在区间21,33⎛⎫-- ⎪⎝⎭内恒成立, 令()12122333x g x x x ⎛⎫--≤≤-= ⎝-⎪⎭,则()2221312232x x x xg -++='=-,∴当2,3x ⎛∈- ⎝⎭时,()0g x '<,()g x 单调递减;当13x ⎛⎫∈- ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增;又2734g ⎛⎫-= ⎪⎝⎭,123g ⎛⎫-= ⎪⎝⎭,∴()2g x <, ∴2a ≥.故答案为:2a ≥.【点睛】本题考查了导数的综合应用,考查了运算求解能力与推理能力,属于中档题.18.【分析】结合所给不等式构造函数可证明在时单调递减根据为偶函数且可得单调性的示意图结合函数图像即可求得使成立的的取值范围【详解】令则由题意可知当时不等式两边同时乘以可得即所以在时单调递减因为定义在上的 解析:()()1,00,1- 【分析】结合所给不等式,构造函数()()g x x f x =⋅,可证明()g x 在0x <时单调递减,根据()f x 为偶函数且()10f =,可得()g x 单调性的示意图,结合函数图像即可求得使()0f x >成立的x 的取值范围.【详解】令()()g x x f x =⋅,则()()()g x f x x f x '=+⋅'由题意可知当0x <时,()()+0f x f x x'>,不等式两边同时乘以x 可得()()+0xf x f x '<,即()0g x '<,所以()()g x x f x =⋅在0x <时单调递减,因为定义在()(),00,-∞⋃+∞上的()f x 为偶函数,所以()()g x x f x =⋅为定义在()(),00,-∞⋃+∞上的奇函数,且()10f =,所以()()110g g =-=,由奇函数性质可得()()g x x f x =⋅函数图像示意图如下图所示:所以当0x <时,()0f x >的解集为()1,0-,当0x >时,()0f x >的解集为()0,1, 综上可知,()0f x >的解集为()()1,00,1- 故答案为:()()1,00,1-.【点睛】本题考查了函数奇偶性及单调性的综合应用,构造函数判断函数的单调性,数形结合法解不等式,属于中档题. 19.【分析】恒成立只需即可求出得出单调区间进而求出求解即可得出结论【详解】由得又函数的定义域为且当时;当时故是函数的极小值点也是最小值点且要使恒成立需则∴的取值范围为故答案为:【点睛】本题考查应用导数求 解析:[),e +∞【分析】()2f x ≥恒成立,只需min ()2f x ≥即可,求出()f x ',得出单调区间,进而求出min ()f x ,求解即可得出结论.【详解】 由2()2ln a f x x x =+,得()233222()x a a f x x x x-'=-+=, 又函数()f x 的定义域为(0,)+∞且0a >, 当0x a <<()0f x '<;当x a ()0f x '>, 故x a =()f x 的极小值点,也是最小值点,且()ln 1f a a =+,要使()2f x ≥恒成立,需ln 12a +≥,则a e ≥,∴a 的取值范围为[),e +∞.故答案为:[),e +∞.【点睛】本题考查应用导数求函数的最值,恒成立问题等价转化为函数的最值,考查计算求解能力,属于中档题.20.2【分析】由即则将问题转化为在上恒成立令利用导函数求出最小值即可【详解】解:因为由即对任意的恒成立得()令()则令得画出函数的图象如图示:与在有唯一的交点∴存在唯一的零点又∴零点属于∴在递减在递增而解析:2 【分析】由()2f x kx k >--,即ln 2x x kx k >--,则将问题转化为ln 21x x k x +<-在1x >上恒成立,令ln 2()1x x h x x +=-,利用导函数求出最小值即可. 【详解】解:因为()ln f x x x =,由()2f x kx k >--即()()12k x f x --<对任意的1x >恒成立, 得ln 21x x k x +<-(1x >), 令ln 2()1x x h x x +=-(1x >),则2ln 3()(1)x x h x x '--=-, 令()ln 30g x x x =--=,得3ln x x -=, 画出函数3y x =-,ln y x =的图象,如图示:∴3y x =-与ln y x =在1x >有唯一的交点,∴()g x 存在唯一的零点,又()41ln40g =-<,()52ln50g =->, ∴零点0x 属于()4,5,∴()h x 在()01,x 递减,在()0,x +∞递增, 而4ln 442(4)33h +<=<,115ln 55(5)344h +<=<, ∴()023h x <<,k Z ∈, ∴k 的最大值是2.故答案为:2 【点睛】本题考查不等式的恒成立问题,考查利用导函数求最值,考查零点存在性定理的应用,考查数形结合思想.三、解答题21.(1)函数()f x 的增区间为()0,∞+,减区间为(),0-∞;(2)证明见解析. 【分析】(1)求出()f x ',解不等式()0f x '>、()0f x '<可得出函数()f x 的单调递增区间和递减区间;(2)构造函数()()2112g x f x x =--,利用导数证得()()00g x g ≥=,即可证得所证不等式成立. 【详解】(1)函数()x f x e x =-的定义域为R ,且()1xf x e '=-.令()0f x '>,可得0x >;令()0f x '<,可得0x <.因此,函数()f x 的单调递增区间为()0,∞+,单调递减区间为(),0-∞; (2)构造函数()()22111122x g x f x x e x x =--=---,则()1x g x e x '=--, 当0x ≥时, ()10xg x e ''=-≥,所以,函数()g x '在区间[)0,+∞上为增函数, 当0x ≥时,()()00g x g ''≥=,所以,函数()g x 在区间[)0,+∞上为增函数, 当0x ≥时,()()()211002f x x g x g --=≥=,()2112f x x ∴≥+. 【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.22.(1)详见解析;(2)[1,)-+∞. 【分析】(1)对函数求导[]()(2)121()a x x f x x-+-+'=,分20a +≤ 和20a +>, 讨论导函数的正负即可.(2)由对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方,则()0f x ≤,()0,x ∈+∞恒成立,转化为22ln 2x x a x x -≥+,()0,x ∈+∞恒成立,令()22ln 2x x g x x x-=+,用导数法求其最大值即可. 【详解】(1)函数2()ln (2)f x x a x ax =-+-定义域为()0,∞+,则[]()(2)1211()2(2)a x x f x a x a x x-+-+'=-+-=, 当20a +≤时,()0f x '>,()f x 递增,当20a +>时,令()0f x '>,解得102x a <<+,令()0f x '<,解得12x a >+, 所以()f x 在10,2a ⎛⎫ ⎪+⎝⎭递增,在1,2a ⎛⎫+∞ ⎪+⎝⎭递减;(2)若对任意()0,x ∈+∞,函数()f x 的图象不在x 轴上方, 则2()ln (2)0f x x a x ax =-+-≤,()0,x ∈+∞恒成立,则22ln 2x x a x x-≥+,()0,x ∈+∞恒成立, 令()22ln 2x x g x x x-=+,则()()()()22211ln x x x g x x x +-+-'=+,令()1ln h x x x =-+-,则()110h x x'=--<, 所以()h x 在()0,∞+递减,而()10h =,所以当01x <<时,()0g x '>,当1x >时,()0g x '<, 所以当1x =时,()g x 取得最大值1-,所以1a ≥-, 所以实数a 的取值范围是[1,)-+∞. 【点睛】方法点睛:1、利用导数研究函数的单调性:关键在于准确判定导数的符号,当()f x 含参数时,需依据参数取值对不等式解集的影响进行分类讨论.. 2、恒成立问题的解法:(1)若()f x 在区间D 上有最值,则()()min ,00x D f x f x ∀∈>⇔>;()()max ,00x D f x f x ∀∈<⇔<;(2)若能分离常数,即将问题转化为:()a f x >(或()a f x <),则()()max a f x a f x >⇔>;()()min a f x a f x <⇔<.23.(1)1a =;(2)答案见解析;(3)(][)0,1,e +∞.【分析】(1)由题意可得()10f '=,由此可解得实数a 的值; (2)求得()2x af x x-'=,对实数a 的取值进行分类讨论,分析函数()f x 在区间()1,e 上的单调性,结合零点存在定理可得出结论; (3)根据(2)中的讨论可写出实数a 的取值范围. 【详解】(1)()221a x af x x x x'-=-=, 因为()y f x =在点()()1,1f 处与x 轴相切,且()10f =, 所以()110f a '=-=,解得1a =. 经检验1a =符合题意; (2)由(1)知()2x af x x-'=,令()0f x '=,得x a =. (i )当01a <≤时,()1,x e ∈,()0f x '>,函数()f x 在区间()1,e 上单调递增, 所以()()10f x f >=, 所以函数()f x 在区间()1,e 上无零点;(ii )当1a e <<时,若1x a <<,则()0f x '<,若a x e <<,则()0f x '>. 函数()f x 在区间()1,a 上单调递减,在区间(),a e 上单调递增, 且()10f =,()1ea f e a =-+. 当()10af e a e=-+>,即11e a e <<-时,函数()f x 在区间()1,e 上有一个零点;当()10af e a e=-+≤时,即当e e e 1a <-≤时,函数()f x 在区间()1,e 上无零点; (iii )当a e ≥时,()1,x e ∈,()0f x '<,函数()f x 在区间()1,e 上单调递减, 所以()()10f x f <=, 所以函数()f x 在区间()1,e 上无零点. 综上:当01a <≤或ee 1a ≥-时,函数()f x 在区间()1,e 上无零点; 当11ea e <<-时,函数()f x 在区间()1,e 上有一个零点. (3)01a <≤或a e ≥. 【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用; (2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题. 24.(1)()0,∞+;(2)5022,33⎡⎤--⎢⎥⎣⎦. 【分析】(1)先由函数奇偶性,得到0a =,得出()313f x x bx =-+,对其求导,分别讨论0b ≤和0b >两种情况,根据导数的方法判定函数单调性,结合零点个数,即可求出结果; (2)先对函数求导,根据极大值求出2,5.a b =-⎧⎨=⎩,根据函数单调性,即可求出值域.【详解】(1)∵()f x 是定义域为R 的奇函数,所以0a =,且()00f =. ∴()313f x x bx =-+, ∴()2f x x b '=-+.当0b ≤时,()20f x x b '=-+≤,此时()f x 在R 上单调递减,()f x 在R 上只有一个零点,不合题意.当0b >时,()20f x x b '=-+>,解得x <<∴()f x 在(,-∞,)+∞上单调递减,在(上单调递增,∵()f x 在R 上有三个零点,∴0f >且(0f <,即3103f=-+>,即0>,而0>恒成立,∴0b >. 所以实数b 的取值范围为()0,∞+. (2)()22f x x ax b '=-++,由已知可得()1120f a b '=-++=,且()122133f a b ab =-+++=-, 解得2,3,a b =⎧⎨=-⎩或2,5.a b =-⎧⎨=⎩当2a =,3b =-时,()3212363f x x x x =-+--,()243f x x x '=-+-,令()0f x '≥,即2430x x -+-≥,解得13x ≤≤,令()0f x '<,即2430x x -+-<,解得1x <或3x >,即函数()f x 在(),1-∞上单调递减,在()1,3上单调递增,在()3,+∞上单调递减; 所以1x =是()f x 的极小值点,与题意不符. 当2a =-,5b =时,()32125103f x x x x =--+-,()245f x x x '=--+. 令()0f x '≥,即2450x x --+≥,解得51x -≤≤; 令()0f x '<,即2450x x --+<,解得5x <-或1x >,即函数()f x 在(),5-∞-上单调递减,在()5,1-上单调递增,在()1,+∞上单调递减; 所以1x =是()f x 的极大值点,符合题意,故2a =-,5b =. 又∵[]1,2x ∈-,∴()f x 在[]1,1-上单调递增,在[]1,2上单调递减. 又()5013f '-=-,()2213f =-,()3223f =-. 所以()f x 在[]1,2-上的值域为5022,33⎡⎤--⎢⎥⎣⎦. 【点睛】 思路点睛:导数的方法求函数零点的一般步骤:先对函数求导,由导数的方法求出函数的单调性区间,根据函数极值的定义,求出函数的的极值,再根据函数函数的零点个数,确定极值的取值情况,进而可得出结果. 25.(1)答案见解析;(2)24(,0),e ⎛⎫-∞⋃+∞ ⎪⎝⎭. 【分析】(1)根据函数()x f x mx e =-,求导得到()xf x m e '=-,然后分0m ≤和0m >两种情况讨论求解.(2)根据()f x 在1x =处取得极大值,由(1)知,0m >,且()f x 在ln x m =处取得极大值,从而求得m ,然后将2()0x f x ex p -+<在[]0,3x ∈恒成立,转化为20xx e p-+<在[]0,3x ∈上恒成立求解.【详解】(1)因为函数()xf x mx e =-,所以()xf x m e '=-,若0m ≤,则()()0,f x f x '<在R 上单调递减; 若0m >,令()0f x '=,则x lnm =,当x lnm <时,()()0,f x f x '>单调递增;当x lnm >时,()()0,f x f x '<单调递减, 综上所述,当0m ≤时,函数()f x 在R 上单调递减;当0m >时,函数()f x 的单调增区间为(),lnm ∞﹣,单调减区间为(),lnm +∞. (2)()f x 在1x =处取得极大值,由(1)知,0m ≤不符合题意,故0m >,此时()f x 在ln x m =处取得极大值,1lnm ∴=,解得(),x m e f x ex e =∴=﹣. 2()0x f x ex p -+<在[]0,3x ∈恒成立,20xx e p∴-+<在[]0,3x ∈上恒成立,显然0p ≠,当0p <时,20xx e p-+<恒成立,符合题意; 当0p >时,问题可转化为2x xp e>在[]0,3x ∈上恒成立,设2()([0,3])xx g x x e =∈,则22()xx x g x e '-=, 当[)0,2x ∈时,()()'0,g x g x ≥单调递增;当(]2,3x ∈时,()()'0,g x g x <单调递减.42max24()(2),g x g p e e∴==∴>,综上,实数p 的取值范围为24(,0),e ⎛⎫-∞⋃+∞⎪⎝⎭. 【点睛】本题主要考查利用导数研究函数的单调性、极值和存在性问题,还考查运分类讨论、构造函数和参变分离等方法以及逻辑推理和运算能力,属于中档题.26.(1)在(0,e )上单调递减,在(e ,+∞)上单调递增,极小值为2;(2)1,4⎡⎫+∞⎪⎢⎣⎭. 【分析】(1)求导后,根据导数的几何意义以及两直线垂直关系可得k =e ,再根据导数得到函数的单调性和极值;(2)转化为h (x )=f (x )-x =ln x +kx-x (x >0)在(0,+∞)上单调递减,接着转化为()h x '≤0在(0,+∞)上恒成立,即,k ≥-x 2+x =21124x 恒成立,利用二次函数求出最大值可得答案.【详解】(1)由题意,得21()(0)kf x x x x'=->, ∵曲线y =f (x )在点(e ,f (e ))处的切线与直线x -2=0垂直, ∴()0f e '=,即210ke e -=,解得k =e , ∴221()(0)e x ef x x x x x-'=-=>, 由()'f x <0,得0<x <e ;由()'f x >0,得x >e , ∴f (x )在(0,e )上单调递减,在(e ,+∞)上单调递增. 当x =e 时,f (x )取得极小值,且f (e )=ln e +ee=2. ∴f (x )的极小值为2.(2)由题意知,对任意的x 1>x 2>0,f (x 1)-x 1<f (x 2)-x 2恒成立, 设h (x )=f (x )-x =ln x +kx-x (x >0),则h (x )在(0,+∞)上单调递减, ∴21()1kh x x x '=--≤0在(0,+∞)上恒成立, 即当x >0时,k ≥-x 2+x =21124x 恒成立, ∴k ≥14.故k 的取值范围是1,4⎡⎫+∞⎪⎢⎣⎭. 【点睛】本题考查了导数的几何意义,考查了减函数的定义,考查了利用导数研究函数的单调性和极值,考查了利用导数处理不等式恒成立,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数测试试卷
第I 卷(选择题,共60分)
一 、本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个选项
符合题目要求的。

1.函数y=2)13(1x的导数是

A.3)13(6x B.2)13(6x C.-3)13(6x D.-2)13(6x
2.若f(x)在[a,b]上连续,在(a,b)内可导,且x∈(a,b)时,f′(x)>0,又f(a)<0,则
A.f(x)在[a,b]上单调递增,且f(b)>0
B.f(x)在[a,b]上单调递增,且f(b)<0
C.f(x)在[a,b]上单调递减,且f(b)<0
D.f(x)在[a,b]上单调递增,但f(b)的符号无法判断
3.若f(x)=sinα-cosx,则f′(α)等于
A.sinα B.cosα C.sinα+cosα D.2sinα
4下列说法正确的是.
A.当f′(x0)=0时,则f(x0)为f(x)的极大值
B.当f′(x0)=0时,则f(x0)为f(x)的极小值
C.当f′(x0)=0时,则f(x0)为f(x)的极值
D.当f(x0)为函数f(x)的极值且f′(x0)存在时,则有f′(x0)=0
5.下列说法正确的是
A.函数的极大值就是函数的最大值 B.函数的极小值就是函数的最小值
C.函数的最值一定是极值 D.在闭区间上的连续函数一定存在最值

6.物体运动方程为s=41t4-3,则t=5时的瞬时速率为
A.5 m/s B.25 m/s C.125 m/s D.625 m/s
7. 下列求导运算正确的是 ( )

A.211()1xxx B.21(log)ln2xx

C. 2(cos)2sinxxxx D. 3(3)3logxxe
8. 函数21xyx的导数为 ( )
A.2221(1)xyx B.3211xxyx C.2211xyx D.211xyx
9.下列求导数运算正确的是
A.(x+x1)′=1+21x B.(log2x)′=2ln1x
C. (3x)′=3xlog3e D.(x2cosx)′=-2xsinx
10.过曲线y=11x上点P(1,21)且与过P点的切线夹角最大的直线的方程为
A.2y-8x+7=0 B.2y+8x+7=0 C.2y+8x-9=0 D.2y-8x+9=0
11.函数y=sin32x的导数为
A.2(cos32x)·32x·ln3 B.(ln3)·32x·cos32x
C.cos32x D.32x·cos32x

12.已知函数)(()(xfxfxy其中的图象如右图所示))(的导函数是函数xf,下面四

个图象中)(xfy的图象大致是 ( )

3
1
-2
1
-1

2

2
-2
o

y

x
1
-2
1
-1

2

2
o

y

x
4
2

1
-2
o

y
x
4
2

2
-2
o

y

x
A B C D

第II卷
(非选择题,共90分)

二 填空题:本题共4小题,共16分,把答案填在题中的横线上
13.函数y=(1+sin3x)3是由___________两个函数复合而成.
14.函数f(x)=cos2x的单调减区间是___________.
15.与直线2x-6y+1=0垂直,且与曲线y=x3+3x2-1相切的直线方程是____
16.函数y=2x3-3x2-12x+5在[0,3]上的最小值是___________
三 解答题:本 大题共6小题,共74分,解答应写出文字说明,证明过程或演算步骤。
17. (本小题满分12分)
已知函数f(x)=kx3-3(k+1)x2-k2+1(k>0).若f(x)的单调递减区间是(0,4),
(1)求k的值;

(2)当k3-x1.

18. (本小题满分12分)
三次函数f(x)=x3-3bx+3b在[1,2]内恒为正值,求b的取值范围.
19. (本小题满分12分)
有一边长分别为8与5的长方形,在各角剪去相同的小正方形,把四边折起作成一个无
盖小盒,要使纸盒的容积最大,问剪去的小正方形的边长应为多少?

20. (本小题满分12分)
已知:f(x)=log3xbaxx2,x∈(0,+∞).是否存在实数a、b,使f(x)同时满足下列两个条件:
(1)f(x)在(0,1)上是减函数,在[1,+∞)上是增函数;(2)f(x)的最小值是1,若存在,
求出a,b,若不存在,说明理由.
.

21. (本小题满分12分)
设函数f(x)满足:af(x)+bf(x1)=xc(其中a、b、c均为常数,且|a|≠|b|),试求f′(x).

22(本小题满分14分)
知向量baxfxxbxxa)()),42tan(),42sin(2()),42tan(,2cos2(令

是否存在实数?))()((0)()(],,0[的导函数是其中使xfxfxfxfx若存在,则
求出x的值;若不存在,则证明之.
导数测试试卷(一)答案
1.c 2D 3 A 4.D 5. D 6. C 7 B 8 A 9. B 10.A 11 A 12 C
.13 y=u3,u=1+sin3x 14 .(kπ,kπ+2),k∈Z
15. 3x+y+2=0 16 -15
17.

解:(1)f′(x)=3kx2-6(k+1)x由f′(x)<0得0

∴kk22=4,∴k=1.(2)设g(x)=2xx1g′(x)=211xx当x>1时,1

2
11
x
x


,∴g′(x)>0∴g(x)在x∈[1,+∞)上单调递增∴x>1时,g(x)>g(1)即2xx1>3

∴2x>3-x1
18. 解:∵x∈[1,2]时,f(x)>0∴f(1)>0,f(2)>0∴f(1)=1>0,f(2)=8-3b>0∴b<38
又f′(x)=3(x2-b)(1)若b≤1,则f′(x)≥0f(x)在[1,2]上单调递增f(x)≥f(1)>0
(2)若1

递减,f(x)≥f(b) f(b)为最小值 当b0 f(x)在(b,2]上单调递增
f(x)>f(b)∴只要f(b)>0,即10
综上(1)、(2),∴b的取值范围为b<49.
19. 解:(1)正方形边长为x,则V=(8-2x)·(5-2x)x=2(2x3-13x2+20x)(0V′=4(3x2-13x+10)(0∴当x=1时,容积V取最大值为18.
20.

.解:设g(x)=xbaxx2
∵f(x)在(0,1)上是减函数,在[1,+∞)上是增函数
∴g(x)在(0,1)上是减函数,在[1,+∞)上是增函数.

∴3)1(0)1('gg

∴3101bab
解得11ba
经检验,a=1,b=1时,f(x)满足题设的两个条件.

21.
.解:以x1代x,得

af(x1)+bf(x)=cx
∴f(x1)=)(xfabxac
代入af(x)+bf(x1)=xc,得
af(x)+b[xcxfabxac)](
∴f(x)=)(22bxcabac
∴f′(x)=-)(222bxabac
22
解:)42tan()42tan()42sin(2cos22)(xxxxbaxf

12cos22cos2sin22tan112tan2tan12tan1)2cos222sin22(2cos222
xxxxxxxxxx
.cossinxx
xxxxxfxfxfxfsincoscossin)()(:,0)()(
即令

.0cos2x
.0)()(],,0[2,2xfxfxx使所以存在实数可得



相关文档
最新文档