二元一次方程组知识点归纳及解题技巧
二元一次方程求解技巧

二元一次方程求解技巧解二元一次方程是初中数学中的一个重要知识点,掌握解题技巧能够帮助学生更好地理解和应用这个概念。
下面是一些常用的二元一次方程求解技巧。
一、准备工作在解二元一次方程之前,需要先了解一些基本概念和方法。
1. 二元一次方程:形如ax + by = c的方程,其中a、b、c是已知常数,x、y是未知数。
2. 消元法:通过变换等式,使方程中的某一变量的系数为0,消去这个变量。
3. 代入法:通过将一个方程的一个变量的值代入到另一个方程,找出一个变量的值,然后代入到其中一个方程中,求另一个变量的值。
4. 相减法:将两个方程相减,消掉一个变量的平方项,得到只含有一个变量的一次方程。
5. 相加法:将两个方程相加,消掉一个变量的平方项,得到只含有一个变量的一次方程。
二、常用的二元一次方程求解技巧1. 消元法通过改变方程的形式,使其中一个变量的系数为0,消去这个变量。
例如,对于方程组:2x + 3y = 73x - 2y = 8为了消去变量x,将第一个方程乘以3,第二个方程乘以2,得到:6x + 9y = 216x - 4y = 16两个方程相减,消去变量x:(6x + 9y) - (6x - 4y) = 21 - 1613y = 5解得y = 5/13。
将y的值代入第一个方程,求出x的值:2x + 3 * (5/13) = 72x + 15/13 = 72x = 7 - 15/13解得x = (7 - 15/13) * 13/2= (91 - 15) / 13= 76/13。
2. 代入法将一个方程的一个变量的值代入到另一个方程,找出一个变量的值,然后代入到其中一个方程中,求另一个变量的值。
例如,对于方程组:2x + 3y = 73x - 2y = 8将第一个方程中的x代入到第二个方程中,得到:3 * (7 - 3y)/2 - 2y = 821 - 9y - 4y = 16-13y = -5解得y = -5 / -13 = 5/13。
二元一次方程组知识点总结及难点提升

1 二元一次方程组1、二元一次方程:方程中含有两个未知数,并且所含未知数的项的次数都是1.2、二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程.3、二元一次方程的一个解:适合一个二元一次方程的一组未知数的值.二元一次方程组的解:二元一次方程组中各个方程的公共解.4、二元一次方程组的解法:解二元一次方程的基本思想是“消元”。
(1)代入消元法(简称“代入法” ):代入法的主要步骤:将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代入另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程.(2)加减消元法(简称“加减法” ):加减法的主要步骤:通过两式相加(减)消去其中一个未知数,让二元一次方程组为一元一次方程求解.知识点一:二元一次方程(组)有关概念;二元一次方程(组)的识别;方程(组)的解1、判断下列方程(或方程组)是否为二元一次方程(或二元一次方程组)。
(1)2x-y =3; (2) ; (3);(4); (5);2、下列方程是二元一次方程的是( )A 、x +2B 、x ²+2y =2C 、41=+y xD 、23=+y x3、二元一次方程5a -11b=21 ( )A .有且只有一解B .有无数解C .无解D .有且只有两解4、在下列三对数中:①⎩⎨⎧==22y x ;②⎩⎨⎧-=-=91y x ;③⎩⎨⎧-==13y x , 是方程3x +y =8的解, 是2 方程2x -y =7的解,方程组⎩⎨⎧=-=+7283y x y x 的解是 。
(填序号) 5、由2x -3y -4=0,可以得到用x 表示y 的式子为 .6、方程9x -13y =12,用含x 的代数式表示y ,则 ;用含y 的代数式表示x ,则 。
7、已知⎩⎨⎧-==11y x 是方程2x -ay =3的一个解,那么a 的值是 。
8、已知⎩⎨⎧=-=32y x 是方程3x -3y =m 和5x +y =n 的公共解,则m ²-3n = 。
完整版)二元一次方程组知识点及典型例题

完整版)二元一次方程组知识点及典型例题二元一次方程组小结与复一、知识梳理一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。
2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。
任何一个二元一次方程都有无数个解。
3.方程组和方程组的解1) 方程组:由几个方程组成的一组方程叫作方程组。
2) 方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。
4.二元一次方程组和二元一次方程组的解1) 二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
2) 二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。
二)二元一次方程组的解法:1.代入消元法2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。
二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成ax+by+c=(a,b,c为已知数,且a≠0,b≠0)的形式,这种形式叫二元一次方程的一般形式。
练1:下列方程,哪些是二元一次方程,哪些不是?A) 6x-2=5z+6xB) m/11+yx=7C) x-yD) xy+2x+y=1练2:若方程(m-1)x+3y5n-9=4是关于x、y的二元一次方程,求mn的值。
练3:若方程(2m-6)x|n|-1+(n+2)ym-8=1是二元一次方程,则m=_______,n=__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。
一)代入消元法:1.直接代入例1:解方程组y=2x-3。
4x-3y=1.2.变形代入例2:解方程组x+y=90y=3x-75x+2y=8x=15-2y5x-y=9。
3x+4y=10.3.跟踪训练:1) {2x-y=-4。
4x-5y=-23.2) {3x+5y=13。
3x-2y=5.3) {3x+5y=20。
二元一次方程组求解题技巧

二元一次方程组求解题技巧解二元一次方程组的方法有多种,可以通过代入法、消元法、等价变形法等进行求解。
下面我将简要介绍一些解二元一次方程组的基本技巧。
1. 代入法:代入法是最直观也最简单的一种求解二元一次方程组的方法。
具体做法是将其中一个方程中的一个变量用另一个方程中的一个变量表示出来,然后将代入到另一个方程中进行求解。
例如,给定方程组:2x + 3y = 7 ----(1)4x - y = 1 ----(2)选取第一个方程中的x或y作为参数,将其代入到第二个方程中可以得到:4x - (7-2x)/3 = 1解方程得到x的值,然后将x的值代入到第一个方程中即可得到y的值。
2. 消元法:消元法是通过消去一个变量,将二元一次方程组化成只含有一个变量的一元一次方程,从而求解出另一个变量的值。
具体做法是通过适当的加减或乘除运算使得两个方程的系数相等或相差一个常数倍,然后两个方程相减或相加消去一个变量。
例如,给定方程组:2x + 3y = 7 ----(1)4x - y = 1 ----(2)将第二个方程乘以2,得到:8x - 2y = 2 ----(3)将(1)与(3)相减,即可消去变量x,然后求解y的值。
将y的值代入到任一方程中,即可求解出x的值。
3. 等价变形法:等价变形法是通过对方程组进行合理的变形,使得方程形式更简化或更容易代入相互消去,从而得到方程组的解。
具体做法是通过合并同类项,移项以及对方程进行等号互换等方式使方程组求解更方便。
例如,给定方程组:2x + 3y = 7 ----(1)4x - y = 1 ----(2)将方程(1)乘以2,得到:4x + 6y = 14 ----(4)将(4)和(2)相加,得到:10y = 15解方程可以得到y的值,然后将y的值代入到方程(1)或(2)中求解出x的值。
总结:解二元一次方程组可以灵活运用代入法、消元法和等价变形法等多种方法。
在运用时需要根据具体的方程组形式和求解的需要选择合适的方法。
人教版_七年级_下期_第八章_二元一次方程组知识点梳理及例题解析

第八章二元一次方程组第一节、知识梳理二元一次方程组一、学习目标1.了解并认识二元一次方程的概念.2.了解与认识二元一次方程的解.3.了解并掌握二元一次方程组的概念并会求解.4. 掌握二元一次方程组的解并知道与二元一次方程的解的区别.5.掌握代入消元法和加减消元法,能根据二元一次方程组的具体形式选择适当的解法。
二、知识概要1.二元一次方程:像x+y=2这样的方程中含有两个未知数(x和y),并且未知数的指数都是1,这样的方程叫做二元一次方程.2.二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.3.二元一次方程组:把两个方程x+y=3和2x+3y=10合写在一起为像这样,把两个二元一次方程组合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.5.代入消元法:由二元一次方程组中的一个方程,把一个未知数用含另一个未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.6.加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.三、重点难点代入消元法和加减消元法解二元一次方程组是本节学习的重点,也是本节学习的难点.五、二元一次方程组的实际应用一、学习目标将实际问题转化为纯数学问题,建立数学模型(即二元一次方程组),解决问题.二、知识概要列方程组解应用题的常见类型主要有:1. 行程问题.包括追及问题和相遇问题,基本等量关系为:路程=速度×时间;2. 工程问题.一般分为两类,一类是一般的工程问题,一类是工作总量为1的工程问题.基本等量关系为:工作量=工作效率×工作时间;3. 和差倍分问题.基本等量关系为:较大量=较小量+多余量,总量=倍数× 1倍量;4. 航速问题.此类问题分为水中航行和风中航行两类,基本关系式为:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度-水(风)速5. 几何问题、年龄问题和商品销售问题等.三、重点难点建立数学模型(二元一次方程组)是本周的重点,也是本周的难点.四、知识链接本周知识是上周学的二元一次方程组的实际应用,为解决一些实际问题提供了一个模型,一种方法.五、中考视点二元一次方程组是中考重点考查的内容之一,主要有以下几个方面:(1)从实际数学问题中构造一次方程组,解决有关问题;(2)能从图表中获得有关信息,列方程组解决问题.第二节、教材解读1.二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的方程叫做二元一次方程.从定义中可以看出:二元一次方程具备以下四个特征:(1)是方程;(2)有且只有两个未知数;(3)方程是整式方程,即各项都是整式;(4)各项的最高次数为1.例如:像+y=3中,不是整式,所以+y=3就不是二元一次方程;像x+1=6,x+y-3z=8,不是含有两个未知数,也就不是二元一次方程;像xy+6=1中,虽然含有两个未知数x、y且次数都是1,但未知项xy的次数为2,所以也不是二元一次方程,所以二元一次方程必须同时具备以上四点.2.二元一次方程组含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组,它有两个特点:一是方程组中每一个方程都是一次方程;二是整个方程组中含有两个且只含有两个未知数,如一次方程组.3.二元一次方程的一个解符合二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解.一般地二元一次方程的解有无数个,例如x+y=2中,由于x、y只是受这个方程的约束,并没有被取某一个特定值而制约,因此,二元一次方程有无数个解.4.二元一次方程组的解二元一次方程组中各个方程的公共解叫做这个二元一次方程组的解.定义中的公共解是指同时使二元一次方程组中的每一个方程左右两边的值都相等,而不是使其中一个或部分左右两边的值相等,由于未知数的值必须同时满足每一个方程,所以,二元一次方程组一般情况下只有惟一的一组解,即构成方程组的两个二元一次方程的公共解.第三节、错题剖析【误解】A或D.【思考与分析】二元一次方程组的解是使方程组中的每一个方程的左右两边的值都相等的两个未知数的值,而中的一个方程的解,并不能让另一方程左、右两边相等,所以它们都不是这个方程组的解,只有C是正确的.验证方程组的解时,要把未知数的值代入方程组中的每个方程中,只有使每个方程的左、右两边都相等的未知数的值才是方程组的解.【正解】C.把式③代入式②得8-3y+3y=8,0×y=0.所以y可以为任何值.所以原方程组有无数组解.【思考与分析】代入法是求二元一次方程组的解的一种基本方法.它的一般步骤是:(1)从方程组中选一个系数比较简单的方程,将这个方程中的一个未知数,用含另一个未知数的代数式表示出来,如本题中方程②中的x,用含y的代数式表示为x=8-3y;(2)将这个变形所得的代数式代入另一个方程中,消去一个未知数,得到一个一元一次方程;这里要求代入“另一个”方程,“误解”把它代入到变形的同一个方程中,得到了一个关于y的恒等式,出现了错误.(3)解这个一元一次方程,求出一个未知数的值;(4)将求出的未知数的值代入前面变形所得的式子中,求出另一个未知数,从而得到方程组的解.【正解】由式②得x=8-3y③把式③代入式①得2(8-3y)+5y=-21,解得y=37.把y=37代入式③得x=8-3×37,解得x=-103. 所以【例3】解方程组【错解】方程①- ②得:-3y=0,所以y=0,把y=0,代入②得x=-2,所以原方程组的解为【分析】在①- ②时出错.【正解】①- ②得:(x-2y)-(x-y)=2-(-2)x-2y-x+y=4-y=4y=-4把y=-4代入②得x=-6,所以原方程组的解为【小结】两方程相减时,易出现符号错误,所以要特别细心.【例4】某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩.游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人;而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的,问晚会上男、女生各有几人?错解: 设晚会上男生有x人,女生有y人.根据题意,得把①代入②,得x=(2x-1),解得x=3.把x=3代入②,得y=5.所以答:晚会上男生3人,女生5人.【分析】本题错在对题中的数量关系没有弄清.每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的2倍少1人,这里涂蓝色油彩的人数不是题中所有的男生人数,而是除自己之外的男生人数,同理,女生看到的人数也应是除自己以外的女生人数.正解: 设晚会上男生有x人,女生有y人.根据题意,得把③代入④,得x=[2(x-1)-1-1],解得x=12.把x=12代入④,得y=21.所以答:晚会上男生12人,女生21人.解二元一次方程组的问题看似简单,但如果你稍不注意,就有可能犯如下错误.【例5】解方程组【错解】方程①+②得:2x=4,原方程组的解是:x=2【错因分析】错解只求出了一个未知数x,没有求出另一个未知数y.所以求解是不完整的.【正解】(接上)将x=2带入②得:y=0.所以原方程组的解为【小结】用消元法来解方程组时,只求出一个未知数的解,就以为求出了方程组的解,这是对二元一次方程组的解的意义不明确的表现.应牢记二元一次方程组的解是一组解,而不是一个解.【例6】解方程组【错解】由式①得y=2x-19 ③把式③代入式②得2(2x-19-【错因分析】“错解”在把变形后的式③代入式②时,符号书写出现了错误.当解比较复杂的方程组时,应先化简,在求出一个未知数后,可以将它代入化简后的方程组里的任意一个方程中,求出第二个未知数,这样使得运算方便,避免出现错误.【正解一】化简原方程组得【正解二】化简原方程组得①×6+②得17x=114,【小结】解二元一次方程组可以用代入法,也可以用加减法.一般地说,当方程组中有一个方程的某一个未知数的系数的绝对值是1或有一个方程的常数项是0时,用代入法比较方便;当两个方程中某一未知数的系数的绝对值相等或成整数倍时,用加减法比较方便.第四节、思维点拨【例1】小红到邮局寄挂号信,需要邮资3元8角. 小红有票额为6角和8角的邮票若干张,问各需多少张这两种面额的邮票?【思考与解】要解此题,第一步要找出问题中的数量关系.寄信需邮资3元8角,由此可知所需邮票的总票额要等于所需邮资3.8元. 再接着往下找数量关系,所需邮票的总票额等于所需6角邮票的总票额加上所需8角邮票的总票额. 所需6角邮票的总票额等于单位票额6角与所需6角邮票数目的乘积. 同样的,所需8角邮票的总票额等于单位票额8角与所需8角邮票数目的乘积. 这就是题中蕴含的所有数量关系.第二步要抓住题中最主要的数量关系,构建等式.由图可知最主要的数量关系是:所需邮资=所需邮票的总票额.第三步要在构建等式的基础上找出这个数量关系中牵涉到哪些已知量和未知量.已知量是所需邮资3.8元,两种邮票的单位票额0.6元和0.8元,未知量是两种邮票的数目.第四步是设元(即设未知量),并用数学符号语言将数量关系转化为方程. 设0.6元的邮票需x张,0.8元的邮票需y张,用字母和运算符号将其转化为方程:0.6x+0.8y=3.8.第五步是解方程,求得未知量. 由于两种邮票的数目都必须是自然数,此二元一次方程可以用列表尝试的方法求解.方程的解是第六步是检验结果是否正确合理. 方程的两个解中两种邮票的数目均为正整数,将两解代入方程后均成立,所以结果是正确合理的.第七步是答,需要1张6角的邮票和4张8角的的邮票,或需要5张6角的邮票和1张8角的的邮票.【例2】小聪全家外出旅游,估计需要胶卷底片120张. 商店里有两种型号的胶卷:A型每卷36张底片,B型每卷12张底片. 小聪一共买了4卷胶卷,刚好有120张底片. 求两种胶卷的数量.【思考与解】第一步:找数量关系. A型胶卷数+B型胶卷数=胶卷总数,A型胶卷的底片总数+B型胶卷的底片总数=底片总数. A型胶卷的底片总数=每卷A型胶卷所含底片数×A型胶卷数,B型胶卷的底片总数=每卷B型胶卷所含底片数×B型胶卷数.第二步:找出最主要的数量关系,构建等式. A型胶卷数+B型胶卷数=胶卷总数,A型胶卷的底片总数+B型胶卷的底片总数=底片总数.第三步:找出未知量和已知量. 已知量是:胶卷总数,度片总数,每卷A型胶卷所含底片数,每卷B型胶卷所含底片数;未知量是:A型胶卷数,B型胶卷数.第四步:设元,列方程组. 设A型胶卷数为x,B型胶卷数为y,根据题中数量关系可列出方程组:第五步:答:A型胶卷数为3,B型胶卷数为1.【小结】我们在解这类题时,一般就写出设元、列方程组并解出未知量和答这几步,如有必要可以加上验证这一步.其他步骤可以省略.【例3】用加减法解方程组【思考与分析】经观察,我们发现两个方程中y的系数互为相反数,故将两方程相加,消去y.解:①+②,得4x=8.解得x=2.把x=2代入①,得2+2y=3.解得y=.所以,原方程组的解为:【思考与分析】经观察,我们发现x的系数成倍数关系,故先将方程①×2再与方程②作差消去x较好.解:①×2,得4x-6y=16. ③②-③,得11y=-22.解得y=-2.把y=-2代入①,得2x-3×(-2)=8. 解得x=1.所以原方程组的解为【思考与分析】如果用代入法解这个方程组,就要从方程组中选一个系数比较简单的方程进行变形,用含一个未知数的式子表示另一个未知数,然后代入另一个方程.本题中,方程②的系数比较简单,应该将方程②进行变形.如果用加减法解这个方程组,应从计算简便的角度出发,选择应该消去的未知数.通过观察发现,消去x比较简单.只要将方程②两边乘以2 ,然后将两方程相减即可消去x.解法1:由②得x=8-2y.③把③代入①得2(8-2y)+5y=21,解得y=5.把y=5代入③得x=-2.所以原方程组的解为:解法2:②×2得2x+4y=16. ③①-③得2x+5y-(2x+4y)=21-16,解得y=5.把y=5代入②得x=-2.所以原方程组的解为【小结】我们解二元一次方程组时,用到的都是消元的思想,用代入法还是加减法解题,原则上要以计算简便为依据.【例6】用代入法解方程组【思考与分析】经观察,我们发现方程①为用y表示x的形式,故将①代入②,消去x.解:把①代入②,得3(y+3)-8y=14.解得y=-1.把y=-1代入①,得x=2.所以原方程组的解为【例7】用代入法解方程组【思考与分析】经观察比较,我们发现方程①更易于变为用含一个未知数的代数式表示另一个未知数的形式,故选择①变形,消去y.解:由①,得y=2x-5. ③把③代入②,得3x+4(2x-5)=2.解得x=2.把x=2代入③,得y=-1.所以原方程组的解为:【例8】甲、乙两厂,上月原计划共生产机床90台,结果甲厂完成了计划的112%,乙厂完成了计划的110%,两厂共生产机床100台,求上月两厂各超额生产了多少台机床?【思考与分析】我们可以采用两种方法设未知数,即直接设法和间接设法.直接设法就是题目要求什么就设什么为未知数,本题中就是设上月甲厂超额生产x台,乙厂超额生产y台;而间接设法就是问什么并不设什么,而是采用先设出一个中间未知数,求出这个中间未知数,再利用它同题中要求未知数的联系,解出所要求的未知数,题中我们可设上月甲厂原计划生产x台,乙厂原计划生产y台.解法一:直接设法.设上月甲厂超额生产x台,乙厂超额生产y台,则共超额了100-90=10(台),而甲厂计划生产的台数是台,乙厂计划生产的台数是台.根据题意,得答:上月甲厂超额生产6台,乙厂超额生产4台.解法二:间接设法.设上月甲厂原计划生产x台,乙厂原计划生产y台.根据题意,得所以x×(112%-1)=50×12%=6,y×(110%-1)=40×10%=4.答:上月甲厂超额生产6台,乙厂超额生产4台.【例9】某学校组织学生到100千米以外的夏令营去,汽车只能坐一半人,另一半人步行.先坐车的人在途中某处下车步行,汽车则立即回去接先步行的一半人.已知步行每小时走4千米,汽车每小时走20千米(不计上下车的时间),要使大家下午5点同时到达,问需何时出发.【思考与分析】我们从行程问题的3个基本量去寻找,可以发现,速度已明确给出,只能从路程和时间两个量中找出等量关系,有题意知,先坐车的一半人,后坐车的一半的人,车三者所用时间相同,所以根据时间来列方程组.如图所示是路程示意图,正确使用示意图有助于分析问题,寻找等量关系.解:设先坐车的一半人下车点距起点x千米,这个下车点与后坐车的一半人的上车点相距y千米,根据题意得化简得从起点到终点所用的时间为所以出发时间为:17-10=7.即早晨7点出发.答:要使学生下午5点到达,必须早晨7点出发.【例10】小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%的教育储蓄,另一种是年利率为2.25%的一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)【思考与分析】设教育储蓄存了x元,一年定期存了y元,我们可以根据题意可列出表格:解:设存一年教育储蓄的钱为x元,存一年定期存款的钱为y元,则答:存教育储蓄的钱为1500元,存一年定期的钱为500元.【反思】我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.第五节、竞赛数学【例1】已知方程组的解x,y满足方程5x-y=3,求k的值.【思考与分析】本题有三种解法,前两种为一般解法,后一种为巧解法.(1)由已知方程组消去k,得x与y的关系式,再与5x-y=3联立组成方程组求出x,y 的值,最后将x,y的值代入方程组中任一方程即可求出k的值.(2)把k当做已知数,解方程组,再根据5x-y=3建立关于k的方程,便可求出k的值. (3)将方程组中的两个方程相加,得5x-y=2k+11,又知5x-y=3,所以整体代入即可求出k的值.把代入①,得,解得k=-4.解法二:①×3-②×2,得17y=k-22,解法三:①+②,得5x-y=2k+11.又由5x-y=3,得2k+11=3,解得k=-4.【小结】解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解法了.【例2】某种商品价格为每件33元,某人身边只带有2元和5元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则付款方式有哪几种(指付出2元和5元钱的张数)?哪种付款方式付出的张数最少?【思考与分析】本题我们可以运用方程思想将此问题转化为方程来求解. 我们先找出问题中的数量关系,再找出最主要的数量关系,构建等式. 然后找出已知量和未知量设元,列方程组求解.最后,比较各个解对应的x+y的值,即可知道哪种付款方式付出的张数最少.解:设付出2元钱的张数为x,付出5元钱的张数为y,则x,y的取值均为自然数. 依题意可得方程:2x+5y=33.因为5y个位上的数只可能是0或5,所以2x个位上数应为3或8.又因为2x是偶数,所以2x个位上的数是8,从而此方程的解为:由得x+y=12;由得x+y=15. 所以第一种付款方式付出的张数最少.答:付款方式有3种,分别是:付出4张2元钱和5张5元钱;付出9张2元钱和3张5元钱;付出14张2元钱和1张5元钱.其中第一种付款方式付出的张数最少.【例3】解方程组【思考与分析】本例是一个含字母系数的方程组.解含字母系数的方程组同解含字母系数的方程一样,在方程两边同时乘以或除以字母表示的系数时,也需要弄清字母的取值是否为零.解:由①,得y=4-mx,③把③代入②,得2x+5(4-mx)=8,解得(2-5m)x=-12,当2-5m=0,即m=时,方程无解,则原方程组无解.当2-5m≠0,即m≠时,方程解为将代入③,得故当m≠时,原方程组的解为【小结】含字母系数的一次方程组的解法和数字系数的方程组的解法相同,但注意求解时需要讨论字母系数的取值情况.对于x、y的方程组中,a1、b1、c1、a2、b2、c2均为已知数,且a1与b1、a2与b2都至少有一个不等于零,则①时,原方程组有惟一解;②时,原方程组有无穷多组解;③时,原方程组无解.【例4】某中学新建了一栋4层的教学大楼,每层楼有8间教室,这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了训练:当同时开启一道正门和两道侧门时,2分钟内可以通过560名学生;当同时开启一道正门和一道侧门时,4分钟可以通过800名学生.(1)求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率将降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,问:建造的这4道门是否符合安全规定?请说明理由.【思考与解】(1)设平均每分钟一道正门可通过x名学生,一道侧门可以通过y名学生.根据题意,得所以平均每分钟一道正门可以通过学生120人,一道侧门可以通过学生80人.(2)这栋楼最多有学生4×8×45=1440(人).拥挤时5分钟4道门能通过5×2×(120+80)×(1-20%)=1600(人).因为1600>1440,所以建造的4道门符合安全规定.答:平均每分钟一道正门和一道侧门各可以通过120名学生、80名学生;建造的这4道门符合安全规定.【例5】某水果批发市场香蕉的价格如下表:张强两次共购买香蕉50千克(第二次多于第一次),共付款264元,请问张强第一次、第二次分别购买香蕉多少千克?【思考与分析】要想知道张强第一次、第二次分别购买香蕉多少千克,我们可以从香蕉的价格和张强买的香蕉的千克数以及付的钱数来入手.通过观察图表我们可知香蕉的价格分三段,分别是6元、5元、4元.相对应的香蕉的千克数也分为三段,我们可以假设张强两次买的香蕉的千克数分别在某段范围内,利用分类讨论的方法求得张强第一次、第二次分别购买香蕉的千克数.解:设张强第一次购买香蕉x千克,第二次购买香蕉y千克.由题意,得0<x<25.①当0<x≤20,y≤40时,由题意,得②当0<x≤20,y>40时,由题意,得(与0<x≤20,y≤40相矛盾,不合题意,舍去).③当20<x<25时,25<y<30.此时张强用去的款项为5x+5y=5(x+y)=5×50=250<264(不合题意,舍去).综合①②③可知,张强第一次购买香蕉14千克,第二次购买香蕉36千克.答:张强第一次、第二次分别购买香蕉14千克、36千克.【反思】我们在做这道题的时候,一定要考虑周全,不能说想出了一种情况就认为万事大吉了,要进行分类讨论,考虑所有的可能性,看有几种情况符合题意.【例6】用如图1中的长方形和正方形纸板做侧面和底面,做成如图2的竖式和横式两种无盖纸盒. 现在仓库里有1000张正方形纸板和2000张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?【思考与分析】我们已经知道已知量有正方形纸板的总数1000,长方形纸板的总数2000,未知量是竖式纸盒的个数和横式纸盒的个数. 而且每个竖式纸盒和横式纸盒都要用一定数量的正方形纸板和长方形纸板做成,如果我们知道这两种纸盒分别要用多少张正方形纸板和长方形纸板,就能建立起如下的等量关系:每个竖式纸盒要用的正方形纸板数×竖式纸盒个数+ 每个横式纸盒要用的正方形纸板数×横式纸盒个数= 正方形纸板的总数每个竖式纸盒要用的长方形纸板数×竖式纸盒个数+ 每个横式纸盒要用的长方形纸板数×横式纸盒个数= 长方形纸板的总数通过观察图形,可知每个竖式纸盒分别要用1张正方形纸板和4张长方形纸板,每个横式纸盒分别要用2张正方形纸板和3张长方形纸板.解:由题中的等量关系我们可以得到下面图表所示的关系.设竖式纸盒做x个,横式纸盒做y个. 根据题意,得①×4-②,得5y=2000,解得y=400.把y=400代入①,得x+800=1000,解得x=200.所以方程组的解为因为200和400均为自然数,所以这个解符合题意.答:竖式纸盒做200个,横式纸盒做400个,恰好将库存的纸板用完.第六节、本章训练基础训练题一、填空题(每题7分,共35分)1.一个两位数的数字之和是7,这个两位数减去27,它的十位和个位上的数字就交换了位置,则这个两位数是.2. 已知甲、乙两人从相距36km的两地同时相向而行,1h相遇.如果甲比乙先走h,那么在乙出发后h与甲相遇.设甲、乙两人速度分别为xkm/h、ykm/h,则x=,y=.3. 甲、乙二人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就能追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,两人每秒钟各跑的米数是.4.一队工人制造某种工件,若平均每人一天做5件,全队一天就超额30件;若平均每人一天做4件,全队一天就比定额少完成20件.若设这队工人有x人,全队每天的数额为y件,则依题意可得方程组.5.某次知识竞赛共出了25道题,评分标准如下:答对1题加4分;答错1题扣1分;不答记0分.已知小明不答的题比答错的题多2道,他的总分为74分,则他答对了.二、选择题(每题7分,共35分)1.一个两位数的十位数字比个位数字小2,且能被3整除,若将十位数字与个位数字交换又能被5整除,这个两位数是().A. 53B. 57C. 35D. 75。
初中数学知识点总结:二元一次方程(组)及其解法

初中数学知识点总结:二元一次方程(组)及其解法知识点总结一.二元一次方程(组)的相关概念1.二元一次方程:含有两个未知数并且未知项的次数是1的方程叫做二元一次方程。
2.二元一次方程组:二元一次方程组两个二元—次方程合在一起就组成了一个二元一次方程组。
3.二元一次方程的解集:(1)二元一次方程的解适合一个二元一次方程的每一对未知数的值.叫做这个二元一次方程的一个解。
(2)二元一次方程的解集对于任何一个二元一次方程,令其中一个未知数取任意二个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集。
4.二元一次方程组的解:二元一次方程组可化为使方程组中的各个方程的左、右两边都相等的未知数的值,叫做方程组的解。
二.利用消元法解二元一次方程组解二元(三元)一次方程组的一般方法是代入消元法和加减消元法。
1.解法:(1) 代入消元法是将方程组中的其中一个方程的未知数用含有另一个未知数的代数式表示,并代入到另一个方程中去,消去另一个未知数,得到一个解。
代入消元法简称代入法。
(2)加减消元法利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加或相减,以消去这个未知数,使方程只含有一个未知数而得以求解。
这种解二元一次方程组的方法叫做加减消元法,简称加减法。
用加减法消元的一般步骤为:①在二元一次方程组中,若有同一个未知数的系数相同(或互为相反数),则可直接相减(或相加),消去一个未知数;②在二元一次方程组中,若不存在①中的情况,可选择一个适当的数去乘方程的两边,使其中一个未知数的系数相同(或互为相反数),再把方程两边分别相减(或相加),消去一个未知数,得到一元一次方程;③解这个一元一次方程;④将求出的一元一次方程的解代入原方程组系数比较简单的方程,求另一个未知数的值;⑤把求得的两个未知数的值用大括号联立起来,这就是二元一次方程组的解。
二元一次方程组知识点汇总及练习(超详细)
二元一次方程组知识点汇总及练习(超详细)二元一次方程组知识点梳理及经典练知识点1:二元一次方程组的定义1.二元一次方程1)定义:含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程。
2)三个条件:①方程中的元指的是未知数,即二元一次方程有且只有两个未知数。
②含有未知数的项的次数都是1.③二元一次方程的左右两边都必须是等式。
3)含有未知数的项的系数不等于零,且两未知数的次数均为1.即若ax+by=c是二元一次方程,则a≠0,b≠0且m=1,n=1.2.二元一次方程组1)定义:由两个二元一次方程所组成的方程组叫二元一次方程组。
2)三个条件:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1.③方程组中每个方程均为整式方程。
3.二元一次方程组的解1)定义:使二元一次方程组中两个方程左右两边的值都相等的两个未知数的值叫做二元一次方程组的解。
2)常考题型:①根据定义判断。
②已知方程组的解,求方程组待定系数(将解代入方程)。
③列方程组求相关字母的值。
知识点2:解二元一次方程组1.代入消元法1)定义:通过代入消去一个未知数,将方程组转化为一个一元一次方程来解,这种解法叫做代入消元法。
2)用代入消元法解二元一次方程组的步骤:①从方程组中选取一个系数比较简单的方程,把其中的一个未知数用含另一个未知数的式子表示出来。
②把①中所得的方程代入另一个方程,消去一个未知数。
③解所得到的一元一次方程,求得一个未知数的值。
④把所求得的一个未知数的值代入①中求得的方程,求出另一个未知数的值,从而确定方程组的解。
例:解方程组:2x-7y=83x-8y-10=02.加减消元法1)定义:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
2)加减消元法解方程步骤:①方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,就用适当的整数乘方程两边,使一个未知数的系数互为相反数或相等。
加减法解二元一次方程组知识点
加减法解二元一次方程组知识点
解二元一次方程组涉及到加减法的知识点,主要包括以下几个
方面:
1. 加减法基本原理,在解二元一次方程组时,我们通常会使用
加减法来消去一个变量,以便求解另一个变量。
这涉及到加减法的
基本原理和运用。
2. 消元法,在解二元一次方程组时,通过加减法可以实现消元,即通过加减法将两个方程中的某一变量的系数变为相等或相反数,
从而实现消去这一变量的目的,使得方程组变得更容易求解。
3. 方程组的加减法解法,具体来说,对于二元一次方程组,我
们可以通过加减法将两个方程相加或相减,从而消去一个变量,然
后求解另一个变量。
这需要灵活运用加减法的性质和技巧,以达到
简化方程组、求解变量的目的。
总之,解二元一次方程组涉及到加减法的基本原理、消元法和
方程组的加减法解法等知识点。
在实际应用中,灵活运用这些知识
点可以帮助我们更快更准确地解决二元一次方程组的问题。
二元一次方程知识点总结
二元一次方程知识点总结二元一次方程是数学中的重要概念之一,它能够帮助我们解决实际问题,并在代数学中具有广泛的应用。
本文将对二元一次方程的定义、特点、解法以及应用进行总结,以便读者更好地理解和掌握这一概念。
一、二元一次方程的定义与特点二元一次方程是指一个含有两个变量(通常表示为x和y)的一次方程,一般的表示形式为Ax + By = C,其中A、B、C为已知数,且A和B不同时为零。
二元一次方程与一元一次方程(只含一个变量)相比,具有更多的未知元和方程的复杂性,其解集通常是一个平面直线,因此也被称为线性方程。
二、二元一次方程的解法1. 消元法消元法是二元一次方程求解过程中常用的方法之一。
其基本思想是通过将方程组中的一个方程转化为另一个方程的形式,以消去其中一个变量,从而得到只含有一个变量的方程,进而求解出变量的值。
以方程组为例,假设有以下二元一次方程组:a1x + b1y = c1a2x + b2y = c2要使用消元法求解该方程组,可以通过以下步骤进行:a. 将其中一个方程乘以某一倍数,使得两个方程中的x或y的系数相等或互为相反数;b. 通过相加或相减,消去其中一个变量,得到只含有另一个变量的方程;c. 求解这个方程,求出变量的值;d. 将求得的变量值代入原方程组中,解出另一个变量的值。
2. 代入法代入法是另一种常用的二元一次方程求解方法。
其基本思想是先利用其中一个方程解出一个变量的值,然后将此值代入另一个方程中,从而得到只含有一个变量的方程,进而求解出变量的值。
以方程组为例,假设有以下二元一次方程组:a1x + b1y = c1a2x + b2y = c2要使用代入法求解该方程组,可以通过以下步骤进行:a. 从其中一个方程中解出一个变量(通常选择系数较小或系数为1的变量),得到该变量的表达式;b. 将该表达式代入另一个方程中,得到只含有一个变量的方程;c. 求解这个方程,求出变量的值;d. 将求得的变量值代入原方程组中,解出另一个变量的值。
二元一次方程知识点总结及解题技巧---广东工业大学陈光春
二元一次方程组知识点归纳及解题技巧汇总1、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
2、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
3、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
4、解法:一元一次方程的解法:去分母→去括号→移项→合并同类项→系数化成1→解。
二元一次方程组的解法:⑴基本思想:“消元”⑵方法:①代入法②加减法6、一元二次方程:1.定义及一般形式:2.解法:⑴直接开平方法(注意特征)⑵配方法(注意步骤—推倒求根公式)⑶公式法:⑷因式分解法(特征:左边=0)3.根的判别式:4.根与系数顶的关系:逆定理:若,则以为根的一元二次方程是:7、可化为一元二次方程的方程:分式方程:⑴定义⑵基本思想:⑶基本解法:①去分母法②换元法(如,)⑷验根及方法无理方程:⑴定义⑵基本思想:⑶基本解法:①乘方法(注意技巧!!)②换元法(例,)⑷验根及方法3.简单的二元二次方程组:由一个二元一次方程和一个二元二次方程组成的二元二次方程组都可用代入法解。
8、代入消元法解二元一次方程组:(1)基本思路:未知数又多变少。
(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
(4)代入法解二元一次方程组的一般步骤:1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。
3、解出这个一元一次方程,求出x的值,即“解”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二元一次方程组知识点归纳及解题技巧一、基本定义:二元一次方程定义:一个含有两个未知数,并且未知数的都指数是1的整式方程,叫二元一次方程。
二元一次方程组定义:两个结合在一起的共含有两个未知数的一次方程,叫二元一次方程组。
二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。
二元一次方程组的解:二元一次方程组的两个公共解,叫做二元一次方程组的解。
二、解的情况:二元一次方程组的解有三种情况:1.有一组解如方程组x+y=5①6x+13y=89②x=-24/7 y=59/7 为方程组的解2.有无数组解如方程组x+y=6①2x+2y=12②因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解如方程组x+y=4①2x+2y=10②,因为方程②化简后为x+y=5 这与方程①相矛盾,所以此类方程组无解。
三、二元一次方程的解法:1、一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种:1、代入消元法2、加减消元法3、教科书中没有的几种解法(一)加减-代入混合使用的方法.例:13x+14y=41 (1)14x+13y=40 (2)解:(2)-(1)得x-y=-1 x=y-1 (3)把(3)代入(1)得13(y-1)+14y=41y=2把y=2代入(3)得x=1所以:x=1,y=2特点:两方程相加减,单个x或单个y,这样就适用接下来的代入消元.(二)换元法例3:x:y=1:45x+6y=29令x=t, y=4t 则方程2可写为:5t+6×4t=2929t=29t=1 所以x=1,y=4四、列方程(组)解应用题(一)、其具体步骤是:⑴审题。
理解题意。
弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么。
⑵设元(未知数)。
①直接未知数②间接未知数(往往二者兼用)。
一般来说,未知数越多,方程越易列,但越难解。
⑶用含未知数的代数式表示相关的量。
⑷寻找相等关系(有的由题目给出,有的由该问题所涉及的等量关系给出),列方程。
一般地,未知数个数与方程个数是相同的。
⑸解方程及检验。
⑹答案。
(二)、常用的相等关系1.行程问题(匀速运动)基本关系:s=vt ⑴相遇问题(同时出发):⑵追及问题(同时出发):⑶水(风)中航行:2.配料问题:溶质=溶液×浓度溶液=溶质+溶剂3.增长率问题:4.工程问题:基本关系:工作量=工作效率×工作时间(常把工作量看着单位“1”)。
5.数字表示问题:如,一个三位数,百位数字为a,十位数字为b,个位数字为c ,则这个三位数为:100a+10b+c ,而不是abc5.几何问题:常用勾股定理,几何体的面积、体积公式,相似形及有关比例性质等。
二元一次方程组练习题(范围:代数: 二元一次方程组)一、选择:1、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;(C )三个解;(D )无数多个解;2、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有( )(A )5个 (B )6个 (C )7个 (D )8个 3、如果⎩⎨⎧=+=-423y x ay x 的解都是正数,那么a 的取值范围是( )(A )a <2; (B )34->a ; (C )342<<-a ; (D )34-<a ; 4、关于x 、y 的方程组⎩⎨⎧=-=+m y x my x 932的解是方程3x +2y =34的一组解,那么m 的值是( )(A )2; (B )-1; (C )1; (D )-2; 5、下列方程组中,是二元一次方程组的是( )(A )⎪⎩⎪⎨⎧=+=+9114yx y x (B )⎩⎨⎧=+=+75z y y x (C )⎩⎨⎧=-=6231y x x (D )⎩⎨⎧=-=-1y x xy y x6、已知方程组⎩⎨⎧-=+=-135b y ax y x 有无数多个解,则a 、b 的值等于( )(A )a =-3,b =-14 (B )a =3,b =-7 (C )a =-1,b =9 (D )a =-3,b =147、若5x -6y =0,且xy ≠0,则yx yx 3545--的值等于( )(A )32 (B )23 (C )1(D )-18、若|3x +y +5|+|2x -2y -2|=0,则2x 2-3xy 的值是( )(A )14 (B )-4 (C )-12 (D )12 三、填空:9、在方程3x +4y =16中,当x =3时,y =________,当y =-2时,x =_______ 若x 、y 都是正整数,那么这个方程的解为___________; 10、方程2x +3y =10中,当3x -6=0时,y =_________; 11、如果0.4x -0.5y =1.2,那么用含有y 的代数式表示的代数式是_____________; 12、若⎩⎨⎧-==11y x 是方程组⎩⎨⎧-=-=+1242a y x b y ax 的解,则⎩⎨⎧==______________b a ; 13、方程|a |+|b |=2的自然数解是_____________; 14、如果x =1,y =2满足方程141=+y ax ,那么a =____________; 15、已知方程组⎩⎨⎧-=+=+m y x ay x 26432有无数多解,则a =______,m =______;16、若方程x -2y +3z =0,且当x =1时,y =2,则z =______;17、若x +y =a ,x -y =1同时成立,且x 、y 都是正整数,则a 的值为________; 18、从方程组)0(030334≠⎩⎨⎧=+-=--xyz z y x z y x 中可以知道,x :z =_______;y :z =________;四、解方程组19、)(6441125为已知数a a y x a y x ⎩⎨⎧=-=+; 20、⎪⎪⎩⎪⎪⎨⎧=++=+125432y x yx y x ;21、⎪⎩⎪⎨⎧=--+=-++0)1(2)1()1(2x y x x x y y x 22、⎪⎪⎩⎪⎪⎨⎧++=++=+=+6253)23(22)32(32523233y x y x yx y x ; 23、 ⎪⎩⎪⎨⎧=-+=+-=-+35351343z y x z y x z y x ; 24、⎪⎪⎨⎧=+-==30325:3:7:4:z y x z x y x ;五、解答题:25x 的系数,解得⎪⎪⎩⎪⎪⎨⎧==475847107y x ;乙看错了方程②中的y 的系数,解得⎪⎪⎩⎪⎪⎨⎧==19177681y x ,若两人的计算都准确无误,请写出这个方程组,并求出此方程组的解;26、使x +4y =|a |成立的x 、y 的值,满足(2x +y -1)2+|3y -x |=0,又|a |+a =0,求a 的值;27、代数式ax 2+bx +c 中,当x =1时的值是0,在x =2时的值是3,在x =3时的值是 28,试求出这个代数式;28、当a 、b 满足什么条件时,方程(2b 2-18)x =3与方程组⎩⎨⎧-=-=-5231b y x y ax 都无解;29、a 、b 、c 取什么数值时,x 3-ax 2+bx +c 与(x -1)(x -2)(x -3)恒等? 30、m 取什么整数值时,方程组⎩⎨⎧=-=+0242y x my x 的解:(1)是正数;(2)是正整数?并求它的所有正整数解。
六、列方程(组)解应用题31、汽车从甲地到乙地,若每小时行驶45千米,就要延误30分钟到达;若每小时行驶50千米,那就可以提前30分钟到达,求甲、乙两地之间的距离及原计划行驶的时间?32、某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68个,扁担40根,问这个班的男女生各有多少人?33、甲、乙两人练习赛跑,如果甲让乙先跑10米,那么甲跑5秒钟就可以追上乙;如果甲让乙先跑2秒钟,那么甲跑4秒钟就能追上乙,求两人每秒钟各跑多少米?34、甲桶装水49升,乙桶装水56升,如果把乙桶的水倒入甲桶,甲桶装满后,乙桶剩下的水,恰好是乙桶容量的一半,若把甲桶的水倒入乙桶,待乙桶装满后则甲桶剩下的水恰好是甲桶容量的31,求这两个水桶的容量。
35、甲、乙两人在A 地,丙在B 地,他们三人同时出发,甲与乙同向而行,丙与甲、乙相向而行,甲每分钟走100米,乙每分钟走110米,丙每分钟走125米,若丙遇到乙后10分钟又遇到甲,求A 、B 两地之间的距离。
36、有两个比50大的两位数,它们的差是10,大数的10倍与小数的5倍的和的201是11的倍数,且也是一个两位数,求原来的这两个两位数。
二元一次方程组测试题一、选择题:1.下列方程中,是二元一次方程的是( ) A .3x -2y=4z B .6xy+9=0 C .1x +4y=6 D .4x=24y - 2.下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩3.二元一次方程5a-11b=21 ()A.有且只有一解B.有无数解C.无解D.有且只有两解4.方程y=1-x与3x+2y=5的公共解是()A.3333...2422 x x x xB C Dy y y y==-==-⎧⎧⎧⎧⎨⎨⎨⎨===-=-⎩⎩⎩⎩5.若│x-2│+(3y+2)2=0,则的值是()A.-1 B.-2 C.-3 D.3 26.方程组43235x y kx y-=⎧⎨+=⎩的解与x与y的值相等,则k等于()7.下列各式,属于二元一次方程的个数有()①xy+2x-y=7;②4x+1=x-y;③1x+y=5;④x=y;⑤x2-y2=2⑥6x-2y ⑦x+y+z=1 ⑧y(y-1)=2y2-y2+xA.1 B.2 C.3 D.48.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,•则下面所列的方程组中符合题意的有()A.246246216246... 22222222 x y x y x y x yB C Dy x x y y x y x+=+=+=+=⎧⎧⎧⎧⎨⎨⎨⎨=-=+=+=+⎩⎩⎩⎩二、填空题9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.10.在二元一次方程-12x+3y=2中,当x=4时,y=______;当y=-1时,x=______.11.若x3m-3-2y n-1=5是二元一次方程,则m=_____,n=______.12.已知2,3xy=-⎧⎨=⎩是方程x-ky=1的解,那么k=_______.13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.14.二元一次方程x+y=5的正整数解有______________.15.以57xy=⎧⎨=⎩为解的一个二元一次方程是_________.16.已知2316x mx yy x ny=-=⎧⎧⎨⎨=--=⎩⎩是方程组的解,则m=_______,n=______.三、解答题17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)有相同的解,求a的值.18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?19.二元一次方程组437(1)3x ykx k y+=⎧⎨+-=⎩的解x,y的值相等,求k.20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?。