注塑成型缺陷及解决方法

注塑成型缺陷及解决方法
注塑成型缺陷及解决方法

第一章注塑成型缺陷及解决方法

第一节欠注

一.名词解释

熔料进入型腔后没有充填完全,导致产品缺料叫做欠注或短射。如图所示。

图5-1 制品缺料示意图

二. 故障分析及排除方法:

1.设备选型不当。在选用注塑设备时,注塑机的最大注射量必须大于塑件重量。在验核时,注射总量(包括塑件、浇道及飞边)不能超出注射机塑化量的85%。

2. 供料不足,加料口底部可能有“架桥”现象。可适当增加射料杆注射行程,增加供料量。

3. 原料流动性能太差。应设法改善模具浇注系统的滞流缺陷,如合理设置浇道位置、扩大浇口、流道和注料口尺寸以及采用较大的喷嘴等。同时,可在原料配方中增加适量助剂,改善树脂的流动性能。

4. 润滑剂超量。应减少润滑剂用量及调整料筒与射料杆间隙,修复设备。

5.冷料杂质阻塞流道。应将喷嘴拆卸清理或扩大模具冷料穴和流道的截面。

6. 浇注系统设计不合理。设计浇注系统时,要注意浇口平衡,各型腔内塑件的重量要与浇口大小成正比,是各型腔能同时充满,浇口位置要选择在厚壁部位,也可采用分流道平衡布置的设计方案。若浇口或流道小、薄、长,熔料的压力在流动过程中沿程损失太大,流动受阻,容易产生填充不良。对此应扩大流道截面和浇口面积,必要时可采用多点进料的方法。

1

图5-2 流道过细而凝固

7. 模具排气不良。应检查有无冷料穴,或其位置是否正确,对于型腔较深的模具,应在欠注部位增设排气沟槽或排气孔,在合理面上,可开设0.02-0.04mm,宽度为5-10mm的排气槽,排气孔应设置在型腔的最终充填处。使用水分及易挥发物含量超标的原料时也会产生大量气体,导致模具排气不良,此时应对原料进行干燥及清除易挥发物。此外,在模具系统的工艺操作方面,可通过提高模具温度,降低注射速度、减小浇注系统流动阻力,以及减小合模力,加大模具间隙等辅助措施改善排气不良。

图5-3 困气产生背压阻料

8. 模具温度太低。开机前必须将模具预热至工艺要求的温度。刚开机时,应适当节制模具内冷却剂的通过量。若模具温度升不上去,应检查模具冷却系统设计是否合理。

9. 熔料温度太低。在适当的成型范围内,料温与充模长度接近于正比例关系,低温熔料的流动性能下降,式的充模长度减短。应注意将料筒加热到仪表温度后还需恒温一段时间才能开机。如果为了防止熔料分解不得不采取低温注射时,可适当延长注射循环时间,克服欠注。

10. 喷嘴温度太低。在开模时应使喷嘴与模具分离。减少模温对喷嘴温度的影响,使喷嘴处的温度保持在工艺要求的范围内。

11. 注射压力或保压不足。注射压力与充模长度接近于正比例关系,注射压力太小,充模长度短,型腔充填不满。对此,可通过减慢射料杆前进速度,适当延长注射时间等办法来提高注射压力。

12. 注射速度太慢。注射速度与充模速度直接相关。如果注射速度太慢,熔料充模缓慢,而低速流动的熔体很容易冷却,使其流动性能进一步下降产生欠注。

2

对此,应适当提高注射速度。

13. 塑件结构设计不合理。当塑件厚度与长度不成比例,形体十分复杂且成型面积很大时,熔体很容易在塑件薄壁部位的入口处流动受阻,使型腔很难充满。因此,在设计塑件的形体结构时,应注意塑件厚度与熔料极限充模长度有关。在注射成型时,塑件的厚度应采用1-3mm,大型塑件为3-6mm。通常,塑件厚度超过8mm或小于0.5mm都对注塑成型不利,设计时应避免采用这样的厚度。

图5-4 制件复杂或流路过长而凝固

第二节飞边

一.名词解释

当塑料熔料被迫从分型面挤压出模具型腔产生薄片时便形成了飞边,薄片过大时叫做批锋。

图5-5 制品飞边示意图

二. 故障分析及排除方法:

1. 合模力不足。应检查增压器是否增压过量,同时应验核塑件投影面积与成型压力的乘积是否超出了设备的合模力。成型压力为模具内的平均压力,常规情况下以40Mpa计算。如果计算结果为合模力小于乘积。则表明合模力不足或者注射定位压力太高。应降低注射压力或减小注料口截面积,也可缩短保压及增压时

3

间,减小射料杆行程,或考虑减少型腔数及改用合模吨位大的注塑机。

2.料温太高。应适当降低料筒、喷嘴及模具温度,缩短注射周期。对于聚酰胺等粘度较低的熔料,如果仅靠改变成型条件来解决溢料飞边缺陷是很困难的。应在适当降低料温的同时,尽量精密加工及研修模具,减小模具间隙。

3.模具缺陷。模具缺陷时产生溢料飞边的主要原因。必须认真检查模具,应重新验核分型面,使东模预定模对中,并检查分型面是否贴合,型腔及模具型芯部分的滑动件磨损间隙是否超差,分型面上有无粘附物或落入异物,模板间是否平行,有无弯曲变形,模板的开距有无按模具厚度调节到正确的位置,锁模块表面是否损伤,拉杆有无变形不均,排气槽孔是否太大太深。

4. 工艺条件控制不当。如果注射速度太快,注射时间过长,注射压力在模腔中分布不均,充模速率不均衡,以及加料量过多,润滑剂使用过量都会导致移料飞边,操作时应针对具体情况采取相应的措施。

第三节熔接痕

一.名词解释

在塑料熔料填充型腔时,如果两股或更多的熔料在相遇时前沿部分已经冷却,使他们不能完全融合,便在汇合处产生线性凹槽,形成熔接痕。

4

图5-6 熔接痕形成示意图

二. 故障分析及排除方法:

1.料温太低。低温熔料的分流汇合性能较差,容易形成熔接痕。如果塑件的

内外表面在同一部位产生熔接细纹时,往往是由于料温太低引起的熔接不良。对此,可适当提高料筒及喷嘴的温度,或者延长注射周期,促使料温上升。同时,应节制模具内冷却剂的通过量,适当提高模具温度。一般情况下,塑件熔接痕处的强度较差,如果对模具中产生熔接痕的相应部位进行局部加热,提高成型件熔接部位的的局部温度,往往可以提高塑件熔接处的强度。如果由于特殊需要,必须采用低温成型工艺时,可适当提高注射速度及注射压力,从而改善熔料的汇合性能。也可在原料配方中适当增用少量润滑剂,提高熔料的流动性能。

2.模具缺陷。应尽量采用分流少的浇口形式并合理选择浇口位置选择浇口

位置,尽量避免充模速率不一致及充模料流中断。在可能的条件下,应选用一点进胶。为了防止低温熔料注入模腔产生熔接痕,可在提高模具温度的同时,在模具内设制冷料穴。

熔接痕

浇口位置

图5-7 改变浇口位置对熔接痕的影响

3. 模具排气不良。首先应检查模具排气孔是否被熔料的固化物或其它物体阻

塞,浇口处有无异物。如果阻塞物清除后仍出现炭化点,应在模具汇料点处增加排气孔,也可通过重新定位浇口,或适当降低合模力,增大排气间隙来加速汇料合流。在工艺操作方面,也可采取降低料温及模具温度,缩短高压注射时间,降低注射压力等辅助措施。

4. 脱模剂使用不当。在注塑成型中,一般只在螺纹等不易脱模的部位才均匀

地涂用少量脱模剂,原则上应尽量减少脱模剂的用量。

5

5. 塑件结构设计不合理。如果塑件壁厚设计的太薄或厚薄悬殊以及嵌件太多,都会引起熔接不良。在设计塑件形体结构时,应确保塑件的最薄部位必须大于成型时允许的最小壁厚。此外,应尽量减少嵌件的使用且壁厚尽可能趋于一致。

熔接痕

图5-8 壁厚对熔接痕的影响

6.熔接角度太小。不同的塑料都有自己的极限熔接角度。两股料流汇合时如果汇合角度小于极限熔接角度,就会出现熔接痕,如果大于极限熔接角度,熔接痕便消失。极限熔接角度值一般在135度左右。

7.其它原因。当使用的原料水分或易挥发物含量太高,模具中的油渍未清除干净,模腔中有冷料或熔料内的纤维填料分布不良,模具冷却系统设计不合理,熔料固化太快,嵌件温度太低,喷嘴孔太小,注射机塑化能力不够,柱塞或注射机料筒中压力损失大,都会导致不同程度的熔接不良。对此,在操作过程中,应针对不同情况,分别采取原料预干燥,定期清理模具,改变模具冷却水道设计,控制冷却水的流量,提高嵌件温度,换用较大孔径的喷嘴,改用较大规格的注射机等措施予以解决。

第四节气穴

一.名词解释

在塑料熔料填充型腔时,多股熔料前沿包裹形成的空穴或者熔料填充末端由于气体无法排出导致填充不完全叫气穴。

6

7

二. 故障分析及排除方法: 1. 模具缺陷。浇口位置应设置在塑件的后壁处;直接浇口产生真空孔的现象比较突出,应尽量避免选用,如果浇口形式无法改变的情况下,可通过延长保压时间,加大供料量,减小浇口锥度等方法进行调节;缩短和加宽细长狭窄的流道,消除流道中的贮气死角,排除模具排气不良的故障;塑件形体上应尽量避免有特厚部分或厚薄悬殊太大。

2. 成型条件控制不当。适当降低注射速度;可通过调节调节注射和保压时间,改善冷却条件,控制加料量等方法一般情况下,应将熔料温度控制得略微低一些,模具温度控制得稍微高一些。

第五节 翘曲变形

一.名词解释

由于产品内部收缩不一致导致内应力不同引起变形。

二. 故障分析及排除方法:

1. 分子取向不均衡。为了尽量减少由于分子取向差异产生的翘曲变形,应创造条件减少流动取向及缓和取向应力的松弛,最有效的方法是降低熔料温度和模具温度,在采用这一方法时,最好与塑件的热处理结合起来,否则,减小分子

图5-9 气穴形成示意图

图5-10 制品变形示意图

取向差异的效果往往是短暂的。热处理的方法是:塑件脱模后将其置于较高温度下保持一定时间再缓冷至室温,即可大量消除塑件内的取向应力。

2.冷却不当。设计塑件结构时,各部位的断面厚度应尽量一致。塑件在模具内必须保持足够的冷却定型时间。对于模具冷却系统的设计,必须注意将冷却管道设置在温度容易升高、热量比较集中的部位,对于那些比较冷却的部位,应尽量进行缓冷,是塑件各部分的冷却均衡。

产品向高温部分收缩

产品向高温部分收缩

图5-11 制品随模温变化图

3.模具浇注系统设计不合理。在确定浇口位置时,不要使熔料直接冲击型芯,应使型芯两侧受力均匀;对于面积较大的矩形扁平塑件,当采用分子取向及收缩大的树脂原料时,应采用薄膜式浇口或多点式浇口,尽量不要采用恻浇口;对于环型浇塑件,应采用盘型浇口或轮辐式浇口,尽量不要采用恻浇口或针浇口;对于壳型塑件,应采用直浇口,尽量不要采用恻浇口。

4. 模具脱模及排气系统设计不合理。在模具设计方面,应合理设计脱模斜度,顶杆位置和数量,提高模具的强度和定位精度;对于中小型模具,可根据翘曲规律来设计和制作反翘模具。在模具操作方面,应适当减慢顶出速度或顶出行程。

5. 工艺操作不当。应针对具体情况,分别调整对应的工艺参数。

第六节缩痕

一.名词解释

产品壁厚不均匀引起表面收缩不均匀从而产生缩痕。

8

图5-12 缩痕示意图

二. 故障分析及排除方法:

1.成型条件控制不当。适当提高注射压力及注射速度,增加溶料的压缩密度,延长注射和保压时间,补偿熔体的收缩,增加注射缓冲量。但保压不能太高,否则会引起凸痕。如果凹陷和缩痕发生在浇口附近时,可以通过延长保压时间来解决;当塑件在壁厚处产生凹陷时,应适当延长塑件在模内的冷却时间;如果嵌件周围由于熔体局部收缩引起凹陷及缩痕,这主要是由于嵌件的温度太低造成的,应设法提高嵌件的温度;如果由于供料不足引起塑件表面凹陷,应增加供料量。此外,塑件在模内的冷却必须充分。

2.模具缺陷。结合具体情况,适当扩大浇口及流道截面,浇口位置尽量设置在对称处,进料口应设置在塑件厚壁的部位。如果凹陷和缩痕发生在远离浇口处,一般是由于模具结构中某一部位熔料流动不畅,妨碍压力传递。对此,应适当扩大模具浇注系统的结构尺寸,最好让流道延伸到产生凹陷的部位。对于壁厚塑件,应优先采用翼式浇口。

3.原料不符合成型要求。对于表面要求比较高的塑件,应尽量采用低收缩率的树脂,也可在原料中增加适量润滑剂。

4. 塑件形体结构设计不合理。设计塑件形体结构时,壁厚应尽量一致。若塑件的壁厚差异较大,可通过调整浇注系统的结构参数或改变壁厚分布来解决。

9

图5-13 改变壁厚减小缩痕

第七节流痕

一.名词解释

成型制品表面的线状痕迹,此痕迹显示了熔料流动的方向。

图5-14 流痕示意图

二. 故障分析及排除方法:

1. 熔料流动不良导致塑件表面产生以浇口为中心的年轮状波流痕。可分别采取提高模具及喷嘴温度,提高注射速率和充模速度,增加注射压力及保压和增压时间。也可在浇口处设置加热器增加浇口部位的局部温度。还可适当扩大浇口及流道面积,而浇口和流道截面最好采用圆形,这种截面能够获得最佳充模。但是如果在塑件的薄弱区域设置浇口,应采用正方形截面。此外,注料口底部及分流道端部应设置较大的冷料穴,料温对熔料流动性能影响越大,越要注意冷料穴尺寸的大小,冷料穴的位置必须设置在熔料沿注料口流动方向的端部。

10

图5-15 流痕形成示意图

2.熔料在流道中流动不畅导致塑件表面产生螺旋状波流痕。当熔料从流道狭小的截面流入较大截面的型腔或模具流道狭窄、光洁度很差时,料流很容易形成湍流,导致塑件表面形成螺旋状波流恨。对此,可适当降低注射速度或对注射速度采取慢、快、慢分级控制。模具的浇口应设置在厚壁部位或直接在壁侧设置浇口,浇口形式最好采用柄式、扇形或膜片式。也可适当扩大流道及浇口截面,减小料流阻力。

3.挥发性气体导致塑件表面产生云雾状波流痕。当采用ABS或其它共聚型树脂原料时,若加工温度较高,树脂及润滑剂产生的挥发性气体会使塑件表面产生云雾状波流痕。对此,应适当降低模具及机筒温度,改善模具的排气条件,降低料温及充模速率,适当扩大浇口截面,还应考虑更换润滑剂品种或减少其用量。

第八节条纹

一.名词解释

成型制品表面沿着流动方向形成的喷溅状线条,也叫银丝或水花。

5-16 条纹示意图

二. 故障分析及排除方法:

1.熔料塑化不良。适当提高料筒温度和延长成型周期,尽量采用内加热式注料口或加大冷料井及加长流道。

2.熔料中含有易挥发物。主要种类有降解银丝和水气银丝。原材料选用及

11

处理:对于降解银丝,尽量选用粒径均匀的树脂;对于水气银丝,必须充分干燥原料。工艺操作:对于降解银丝,应降低料筒及喷嘴温度,缩短熔料在料筒中的滞留时间,也可降低螺杆转速及前进速度,缩短增压时间;对于水气银丝,应调高背压,降低螺杆转速。模具设计和操作:对于降解银丝,应加大浇口、主流道及分流道截面,扩大冷料井,改善模具的排气条件;对于水气银丝,应增加模具排气孔或采用真空排气装置,并检查模具冷却水道是否渗漏,防止模具表面过冷结霜及表面潮湿。

第九节裂纹

一.名词解释

成型制品表面开裂形成裂缝叫做裂纹。

二. 故障分析及排除方法:

图5-17 裂缝示意图

1. 残余应力太高。在模具设计和制作方面,可以采用压力损失最小,而且可以承受较高注射压力的直接浇口,可将正向浇口改为多个针形点浇口或侧浇口,并减小浇口直径。设计侧浇口时,可采用成型后可将破裂部分除去的凸片式浇口。在工艺操作方面,通过降低注射压力来减少残余应力是一种最简便的方法,因为注射压力与残余应力呈正比例关系。应适当提高料筒及模具温度,减小熔料与模具的温度,控制模内型胚的冷却时间和速度,使取向分子连有较长的恢复时间。

图5-18 残余应力示意图

12

13

2. 外力导致残余应力集中。一般情况下,这类故障总是发生在顶杆的周围。出现这类故障后,应认真检查和校调顶出装置,顶杆应设置在脱模阻力最大部位,如凸台、加强筋等处。如果设置的顶杆数由于推顶面积受到条件限制不可能扩大时,可采用小面积多顶杆的方法。如果模具型腔脱模斜度不够,塑件表面也会出现擦伤形成褶皱花纹。

3.成型原料与金属嵌件的热膨胀系数存在差异。对于金属嵌件应进行预热,特别是当塑件表面的裂纹发生在刚开机时,大部分是由于嵌件温度太低造成的。另外,在嵌件材质的选用方面,应尽量采用线膨胀系数接近树脂特性的材料。在选用成型原料时,也应尽可能采用高分子量的树脂,如果必须使用低分子量的成型原料时,嵌件周围的塑料厚度应设计的厚一些。

4. 原料选用不当或不纯净。实践表明,低粘度疏松型树脂不容易产生裂纹。因此,在生产过程中,应结合具体情况选择合适的成型原料。在操作过程中,要特别注意不要把聚乙烯和聚丙烯等树脂混在一起使用,这样很容易产生裂纹。在成型过程中,脱模剂对于熔料来说也是一种异物,如用量不当也会引起裂纹,应尽量减少其用量。

5. 塑件结构设计不良。塑件形体结构中的尖角及缺口处最容易产生应力集中,导致塑件表面产生裂纹及破裂。因此,塑件形体结构中的外角及内角都应尽可能采用最大半径做成圆弧。试验表明,最佳过度圆弧半径为圆弧半径与转角处壁厚的比值为1:1.7。

6. 模具上的裂纹复映到塑件表面上。在注射成型过程中,由于模具受到注射压力反复的作用,型腔中具有锐角的棱边部位会产生疲劳裂纹,尤其在冷却孔附近特别容易产生裂纹。当模具型腔表面上的裂纹复映到塑件表面上时,

塑件表面

图5-19 制品设计不合理导致变形

上的裂纹总是以同一形状在同一部位连续出现。出现这种裂纹时,应立即检查裂纹对应的形腔表面有无相同的裂纹。如果是由于复映作用产生裂纹,应以机械加工的方法修复模具。

14

2017《注塑缺陷的原因分析与解决对策》--邓益善

注塑缺陷的原因分析与解决对策 【主办单位】一六八培训网 【时间地点】2017年04月15-16日上海 04月22-23日深圳 2017年08月19-20日上海 08月26-27日深圳 2017年12月16-17日深圳 12月23-24日上海 【收费标准】¥3200元/人(包括资料费、午餐及上下午茶点等) 3. 大量典型实例讲解、分析; 4. 学员自带不良品、现场解决问题、互动探讨; 5. 世界最先进的、全国独有的系统,全真展现注塑生产过程,动态显示生产现场看得见以及 看不见的环节和变化,等于将注塑车间搬到培训大厅。 片面的经验,对一些综合性的问题缺乏科学系统的分析能力,对已经出现的生产问题缺乏解决问题的措施。 邓益善老师基于扎实的生产实践与技术指导经历,将实实在在从根源上帮助解决这些问 第二部分:最佳注塑工艺设定方法 1. 如何设定各项关键注塑工艺参数;

2. 时间、温度、压力、速度、位置等参数设定要点; 3. 螺杆相关设定要点; 4. 多段充填的设定与实际使用; 5. 多段保压的设定与实际使用; 6. 速度/压力切换点的设定方法; 7. 多视窗注塑成型技术运用; 8. 塑料分子排向对质量的影响以及如何控制 9. 注塑残余内应力对质量的影响以及如何控制 第三部分:注塑现场问题分析与解决对策 注塑问题描述、原因分析,如常见的缩孔、缩水、不饱模、毛边、熔接痕、银丝、喷痕、烧焦、翘曲变形、开裂/破裂、尺寸超差及其它等等,以及在产品结构设计、模具设计、成型工艺控制及塑料材料等方面之全面解决对策。 1. 注塑件周边缺胶、不饱模的原因分析及解决对策; 2. 批锋(毛边)的原因分析及解决对策; 3. 注塑件表面缩水、缩孔(真空泡)的原因分析及解决对策; 4. 银纹(料花、水花)、烧焦、气纹的原因分析解决对策; 5. 注塑件表面水波纹、流纹(流痕)的原因分析及解决对策; 6. 注塑件表面夹水纹(熔接痕)、喷射纹(蛇纹)的原因分析及解决对策; 7. 注塑件表面裂纹(龟裂)的原因分析及解决对策; 8. 注塑件表面色差、光泽不良、混色、黑条、黑点的原因分析及解决对策; 9. 注塑件翘曲变形、内应力开裂的原因分析及解决对策; 10. 注塑件尺寸偏差的原因分析及解决对策; 11. 注塑件透明度不足、强度不足(脆断)的原因分析及解决对策; 12. 学员自带产品问题解答。 第四部分:模具设计优化 实际上目前有相当部分产品品质问题是由模具设计不合理导致的,只是很多模具设计相关人员将责任推给了注塑相关人员。 1. 如何设计注塑车间生产OK的模具; 2. 如何设计注塑车间稳定、高效生产的模具; 3. 如何设计上档次的模具; 4. 浇口合理设计; 5. 流道合理设计; 6. 冷却水路合理设计; 7. 产品缩水率的设定与调整; 第五部分:模流分析技术应用(融汇于第三、四部分) 如何利用目前世界最强大的Moldflow模流分析技术快速地有效地预测问题、优化注塑工艺

注塑产品缺陷的解决

注意: 1)放电加工原理,放电加工是利用电能转换成工件热能,使工件急速熔融的一种热性加工方法。放电加工时,电极与工件的间隙中产生过渡电弧放电现象,进而对工件产生热作用,同时,加工中液体由于受到放电压力及热作用产生气化爆发现象,此时工件的熔融部份,将伴随液体气化融入加工液中,工件因放电的作用产生放电痕,如此反复进行,我们所希望的形状便可加工完成了。 2)线切割原理,铜丝接近工件(并未与工件接触),对工件及铜线加上电压而产生电弧和高温(9000o C—10000o C),融蚀后将金属残屑吹出,铜丝继续前进,工件冷却后即形成粗糙的被切割面。 七、塑胶射出成型产品的外观问题与对策 1、塑胶射出成型产品的外观问题 积风(Air Trap);发赤(Blush);毛边(Flash);流痕(Flow Line or Flow Mark);喷流(蛇纹)(Jetting);短射(Short Shot);凹陷或缩孔(Sink Mark or Vord);条纹(Streak);熔接线(Weld Line) 2、积风——Air Trap 积风的定义:空气或气体不及排出,被溶胶波前包夹在型腔内。 ●成品 1)壁厚差异太大,产生跑道效应(Race Track Effect),壁厚差异太大时,薄壁处塑流迟缓,溶胶循厚壁快速超前,有可能对型腔中空气或气体进行包抄,

行程积风。 2)CAE可以预测充填模式(Filling Pattern)和可能的积风点。更改厚度分布,使壁厚尽可能保持均一,以避免积风。 ●模具 1)浇口(Gate)位置不当:a.浇口位置不当时,塑流有可能包抄空气或气体,形成积风;b. CAE可以预测充填模式(Filling Pattern)和可能的积风点。 更改浇口位置,可以改变充填模式,积风有可能避免。 2)流道(Runner)或浇口尺寸不当:a.多浇口设计时,流道或浇口尺寸如果不当,塑流有可能赶超空气或气体,形成积风;b. CAE可以预测充填模式(Filling Pattern)和可能的积风点。更改浇口位置,可以改变充填模式,积风有可能避免。 3)排气不良:a.若是排气不良,波前收口处会卷入空气或气体,形成积风;b. CAE可以预测充填模式(Filling Pattern)和可能的积风点。在可能的积风点加排气口,以避免积风。 ●射出成形机 射速过高时,产生喷流(Jetting),有可能卷入气体而形成积风。降低射速,可以稳定塑流,防止喷流,避免积风。 3、发赤——Blush 发赤的定义:浇口附近产生的云状色变。有时会在塑流通道中形成阻碍处发现。原因是溶胶破折(Fracture)。

注塑成型不良案例分析(日本)

注塑成型不良的案例分析 一、飞边(披锋) 系指从模具分型面拼出熔融树脂的现象,在成形作业当中属于最恶劣的情况,特别是当飞边粘在模具面上,残留下来,直接锁模的话,则损伤模具分型面。一旦出现这种情况,该损伤部分又会导致产生新的飞边,怎么也没办法,所以需特别注意不要出现飞边, 1、不得施加过高的射出压力 熔融粘度低的树脂,如尼龙、聚丙烯、聚乙烯、聚苯乙烯等,流动性好,往往从模具缝隙出现“边缘鼓出”现象,因此,不得施加过高的射出压力和保压压力。当有出现飞边的倾向时,应尽早让保压转换用限位开关动作,减少计量。降低射出压力。 另外,保压压力也有过高的时候,对于这些流动好的树脂,不要从一开始就施加高保压压力。应边观察成形品的状况,边一点一点提高压力。 2、最初锁模力不足时,当然会产生飞边,不了解所用模具所需锁模力究竟有多大,就不可能作出断。先利用锁模力调整手柄,增加锁模力试试看。 上图为在模具接触面(分型面)形成的飞边。飞边主要是发生在分型面,但其它如在小顶杆周围、抽芯周围有时也出现飞边。 所谓纵向飞边,几乎均起因于模具精度不够。象尼龙之类熔融粘度低的树脂,特别容易产生飞边,如聚碳酸酯之类粘度高的树脂则难于产生飞边。

时的判断方法是,当模腔内的压力乘以模腔、流道的投影面积所得的数值未超过机械是大锁模力的话,则不属于机械能力不足。 但需正确估计模腔内压力,然而不能把产品目录所列出的射出压力看作是模腔压力。射出压力充其量是料筒内的理论压力,树脂流入模具,即被冷却,压力急剧下降。平均压力从低粘度部件250kg/cm2到高粘度工业部件800kg/cm2左右,这种压力很难估计,虽然大体上有个基准,但要想保证估计精度,还需要凭经验。 3、在模具接触面产生了伤痕、夹有脏东西或是模具平行度差,当然会产生飞边,模具保管不善,则会使安装面打上伤痕,或是生锈,这样都会导致产生飞边。所以应该养成习惯妥善保管模具。绝对不得将模具直接放置在地面上。 4、也应特别留意注塑机的模具安装面,安装模具之前应用抹布仔细擦拭。 5、计量过多,或是螺杆料筒的温度设定的过高,均会产生飞边,最初应慢慢增加计量,温度设定因树脂而异,最好记住大致的标准温度。 二、填充不足(缺胶) 所谓填充不足,是指模具填充不满的状态。在达到目的形状之前,冷却固化则完全成为废品。 1、将射出量设定为最大,情况仍得不到改善,则表示射出压力不足,或设定温度过低。 2、将计量设定为最大,温度压力根据常识判断亦无异常,出现填充不足的现象时,多半需要检查注塑机的最大注射量。模腔容积超过最大射出量时,绝对填充不完全。有成形品样品的话,这种检查很简单,成形之前当然需要检查,首先测量样品、浇口及流道的重量,低于注塑机的最大注射量就不可以了。利用注塑机所具有的最大容积乘以树脂的假比重,即可算出该树脂的最大射出量。 成形品的重量刚好相当于注塑机的最大射出量,有时也会出现填充不足的现象,这是由于没有把保压残量行程(俗称容让)扣除的缘故。 3、为防止逆流,则需安装止逆环。聚乙烯、苯乙烯、聚丙烯及尼龙等低粘度的树脂一定需要,不装的话,因逆流的关系,往往会导致填充不完全。 4、树脂温度过低,则粘度过高,流动性差,有时会造成模具填充不完全。 不管怎么说,树脂温度偏低一些好,过高则收缩加大,保证不了精度,或是造成热分解而炭化,应始终记住按标准温度进行设定。

塑胶注塑产品常见缺陷有哪些

塑胶注塑产品常见缺陷有哪些 塑胶注塑产品常见缺陷有哪些, 制品质量包括内部质量和表观质量,内部质量包括内应力,冲击强度,制品收缩,熔合强度等,我们下面讲述的是制品常见的各种表观缺陷: 一.凹陷,缩孔,气孔 1.产生原因:原料吸湿性太大,干燥不好,制品壁厚不均,模腔压力不足或没有把存于腔内的空气排除而形成阻隔使熔体不能与模具表面全部按触,或因物料冷却速率降低其使制品表面出现严重凹陷,而缩孔位置多发生 在筋表面和远离浇口位置. 2.防止办法:在制品设计方面要防止由于筋造成壁厚不均,在选择材料方面选取收缩率小的材料,模具方面在壁厚地方开设支流道,工艺方面要降低模温,熔体温度.增加注射压力、保压时间和注射量,对容易发生缩孔的地方加强冷却,增加浇口截面尺寸. 二.无光泽,冷白,搓伤及皱纹 1.产生原因:这类缺陷的产生大都是因为模具温度过低,聚合物熔体温度过高, 冷却过快所致.当熔体还在充模时,在型腔壁上就形成了很硬的壳.壳层受到各种力的作用使之泛白变浑,严重者壳层可能被撕破和皱纹.产生此类现象的另一个原因是熔体在模内发生了不规则的脉动流动,如在浇口尺寸很小,注射速度又很大时,聚合物熔体细流射入模腔,细射流经过一段时间表面己冷却再与后续熔体熔合时,就会出现此类缺陷. 2.防止办法:提高模具温度,加大流道,浇口. 三.银丝与剥层 1.产生原因:在充满时,波前峰析出挥发性气体,这些气体往往是物料受热分解 出来的,气体分布在制品表面,就留下银纹,当物料含湿量过大时,加热会产生水蒸气,

塑化时由于螺杆工作不利,物料所挟带的空气不能排出也会产生银纹,在某些情况下,大气泡被拉长成扁气泡覆盖在制品表面上,使制品表面剥层.有时从料筒至喷嘴的温度梯度太大使剪切过大也会产生银丝. 2.防止办法:选择好干燥设备和干燥工艺,将含湿量降到最低值.工艺方面降低 熔体温度,提高模温,稳定喷嘴温度,加大背压,模具方面加开排气槽. 四.烧焦,暗纹及暗斑 1.产生原因:暗纹或暗斑出现多是因物料过热分解而引起,有的是因为塑化不均匀,从外观上看呈暗斑痕,有的是因为异物所致,冲模时模内空气压缩,温度升高产生烧焦,多发生在熔合缝处. 2.防止办法:物料干燥充分,降低熔体温度,提高背压,模具方面改善排气. 五.翘曲,变形 1.产生原因:聚合物的组织相应力,机械应力,热胀冷缩应力(温度应力)残余在 制品内部所致,一般结晶型比非结晶型大. 2.防止办法:减小取向,增大浇口尺寸,适当降低熔体和模具温度,加大注射速率,适当延长注射保压时间,减小浇口处压力,制品方面结构合理,改善脱模斜度表面粗糙度.顶出位置,面积等. 六.龟裂 1.产生原因:分子链在应力作用下沿力的方向上排列的裂纹,当脱模顶出力不平衡时,脱模造成真空吸力引起龟裂 2.防止办法:采用消除内应力的工艺办法,如提高熔体温度和模具温度,降低注 射力,采用退火处理等七.熔合缝 1.产生原因:两股以上的熔体合拢时,波前锋受到异物阻隔气体杂质所形成. 2.防止办法:适当提高模具温度和熔体温度,提高注射力和注射速度,模具上加 开排气,增设冷料井,调整片等. 八.溢边

注塑成型常见缺陷分析

注塑成型常见缺陷分析 注塑成型常见缺陷分析: 1、打不满 工艺问题:塑化温度太低、喷嘴温度太低、注塑时间太短、注塑速度太慢、模温太低。 模具问题:流道太小、浇口太小、浇口位置不合理、排气不良、型腔内有杂物 原材料问题:流动性太差、混有杂物。 2、飞边 工艺问题:塑化温度过高、注塑时间过长、加料量太多、注塑压力过高、模温太高、模板间有杂物。 模具问题:模具变形、型芯与型腔配合尺寸有误差、模板组合不平行、排气槽过深。 设备问题:模板不平行、模板闭合不紧。 原材料问题:流动性过高。 3、变形 工艺条件方面:料温过高,模温过高,保压时间太短,冷却时间太短强行脱模。 模具方面:浇口位置不当,浇口数量不够,顶出位置不当使受力不均 4、流痕

工艺条件方面:料温太低未完全塑化、注塑速度太低、注塑压力太小、保压压力不够、模温太低、注塑量不足。 模具方面:浇口太小、浇口数量太少、流道浇口粗糙、型面光洁度差。设备方面:温控后系统失灵、油泵压力下降。 原材料方面:含挥发物太多,流动性太差,混入杂料 5、气泡 工艺条件方面:注塑压力低、保压压力不够、保压时间不够、料温过高。 模具方面:排气不良、浇口位置不合理、浇口尺寸太小。 原材料方面:含水分未干燥或干燥时间不够、收缩率过大。 6、缩坑 工艺条件方面:加料量不足、注塑时间过短保压时间过短、料温过高、模温过高、冷却时间太短。 模具方面:流道太细小、浇口太小、排气不良。 设备方面:注塑压力不够、喷嘴堵有异物。 原材料方面:收缩率过大 7、尺寸不稳定 工艺条件方面:注塑压力过低、料筒温度过高、保压时间变动、注塑周期不稳模温太高。 模具方面:浇口尺寸不均、型腔尺寸不准、型芯松动、模温太高或未设水道。 原材料方面:牌号品种有变动、颗粒大小不均、含有挥发性物质。

常用塑料注塑成型缺陷及解决方案设计

第一章注塑成型缺陷及解决方法 第一节欠注 一.名词解释 熔料进入型腔后没有充填完全,导致产品缺料叫做欠注或短射。如图所示。 二. 故障分析及排除方法: 1.设备选型不当。在选用注塑设备时,注塑机的最大注射量必须大于塑件重量。在验核时,注射总量(包括塑件、浇道及飞边)不能超出注射机塑化量的85%。 2. 供料不足,加料口底部可能有“架桥”现象。可适当增加射料杆注射行程,增加供料量。 3. 原料流动性能太差。应设法改善模具浇注系统的滞流缺陷,如合理设置浇道位置、扩大浇口、流道和注料口尺寸以及采用较大的喷嘴等。同时,可在原料配方中增加适量助剂,改善树脂的流动性能。 4. 润滑剂超量。应减少润滑剂用量及调整料筒与射料杆间隙,修复设备。 5.冷料杂质阻塞流道。应将喷嘴拆卸清理或扩大模具冷料穴和流道的截面。 6. 浇注系统设计不合理。设计浇注系统时,要注意浇口平衡,各型腔塑件的重量要与浇口大小成正比,是各型腔能同时充满,浇口位置要选择在厚壁部位,也可采用分流道平衡布置的设计方案。若浇口或流道小、薄、长,熔料的压力在流动过程中沿程损失太大,流动受阻,容易产生填充不良。对此应扩大流道截面和浇口面积,必要时可采用多点进料的方法。 图5-1 制品缺料示意图

7. 模具排气不良。应检查有无冷料穴,或其位置是否正确,对于型腔较深的模具,应在欠注部位增设排气沟槽或排气孔,在合理面上,可开设0.02-0.04mm,宽度为5-10mm的排气槽,排气孔应设置在型腔的最终充填处。使用水分及易挥发物含量超标的原料时也会产生大量气体,导致模具排气不良,此时应对原料进行干燥及清除易挥发物。此外,在模具系统的工艺操作方面,可通过提高模具温度,降低注射速度、减小浇注系统流动阻力,以及减小合模力,加大模具间隙等辅助措施改善排气不良。 8. 模具温度太低。开机前必须将模具预热至工艺要求的温度。刚开机时,应适当节制模具冷却剂的通过量。若模具温度升不上去,应检查模具冷却系统设计是否合理。 9. 熔料温度太低。在适当的成型围,料温与充模长度接近于正比例关系,低温熔料的流动性能下降,式的充模长度减短。应注意将料筒加热到仪表温度后还需恒温一段时间才能开机。如果为了防止熔料分解不得不采取低温注射时,可适当延长注射循环时间,克服欠注。 10. 喷嘴温度太低。在开模时应使喷嘴与模具分离。减少模温对喷嘴温度的影响,使喷嘴处的温度保持在工艺要求的围。 11. 注射压力或保压不足。注射压力与充模长度接近于正比例关系,注射压力太小,充模长度短,型腔充填不满。对此,可通过减慢射料杆前进速度,适当延长注射时间等办法来提高注射压力。 12. 注射速度太慢。注射速度与充模速度直接相关。如果注射速度太慢,熔料充模缓慢,而低速流动的熔体很容易冷却,使其流动性能进一步下降产生欠注。对此,应适当提高注射速度。 13. 塑件结构设计不合理。当塑件厚度与长度不成比例,形体十分复杂且成 图5-2 流道过细而凝固 图5-3 困气产生背压阻料

注塑模具缺陷原因分析

注塑模具缺陷原因分析 收缩痕 注塑件缺陷的特征 通常与表面痕有关,而且是塑料从模具表面收缩脱离形成的。 二、可能出现问题的原因 (1).熔融温度不是太高就是太低。 (2).模腔内塑料不足。 (3).冷却阶段时接触塑料的面过热。 (4).流道不合理、浇口截面过小。 (5).模温是否与塑料特性相适应。 (6).产品结构不合理(加强进古过高,过厚,明显厚薄不一). (7).冷却效果不好,产品脱模后继续收缩。 三、补救方法 (1).调整射料缸温度。 (2).调整螺杆速度以获得正确的螺杆表面速度。 (3).增加注塑量。 (4).保证使用正确的垫料;增加螺杆向前时间;增加注塑压力;增加注塑速度。 (5).检查止流阀是否安装正确,因为非正常运行会引致压力流失。 (6).降低模具表面温度。 (7).矫正流道避免压力损失过大;根据实际需要,适当扩大截面尺寸。 (8).根据所用塑料的特性及产品结构适当控制模温。 (9).在允许的情况下改善产品结构。 (10).设法让产品有足够的冷却。 包封 一、注塑件缺陷的特征 可以容易地在透明注塑件的“空气阱”内见到但也可出现在不透明的塑料中,这与厚度有关,而且常因塑料收缩离开注塑件中心而引起。

二、可能出现问题的原因 (1).模具未充分填充。 (2).止流阀的不正常运行。 (3).塑料未彻底干燥。 (4).预塑或注射速度过快。 (5).某些特殊材料应用特殊的设备生产。 三、补救方法 (1).增加射料量。 (2).增加注塑压力。 (3).增加螺杆向前时间。 (4).降低熔融温度。 (5).降低或增加注塑速度。(例如对非结晶体类的塑料要增加45%速度)。 (6).检查止逆阀是否裂开或无法运作。 (7).应根据塑料的特性改善干燥条件,让塑料彻底干燥。 (8).适当降低螺杆转速和增大背压,或降低注射速度。 制品成型尺寸精度低 注塑件缺陷的特征 一、注塑过程中重量尺寸的变化超过了模具、注塑机、塑料组合的生产能力。 二、可能出现问题的原因 (1).输入射料缸内的塑料不均。 (2).射料缸温度或波动的范围太大。 (3).注塑机容量太小。 (4).注塑压力不稳定。 (5).螺杆复位不稳定。 (6).运作时间的变化、溶液黏度不一致。 (7).注射速度(流量控制)不稳定。

ABS塑料制品注塑成型缺陷问题及解决方案

ABS塑料注塑成型缺陷之一:料头附近有暗区 料头附近有暗区(Dull areas near sprue) 1、表观在料头周围有可辨别的环形—如使用中心式浇口则为中心圆,如使用侧浇口则为同心圆,这是因为环形尺寸小,看上去像黯晕。这主要是加工高粘性(低流动性)材料时会发生这种现象,如PC、PMMA和ABS等。 物理原因如果注射速度太高,熔料流动速度过快且粘性高,料头附近表层部分材料容易被错位和渗入。这些错位就会在外层显现出黯晕。 在料头附近,流动速度特别高,然后逐步降低,随着注射速度变为常数,流动体前端扩展为一个逐渐加宽的圆形。同时在料头附近为获得低的流体前流速度,必须采用多级注射,例如:慢—较快—快。目的是在整个充模循环种获得均一的熔体前流速度。 通常以为黯晕是在保压阶段熔料错位而产生的。实际上,前流效应的作用是在保压阶段将熔料移入了制品内部。 与加工参数有关的原因与改良措施见下表: 1、流速太高采用多级注射:慢-较快-快 2、熔料温度太低增加料筒温度,增加螺杆背压 3、模壁温度太低增加模壁温度 与设计有关的原因与改良措施见下表: 1、浇口与制品成锐角在浇口和制品间成弧形 2、浇口直径太小增加浇口直径 3、浇口位置错误浇口重新定位

ABS塑料注塑成型缺陷之二:锐边料流区有黯区 锐边料流区有黯区(Dull areas downstream of edges) 1、表观成型后制品表面非常好,直到锐边。锐边以后表面出现黯区并且粗糙。物理原因 如果注射速度太快,即流速太高,尤其是对高粘性(流动性差)的熔体,表面层容易在斜面和锐边后面发生移位和渗入。这些移位的外层冷料就表现为黯区和粗糙的表面。 与加工参数有关的原因与改良措施见下表: 1、流体前端速度太快采用多级注射:快-慢,在流体前端到达锐边之前降低注射速度 与设计有关的原因与改良措施见下表: 1、模具内锐角过渡提供光滑过渡 ABS塑料注塑成型缺陷之三:表面光泽不均 表面光泽不均(Gloss Variations on textured surfaces) 1、表观虽然模具具有均一的表面材质,制品表面还是表现为灰黯和光泽不均匀。 物理原因 注射成型生产的制品表面多少是模具表面的翻版。表面粗糙取决于热塑性材料本身,它的粘性、速度设置以及成型参数如注射速度、保压和模温。因而,由于仿制的表面粗糙度的原因,制品表面会出现为灰黯、较黯或光滑。 理论上说,当被点蚀或侵蚀过的模具表面已精确仿制,投射到制品表面的光线会发生漫反射。因此,表面会出现黯区。对具有较少精确仿制的表面,漫反射现象

成型缺陷原因分析

成型缺陷原因分析 2:加料量不够 3:注塑压力太低 4 :料温太低使塑料容体不好 5:注射速度太低 6 :注塑机喷嘴有异物 毛边 1:注塑压力太低 2:锁模力太低 3:加料量过大 4 :料温过高 5:保压时间太长 缩水 1:注塑压力太低 2:保压时间太短 3:注塑时间太短 4:加料量不够 5:料温偏高 1 :充填不足原因 2:毛边 A :模具分型面配合不良 3 :喷痕 制品缺陷 注塑机及成型条件 填充不足(缺胶) 1:注塑机注塑能力不够 模具(原料)问题 1:浇口不平衡(一模多腔) 2 :模具温度太低 3:排气不良 4:流道浇口太小 5 :流道,浇口有异物阻塞 6 :塑料原料的流动性不好 1 :模具配合面不严 2 :成型期间塑胶原料黏度太低 A :计量不足 B 止逆阀故障 1 :模具温度偏高或不均 2:浇口偏小 3 :浇道过窄小,产生较大阻力 4 :制品壁过厚或不均 5:塑料原料收缩率太大 成型常见缺陷解答 C 漏胶 D 射嘴堵塞 B :射出速度太快,压力过大 C 机台锁模力不足 C 模具进胶口设计不当

A模具表面温度太低 4结合线 A模具表面温度太低B射出速度太慢C模具排气不良 5料花 A材料含水量过高B料桶内原料结块单边下料C原料在料管滞留时间过长产生热分解 6烧焦原因 A射速太快B模具排气不良C模具进胶口设计不当 7剥离 A两种原料物性不一样,混合在一起造成。 8应力痕 A模具进胶口设计不当B射出速度慢,压力大 9黑点 A料管内塑胶之炭化物B非塑胶之杂质 10色纹 A不同色号之原料B原料滞留料管时间过久C模腔油污 11拉丝 A模具进胶口直径过大B射嘴温度太高C背压过高,松退太短 12顶白 A局部射出压力过大B肋骨处侧壁粗糙C脱模斜度不足 13粘模 A顶针分布不均B肋骨处侧壁粗糙C脱模斜度不足 14变形 A公模与母模温差过大B成品表面压力分布不均C模具进胶口设计不当D压力积中,分布不均产生应力残留 15气泡 A射出压力不足B模具进胶口设计不当C保持压力时间不足 16段差 A模具分型面配合不良B滑块分型面配合不良 常用塑料原料识别方法 名称英文燃烧情况燃烧火焰状态离火后情况气味 聚丙烯PP容易熔融滴落,上黄下蓝 烟少 继续燃烧 石油味 聚乙烯PE容易熔融滴落,上黄下蓝继续燃烧石蜡燃烧气味 聚氯乙烯PVC 难 软化 上黄下绿有烟离火熄灭刺激性酸味B射出速度太快

注塑成型各种缺陷的现象及解决方法

一. 龟裂 龟裂是塑料制品较常见的一种缺陷,产生的主要原因是由于应力变形所致。主要有残余应力、外部应力和外部环境所产生的应力变形。 (-)残余应力引起的龟裂 残余应力主要由于以下三种情况,即充填过剩、脱模推出和金属镶嵌件造成的。作为在充填过剩的情况下产生的龟裂,其解决方法主要可在以下几方面入手: (1)由于直浇口压力损失最小,所以,如果龟裂最主要产生在直浇口附近,则可考虑改用多点分布点浇口、侧浇口及柄形浇口方式。 (2)在保证树脂不分解、不劣化的前提下,适当提高树脂温度可以降低熔融粘度,提高流动性,同时也可以降低注射压力,以减小应力。 (3)一般情况下,模温较低时容易产生应力,应适当提高温度。但当注射速度较高时,即使模温低一些,也可减低应力的产生。 (4)注射和保压时间过长也会产生应力,将其适当缩短或进行Th次保压切换效果较好。 (5)非结晶性树脂,如 AS树脂、 ABS树脂、 PMMA树脂等较结晶性树脂如聚乙烯、聚甲醛等容易产生残余应力,应予以注意。 脱模推出时,由于脱模斜度小、模具型胶及凸模粗糙,使推出力过大,产生应力,有时甚至在推出杆周围产生白化或破裂现象。只要仔细观察龟裂产生的位置,即可确定原因。 在注射成型的同时嵌入金属件时,最容易产生应力,而且容易在经过一段时间后才产生龟裂,危害极大。这主要是由于金属和树脂的热膨胀系数相差悬殊产生应力,而且随着时间的推移,应力超过逐渐劣化的树脂材料的强度而产生裂纹。为预防由此产生的龟裂,作为经验,壁厚7"与嵌入金属件的外径 通用型聚苯乙烯基本上不适于宜加镶嵌件,而镶嵌件对尼龙的影响最小。由于玻璃纤维增强树脂材料的热膨胀系数较小,比较适合嵌入件。 另外,成型前对金属嵌件进行预热,也具有较好的效果。 (二)外部应力引起的龟裂 这里的外部应力,主要是因设计不合理而造成应力集中,特别是在尖角处更需注意。由图2-2可知,可取R/7"一0.5~0.7。 (三)外部环境引起的龟裂 化学药品、吸潮引起的水降解,以及再生料的过多使用都会使物性劣化,产生龟裂。 二、充填不足 充填不足的主要原因有以下几个方面: i. 树脂容量不足。 ii. 型腔内加压不足。 iii. 树脂流动性不足。 iv. 排气效果不好。 作为改善措施,主要可以从以下几个方面入手: 1)加长注射时间,防止由于成型周期过短,造成浇口固化前树脂逆流而难于充满型腔。 2)提高注射速度。 3)提高模具温度。 4)提高树脂温度。 5)提高注射压力。 6)扩大浇口尺寸。一般浇口的高度应等于制品壁厚的1/2~l/3。 7)浇口设置在制品壁厚最大处。 8)设置排气槽(平均深度0.03mm、宽度3~smm)或排气杆。对于较小工件更为重要。 9)在螺杆与注射喷嘴之间留有一定的(约smm)缓冲距离。 10)选用低粘度等级的材料。 11)加入润滑剂。 三、皱招及麻面 产生这种缺陷的原因在本质上与充填不足相同,只是程度不同。因此,解决方法也与上述方法基本相同。特别是对流动性较差的树脂(如聚甲醛、PMMA树脂、聚碳酸酯及PP树脂等)更需要注意适当增大浇口和适当的注射时间。

常见注塑缺陷及解决方案

注塑缺陷原因分析与解决方案 一、变形/翘曲(Warpage ) 塑胶件产生翘曲变形,导致制品的效或引起尺寸误差和装配困难;翘曲变形是塑件最严重的质量缺陷之一。 变形产生原因: 1、材料:物料收缩率大,如PA+GF的收缩率就很大,流动玻纤取向。 2、模具: (1)产品两侧,型腔与型芯间温度差异较大; (2)模具冷却水路位置分配不均匀,没有对温度很好地进行控制; (3)浇口方式和位置设计不合理,特别加纤料,流动规则很重要; (4)产品粘模引起变形,顶出不平衡导致变形; (5)模具排气不佳,导致模腔内注塑压力大。 3、成型工艺: (1)注塑压力过高或者注射速度过大; (2)料筒温度、熔体温度过高; (3)保压时间过长或冷却时间过短; (4)尚未充分冷却就顶出,由于顶针对表面施压造成翘曲变形。 4、产品结构 (1)长条形结构翘曲加剧; (2)产品结构不对称导致不同收缩; (3)产品壁厚不均匀,突变或过薄,导致薄壁部分冷却较快引起翘曲。 解决方案: 主要应从产品和模具设计方面着手解决,而依靠成型工艺调整的效果是非常有限的。 1、材料: (1)选择收缩性较小的材料,内部的长条形纤维会顺着流动方向发生取向。沿着取向方向收缩小、垂直取向方向收缩大,取向引起的收缩不均会导致产品变形; (2)如PA66或PA+GF料都容易变形,评估时特别注意,提前做模流分析。 2、产品结构和模具: (1)由于塑胶从熔体转变为固体体积必然收缩,厚度大收缩大,厚度小收缩相对也小,收缩不均产生的内应力导致产品变形。只能通过优化产品设计,尽量使产品壁厚均匀;(2)模具的冷却系统设计合理,使得产品能够冷却均匀平衡,控制模芯与模腔的温差。(3)合理确定浇口位置及浇口类型,可以较大程度上减少产品的变形,一般情况下,可采用多点式浇口,在评估阶段多做几种模流分析方案来验证最小变形; (4)模具设计合理,确定合理的拔模斜度,顶针位置和数量,检查和校正模芯,提高模具的强度和定位精度; (5)改善模具的排气功能。 3、成型工艺: (1)降低注射压力、注射速度,采用多级注射,减小残余应力导致的变形; (2)降低熔体温度和模具温度,熔体温度高,则产品收缩小,但翘曲大,反之则产品收缩大,翘曲小;模具温度高,产品收缩小,但翘曲大,因此,必须视产品结构不同,采取不同的方案,对于细长塑件可采取治具固定后冷却的方法; (3)调整冷却方法或延长冷却时间,保证塑件冷却均匀,如不能按传统的方法做运水就需

注塑成型各种缺陷分析总结

注塑成型各种缺陷分析 最近一周我查阅了大量注塑成型制品缺陷产生及解决对策的资料,结合在鸿绩厂的注塑现场学习观察和与段(海燕)工与杨(必聪)工两位注塑成型工程师的指导交流下,现将注塑成型产生的主要缺陷现象、原因以及相关解决方法总结如下: 1.龟裂或者开裂 表观:龟裂是塑料制品较常见的一种缺陷,主要表现为在应力易集中或者熔接痕的地方开裂,或者在涂装放置一段时间后出现油漆开裂等现象。 产生的主要原因:是由于应力变形所致。主要有残余应力、外部应力和外部环境所产生的应力变形。 解决对策: (-)残余应力引起的龟裂 残余应力主要由于以下三种情况,即充填过剩、脱模推出和金属镶嵌件造成的。作为在充填过剩的情况下产生的龟裂,其解决方法主要可在以下几方面入手: (1)由于直浇口压力损失最小,所以,如果龟裂最主要产生在直浇口附近,则可考虑改用多点分布点浇口、侧浇口及柄形浇口方式。 (2)在保证树脂不分解、不劣化的前提下,适当提高树脂温度可以降低熔融粘度,提高流动性,同时也可以降低注射压力,以减小应力。 (3)一般情况下,模温较低时容易产生应力,应适当提高温度。但当注射速度较高时,即使模温低一些,也可减低应力的产生。 (4)注射和保压时间过长也会产生应力,将其适当缩短或进行Th次保压切换效果较好。 (5)非结晶性树脂,如AS树脂、ABS树脂、PMMA树脂等较结晶性树脂如聚乙烯、聚甲醛等容易产生残余应力,应予以注意。 在注射成型的同时嵌入金属件时,最容易产生应力,而且容易在经过一段时间后才产生龟裂,危害极大。这主要是由于金属和树脂的热膨胀系数相差悬殊产生应力,而且随着时间的推移,应力超过逐渐劣化的树脂材料的强度而产生裂纹。 (二)外部应力引起的龟裂 这里的外部应力,主要是因设计不合理而造成应力集中,特别是在尖角处更需注意。 (三)外部环境引起的龟裂 化学药品、吸潮引起的水降解,以及再生料的过多使用都会使物性劣化,产生龟裂。 2、充填不足或缺胶 表观:主要表现为胶料未充满,主要发生在制品边缘部位,多为胶料在模具中流动末端。 充填不足的主要原因有以下几个方面:树脂容量不足;型腔内加压不足;树脂流动性不足;排气效果不好等。 解决对策:作为改善措施,主要可以从以下几个方面入手: 1)加长注射时间,防止由于成型周期过短,造成浇口固化前树脂逆流而难于充满型腔。 2)提高注射速度。 3)提高模具温度。 4)提高树脂温度。 5)提高注射压力。 6)扩大浇口尺寸。一般浇口的高度应等于制品壁厚的1/2~l/3。 7)浇口设置在制品壁厚最大处。 8)设置排气槽(平均深度0.03mm、宽度3~5mm)或排气杆。对于较小工件更为重要。

注塑成型中常见的缺陷及改善方法

注塑成型中常见的缺陷及改善方法 一评价塑料制品质量的三个指标 1. 外观质量:包括完整性、颜色和光泽;; 2. 尺寸及相对位置的准确性; 3. 与用途相关的机械性能,化学性能 . 二造成制品缺陷的原因: 1.塑料问题:包括塑料质量配料及烘料等; 2.调机问题:包括注射压力、温度和周期等; 3.模具问题:包括模具设计,制造及磨损。模具问题往往是主要问题,而且是最难解决的问题 三制品常见缺陷分析及解决办法 1.填充不足(啤不满):所啤胶件残缺不全,或多型腔时个别型腔啤不满。(1)进料调节不当,缺料或多料; (2)注射压力、温度及时间不够; (3)料温不够; (4)模温偏低或分布不均,运水设计不合理; (5)塑料流动性差; (6) 模具设计不合理(包括流道转折多,阻力大;胶件局部过薄;排气系统不良;流道无冷料井或冷料井不够;多型腔模具型腔数量过多,非平衡进料或浇口位置、形式不对或数量不足等)。 2.飞边(披锋):塑料制品边缘、镶件接合处及顶针位出现多余薄翅。 (1)模具制造精度差:包括FIT模不良,镶件配合精度差,顶针孔间隙大等; (2) 模具设计不合理: ---排位不合理,导致压力不平衡; ---浇口位置不当,出现偏向性流动,造成一边缺料,一边出披锋; ---侧向分型机构设计不合理,锁模力不够,或因行位与镶件直身配合引起磨损;---模具排气不良,在高压下分型面被撑开等。 (3)啤机锁模力不够; (4)注射工艺条件(调机)不当:压力过大,温度过高及加料量过大等。 3.银纹(俗称水花,包括表面气泡和内部气泡): 当塑料内充满过多水汽,分解气,溶剂气及空气时,制品表面沿料流方向形成一连串有银色光泽的如针条状或云母片状斑纹,这部分气体若只留在胶件壁内,则形成气泡。 (1)水汽:水汽若来自塑料则应烘料(吸湿性大的塑料如PA、PC、ABS、PPO 及PSF等必须烘料),有时水汽也来自型腔。 (2)料温高,塑料质量差以及剪切力过大都易产生分解气。 (3)当塑料中混入异种塑料时,有时也会产生银纹。

常用塑料注塑成型缺陷及解决方案

. 第一章注塑成型缺陷及解决方法 第一节欠注 一.名词解释 。如图所示。熔料进入型腔后没有充填完全,导致产品缺料叫做欠注或短射 图5-1 制品缺料示意图 二. 故障分析及排除方法: 1.设备选型不当。在选用注塑设备时,注塑机的最大注射量必须大于塑件重量。在验核时,注射总量(包括塑件、浇道及飞边)不能超出注射机塑化量的85%。 2. 供料不足,加料口底部可能有“架桥”现象。可适当增加射料杆注射行程,增加供料量。 3. 原料流动性能太差。应设法改善模具浇注系统的滞流缺陷,如合理设置浇道位置、扩大浇口、流道和注料口尺寸以及采用较大的喷嘴等。同时,可在原料配方中增加适量助剂,改善树脂的流动性能。 4. 润滑剂超量。应减少润滑剂用量及调整料筒与射料杆间隙,修复设备。 5.冷料杂质阻塞流道。应将喷嘴拆卸清理或扩大模具冷料穴和流道的截面。 6. 浇注系统设计不合理。设计浇注系统时,要注意浇口平衡,各型腔内塑件的重量要与浇口大小成正比,是各型腔能同时充满,浇口位置要选择在厚壁部位,也可采用分流道平衡布置的设计方案。若浇口或流道小、薄、长,熔料的压力在流动过程中沿程损失太大,流动受阻,容易产生填充不良。对此应扩大流道截面和浇口面积,必要时可采用多点进料的方法。 . .

流道过细而凝固图5-2 模具排气不良。应检查有无冷料穴,或其位置是否正确,对于型腔较深7. 在欠注部位增设排气沟槽或排气孔,在合理面上,可,的模具应开设0.02-0.04mm,宽度为5-10mm的排气槽,排气孔应设置在型腔的最终充填处。使用水分及易挥发物含量超标的原料时也会产生大量气体,导致模具排气不良,此时应对原料进行干燥及清除易挥发物。此外,在模具系统的工艺操作方面,可通过提高模具温度,降低注射速度、减小浇注系统流动阻力,以及减小合模力,加大模具间隙等 辅助措施改善排气不良。 图5-3 困气产生背压阻料 8. 模具温度太低。开机前必须将模具预热至工艺要求的温度。刚开机时,应适当节制模具内冷却剂的通过量。若模具温度升不上去,应检查模具冷却系统设计是否合理。 9. 熔料温度太低。在适当的成型范围内,料温与充模长度接近于正比例关系,低温熔料的流动性能下降,式的充模长度减短。应注意将料筒加热到仪表温度后还需恒温一段时间才能开机。如果为了防止熔料分解不得不采取低温注射时,可适当延长注射循环时间,克服欠注。 10. 喷嘴温度太低。在开模时应使喷嘴与模具分离。减少模温对喷嘴温度的影响,使喷嘴处的温度保持在工艺要求的范围内。 11. 注射压力或保压不足。注射压力与充模长度接近于正比例关系,注射压力太小,充模长度短,型腔充填不满。对此,可通过减慢射料杆前进速度,适当延长注射时间等办法来提高注射压力。 12. 注射速度太慢。注射速度与充模速度直接相关。如果注射速度太慢,熔料充模缓慢,而低速流动的熔体很容易冷却,使其流动性能进一步下降产生欠注。对此,应适当提高注射速度。 13. 塑件结构设计不合理。当塑件厚度与长度不成比例,形体十分复杂且成. . 使型腔很难充满。熔体很容易在塑件薄壁部位的入口处流动受阻,型面积很大时,在应注意塑件厚度与熔料极限充模长度有关。因此,在设计塑件的形体结构时,。通常,塑件厚度超3-6mm1-3mm,大型塑件为注射成型时,塑件的厚度应采用 0.5mm都对注塑成型不利,设计时应避免采用这样的厚度。过8mm或小于

注塑件常见不良的分析和处理方法

塑胶注塑不良的分析以及处理措施 注塑成型部分 注塑定型时发生不良现象的原因 *模具的缺陷 *塑料树脂的缺陷 *不适合的成型条件 *产品设计上的问题 *对成型机性能的过大评价 *周围环境的变化 1. 破裂白化 广义的破裂包括破裂及细微破裂的Crazing。按产生的原因可以分为机械性破裂与化学应力破裂。 [1]机械性破裂(Mechanical Crack) 作用于塑料上的物理性作用力比塑料固有物性及结构上的支持力大的时候,因承受不了而产生破裂。为了防止破裂的产生,在进行产品设计时,须引起注意。设计时,选好所使用的材料与型号后,应考虑到作用于物体上的外力,设计出既可反映稳定率又可以分散作用力的结构。提高结构上的支持力时,可加大产品的厚度或加固Rib,也可设计成Round结构以分散作用力。 [2]化学应力破裂(ESC Crack) 化学应力破裂(ESC:Environmental Stress Crack)是指因化学药品的作用,塑料膨胀,从而加重了部应力,致使总应力值高出塑料的破坏强度而产生的破裂。 化学应力破裂在成型品的装配过程中,使用润滑剂﹑洗剂等时,其所含有的一部分物质可诱发产品破裂。根据产品的脆弱结构﹑残留应力标准,是否产生破裂存在一定的差异,受温度﹑压力等的影响。因化学药品造成的破裂,其破裂面很干净,有时会产生光泽,可轻易得到确认。 为了防止因化学应力引起的破裂,工艺上应禁止使用可诱发破裂的化学药品。在用户的使用条件下,会形成问题的配件应通过改变材料等方法作到防患于未燃。引发化学应力破裂的化学药品如下:冰乙酸﹑增塑剂(DOP等)﹑酒精类﹑石蜡系列的油脂﹑酯﹑过多的硅系列脱模剂﹑汽油石油等油类﹑豆油等食用油﹑溶剂类等。 2. 熔接线 成型品表面形成细线的现象。 熔接线发生在注塑成型时熔融树脂合流的地方。熔融树脂填充凝固后,树脂互相遇合的界面显示在表面上,致使强度及外观降低。出现在具有两个以上Gate的产品中或Hole﹑厚度

注塑成型各种缺陷的现象及解决方法

注塑成型各种缺陷的现象及解决方法 一)熔接痕 熔接痕是由于来自不同方向的熔融树脂前端部分被冷却、在结合处未能完全融合而产生 的。一般情况下,主要影响外观,对涂装、电镀产生影响。严重时,对制品强度产生影响 (特别是在纤维增强树脂时,尤为严重)。可参考以下几项予以改善: l)调整成型条件,提高流动性。如,提高树脂温度、提高模具温度、提高注射压力及速 度等。 2)增设排气槽,在熔接痕的产生处设置推出杆也有利于排气。 3)尽量减少脱模剂的使用。 4)设置工艺溢料并作为熔接痕的产生处,成型后再予以切断去除。 5)若仅影响外观,则可改变烧四位置,以改变熔接痕的位置。或者将熔接痕产生的部位处理为暗光泽面等,予以修饰。 二)放射纹 放射纹(Jetting) 1、表观从浇口喷射出,有灰黯色的一股熔流在稍微接触模壁后马上被随后注入的熔料包住。此缺陷可能部分或完全隐藏在制品内部。 物理原因 放射纹往往发生在当熔料进入到模腔内,流体前端停止发展的方向。它经常发生在大模腔的模具内,熔流没有直接接触到模壁或没有遇到障碍。通过浇口后,有些热的熔料接触到相对较冷的模腔表面后冷却,在充模过程中不能同随后的熔料紧密结合在一起。 除去明显的表面缺陷,放射纹伴随不均匀性,熔料产生冻结拉伸,残余应力和冷应变而产生,这些因素都影响产品质量。 在多数情况下不太可能只通过调节成型参数改进,只有改进浇口位置和几何形状尺寸才可以避免。 与加工参数有关的原因与改良措施见下表: 1、注射速度太快降低注射速度 2、注射速度单级采用多级注射速度:慢-快 3、熔料温度太低提高料筒温度(对热敏性材料只在计量区)。增加低螺杆背压 与设计有关的原因与改良措施见下表: 1、浇口和模壁之间过渡不好提供圆弧过渡 2、浇口太小增加浇口 3、浇口位于截面厚度的中心浇口重定位,采用障碍注射、工艺溢料是指用手工在模具上開一條深一些的排气槽,在生產時此槽產生出來的(批峰),又叫工藝批峰,主要是用來改善燒膠或熔接痕,可將燒膠或熔接痕調整到此批峰上,生產后將其切除。 2、烧四位置是指將燒膠或熔接痕用工藝調到不用容易看到的位置,以免應響產品的外觀。 3、增加低螺杆背压是指調整背壓 4、障碍注射是指在入水前方加一挡块。改變射膠澆口流向位置。以改变射胶时胶料的流动方向。这种方法对于解决喷射纹有帮助。 (三)灰黑斑纹(Grey or black clouding) 1、表观灰黑斑纹可能发生在浇口附近,流道的中间和远离浇口的部分。只能在透明的零件中可看出,并且往往用PMMA,PC和PS料制成的产品有此现象。 物理原因 如果计量过程开始太早,螺杆喂料区里颗粒裹入的空气没有溢出喂料口,空气就会被挤入熔料内。然而,喂料区

注塑成型各种缺陷的现象及解决方法(通用)

注塑成型各种缺陷的现象及解决方法(通用) 1. 龟裂 龟裂是塑料制品较常见的一种缺陷,产生的主要原因是由于应力变形所致。主要有残余应力、外部应力和外部环境所产生的应力变形。 (-)残余应力引起的龟裂 残余应力主要由于以下三种情况,即充填过剩、脱模推出和金属镶嵌件造成的。作为在充填过剩的情况下产生的龟裂,其解决方法主要可在以下几方面入手: (1)由于直浇口压力损失最小,所以,如果龟裂最主要产生在直浇口附近,则可考虑改用多点分布点浇口、侧浇口及柄形浇口方式。 (2)在保证树脂不分解、不劣化的前提下,适当提高树脂温度可以降低熔融粘度,提高流动性,同时也可以降低注射压力,以减小应力。 (3)一般情况下,模温较低时容易产生应力,应适当提高温度。但当注射速度较高时,即使模温低一些,也可减低应力的产生。 (4)注射和保压时间过长也会产生应力,将其适当缩短或进行Th次保压切换效果较好。 (5)非结晶性树脂,如 AS树脂、 ABS树脂、 PMMA树脂等较结晶性树脂如聚乙烯、聚甲醛等容易产生残余应力,应予以注意。 脱模推出时,由于脱模斜度小、模具型胶及凸模粗糙,使推出力过大,产生应力,有时甚至在推出杆周围产生白化或破裂现象。只要仔细观察龟裂产生的位置,即可确定原因。 在注射成型的同时嵌入金属件时,最容易产生应力,而且容易在经过一段时间后才产生龟裂,危害极大。这主要是由于金属和树脂的热膨胀系数相差悬殊产生应力,而且随着时间的推移,应力超过逐渐劣化的树脂材料的强度而产生裂纹。为预防由此产生的龟裂,作为经验,壁厚7"与嵌入金属件的外径 通用型聚苯乙烯基本上不适于宜加镶嵌件,而镶嵌件对尼龙的影响最小。由于玻璃纤维增强树脂材料的热膨胀系数较小,比较适合嵌入件。 另外,成型前对金属嵌件进行预热,也具有较好的效果。 (二)外部应力引起的龟裂 这里的外部应力,主要是因设计不合理而造成应力集中,特别是在尖角处更需注意。由图2-2可知,可取R/7"一0.5~0.7。 (三)外部环境引起的龟裂 化学药品、吸潮引起的水降解,以及再生料的过多使用都会使物性劣化,产生龟裂。 二、充填不足 充填不足的主要原因有以下几个方面: i. 树脂容量不足。 ii. 型腔内加压不足。 iii. 树脂流动性不足。 iv. 排气效果不好。

相关文档
最新文档