MSP430低功耗运行模式原理分析及应用

合集下载

MSP430G2553学习笔记(数据手册)

MSP430G2553学习笔记(数据手册)

MSP430G2553学习笔记(数据手册)MSP430G2553性能参数(DIP-20) 工作电压范围:1.8~3.6V。

5种低功耗模式。

16位的RISC结构,62.5ns指令周期。

超低功耗:运行模式-230µA;待机模式-0.5µA;关闭模式-0.1µA;可以在不到1µs的时间里超快速地从待机模式唤醒。

基本时钟模块配置:具有四种校准频率并高达16MHz的内部频率;内部超低功耗LF振荡器;32.768KHz晶体;外部数字时钟源。

两个16 位Timer_A,分别具有三个捕获/比较寄存器。

用于模拟信号比较功能或者斜率模数(A/D)转换的片载比较器。

带内部基准、采样与保持以及自动扫描功能的10位200-ksps 模数(A/D)转换器。

16KB闪存,512B的RAM。

16个I/O口。

注意:MSP430G2553无P3口!MSP430G2553的时钟基本时钟系统的寄存器DCOCTL-DCO控制寄存器DCOxDCO频率选择控制1MODxDCO频率校正选择,通常令MODx=0注意:在MSP430G2553上电复位后,默认RSEL=7,DCO=3,通过数据手册查得DCO频率大概在0.8~1.5MHz之间。

BCSCTL1-基本时钟控制寄存器1XT2OFF不用管,因为MSP430G2553内部没有XT2提供的HF时钟XTS不用管,默认复位后的0值即可DIV Ax设置ACLK的分频数00 /101 /210 /411 /8RSELxDCO频率选择控制2BCSCTL2-基本时钟控制寄存器2SELMxMCLK的选择控制位00 DCOCLK01 DCOCLK10 LFXT1CLK或者VLOCLK11 LFXT1CLK或者VLOCLK DIVMx设置MCLK的分频数00 /101 /210 /411 /8SELSSMCLK的选择控制位0 DCOCLK1 LFXT1CLK或者VLOCLK DIVSx设置SMCLK的分频数00 /101 /210 /411 /8DCORDCO直流发生电阻选择,此位一般设00 内部电阻1 外部电阻BCSCTL3-基本时钟控制寄存器3XT2Sx不用管LFXT1Sx00 LFXT1选为32.768KHz晶振01 保留10 VLOCLK11 外部数字时钟源XCAPxLFXT1晶振谐振电容选择00 1pF01 6pF10 10pF11 12.5pFmsp430g2553.h中基本时钟系统的内容/************************************************************* Basic Clock Module************************************************************/#define __MSP430_HAS_BC2__ /* Definition to show that Module is available */SFR_8BIT(DCOCTL); /* DCO Clock Frequency Control */SFR_8BIT(BCSCTL1); /* Basic Clock System Control 1 */SFR_8BIT(BCSCTL2); /* Basic Clock System Control 2 */SFR_8BIT(BCSCTL3); /* Basic Clock System Control 3 */#define MOD0 (0x01) /* Modulation Bit 0 */#define MOD1 (0x02) /* Modulation Bit 1 */#define MOD2 (0x04) /* Modulation Bit 2 */#define MOD3 (0x08) /* Modulation Bit 3 */#define MOD4 (0x10) /* Modulation Bit 4 */#define DCO0 (0x20) /* DCO Select Bit 0 */#define DCO1 (0x40) /* DCO Select Bit 1 */#define DCO2 (0x80) /* DCO Select Bit 2 */#define RSEL0 (0x01) /* Range Select Bit 0 */#define RSEL1 (0x02) /* Range Select Bit 1 */#define RSEL2 (0x04) /* Range Select Bit 2 */#define RSEL3 (0x08) /* Range Select Bit 3 */#define DIVA0 (0x10) /* ACLK Divider 0 */#define DIVA1 (0x20) /* ACLK Divider 1 */#define XTS (0x40) /* LFXTCLK 0:Low Freq. / 1: High Freq. */ #define XT2OFF (0x80) /* Enable XT2CLK */#define DIVA_0 (0x00) /* ACLK Divider 0: /1 */#define DIVA_1 (0x10) /* ACLK Divider 1: /2 */#define DIVA_2 (0x20) /* ACLK Divider 2: /4 */#define DIVA_3 (0x30) /* ACLK Divider 3: /8 */#define DIVS0 (0x02) /* SMCLK Divider 0 */#define DIVS1 (0x04) /* SMCLK Divider 1 */#define SELS (0x08) /* SMCLK Source Select 0:DCOCLK /1:XT2CLK/LFXTCLK */#define DIVM0 (0x10) /* MCLK Divider 0 */#define DIVM1 (0x20) /* MCLK Divider 1 */#define SELM0 (0x40) /* MCLK Source Select 0 */#define SELM1 (0x80) /* MCLK Source Select 1 */#define DIVS_0 (0x00) /* SMCLK Divider 0: /1 */#define DIVS_1 (0x02) /* SMCLK Divider 1: /2 */#define DIVS_2 (0x04) /* SMCLK Divider 2: /4 */#define DIVS_3 (0x06) /* SMCLK Divider 3: /8 */#define DIVM_0 (0x00) /* MCLK Divider 0: /1 */#define DIVM_1 (0x10) /* MCLK Divider 1: /2 */#define DIVM_2 (0x20) /* MCLK Divider 2: /4 */#define DIVM_3 (0x30) /* MCLK Divider 3: /8 */#define SELM_0 (0x00) /* MCLK Source Select 0: DCOCLK */#define SELM_1 (0x40) /* MCLK Source Select 1: DCOCLK */#define SELM_2 (0x80) /* MCLK Source Select 2: XT2CLK/LFXTCLK */#define SELM_3 (0xC0) /* MCLK Source Select 3: LFXTCLK */#define LFXT1OF (0x01) /* Low/high Frequency Oscillator Fault Flag */#define XT2OF (0x02) /* High frequency oscillator 2 fault flag */#define XCAP0 (0x04) /* XIN/XOUT Cap 0 */#define XCAP1 (0x08) /* XIN/XOUT Cap 1 */#define LFXT1S0 (0x10) /* Mode 0 for LFXT1 (XTS = 0) */#define LFXT1S1 (0x20) /* Mode 1 for LFXT1 (XTS = 0) */#define XT2S0 (0x40) /* Mode 0 for XT2 */#define XT2S1 (0x80) /* Mode 1 for XT2 */#define XCAP_0 (0x00) /* XIN/XOUT Cap : 0 pF */#define XCAP_1 (0x04) /* XIN/XOUT Cap : 6 pF */#define XCAP_2 (0x08) /* XIN/XOUT Cap : 10 pF */#define XCAP_3 (0x0C) /* XIN/XOUT Cap : 12.5 pF */#define LFXT1S_0 (0x00) /* Mode 0 for LFXT1 : Normal operation */ #define LFXT1S_1 (0x10) /* Mode 1 for LFXT1 : Reserved */#define LFXT1S_2 (0x20) /* Mode 2 for LFXT1 : VLO */#define LFXT1S_3 (0x30) /* Mode 3 for LFXT1 : Digital input signal */#define XT2S_0 (0x00) /* Mode 0 for XT2 : 0.4 - 1 MHz */#define XT2S_1 (0x40) /* Mode 1 for XT2 : 1 - 4 MHz */#define XT2S_2 (0x80) /* Mode 2 for XT2 : 2 - 16 MHz */#define XT2S_3 (0xC0) /* Mode 3 for XT2 : Digital input signal */基本时钟系统例程(DCO)MSP430G2553在上电之后默认CPU执行程序的时钟MCLK来自于DCO时钟。

基于MSP430低功耗单片机在故障指示器上的应用

基于MSP430低功耗单片机在故障指示器上的应用
应用 示例。
关键 词 : M S P 4 3 0 ; 故 障指 示器低 功耗 ; 低 功耗 应用示例
1故障指示器与MS P 4 3 0 F 5 5 1 0 单片机的应用背景
式, 功耗5 . 9 u A , 此时包 括无线模块L D C 模式 l u A 。 ( 3 ) 完整测试 ,
D 采样, 使用A v r e f 做基准 , 每周波采样1 0 点, 功耗4 3 . 9 u A , 此 故障指示器源 于二十世 纪八十年代的德 国, 故障指示器 安 带A H 2 2 u A 功耗。 ( 4 ) 完整 测试 , 带A D 采样 , 装于架 空电力线路与 电缆 电力线路 上, 主要用于在线检 测、 指 时使用 内部基 准需要增 ̄ V C C 做基准 , 每周波采样1 O 点, 功耗2 5 . 8 A 。 ( 5 ) 完整 测试 , 带 示短 路和单 相接 地故 障的智 能装 置。 故 障指 示 器在 实际应用 使用A D 采样 , 使用A V C C 做基准, 每周波采样 1 0 点, 关 闭芯片内部测量 中, 受到安装位置、 供 电的限制 , 可 以采取 电池供 电, c T 取电, 超 A 功耗 1 9 . 8 6 A , 此时关 闭温度测 量内部基 准节省功耗 级电容储能等 多种方式 , 但 是在没有条件 外部供电的时段 只能 温度功 能, 依靠 电池供 电, 本文着重介 绍超低 功耗单片机M S P 4 3 0 F 5 5 1 0 在 电池供 电下的应用。
技术应用 ・
基于MS P 4 3 0 低功耗单片机在故障指示器上的应用
刘 思宇 ( 吉 林电 子 信息职业技术学院 , 吉林 吉 林 1 3 2 0 2 1 )
摘 要 : 本文介 绍 了 , 电力线路 故 障指 示器使  ̄M S P 4 3 0 低 功耗 单片机 方面 的应 用, 提 出了 一些 实际应用的算 法及 见 解 , 注重低功 耗 的特点与

MSP430系列单片机开创低功耗应用新时代

MSP430系列单片机开创低功耗应用新时代
本 时钟 系 统 和锁频 环 ( L 和F L )时 钟 系统 及D O FL L + C
随 着微 电子 技 术 的不 断 发 展 , 控 制 器 MC 又 微 U(
称单 片机 ) 在工 业 、 医疗 和 日常生 活领域 中的应用 日益 广泛 。 常用户 都希 望 自己的电子设 备结 构 小巧 、 通 功能 灵活 、 使用 简单 可靠 而且省 电 , 因此 在 电子 设备 开发 时 对其 主要部 件MC 的综 合性 能要 求越来 越 高 。美 国德 U 州 仪器 ( I公 司推 出 的MS 4 0 T) P 3 系列 超 低 功 耗 l 位 单 6 片机 , 多种 领 先 技术 于一 体 , 1 位R S 处理 器 、 集 以 6 IC 超 低功 耗 、高 性能 模拟 技术 及 丰富 的 片 内外设 、T G J A 仿 真调试 定义 了新 一代单 片 机 的概 念 ,其显 著特 点是 具
【 关键词】 M P 3 ; S 40 超低 功耗 ; 电池使用寿命 【 中图分类号 】 T 3 8 P6. 2 【 文献标识码 】 A 【 文章编号】 10 — 7 X(0 7 0 — 0 2 0 0 3 7 3 2 0 )2 0 9 — 3
0 引 言
流在 2 0I 一 0 A 左 右 , 钟关 断 时 的最 低 电流 只 0 A 4 0 x 时 有 01I .x A。 MS 4 0 P 3 系列单 片 机可 以快 速方 便 的在各 种工 作模 式之 间切 换 ,它在 没有 事件 发生 时进入 低 功 耗 状 态 ,事 件 发 生 时 ,通 过 中 断 可 以 在6 I 内 唤 醒 s x C U, 件 处理 完毕 后 , P P 事 C U再次 进入 低 功 耗状 态 。 由 于C U的 运算 速 度 和 退 出低 功 耗 状 态 的速 度 很 快 , P 所 以 ,在 很 多应 用 中 , P 部 分 时 间都 处 于 低 功 耗状 C U大 态 , 就是 MS 4 0 这 P 3 非常 省 电的重 要原 因之一 。 ( )MS 4 0 列 单 片 机 具 有 非 常 灵 活 的 时钟 系 2 P3系 统 。MS 4 0 P 3 系列 单 片机 中有 两种 不 同 的时钟 系统 , 基

MSP430单片机入门例程

MSP430单片机入门例程

MSP430单片机入门例程MSP430单片机是一款低功耗、高性能的16位单片机,广泛应用于各种嵌入式系统。

下面是一个简单的MSP430单片机入门例程,可以让大家初步了解MSP430单片机的基本使用方法。

所需材料:1、MSP430单片机开发板2、MSP430单片机编译器3、MSP430单片机调试器4、电脑和相关软件步骤:1、安装MSP430单片机编译器首先需要安装MSP430单片机的编译器,该编译器可以将C语言代码编译成MSP430单片机可以执行的机器码。

在安装编译器时,需要选择与您的单片机型号匹配的编译器。

2、编写程序下面是一个简单的MSP430单片机程序,可以让LED灯闪烁:c本文include <msp430.h>int main(void)本文P1DIR |= 0x01; //设置P1.0为输出while(1){P1OUT ^= 0x01; //反转P1.0的状态,LED闪烁__delay_cycles(); //延时一段时间,控制闪烁频率}本文上述程序中,首先定义了P1DIR寄存器,将P1.0设置为输出。

然后进入一个无限循环,在循环中反转P1.0的状态,使LED闪烁。

使用__delay_cycles()函数实现延时,控制LED闪烁频率。

3、编译程序使用MSP430单片机编译器将程序编译成机器码,生成可执行文件。

在编译时,需要注意选择正确的编译器选项和单片机型号。

4、调试程序使用MSP430单片机调试器将可执行文件下载到单片机中,并使用调试器进行调试。

在调试时,可以观察单片机的输出口状态和LED灯的闪烁情况,确保程序正常运行。

随着嵌入式系统的发展,MSP430单片机作为一种低功耗、高性能的微控制器,在各种应用领域中得到了广泛的应用。

为了更好地理解和应用MSP430单片机,我在学习过程中积累了一些经验,现在分享给大家。

MSP430单片机是一种超低功耗的微控制器,由德州仪器(Texas Instruments)推出。

MSP430F5系列16位超低功耗单片机模块原理15通用串行…

MSP430F5系列16位超低功耗单片机模块原理15通用串行…

MSP430F5系列16位超低功耗单片机模块原理第15章通用串行通讯接口UART模式版本: 1.1发布日期: 2008.10. 最后更新日期:2010.8.原文: TI slau208.pdf (5xxfamily User's Guide)翻译: 刘璟陕西工业职业技术学院编辑: DC 微控网总版主注:以下文章是翻译TI slau208.pdf 文件中的部分内容。

由于我们翻译水平有限,有整理过程中难免有所不足或错误;所以以下内容只供参考.一切以原文为准。

文章更新详情请密切留意微控技术论坛。

Page 1 of 24第15章通用串行通讯接口UART模式5XX系列通用串行通信接口(USCI)在同一个硬件模块下支持多种串行通信模式,本章讨论异步UART模式的操作。

主题如下:15.1 USCI概述15.2 USCI介绍:UART模式15.3 USCI操作:UART模式15.4 USCI寄存器:UART模式15.1 USCI概述通用串行通信接口(USCI)模块支持多种串行通信模式。

不同的USCI模块支持不同的模式。

每一个不同的USCI模块以不同的字母命名,例如,USCI_A,USCI_B等等。

如果在一个设备上实现了不止一个相同的USCI模块,那这些模块将以递增的数字命名。

例如,当一个设备上有两个USCI_A模块时,这两个模块应该被命名为USCI_A0和USCI_A1。

如有需要,可以通过查阅设备明细表来确定哪些USCI模块可以在哪些设备上实现。

USCI_Ax模块支持:•UART模式•脉冲整形的IrDA通信•自动波特率检测的LIN通信•SPI模式USCI_Bx模块支持:•I2C模式•SPI模式15.2 USCI介绍:UART 模式在通用异步收发器模式中,USCI_Ax模块通过两个外部引脚发送引脚UCAxRXD和接收引脚UCAxTXD把MSP430和一个外部系统连接起来.当UCSYNC位被清0时就选择了UART模式。

msp430 实验报告

msp430 实验报告

msp430 实验报告MSP430 实验报告引言:MSP430是一款低功耗、高性能的微控制器,广泛应用于嵌入式系统开发领域。

本实验报告将介绍我对MSP430进行的一系列实验,包括基本的GPIO控制、定时器应用、模拟信号采集和通信接口应用等。

实验一:GPIO控制在本实验中,我使用MSP430的GPIO引脚控制LED灯的亮灭。

通过配置引脚的输入/输出模式以及设置引脚电平,我成功地实现了对LED灯的控制。

这为后续实验奠定了基础,也让我更加熟悉了MSP430的寄存器配置。

实验二:定时器应用在本实验中,我探索了MSP430的定时器功能。

通过配置定时器的时钟源和计数模式,我实现了定时器中断功能,并利用定时器中断实现了LED灯的闪烁。

这个实验让我更加深入地了解了MSP430的定时器模块,并学会了如何利用定时器进行时间控制。

实验三:模拟信号采集在本实验中,我使用MSP430的模拟信号输入引脚和模数转换模块,成功地将外部的模拟信号转换为数字信号。

通过配置ADC模块的采样速率和精度,我实现了对模拟信号的准确采集,并将采集到的数据通过串口输出。

这个实验让我对MSP430的模拟信号处理有了更深入的了解。

实验四:通信接口应用在本实验中,我使用MSP430的串口通信模块,实现了与外部设备的数据传输。

通过配置串口的波特率和数据格式,我成功地实现了与计算机的串口通信,并通过串口发送和接收数据。

这个实验让我掌握了MSP430与外部设备进行数据交互的方法。

结论:通过一系列的实验,我对MSP430的基本功能和应用有了更深入的了解。

MSP430作为一款低功耗、高性能的微控制器,具备丰富的外设和强大的处理能力,适用于各种嵌入式系统的开发。

通过学习和实践,我掌握了MSP430的GPIO控制、定时器应用、模拟信号采集和通信接口应用等基本技能,为以后的嵌入式系统开发打下了坚实的基础。

未来展望:MSP430作为一款成熟的微控制器,具备广阔的应用前景。

MSP430简介(超详细·)

MSP430简介(超详细·)msp430简介MSP430是德州公司新开发的⼀类具有16位总线的带FLASH 的单⽚机,由于其性价⽐和集成度⾼,受到⼴⼤技术开发⼈员的青睐.它采⽤16位的总线,外设和内存统⼀编址,寻址范围可达64K,还可以外扩展存储器.具有统⼀的中断管理,具有丰富的⽚上外围模块,⽚内有精密硬件乘法器、两个16位定时器、⼀个14路的12位的模数转换器、⼀个看门狗、6路P⼝、两路USART通信端⼝、⼀个⽐较器、⼀个DCO内部振荡器和两个外部时钟,⽀持8M 的时钟.由于为FLASH型,则可以在线对单⽚机进⾏调试和下载,且JTAG⼝直接和FET(FLASH EMULATION TOOL)的相连,不须另外的仿真⼯具,⽅便实⽤,⽽且,可以在超低功耗模式下⼯作对环境和⼈体的辐射⼩,测量结果为100mw左右的功耗(电流为14mA左右),可靠性能好,加强电⼲扰运⾏不受影响,适应⼯业级的运⾏环境,适合与做⼿柄之类的⾃动控制的设备.我们相信MSP430单⽚机将会在⼯程技术应⽤中得以⼴泛应⽤,⽽且,它是通向DSP 系列的桥梁,随着⾃动控制的⾼速化和低功耗化, MSP430系列将会得到越来越多⼈的喜爱.⼀、IO⼝(⼀)、P⼝端⼝寄存器:1、PxDIR 输⼊/输出⽅向寄存器(0:输⼊模式 1:输出模式)2、PxIN 输⼊寄存器输⼊寄存器是只读寄存器,⽤户不能对其写⼊,只能通过读取该寄存器的内容知道I/O⼝的输⼊信号。

3、PxOUT 输出寄存器寄存器内的内容不会受引脚⽅向改变的影响。

4、PxIFG 中断标志寄存器(0:没有中断请求 1:有中断请求)该寄存器有8个标志位,对应相应的引脚是否有待处理的中断请求;这8个中断标志共⽤⼀个中断向量,中断标志不会⾃动复位,必须软件复位;外部中断事件的时间必须>=1.5倍的MCLK的时间,以保证中断请求被接受;5、PxIES 中断触发沿选择寄存器(0:上升沿中断 1:下降沿中断)6、PxSEL 功能选择寄存器(0:选择引脚为I/O端⼝ 1:选择引脚为外围模块功能)7、PxREN 上拉/下拉电阻使能寄存器(0:禁⽌ 1:使能)(⼆)、常⽤特殊P⼝:1、P1和P2⼝可作为外部中断⼝。

msp430f1611数据手册

msp430f1611数据手册1. 引言MSP430F1611是一款高性能、超低功耗的16位微控制器,广泛应用于嵌入式系统开发等领域。

本数据手册将详细介绍MSP430F1611的技术规格、功能特性以及使用方法,旨在帮助开发人员更好地理解和应用该微控制器。

2. 技术规格2.1 主要参数MSP430F1611采用16位RISC结构,工作频率可达16MHz,具有8KB的可编程闪存以及512B的RAM。

其供电电压范围为1.8V至3.6V,功耗极低,适合电池供电系统。

此外,MSP430F1611还提供了多种通信接口,如UART、SPI和I2C,以及多种定时器和比较器功能。

2.2 存储器MSP430F1611拥有8KB的闪存,可用于存储用户程序和数据。

闪存不易丢失数据,且具有较快的读写速度。

同时,该微控制器还有512B的RAM用于暂存计算过程中的数据。

2.3 通信接口MSP430F1611支持多种通信接口,包括UART、SPI和I2C。

UART用于串行通信,可与其他设备进行数据传输。

SPI接口可实现高速的串行数据传输,广泛用于片上外设控制等场景。

I2C接口则适用于连接多个设备,并以多主从模式进行通信。

3. 功能特性3.1 ADC模块MSP430F1611集成了一套精密的模数转换模块(ADC),可进行模拟信号的采样和转换。

ADC模块具有多通道和多样本模式,能够实现高精度的模拟信号采集。

3.2 定时器MSP430F1611内部集成了多个定时器,如Watchdog Timer(WDT)和Timer_A。

WDT用于监控系统运行状态,防止死锁和系统崩溃。

Timer_A是一个通用定时器,可用于测量时间间隔、产生精确的时间延迟等。

3.3 低功耗模式MSP430F1611提供了多种低功耗模式,如休眠模式、停机模式和待机模式。

在这些模式下,微控制器的功耗将大幅降低,有助于延长电池寿命。

此外,MSP430F1611还支持快速唤醒,可在短时间内恢复到正常工作状态。

TI MSP430FR2355超低功耗开发方案

TI MSP430FR2355超低功耗FRAM MCU开发方案TI公司的MSP430FR2355是超低功耗MSP430FRx系列基于FRAM的微控制器(MCU),提供扩展的数据记录和安全功能,在FRAM微控制器系列产品中采用小型LQFP封装(7mm × 7 mm),集成了各种外设和超低功耗. FRAM(铁电存储器)是一种尖端的存储技术,在非易失存储器中集合了闪存和RAM的最好特性.MSP430FR2355工作电压1.8V-3.6V,具有16位RISC架构,高达24MHz系统时钟和8MHz FRAM接入,32KB可编FRAM,512B信息FRAM和4KB RAM,12路12位ADC,两个增强的比较器和集成的6位DAC 作为基准电压,四个智能模拟组合体(SAC-L3),三个16位计时器有三个捕获/比较寄存器(Timer_B3),一个16位计时器有七个捕获/比较寄存器(Timer_B7),32位硬件乘法器(MPY).器件的工作温度–40°到105°C,主要用在烟雾和热检测器,传感器发送器,电路中断器,传感器信号调理,有线工业通信,光模块以及其电池组管理和收费标签.本文介绍了MSP430FR2355主要特性,功能框图以及开发板MSP-EXP430FR2355 LaunchPad™主要特性,框图,电路图,材料清单和PCB设计图.MSP430FR215x and MSP430FR235x microcontrollers (MCUs) are part of the MSP430™ MCU value line portfolio of ultra-low-power low-cost devices for sensing and measurement applications. MSP430FR235x MCUs integrate four configurable signal-chain modules called smart analog combos, each of which can be used as a 12-bit DAC or a configurable programmable-gain Op-Amp to meet the specific needs of a system while reducing the BOM and PCB size. The device also includes a 12-bit SAR ADC and two comparators. The MSP430FR215x and MSP430FR235x MCUs all support an extended temperature range from –40° up to 105°C, so higher temperature industrial applications can benefit from the devices’FRAM data-logging capabilities. The extended temperature range allows developers to meet requirements of applications such as smoke detectors, sensor transmitters, and circuit breakers.The MSP430FR215x and MSP430FR235x MCUs feature a powerful 16-bit RISC CPU, 16-bit registers, and a constant generator that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from low-power modes to active mode typically in less than 10 μs.The MSP430 ultra-low-power (ULP) FRAM microcontroller platform combines uniquely embedded FRAM and a holistic ultra-low-power system architecture, allowing system designers to increase performance while lowering energy consumption. FRAM technology combines the low-energy fast writes, flexibility, and endurance of RAM with the nonvolatile behavior of flash.MSP430FR215x and MSP430FR235x MCUs are supported by an extensive hardware and software ecosystem with reference designs and code examples to get your design started quickly. Development kits include the MSP-EXP430FR2355 LaunchPad™ development kit and the MSP-TS430PT48 48-pin target development board. TI also provides free MSP430Ware™ software, which is available as a component of Code Co mposer Studio™ IDE desktop and cloud versions within TI Resource Explorer.The MSP430 MCUs are also supported by extensive online collateral, training, and online support through the E2E™ community forum.MSP430FR2355主要特性:• Embedded microcontroller– 16-bit RISC architecture up to 24 MHz– Extended temperature: –40°C to 105°C– Wide supply voltage range from 3.6 V down to 1.8 V (operational voltage is restricted by SVS levels, see VSVSH- and VSVSH+ in PMM, SVS and BOR)• Optimized low-power modes (at 3 V)–Active mode: 142 μA/MHz– Standby:– LPM3 with 32768-Hz crystal: 1.43 μA (with SVS enable d)– LPM3.5 with 32768-Hz crystal: 620 nA (with SVS enabled)– Shutdown (LPM4.5): 42 nA (with SVS disabled)• Low-power ferroelectric RAM (FRAM)– Up to 32KB of nonvolatile memory– Built-in error correction code (ECC)– Configurable write protection– Unified memory of program, constants, and storage– 1015 write cycle endurance– Radiation resistant and nonmagnetic• Ease of use– 20KB ROM library includes driver libraries and FFT libraries• High-performance analog– One 12-channel 12-bit analog-to-digital converter (ADC)– Internal shared reference (1.5, 2.0, or 2.5 V)– Sample-and-hold 200 ksps– Two enhanced comparators (eCOMP)– Integrated 6-bit digital-to-analog converter (DAC) as reference voltage– Programmable hysteresis– Configurable high-power and low-power modes– One with fast 100-ns response time– One with 1-μs response time with 1.5-μA low power– Four smart analog combo (SAC-L3) (MSP430FR235x devices only)– Supports General-Purpose Operational Amp lifi er (OA)– Rail-to-rail input and output– Multiple input selections– Configurable high-power and low-power modes– Configurable PGA mode supports– Noninverting mode: ×1, ×2, ×3, ×5, ×9, ×17, ×26, ×33– Inverting mode: ×1, ×2, ×4, ×8, ×16, ×25, ×32– Built-in 12-bit reference DAC for offset and bias settings– 12-bit voltage DAC mode with optional references• Intelligent digital peripherals– Three 16-bit timers with three capture/compare registers each (Timer_B3)– One 16-bit timer with seven capture/compare registers each (Timer_B7)– One 16-bit counter-only real-time clock counter (RTC)– 16-bit cyclic redundancy checker (CRC)– Interrupt compare controller (ICC) enabling nested hardware interrupts– 32-bit hardware multiplier (MPY32)– Manchester codec (MFM)• Enhanced serial communications– Two enhanced USCI_A (eUSCI_A) modules support UART, IrDA, and SPI– Two enhanced USCI_B (eUSCI_B) modules support SPI and I2C• Clock system (CS)– On-chip 32-kHz RC oscillator (REFO)– On-chip 24-MHz digitally controlled oscillator (DCO) with frequency locked loop (FLL) – ±1% accuracy with on-chip reference at room temperature– On-chip very low-frequency 10-kHz oscillator (VLO)– On-chip high-frequency modulation oscillator (MODOSC)– External 32-kHz crystal oscillator (LFXT)– External high-frequency crystal oscillator up to 24 MHz (HFXT)– Programmable MCLK prescaler of 1 to 128– SMCLK derived from MCLK with programmable prescaler of 1, 2, 4, or 8• General input/output and pin functionality– 44 I/Os on 48-pin package– 32 interrupt pins (P1, P2, P3, and P4) can wake MCU from LPMs• Development tools and software (also see Tools and Software)–LaunchPad™ development kit (MSP-EXP430FR2355)– Target development board (MSP-TS43048PT)– Free professional development environments• Family members (also see Device Comparison)– MSP430FR2355: 32KB of program FRAM, 512 bytes of data FRAM, 4KB of RAM– MSP430FR2353: 16KB of program FRAM, 512 bytes of data FRAM, 2KB of RAM– MSP430FR2155: 32KB of program FRAM, 12 bytes of data FRAM, 4KB of RAM– MSP430FR2153: 16KB of program FRAM, 512 bytes of data FRAM, 2KB of RAM• Package options– 48-pin: LQFP (PT)– 40-pin: VQFN (RHA)– 38-pin: TSSOP (DBT)– 32-pin: VQFN (RSM)MSP430FR2355应用:• Smoke and heat detectors• Sensor transmitters• Circuit breakers• Sensor signal conditioning• Wired industrial communications• Optical modules• Battery pack management• Toll tags图1. MSP430FR235x系列功能框图开发板MSP-EXP430FR2355 LaunchP ad™MSP430FR2355 LaunchPad™ Development Kit (MSP-EXP430FR2355)The MSP-EXP430FR2355 LaunchPad™ Development Kit is an easy-to-use Evaluation Module (EVM) for the MSP430FR2355 microcontroller (MCU). The kit contains everything needed to start developing on the ultra-low-power MSP430FRx FRAM microcontroller platform, including onboard debug probe for programming, debugging, and energy measurements. The board also features onboard buttons and LEDs for quick integration of a simple user interface, an onboard Grove connector for external Grove sensors, as well as an ambient light sensor to showcase the integrated analog peripherals.The 24-MHz MSP430FR2355 device features 32KB of embedded FRAM (ferroelectric random access memory), a nonvolatile memory known for its ultra-low power, high endurance, and high speed write access. Combined with 4KB of on-chip RAM, users have access to 32KB of memory to split between their program and data as required. For example, a data logging application may require a large data memory with relatively small program memory, so the memory may be allocated as required between program and data memory.Rapid proto typing is simplified by the 40-pin BoosterPack™ plug-in module headers, which support a wide range of available BoosterPack plug-in modules. You can quickly add features like wireless connectivity, graphical displays, environmental sensing, and much more. Design your own BoosterPack plug-in module or choose among many already available from TI and third-party developers.开发板MSP-EXP430FR2355 LaunchPad™主要特性:• MSP ULP FRAM technology based MSP430FR2355 16-bit MCU• EnergyTrace technology available for ultra-low-power debugging• 40-pin LaunchPad development kit standard leveraging the BoosterPack plug-in module ecosystem • Onboar d eZ-FET debug probe• 2 buttons and 2 LEDs for user interaction• Ambient light sensor for the Out-of-Box Experience demo• Grove connector for external Grove sensors开发板MSP-EXP430FR2355 LaunchPad™包括:• 1 MSP-EXP430FR2355 LaunchPad Development Kit• 1 Mic ro USB cable• 1 Quick Start Guide图2. 开发板MSP-EXP430FR2355 LaunchPad™外形图图3. 开发板MSP-EXP430FR2355 LaunchPad™概述图图4. 开发板MSP-EXP430FR2355 LaunchPad™框图图5. 开发板MSP-EXP430FR2355 LaunchPad™电路图(1)图6. 开发板MSP-EXP430FR2355 LaunchPad™电路图(2)图7. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(1)图8. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(2)图9. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(3)图10. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(4)图11. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(5)图12. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(6)图13. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(7)图14. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(8)图15. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(9)图16. 开发板MSP-EXP430FR2355 LaunchPad™ PCB设计图(10)。

MSP430系列单片机介绍

MSP430系列单片机介绍MSP430系列单片机是德州仪器(TI)公司推出的一种低功耗、高集成度、高性能的16位超低功耗单片机。

它采用精确的调度技术和先进的低功耗架构设计,拥有出色的性能、高功耗效率、广泛的外设集成以及丰富的工具和软件支持。

MSP430系列单片机的内核基于RISC架构,拥有16位数据总线和16位地址总线。

它可以工作在多种工作频率下,从几kHz到几十MHz不等,以满足不同的应用需求。

此外,MSP430系列单片机还具有多种睡眠模式,可以进一步降低功耗。

MSP430系列单片机内置了丰富的外设,包括模拟接口、数字接口和通信接口。

模拟接口包括模数转换器(ADC)、数字模拟转换器(DAC)和比较器等,可以实现各种传感器接口和模拟信号处理。

数字接口包括通用输入输出(GPIO)、定时器/计数器、串行通信接口等,可以实现数字信号处理和通信功能。

通信接口包括UART、SPI和I2C等,可以实现与外部设备的数据交换。

MSP430系列单片机广泛应用于各种电子设备中,如便携式设备、智能家居、医疗器械、工业自动化等。

由于其低功耗和高性能的特点,它可以满足不同应用场景下对功耗和性能的需求。

例如,在便携式设备中,MSP430系列单片机可以实现长时间的电池寿命;在智能家居中,它可以实现低功耗的远程控制和数据传输;在医疗器械中,它可以实现高精度的信号处理和通信。

总之,MSP430系列单片机是一种低功耗、高集成度、高性能的16位超低功耗单片机。

通过其先进的架构设计和丰富的外设集成,它可以满足各种应用的需求。

同时,它还提供了丰富的工具和软件支持,方便开发者进行开发和调试。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

MSP430 低功耗运行模式原理分析及应用
MSP430 系列是一款具有精简指令集的16 位超低功耗混合型单片机。

它包含冯诺依曼结构寻址方式(MAB)和数据存储方式(MDB)的灵活时钟系统,由于含有一个标准的地址映射和数字模拟外围接口的CPU,MSP430 为混合信号应用需求提供了解决方案。

1、MSP430 优点
与熟知的采用复杂指令集的8 位51 系列单片机相比,16 位精简指令集的MSP430 系列单片机的功能更强,运行速度更快。

(1)灵活的时钟系统
时钟系统是为电池供电的应用而特别设计的。

一个低频率时钟直接由
32kHz 的晶振驱动(ACLK)。

整合的高速数控振荡器(DCO)作为用于CPU 和高速外围设备的主时钟源。

DOC 的建立保持时间小于6&mu;s。

基于
MSP430 的高性能16 位RISC 处理器设计可以在很短的距离实现高效率的数据传输。

相关文档
最新文档