Buck-Boost电路设计
BUCK-BOOST-BUCK-BOOST电路的原理

BUCK BOOST BUCK/BOOST电路的原理Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器.图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
、Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器.开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作.电感Lf在输入侧,称为升压电感。
Boost变换器也有CCM和DCM两种工作方式、Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。
Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。
Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。
LDO的特点:①非常低的输入输出电压差②非常小的内部损耗③很小的温度漂移④很高的输出电压稳定度⑤很好的负载和线性调整率⑥很宽的工作温度范围⑦较宽的输入电压范围⑧外围电路非常简单,使用起来极为方便DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波.斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。
其具体的电路由以下几类:】(1)Buck电路—-降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
buck与boost电路原理

buck与boost电路原理
Buck与Boost电路是两种常用的直流-直流(DC-DC)变换电路,用于调整电压水平。
首先我们来看Buck电路。
Buck电路是一种降压转换器,常用于将较高的直流电压转换
为较低的直流电压。
其原理基于电感储能和电容滤波,通过周期性切断输入电压和导通电流来实现降压功能。
当开关管导通时,电感储能,以增加输出电压;当开关管截断时,电容释放储存能量,以稳定输出电压。
Boost电路则是一种升压转换器,常用于将较低的直流电压升
高到较高的直流电压。
和Buck电路类似,Boost电路也利用
电感和电容来实现电压的变换。
当开关管导通时,电感储能,以增加输出电压;当开关管截断时,电容释放储存能量,以稳定输出电压。
Buck与Boost电路在工业和电子设备中广泛应用。
它们能够
有效地转换电压,提供稳定的电源供应。
同时,这两种电路还可以结合使用,形成更加复杂的DC-DC变换拓扑结构,以满
足更多不同的电压转换需求。
总之,Buck与Boost电路是两种常见的DC-DC变换电路,分
别用于降低和提高电压水平。
它们利用电感和电容的工作原理,实现有效的电压转换。
这两种电路在电子设备中具有重要的应用价值。
BUCK_BOOST_BUCK-BOOST电路的原理

BUCK BOOST BUCK/BOOST电路的原理Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器。
图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
、Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器。
开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。
电感Lf在输入侧,称为升压电感。
Boost变换器也有CCM和DCM两种工作方式、Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。
Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。
Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。
LDO的特点:①非常低的输入输出电压差②非常小的内部损耗③很小的温度漂移④很高的输出电压稳定度⑤很好的负载和线性调整率⑥很宽的工作温度范围⑦较宽的输入电压范围⑧外围电路非常简单,使用起来极为方便DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。
斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。
其具体的电路由以下几类:】(1)Buck电路——降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
Buck-Boost变换器原理(过程啊)

Buck变换器原理Buck变换器又称降压变换器、串联开关稳压电源、三端开关型降压稳压器。
1.线路组成图1(a)所示为由单刀双掷开关S、电感元件L和电容C组成的Buck变换器电路图。
图1(b)所示为由以占空比D工作的晶体管T r、二极管D1、电感L、电容C组成的Buck变换器电路图。
电路完成把直流电压V s转换成直流电压V o的功能。
图1Buck变换器电路2.工作原理当开关S在位置a时,有图2 (a)所示的电流流过电感线圈L,电流线性增加,在负载R上流过电流I o,两端输出电压V o,极性上正下负。
当i s>I o时,电容在充电状态。
这时二极管D1承受反向电压;经时间D1T s后(,t on为S在a位时间,T s是周期),当开关S在b位时,如图2(b)所示,由于线圈L中的磁场将改变线圈L两端的电压极性,以保持其电流i L不变。
负载R两端电压仍是上正下负。
在i L<I o时,电容处在放电状态,有利于维持I o、V o不变。
这时二极管D1,承受正向偏压为电流i L构成通路,故称D1为续流二极管。
由于变换器输出电压V o小于电源电压V s,故称它为降压变换器。
工作中输入电流is,在开关闭合时,i s>0,开关打开时,i s=0,故i s是脉动的,但输出电流I o,在L、D1、C作用下却是连续的,平稳的。
图2Buck变换器电路工作过程Boost变换器Boost变换器又称为升压变换器、并联开关电路、三端开关型升压稳压器。
1.线路组成线路由开关S、电感L、电容C组成,如图1所示,完成把电压V s升压到V o的功能。
图12.工作原理当开关S在位置a时,如图2(a)所示电流i L流过电感线圈L,电流线性增加,电能以磁能形式储在电感线圈L中。
此时,电容C放电,R上流过电流I o,R两端为输出电压V o,极性上正下负。
由于开关管导通,二极管阳极接V s负极,二极管承受反向电压,所以电容不能通过开关管放电。
BUCK-BOOST-BUCK-BOOST电路的原理

BUCK BOOST BUCK/BOOST电路的原理Buck变换器:也称降压式变换器,是一种输出电压小于输入电压的单管不隔离直流变换器.图中,Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
、Boost变换器:也称升压式变换器,是一种输出电压高于输入电压的单管不隔离直流变换器.开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作.电感Lf在输入侧,称为升压电感。
Boost变换器也有CCM和DCM两种工作方式、Buck/Boost变换器:也称升降压式变换器,是一种输出电压既可低于也可高于输入电压的单管不隔离直流变换器,但其输出电压的极性与输入电压相反。
Buck/Boost变换器可看做是Buck变换器和Boost变换器串联而成,合并了开关管。
Buck/Boost变换器也有CCM和DCM两种工作方式,开关管Q也为PWM控制方式。
LDO的特点:①非常低的输入输出电压差②非常小的内部损耗③很小的温度漂移④很高的输出电压稳定度⑤很好的负载和线性调整率⑥很宽的工作温度范围⑦较宽的输入电压范围⑧外围电路非常简单,使用起来极为方便DC/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波.斩波器的工作方式有两种,一是脉宽调制方式Ts不变,改变ton(通用),二是频率调制方式,ton不变,改变Ts(易产生干扰)。
其具体的电路由以下几类:】(1)Buck电路—-降压斩波器,其输出平均电压U0小于输入电压Ui,极性相同。
(2)Boost电路——升压斩波器,其输出平均电压U0大于输入电压Ui,极性相同。
(3)Buck-Boost电路——降压或升压斩波器,其输出平均电压U0大于或小于输入电压Ui,极性相反,电感传输。
(完整版)BUCK和BOOST电路

(完整版)BUCK和BOOST电路在电子技术领域,BUCK和BOOST电路是两种常见的电源转换器。
它们分别将低压直流电(LDC)转换为高电压直流电(HVC)和将高电压直流电降低到低电压直流电(LDC)。
本文将对这两种电路进行详细的理论分析,探讨它们的工作原理、优缺点以及应用场景。
我们来了解一下BUCK电路。
BUCK电路是一种降压型转换器,其主要特点是输出电压可调,且输出电压与输入电压之间存在一定的关系。
BUCK电路的基本结构包括一个开关管、一个电感和一个二极管。
当开关管导通时,电感中储存的能量被释放,二极管导通,使得负载上的电流得到提升;当开关管截止时,电感中储存的能量无法释放,二极管截止,使得负载上的电流减小。
通过调整开关管的占空比,可以实现对输出电压的调节。
接下来,我们来探讨一下BOOST电路。
BOOST电路是一种升压型转换器,其主要特点是输出电压稳定,且输出电压与输入电压之间存在固定的关系。
BOOST电路的基本结构包括一个开关管、一个电感、一个二极管和一个稳压器。
当开关管导通时,电感中储存的能量被释放,二极管导通,使得负载上的电流得到提升;稳压器将输入电压升高到设定值,使得输出电压保持稳定。
通过调整开关管的占空比,可以实现对输出电压的调节。
那么,BUCK电路和BOOST电路各自有哪些优缺点呢?BUCK电路的优点主要表现在成本低、体积小、效率高等方面。
BUCK电路的缺点也比较明显,主要体现在输出电压稳定性较差、噪音较大等方面。
而BOOST电路的优点主要表现在输出电压稳定、噪音较小等方面。
BOOST电路的缺点也比较明显,主要体现在成本较高、体积较大、效率较低等方面。
在实际应用中,BUCK电路和BOOST电路各有适用的场景。
例如,BUCK电路适用于对输出电压稳定性要求不高的场合,如充电器、电池充放电等;而BOOST电路适用于对输出电压稳定性要求较高的场合,如LED照明、电力传输等。
BUCK电路和BOOST电路作为两种常见的电源转换器,各自具有一定的优势和局限性。
非隔离型DCDC变换器-buckboost
周期与各电量之间的关系
T 1 LI LI LI (U o U i ) ton toff f Ui Uo U iU o
7
Buck-Boost变换器——工作原理
电感电流纹波分析
ug uL
on off on off on
t
Ui -Uo
I iL1 iL 2
iL
14
Buck-BoosVD max I L max UVD max U i U o
考虑到电路工作时的尖峰电流,浪涌电压等,开关 器件的极限参数应满足
I VDmax (1.5 ~ 2) I L max U VDmax (2 ~ 3)(1.1U i U o )
15
Buck-Buck变换器——器件的选择
储能电感的选择 • 电感的选择方法与输入电流变化范围有关
为防止电感饱和,减小VT峰值 电流、电压和损耗
Ui
I (1 20%) I L 2 Ut Ut I 0.4 I L i on L i on L 0.4 I L Ii
16
I2 I1
t ΔI
t
Ut UD I i on i L fL Ut U (1 D) o off o L fL
电感电流峰峰值 与Boost变换器类 似,电感值L和频 率f成反比
Buck-Boost变换器——工作原理
输出电压波动分析
因为电容电荷平衡, 一个开关周期内, 输出电容充放电相 同,平均电容电流 IC=0
1 U i ton 2 1 2 2 L( ) U i ton 2 L 2L
4
这个阶段持续时间 ton
LiL1 Ui
Buck-Boost变换器——工作原理
buckboost电路原理
buckboost电路原理Buck-boost电路原理。
Buck-boost电路是一种常见的直流-直流转换器电路,它可以实现输入电压的升压或降压,是许多电子设备中常用的电源管理电路。
本文将介绍buck-boost电路的原理及其工作方式。
首先,我们来看一下buck-boost电路的基本结构。
它由一个开关管、电感、二极管和电容组成。
在工作时,开关管周期性地开关,使得输入电压在电感和电容的作用下得到升压或降压,最终输出所需要的电压。
这种结构简单而有效,广泛应用于各种电子设备中。
其次,我们来了解一下buck-boost电路的工作原理。
在升压模式下,当开关管导通时,电感中储存的能量会被传递到输出端,从而实现输入电压的升压。
而在降压模式下,当开关管断开时,电感中的能量会继续流动,从而实现输入电压的降压。
通过控制开关管的导通和断开,可以实现输入电压到输出电压的灵活转换。
另外,buck-boost电路还有一些特点和应用。
首先,它具有高效率和快速响应的特点,能够满足各种电子设备对电源的要求。
其次,它还具有较宽的输入电压范围和输出电压范围,适用于不同的场合。
除此之外,buck-boost电路还可以用于电池充放电管理、LED驱动、太阳能电池系统等领域。
最后,我们来总结一下buck-boost电路的优缺点。
优点是它具有高效率、灵活性强、适用范围广等特点,能够满足各种电子设备的需求。
缺点是在设计和调试时需要考虑更多的因素,比如电感和电容的选择、开关管的选型等,因此需要一定的专业知识和经验。
综上所述,buck-boost电路是一种常见且实用的直流-直流转换器电路,它具有升压和降压的功能,适用于各种电子设备中。
通过对其原理和特点的了解,我们可以更好地应用和设计这种电路,满足不同场合的需求。
希望本文能够对您有所帮助,谢谢阅读!。
(完整word版)buck-boost变换器的建模与仿真
题目:Vg 1.5VQ135m Ω100uH100uFR5ΩV D0.5V图1 buck-boost 变换器电路图一、开关模型的建模与仿真图2 buck-boost 变换器的开关模型占空比由0.806变化到0.7的电感电流波形占空比由0.806变化到0.7的电容电压波形图3 buck-boost 变换器的开关模型的仿真二、 大信号模型与仿真1、 开关导通时:Vg 1.5VR on35m ΩV-图4 开关导通时的工作状态此时,电感电压和电容电流方程:(t)v (t)v (t)(t)(t)(t)(t)L g on c di L i R dt dv v i C dt R ⎧==-⎪⎪⎨⎪==-⎪⎩2、 开关断开时:100uH100uFVi c+-0.5Vi图5 开关断开时的工作状态此时,电感电压和电容电流方程:(t)v (t)(t)(t)(t)(t)(t)L D c di L V v dt dv v i C i dt R ⎧==--⎪⎪⎨⎪==-⎪⎩3、平均方程电源电压、电感电流、电容电压变化的不大均为低频信号,则(t)(t)g g v v = ;(t)(t)i i =;v(t)v(t)=又因为:(t)v (t)L d i L dt= (t)(t)c d v i Cdt= 则有,电感电压平均方程:()()'v (t)d(t)v (t)(t)+d (t)(t)L g on D i R V v =---电容电流平均方程:''(t)(t)(t)(t)d(t)()d (t)((t))=d (t)(t)c v v v i i i R R R=-+--+ 输入电流平均方程:g (t)d(t)(t)i i =4、大信号模型:()()''g (t)d(t)v (t)(t)+d (t)(t)d (t)(t)=d (t)(t)(t)d(t)(t)g on D d i L i R V v dt v v C i dt R i i ⎧=---⎪⎪⎪-+⎨⎪⎪=⎪⎩由方程可得到三个等效电路:-+-+-+g (t)i v (t)g (t)v D (t)i 'D (t)i d (t)v Cdt(t)d i Ldt'(0.5D )VonDR '(t)D v v (t)g D 图6 buck-boost 变换器的大信号模型的等效电路大信号模型的仿真电路:图7 大信号模型仿真电路图大信号模型的仿真波形:占空比随时间变化的波形电容电压随占空比变化的波形图8 大信号模型仿真波形图三、 小信号模型假设,gv (t)=V +v (t)d(t)=D+d(t)(t)=(t)v(t)=V+v(t)(t)=(t)g g g g g i I i i I i ΛΛΛΛΛ⎧⎪⎪⎪⎪⎨+⎪⎪⎪⎪+⎩ 且各变量的扰动值远小于其稳态值。
(完整版)BUCK和BOOST电路
直流BUCK和BOOST斩波电路一、BUCK电路降压斩波电路(Buck Chopper)Q为开关管,其驱动电压一般为PWM(Pulse width modulation脉宽调制)信号,信号周期为Ts,则信号频率为f=1/Ts,导通时间为Ton,关断时间为Toff,则周期Ts=Ton+Toff,占空比Dy= Ton/Ts。
负载电压的平均值为:Uo=tontUi=on Ui=aUiton+toffT式中ton为V处于通态的时间,toff为V处于断态的时间,T为开关周期,α为导通占空比,简称占空比或导通比(α=ton/T)。
由此可知,输出到负载的电压平均值UO最大为Ui,若减小占空比α,则UO随之减小,由于输出电压低于输入电压,故称该电路为降压斩波电路。
工作原理为:当在ton状态时,电源为这个电路供电,并对电感和电容充电,负载电压缓慢上升到电源电压。
当toff状态时,电源电压为断开状态,系统供电依靠电感和电容的储能供电。
所以是一个递减的电压。
所以系统的这个工作流程为,周期性的电源供电方式,而输出的负载的电源大小取决于周期中的占空比。
+U iC E+L1U D-C1+R Uo-U GEU DU OtonTU itoffttt V GD-(a)电路图(b)波形图(实验结果)图1降压斩波电路的原理图及波形二、BOOST电路开关管Q也为PWM控制方式,但最大占空比Dy必须限制,不允许在Dy=1的状态下工作。
电感Lf在输入侧,称为升压电感。
Boost变换器也有CCM和DCM两种工作方式升压斩波电路(Boost Chopper)UiI1ton=(UO-Ui) I1toffUo =ton+tofftoffUi=TUitoff上式中的T/toff≥1,输出电压高于电源电压,故称该电路为升压斩波电路。
工作原理当开关S在位置a时,如图2(a)所示电流iL流过电感线圈L,电流线性增加,电能以磁能形式储在电感线圈L中。
此时,电容C放电,R上流过电流Io,R两端为输出电压V o,极性上正下负。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 48W Buck/Boost电路设计与仿真验证 一、主电路拓扑与控制方式 Buck/Boost变换器是输出电压可低于或高于输入电压的一种单管直流变换器,其主电路与Buck或Boost变换器所用元器件相同,也有开关管、二极管、电感和电容构成,如图1-1所示。与Buck和Boost电路不同的是,电感Lf在中间,不在输出端也不在输入端,且输出电压极性与输入电压相反。开关管也采用PWM控制方式。Buck/Boost变换器也有电感电流连续喝断续两种工作方式,本文只讨论电感电流在连续状态下的工作模式。图1-2是电感电流连续时的主要波形。图1-3是Buck/Boost变换器在不同工作模态下的等效电路图。电感电流连续工作时,有两种工作模态,图1-3(a)的开关管Q导通时的工作模态,图1-3(b)是开关管Q关断、D续流时的工作模态。
++
-Vin
QDLf
Cf
RLD-
+Vo
图1-1 主电路 Vbe
tonTt
tttt
iLF
ILF
iLfmax
iLfmax
iLfmax
iLfmin
iLfmin
iLfmin
iQ
iD
VLf
Vin
Vo
图1-2 电感电流连续工作波形
++
-Vin
QDLf
C
f
RLD-
+Vo
i
Lf +
+
-Vin
QDLfC
f
RLD-
+Voi
Lf
(a) Q导通 (b) Q关断,D续流 图1-3 Buck/Boost不同开关模态下等效电路
二、电感电流连续工作原理和基本关系 2
电感电流连续工作时,Buck/Boost变换器有开关管Q导通和开关管Q关断两种工作模态。 在开关模态1[0~ton]: t=0时,Q导通,电源电压Vin加载电感Lf上,电感电流线性增长,二极管D戒指,负载电流由电容Cf提供:
fLfin
di
LVdt (2-1)
oo
LD
VIR (2-2)
ofo
dVCIdt (2-3)
t=ton时,电感电流增加到最大值maxLi,Q关断。在Q导通期间电感电流增加量fLi
finLy
f
ViDTL (2-4)
在开关模态2[ton ~ T]: t=ton时,Q关断,D续流,电感Lf贮能转为负载功率并给电容Cf充电,fLi在输出电压Vo作用下下降:
fLfo
di
LVdt (2-5)
foooLfof
LD
dVdVViCICdtdtR (2-6)
t=T时,fLi见到最小值minLi,在ton ~ T期间fLi减小量fLi为: (1)fooLoffyffVVitDTLL (2-7)
此后,Q又导通,转入下一工作周期。由此可见,Buck/Boost变换器的能量转换有两个过程:第一个过程是Q开通电感Lf贮能的过程,第二个是电感能量向负载和电容Cf转移的过程。
稳态工作时,Q导通期间fLi的增长量应等于Q关断期间fLi的减小量,或作用在电感Lf上电压的伏秒面积为零,有:
1yoinyDVVD (2-8) 由(2-8)式,若Dy=0.5,则Vo=Vin;若Dy<0.5,则Vo0.5,Vo>Vin。设变换器没有损耗,则输入电流平均值Ii和输出电流平均值Io之比为 3
1yioyDIID (2-9) 开关管Q截止时,加于集电极和发射极间电压为输入电压和输出电压之和,这也是二极管D截止时所承受的电压
1inoceDinoyyVVUUVVDD (2-10)
由图1-2可见,电感电流平均值fLi等于Q和D导通期间流过的电流平均值IQ和ID之和,即:
maxmin2f
LLLQD
iiiII
(2-11)
maxminfinLLLy
f
ViiiDLf (2-12)
负载电流Io等于流过二极管D电流的平均值ID,即在t=ton ~ T期间电感电流的平均值 (1)fooLyLDVIIDR (2-13)
finLyIID (2-14)
电感电流最大值maxfLi和最小值minfLi为:
max122ffffinLLLLy
f
ViIiIDLf (2-15)
min122ffffinLLLLy
f
ViIiIDLf (2-16)
开关管Q和二极管D电流的最大值maxQi、maxDi等于电感电流最大值maxfLi
maxmaxmax1(1)212fffooQDLLLy
yf
IViiiIiDDLf
(2-17)
Q导通期间,电容Cf电压的变化量即输出电压脉动oV由Q导通期间fC放电量fCoyQIDT计算,因fCfoQCV,故
oyof
IDVCf (2-18)
三、实验参数计算 4
Buck/Boost变换器设计指标为:(1) 输入电压inV:直流18~72V; (2) 输出电压oV:直流24V; (3) 输出功率oP:48W 。 设定IGBT的开关频率f为100kHz,电感电流纹波fLi为电感电流平均值fLI的5%,输出电压纹波oV为输出电压oV的2%。 输出端电阻为:
12482422OOLDPVR 输出端电流为: 21224LDOORVI 由式(2-8)得占空比为:
ininOOyVVVVD24
24 (0.25~0.57)
由式(2-9)得输入电流为:
yyyyoinDDDDII121
(0.67A~2.67A)
由式(2-10)得开关管Q截止时承受电压,二极管D截止时承受电压为:
yoceD
VU(42V~96V)
由式(2-14)得电感电流平均值为:
yinlfD
II(-1.2A~6A)
电感电流和输出电压纹波分别为: lflfiI%5(-0.06A~0.3A)
VVoo48.0%2V 由式(2-15)和(2-16)得电感电流最大值和最小值分别为:
lflflfiIi21max =4.783A
lflflfiIi21min =2.6A 由式(2-17)得通过开关管Q和二极管D的电流最大值为: AiiilfDQ783.4maxmaxmax
由式(2-12)得电感大小为:
filfyDVLin(0.44mH~1.35mH) 5
由式(2-18)得电容大小为: fVDoyoIC (10.146F~23.8F)
四、实验器件的选择 开关管Q:开关频率100kHz,截止时承受电压96V,流过最大电流4.783A。 二极管D:截止时承受电压96V,流过最大电流4.783A。
电感fL:大小0.44mH~1.35mH,流过电流最大值4.783A。
电容fC:大小10.146F~23.8F,承受电压最大值大于24V。 电阻RLD:12。 五、simulink仿真电路
vs100V
uR
powerguiContinuousis2i+-is1iR1i+-iRiL1i+-iLiD2iDi+-Vv+-R 4.6PulseT=10e-6 32.66%L 0.42mHIGBTgCEDiode
C36uF
六、波形图