数列裂项相消法求和

合集下载

数列裂项相消法求和

数列裂项相消法求和
裂项相消法求和
(2012大纲卷高考理)已知等差数列{an}的前n项和为Sn,a5=5,
S5=15,则数列
an
1 an1
的前100项和为?( )
A100 101
B 99 101
C 99 100
D. 101 100
(2012大纲卷高考理)已知等差数列{an}的前n项和为Sn,a5=5,
S5=15,则数列
2(n 1)②
① ②得,an 2 n 1
= 2,所以an
2n ,因为a1 =2也适合上式,
所以an 2( n n N )
解: (1)因为a1
a2 2
a3 22
+ an 2 n 1
2n(n N )①
当n 1时,a1 2
当n
2时,a1
a2 2
a3 22
+
an 1 2n2
2(n 1)②
n
1
1
,
所以S 100
1
1 2
1 2
1 3
1 1 1 1 100 100 101 101 101
什么是裂项法?
把数列的通项拆成两项之差,则分母的 每一项都可以按此法拆成两项之差,并 在求和时一些正负项可以相互抵消,使 前n项和变成首尾有限项之和.
例1:已知数列的通项公式an
=
1 n(n
1 anan1
1 (2n1)(2n1)
1 2
(1 2n1
1) 2n1
Sn
b1
b2
bn
1 2
(1
1 3
1 3
1 5

1 2n1
1) 2n1
1 2
(1
1) 2n1

裂项相消法在数列求和中的应用

裂项相消法在数列求和中的应用

c1 c2
cn =(1+
1 d
) (
1 b1
1 b2
)
(1 b2
1 b3
)
(1 bn2
1 )( 1
bn1
bn1
1 bn

(1+ 1 ) ( 1 1 ) (1+ 1 ) (1 1 )
d b1 bn
d
bn
b1 1 0, d 0,bn 0
c1 c2
cn
(1+
1 ) (1 d
1 bn
1 16
二:裂项相消法与不等式的证明
(二)先放缩再求和
例6:已知an
n2
n (n 1)2
, 求证:a1
a2
an
1 2
总结:
1.三种常见裂项相消的通项特征
(一)等差型(一次函数)
(二)等比型
an
(2n
b)
1 (2n1
b)
=
1 2n
1
1
( 2 n b 2n1 b)
(三)无理式型
an
1
n
n 1 (
=
1 2
(11
1) 3
(
1 2
1 4
)
(1 3
1) 5
( 1 n 1
1) n 1
(1 n
n
1
2 )
=
1 2
1+
1 2
n
1 1
n
1
2
3 4
1 2
(
1 n
1
n
1
) 2
( 1 1) n2 n
裂项相消法在数列求和中 的应用

裂项相消法求和

裂项相消法求和

裂项相消法求和利用解析式变形,将一个数列分成若干个可以直接求和的数列,即进行拆项重组,或将通项分裂成几项的差,通过相加过程中的相互抵消,最后剩下有限项的和。

这是一种非常常见的题型,也是高考中的热点考题。

相对于其它题型来说,这种题目的难度大,有一定的思维能力,对于培养学生的思维有常见的拆项公式有: ○1()11111+-=+n n n n○2()()()()()⎪⎪⎭⎫ ⎝⎛++-+=++2111121211n n n n n n n○3()()⎪⎭⎫⎝⎛+--=+-1211212112121n n n n○4()ba ba b a --=+11○5()!!1!n n n n -+=⋅○6mn m n m n C C C -=+-11○7()21≥-=-n S S a n n n○8()()112+<<-n n n n n ,()()111112-<<+∴n n n n n , 即nn n n n 11111112--<<+- 例1、已知数列{}n a 的各项如下:1,211+,3211++,…………,n++++ 3211。

求它的前n 项和n S 。

解析:()()⎪⎭⎫ ⎝⎛+-=+=+=++++=1112122113211n n n n n n n a n所以⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=++++=111413131212112321n n a a a a S n n121112+=⎪⎭⎫ ⎝⎛+-=n n n 例2、已知数列{}n a 是等差数列,其前n 项和n S ,且123=S ,63=a 。

○1求数列{}n a 的通项公式;○2求证:11111321<++++nS S S S解析:○1n a d a d a d a S a n 22212336212611133=⇒⎪⎩⎪⎨⎧⎩⎨⎧⎩⎨⎧==⇒=+=+⇒==○2()()()11111112222642+-=+=⇒+=+=++++=n n n n S n n n n n S n n所以1111111413131212111111321<+-=+-++-+-+-=++++n n n S S S S n 例3、数列{}n a 的通项公式是12-=nn a ,如果数列{}n b 是12++=n n nn a a b ,试求{}n b 的前n项和n S 。

裂项相消法求和公式

裂项相消法求和公式

裂项相消法求和公式
裂项相消法是数学中常用的一种方法,用于简化求和式。

它通
常用于对称性比较明显的求和式,可以通过将求和式中的相邻项相减,从而简化问题。

裂项相消法常用于数学和物理中的求和问题,
下面我将从数学和物理两个方面来介绍裂项相消法的求和公式。

在数学中,裂项相消法可以用于简化一些复杂的求和式,特别
是在级数求和的过程中。

一个常见的裂项相消法求和公式是对称式
的求和。

比如,对于等差数列$a_1, a_2, a_3, ..., a_n$,我们可
以利用裂项相消法将求和式简化为$\frac{1}{2}(a_1+a_n)n$。

这个
公式的推导过程就是利用了裂项相消法,通过将数列的首尾项相加,次首尾项相加,依次类推,最终得到简化后的形式。

在物理中,裂项相消法同样有着重要的应用。

比如在物理中的
力学问题中,特别是涉及到质心的问题中,裂项相消法可以帮助简
化力矩的求和问题。

通过将作用在质点上的力分解成对称的部分,
然后利用裂项相消法简化力矩的表达式,从而简化了问题的求解过程。

总的来说,裂项相消法是一种非常有用的数学方法,它可以帮
助简化复杂的求和式,特别是对称性比较明显的求和式。

在数学和物理问题中都有着重要的应用。

通过合理运用裂项相消法,可以简化问题、加快计算速度,是数学和物理学习中的重要工具之一。

数列求和之裂项相消法 PPT课件

数列求和之裂项相消法 PPT课件

变式:
数列an的通项公式是an
试求bn 的前 n项和 S n .
2n
1, 如果数列bn 是bn

an
2n an1
,
小结4:
1
1 n k n ,特别地
1
n 1 n.
nk n k
n1 n
知识归纳
裂项相消法的常见类型 分式型、等差数列型、根式型
数列求和
裂项相消法
2016年4月1日
教学目标:
知识与技能目标
数列求和的方法之裂项相消法
过程与能力目标
裂项相消法的常见题型及解题思路
教学重难点:
重 点: 裂项相消法的常见题型及解题思路
难 点: 裂项相消法适用题型的特征及相消
后所剩项的判断
教学过程 新课导入
小学奥数中:
? 1 1 1 1

1 a2a3

1 a3a4

1 an an 1
求 Sn .
解:
小结3: (5) 若an是等差数列, an 0,公差d 0,则
1 an an 1

1 d

1 an

1 an1

巩固练习
练习3:
已知数列an是等差数列,且其通项公式 an n,则
Sn

1 a1a3
1 2 2 3 3 4
100101
学生思考:
1 1 1 1 98 99 99 100
1 1 1 1 1 1 1 1
2 2 3 3 4
100 101
1 1 100 101 101
? 问题:

高中数列裂项相消法求和教学设计

高中数列裂项相消法求和教学设计

高中数列裂项相消法求和教学设计
一、教学目标
2.掌握合理运用数列裂项相消法为解题工具
二、教学内容
2.数列裂项相消法求和基本技巧
三、教学重点和难点
四、教学方法
1.讲授法
2.实例演示法
3.问题解答法
五、教学步骤
1.引入数列裂项相消法求和的概念及其重要性
(1)寻找数列的结构性;
(2)将数列裂成若干部分,使得相邻两项之间只差包含极少成分;
(3)通过相邻项的差式得出公式,将数列合并起来。

3.通过实例演示,让学生感受数列裂项相消法求和的优越性,理解其应用场景。

4.学生自主练习和学生间相互讨论,解决问题。

5.问题答疑和复习巩固。

六、教学评价
2.学生是否能够将数列裂项相消法应用到具体问题中
七、教学资源
1.黑板
2.教材
3.案例练习
4.教学视频
八、课堂反思
本课的效果不错,学生们学得不亦乐乎,掌握了数列裂项相消法求和的基本技巧。

在教学过程中,通过实例演示,学生们对于数列裂项相消法的应用场景和步骤有了更清晰的认识。

同时在问题解答和案例练习中加强了学生的实战应用能力。

最后,需要提醒的是,在教学中,要适当地引导学生思考,注重理论知识和实践操作能力的结合。

数列裂项相消法例子

数列裂项相消法数列裂项相消法是一种常用的数学技巧,用于求解一些复杂的数列求和问题。

以下是几个例子,说明该方法的应用。

例1:已知等差数列{an},其中a1=1,d=2,求前n项和Sn。

解:首先,我们可以将等差数列的通项公式表示为an=a1+(n-1)d=1+2(n-1)=2n-1。

然后,我们可以将前n项和表示为Sn=a1+a2+...+an。

接下来,我们使用裂项相消法,将相邻两项相加,得到:Sn=(1+3)+(3+5)+...+[(2n-3)+(2n-1)]=2+4+ (2)=n(n+1)例2:已知等比数列{an},其中a1=1,q=2,求前n项和Sn。

解:首先,我们可以将等比数列的通项公式表示为an=a1*q^(n-1)=2^(n-1)。

然后,我们可以将前n项和表示为Sn=a1+a2+...+an。

接下来,我们使用裂项相消法,将相邻两项相减,得到:Sn=(1-2)+(2-4)+...+[2^(n-2)-2^(n-1)]+2^(n-1)=-1-1-...-1+2^(n-1)=-(n-1)+2^(n-1)=(2^n)-1-(n-1)=(2^n)-n例3:已知数列{an},其中an=n^2,求前n项和Sn。

解:首先,我们可以将数列的通项公式表示为an=n^2。

然后,我们可以将前n项和表示为Sn=a1+a2+...+an。

接下来,我们使用裂项相消法,将相邻两项相减,得到:Sn=(1^2-0^2)+(2^2-1^2)+...+[n^2-(n-1)^2]=1+3+5+...+(2n-1)=n^2通过以上例子可以看出,裂项相消法是一种非常实用的数学技巧,可以用于求解各种复杂的数列求和问题。

需要注意的是,在使用该方法时,需要根据具体的数列类型和题目要求来选择合适的裂项方式。

数列求和--裂项相消法(含解析)

《数列求和--裂项相消法》考查内容:主要考查裂项相消法进行数列求和一.选择题(在每小题给出的四个选项中,只有一项是符合题目要求的) 1.数列{}n b 中,若()11n b n n =+,数列{}n b 的前n 项和n T ,则2020T 的值为( )A .20202021B .12021 C .12020D .199920202.11111447710(32)(31)n n ++++=⨯⨯⨯-+( )A .31+nn B .331nn + C .111n -+ D .1331n -+ 3.已知在等差数列{}n a 中,5=5a ,3=3a ,则数列11n n a a +⎧⎫⎨⎬⎩⎭的前2019项和是( ) A .20202019B .20192020C .20182019D .201920184.已知数列{}n a :112,233+,123444++,12345555+++,…,又1114n n n b a a +=⋅,则数列{}n b 的前n 项的和n S 为( ) A .1411n ⎛⎫-⎪+⎝⎭B .11421n ⎛⎫-⎪+⎝⎭C .111n -+ D .1121n -+ 5.已知222n a n n=+,则6S =( ) A .6956B .78C .6928D .7166.设数列2141n ⎧⎫⎨⎬-⎩⎭的前n 项和为n S ,则10S =( ) A .1021 B .2021 C .919D .18197.求和111112123123n +++++++++++的值为( )A .12n-B .111n -+ C .221n n -D .221n -+ 8.已知n a =*n N ∈.记数列{}n a 的前n 项和为n S ,则2020S =( )A1 B1C1D1-9.已知数列{}n a 为:12,1233+,123444++,12345555+++,…,那么数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为( ) A .1411n ⎛⎫-⎪+⎝⎭ B .11421n ⎛⎫- ⎪+⎝⎭C .111n -+ D .1121n -+ 10.已知函数()a f x x 的图象过点()4,2,令*1,(1)()n a n f n f n =∈++N .记数列{}n a 的前n 项和为n S ,则2021S =()A1-BCD111.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且20,2,n n n n a S a a n >=+∈*N ,1121(2)(2)n n n n n n b a a +++=++,对任意的*,n n N k T ∈>恒成立,则k 的最小值是( ) A .13B .12C .16D .112.已知数列{}n a ,对任意*n N ∈,总有123232n a a a na n +++⋯+=成立,设()128(1)41n n nb n a +=--,则数列{}n b 的前10项的和为( )A .2221B .4041C .2021D .4241二.填空题13.设数列{}n a 满足11a =,且()*11n n a a n n N +-=+∈,则数列1n a ⎧⎫⎨⎬⎩⎭前2020项的和为________.14.已知数列{}n a的通项公式为n a =,则数列{}n a 的前n 项和n S =__15.设正项数列{}n a 的前n 项和n S 满足2+1441n n S a n =--,*n N ∈,且2a ,5a ,14a 成等比数列,则1111++⋅⋅⋅++=______.16.已知数列{}n a 与{}n b 前n 项和分别为n S ,n T ,且0n a >,22n n n S a a =+,n *∈N ,()()112122n n n n n n b a a +++=++,对任意的n *∈N ,n k T >恒成立,则k 的取值范围是_____.三.解答题(解答应写出文字说明、证明过程或演算步骤)17.已知数列{}n a 的前n 项和为n S ,且12a =,()()*21n n S n a n N =+∈.(1)求{}n a 的通项公式; (2)令()()1422n n n b a a +=++,求数列{}n b 的前n项和n T .18.已知等差数列{}n a 的前n 项和为n S ,且23a =,636S =. (1)求数列{}n a 的通项公式; (2)若数列{}n b 满足2142n n b a n =+-(*n N ∈),求数列{}n b 的前n 项和n T .19.正项数列{}n a 的前项和n S 满足:242n n n S a a =+,()*n ∈N,(1)求数列{}n a 的通项公式; (2)令()2212n nn b n a+=+,数列{}n b 的前n 项和为n T ,证明:对于任意的*n ∈N 都有564n T <.20.已知等差数列{}n a 中,13212a a +=,12421a a a +=+. (1)求数列{}n a 的通项公式;(2)记数列{}n a 的前n 项和为n S ,证明:121112123n S S S n +++<+++.21.已知数列{}n a 满足15a =,2123n n a a n +=+-.(1)求证:数列{}22n a n n --为等比数列;(2)若数列{}n b 满足2nn n b a =-,求12111n nT b b b =++⋅⋅⋅+.22.在数列{}n a 中,1114,340n n a a a +=-+=. (1)证明:数列{}2n a -是等比数列.(2)设()()1(1)3131n nn n n a b +-=++,记数列{}n b 的前n 项和为n T ,若对任意的*,n n N m T ∈≥恒成立,求m 的取值范围.《数列求和--裂项相消法》解析1.【解析】因为111n b n n =-+, 所以20201111112020112232020202120212021…T ⎛⎫⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故选:A 2.【解析】由题得1111()(32)(31)32313n n n n =-⨯-+-+所以11111447710(32)(31)n n ++++⨯⨯⨯-+11111111(1)34477103231n n =-+-+-++--+1113(1)=33133131n nn n n =-⨯=+++.故选:A. 3.【解析】设{}n a 的公差为d ,由5353a a =⎧⎨=⎩得114523a d a d +=⎧⎨+=⎩解得111a d =⎧⎨=⎩,则n a n =.则()1111n n a a n n +==+111n n -+. 故前2019项和2019111111112232018201920192020S =-+-++-+-12019120202020=-=,故选:B . 4.【解析】因为数列{}n a 为:12,1233+,123444++,12345555+++,… 所以(1)1232112n n n n n a n n +++++===++, 所以1111114(1)1n n n b a a n n n n +=⋅==-++, 所以{}n b 的前n 项和为11111111112233411n n n -+-+-++-=-++故选:C. 5.【解析】由题意()21221222n a n n n n n n ===-+++,所以612611111111111132435465768S a a a =++⋅⋅⋅+=-+-+-+-+-+-6.【解析】()()21111141212122121n n n n n ⎛⎫==- ⎪--+-+⎝⎭,因此,101111111012335192121S ⎛⎫=-+-++-= ⎪⎝⎭.故选:A. 7.【解析】()()1121121123112n n nn n n n ⎛⎫∴===- ⎪+++++++⎝⎭, 因此,111112123123n+++++++++++111111121222223341n n ⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++- ⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭1221211n n ⎛⎫=-=- ⎪++⎝⎭.故选:D.8.【解析】由题意na===所以20201S ==. 故选:D.9.【解析】因为数列{}n a 为:12,1233+,123444++,12345555+++,… 所以(1)1232112n n n n n a n n +++++===++,所以114114()(1)1n n a a n n n n +==-++ 所以11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为111111114(1)412233411n n n ⎛⎫-+-+-++-=- ⎪++⎝⎭故选:A10.【解析】由()42f =,可得42a =,解得12a =,则12()f x x =.∴1(1)()n a fn f n ===++,202111S ∴==,故选:D11.【解析】因为22n n n S a a =+,所以当2,n n N *≥∈时,21112n n n S a a ---=+,两由0n a > 知,10n n a a -+≠,从而110n n a a ---=,即当2,n n N *≥∈时,11n n a a --=,当1n =时,21112a a a =+,解得11a =或0(舍),则{}n a 首项为1,公差为1的等差数列,则()111n a n n =+-⨯=.所以112111(2)(21)221n n n n n n b n n n n +++==-++++++,则1211111111111 (366112213213)n n n n n T b b b n n n ++=+++=-+-++-=-<+++++,所以13k ≥.则k 的最小值是13.故选:A12.【解析】数列{}n a ,对任意*n N ∈,总有123232n a a a na n +++⋯+=成立. 当1n =时,12a =.当2n ≥时,()()123123121n a a a n a n -+++⋯+-=-. 又123232n a a a na n +++⋯+=,两式相减可得2n na =, 即2n a n=,当1n =时也成立. ()()()11122288(1)(1)(1)24141414n n n n n n b n a n n n+++=-=-=----⋅111212(1)1n n n +=-⎛⎫+ ⎪-+⎝⎭所以数列{}n b 的前10项的和为123101111111+1+335571921b b b b ⎛⎫⎛⎫⎛⎫⎛⎫+++=+-+++-+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 12012121=-=,故选:C 13.【解析】因为()*11n n a a n n N+-=+∈,所以1122321,1,2,...,2------=-=--=--=n n n n n n a a n a a n a a n a a , 左右分别相加得()()112234 (2)-+=++++=-n n n n a a ,所以2n n a +=,所以1211=2⎛⎫=-,所以20201111111140402 (2122320202021120212021)⎛⎫⎛⎫=-+-++-=-=⎪ ⎪⎝⎭⎝⎭S , 故答案为:4040202114.【解析】由题可知:n a =,则2n a =所以12n n S a a a =+++,则122n n S =++,所以112n S=,故答案为:11215.【解析】由2+1441n n S a n =--,可得21443(2)n n S a n n -=-+≥,以上两式相减可得:22144n n n a a a +=--,即222144(2)n n n n a a a a +=++=+,又∵{}n a 为正项数列,∴12n n a a +-=,由等差数列的定义可知数列{}n a 从第二项开始是公差为2的等差数列,又2a ,5a ,14a 成等比数列,所以22514a a a =,即()()2222624a a a +=+,∴23a =,∴()212n a n n =-≥,当1n =时,2112445S a a ==-,∴11a =,满足通项公式,∴21n a n =-,∴122320182019201920201111a a a a a a a a ++⋅⋅⋅++1111111201921335403740394039⎛⎫=⨯-+-+⋅⋅⋅+-= ⎪⎝⎭ 16.【解析】因为22n n n S a a =+,所以当2,n n N *≥∈时,21112n n n S a a ---=+, 两式相减得:22112n n n n n a a a a a --=+-- ,整理得,()()1101n n n n a a a a --+--=,由0n a > 知,10n n a a -+≠,从而110n n a a ---=,当1n =时,21112a a a =+,解得11a =或0(舍),则{}n a 首项为1,公差为1的等差数列, 则()111n a n n =+-⨯=.所以112111(2)(21)221n n n n n n b n n n n +++==-++++++,则121111111 (36611221)n n n n T b b b n n +=+++=-+-++-+++ 11311213n n +=<++-,所以13k ≥.故答案为:13k ≥. 17.【解析】(1)因为()()*21n n S n a n N=+∈,所以112n n S na --=()2n ≥,两式作差可得()()1212n n n a n a na n -=+-≥,整理得()()112n n n a na n -=-≥,则()121n n a nn a n -=≥-, 故()32112123222121n n n a a a na a n n a a a n -=⨯⨯⨯⨯=⨯⨯⨯⨯=≥-, 当1n =时,12a =满足上式,故2n a n =. (2)由(1)可知()()()()()()1441112222241212n n n b a a n n n n n n +====-++++++++,则1231111111123344512n n T b b b b n n ⎛⎫⎛⎫⎛⎫⎛⎫=++++=-+-+-++- ⎪ ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭⎝⎭. 112224nn n =-=++. 18.【解析】(1)设等差数列{}n a 的公差为d ,因为23a =,636S =,所以113656362a d a d +=⎧⎪⎨⨯+=⎪⎩,解得112a d =⎧⎨=⎩, 所以()()1112121n a a n d n n =+-=+-=-; (2)由题意()()()221114221212142n n b a n n n n n ===+-+--+-所以1231111111233557112121n n T b b b b n n ⎛⎫=+++⋅⋅⋅+=-+-+-⋅⋅⋅+ ⎪⎝-+⎭-11122121n n n ⎛⎫=-= ⎪++⎝⎭. 19.【解析】(1)解:∵正项数列{}n a 的前项和n S 满足:242n n n S a a =+,()*n ∈N ① 则211142n n n S a a ---=+,()2n ≥②①-②得()22114222n n n n n a a a a a n --=-+≥-即()2211222n n n n a a a a n --+=-≥即()()()()11122n n n n n n a a a a a a n ---+=+-≥ 又10n n a a ->+,12n n a a --=,()2n ≥.又12a =,所以数列{}n a 是以2为首项2为公差的等差数列.所以2n a n =. (2)证明:由于2n a n =,()2212n nn b n a +=+则()()2222111116422n n b n n n n ⎡⎤+==-⎢⎥++⎢⎥⎣⎦()()()222222222111111111111632435112n T n n n n ⎡⎤=-+-+-+⋅⋅⋅+-+-⎢⎥-++⎢⎥⎣⎦()()22221111115111621626412n T n n ⎡⎤⎛⎫=+--<+=⎢⎥ ⎪⎝⎭++⎢⎥⎣⎦. 20.【解析】(1)设数列{}n a 的公差为d ,由题意得()()111112212231a a d a a d a d ⎧++=⎪⎨++=++⎪⎩,解得12a =,3d =,故数列{}n a 的通项公式为()23131n a n n =+-=-.(2)由(1)知()2313222n n n n nS n -+=+=, 所以()231322n n n n n S n n +++=+=,所以()122113131nS n n n n n ⎛⎫==- ⎪+++⎝⎭,所以1211121111111232231n S S S n n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥++++⎝⎭⎝⎭⎝⎭⎣⎦2121313n ⎛⎫=-< ⎪+⎝⎭. 21.【解析】(1)设22n n c a n n =-- ,2123n n a a n +=+-,则()()21121212n n n n a n n cc a n n++-+-+=-- ()2222222212222223n n n n a n n n n n a n n a a n nn -------===--+---, 所以{}22n a n n --是以2为首项,以2为公比的等比数列.(2)由(1)可得222nn a n n --=,所以222n n a n n =++所以()2222nn n b a n n n n =-=+=+,所以()1211111111324352n n T b b b n n =++⋅⋅⋅+=+++⨯⨯⨯+11111111111112324352112n n n n n n ⎛⎫=-+-+-+-+-+- ⎪--++⎝⎭()()211113512212412n n n n n n +⎛⎫=+--=⎪++++⎝⎭. 22.【解析】(1)证明:因为1340n n a a +-+=, 所以134n n a a +=-,所以()1232n n a a +-=-,即()*1232n n a n N a +-=∈-.因为114a =,所以1212a -=,故数列{}2n a -是以12为首项,3为公比的等比数列. (2)解:由(1)可得1212343n n n a --=⨯=⨯,即432n n a =⨯+,则()()()()()111(1)432(1)11(1)313131313131n n n n n n n n n n n n a b +++-⨯+-⎛⎫===-+ ⎪++++++⎝⎭. 当n 为偶数时,22311111111113131313131313131n n n n n T -+⎛⎫⎛⎫⎛⎫⎛⎫=--++++--++ ⎪ ⎪ ⎪ ⎪++++++++⎝⎭⎝⎭⎝⎭⎝⎭1111113131431n n ++=-+=-++++,因为111431n n T +=-++是递减的,所以13414n T -<≤-. 当n 为奇数时,22311111111113131313131313131n n n n n T -+⎛⎫⎛⎫⎛⎫⎛⎫=--++++++-- ⎪ ⎪ ⎪ ⎪++++++++⎝⎭⎝⎭⎝⎭⎝⎭1111113131431n n ++=--=--+++, 因为11031n +>+,所以14nT <-. 要使对任意的*,n n N m T ∈≥恒成立,只需()max n m T ≥,即314m ≥-, 故m 的取值范围是3,14⎡⎫-+∞⎪⎢⎣⎭.。

裂项相消法求和

裂项相消法求和
四、裂项相消法求和
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
4.在数列{a n }中,11211++⋅⋅⋅++++=
n n n n a n ,又11+⋅=n n n a a b ,求数列{b n }的前n 项的和.
练习:求数列
⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.
五、利用数列的通项求和
先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.
5.求
11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.
实战练习:已知等差数列{}n a 的前n 项和为n S ,公差,50,053=+≠S S d 且1341,,a a a 成等比数列.
(Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)设⎭
⎬⎫⎩⎨⎧n n a b 是首项为1,公比为3的等比数列,求数列{}n b 的前n 项和n T .。

1数列求和之裂项相消法优质课件PPT全


1
nn
k
1 k
1 n
n
1
k
变式4:
求和:
Sn
1+ 1 1+2
1 1+2+3
1
1+2+3
n
例2 数列an的前n项和Sn , 通项公式an 2n1,
设bn
=
an +1 Sn Sn+1
,求:数列bn
的前项和Tn
bn
2n 2n 1 2n1 1
1
1
2n 1 2n1 1
1
Tn =1 2n1 1
1 n 1
n ,求其前n项和为Sn.
知识归纳
裂项相消法 分式型
裂项相消法的一般步骤 求通项 裂项 相消
裂项相消法常见裂项公式
求和
变式4:数列的通项公式an
nn
1
1 n
2
, 求其前n项和Sn.
n
n
1
1
n
2
1 2
n
1
n 1
n
1
1
n
2
Sn
=
1 2
1 2
n
1
1
n
2
变式1: 已知数列an为等差数列,a1 1 ,a1 a2 a3
S 数列 bn
满足 bn
2n 1
anan1 2
求:数列 bn
的前n项和
n
bn
2n
n2 n
1
12
1 n2
1 n 1 2
提升
数列an的前n项和Sn ,通项公式an
1 n2
,
证明: Sn 2
小结
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的求和是高考的必考题型,求和问题关键在于分析通项的结构特征,选择恰当的求和方法。

常见的求和方法有:公式法、错位相减法、裂项相消法、分组求和法等。

今天讲讲裂项相消法求和。

常见的列项求和公式
()1
1
111)
1(+-
=+n n n n
())
1
1(11)
2(k
n n k k n n +-=+ )1
21121(211
41)
3(2
+--=
-n n n n
n n n -+=++11
1)
4( )(1
1)
5(n k n k k
n n -+=
++
n
n n
a a a log )1(log )1
1(log )6(-+=+
注意:裂开后,两项之差前面的系数为
小分母
大分母-1
【典例1】形如)(1k n n a n
+=型
{}{}{}n
n n
n n n n
n n n T n b s b a n a a s s n a 项和的前求数列设项公式。

是等比数列,并求其通证明数列都成立。

对任意的正整数且满足项和为的各项为正数,前已知数列,1
)2()1(324,2=-+= ⎩⎨
⎧≥-==-2
,1
n ,11n S S S a a S n n n n n ,得用公式求分析:已知
下面求n>1时,
(1)
【典例2】形如k
n n a n
++
=
1型 {}2019
,,)()1(1
24)(S S n a N n n f n f a x x f n n n a
求项和为的前记数列,
令),,的图像过点(已知函数+∈++=
=
解析:
【规律方法】利用裂项相消法求和的注意事项。

1、抵消后并不定只剩下第一项和最后一项,也有可能是前面两项,和后两项;或者是前面几项,后面几项。

2、将通项裂开后,有时需要调整前面的系数,系数为:裂开的两项分母之差的倒数。

相关文档
最新文档