实验 Z变换、零极点分析报告

实验 Z变换、零极点分析报告
实验 Z变换、零极点分析报告

1. 学会运用MATLAB 求离散时间信号的z 变换和z 反变换;

(一)离散时间信号的Z 变换

1.利用MATLAB 实现z 域的部分分式展开式

MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为:

[r,p,k]=residuez(num,den)

式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。

【实例1】 利用MATLAB 计算321431818)(-----+z

z z z F 的部分分式展开式。 解:利用MATLAB 计算部分分式展开式程序为

% 部分分式展开式的实现程序

num=[18];

den=[18 3 -4 -1];

[r,p,k]=residuez(num,den)

2.Z 变换和Z 反变换

MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为

)()(F iztrans f f ztrans F ==

上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为

()A sym S =

式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。

【实例2】求(1)指数序列()n u a n 的Z 变换;(2)()()2a z az z F -=

的Z 反变换。

解 (1)Z 变换的MATLAB 程序

% Z 变换的程序实现

f=sym('a^n');

F=ztrans(f)

程序运行结果为:

z/a/(z/a-1)

可以用simplify( )化简得到 :

-z/(-z+a)

(2)Z 反变换的MATLAB 程序

% Z 反变换实现程序

F=sym('a*z/(z-a)^2');

f=iztrans(F)

程序运行结果为

f =

a^n*n

(二)系统函数的零极点分析

1. 系统函数的零极点分布

离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即

)

()()(z X z Y z H = (3-1) 如果系统函数)(z H 的有理函数表示式为:

1

1211121)(+-+-++++++++=n n n n m m m m a z a z a z a b z b z b z b z H (3-2) 那么,在MATLAB 中系统函数的零极点就可通过函数roots 得到,也可借助函数tf2zp 得到,tf2zp 的语句格式为:

[Z,P ,K]=tf2zp(B,A)

其中,B 与A 分别表示)(z H 的分子与分母多项式的系数向量。它的作用是将)(z H 的有理分式表示式转换为零极点增益形式,即:

)

())(()())(()(2121n m p z p z p z z z z z z z k z H ------= (3-3) 【实例3】 已知一离散因果LTI 系统的系统函数为

16

.032.0)(2+++=z z z z H 试用MATLAB 命令求该系统的零极点。

解:用tf2zp 函数求系统的零极点,MATLAB 源程序为

B=[1,0.32];

A=[1,1,0.16];

[R,P ,K]=tf2zp(B,A)

R=

-0.3200

P=

-0.8000

-0.2000

K=

1

因此,零点为32.0=z ,极点为8.01=p 与2.02=p 。

若要获得系统函数)(z H 的零极点分布图,可直接应用zplane 函数,其语句格式为:

zplane(B,A)

其中,B 与A 分别表示)(z H 的分子和分母多项式的系数向量。它的作用是在Z 平面上画出单位圆、零点与极点。

【实例4】 已知一离散因果LTI 系统的系统函数为68

.052.136.0)(22+--=z z z z H ,试用MATLAB 命令绘出该系统的零极点分布图。

解:用zplane 函数求系统的零极点,MATLAB 源程序为

B=[1,0,-0.36];

A=[1,-1.52,0.68];

zplane(B,A),grid on

legend('零点','极点')

title('零极点分布图')

程序运行结果如图3-1所示。可见,该因果系统的极点全部在单位圆,故系统是稳定的。

2、系统函数的零极点分布与其时域特性的关系

与拉氏变换在连续系统中的作用类似,在离散系统中,z变换建立了时域函数)(n

h与z域函数)(z

H之间的对应关系。因此,z变换的函数)(z

H从形式可以反映)(n

h的部分在性质。我们仍旧通过讨论)(z

H的一阶极点情况,来说明系统函数的零极点分布与系统时域特性的关系。

【实例5】试用MATLAB命令画出现下列系统函数的零极点分布图、以及对应的时域单位取样响应)(n

h的波形,并分析系统函数的极点对时域波形的影响。

(1)

72

.0

2.1

)

(

2

3+

-

=

z

z

z

z

H

解:MATLAB源程序为

b3=[1,0];

图3-1 零极点分布图

a3=[1,-1.2,0.72];

subplot(1,2,1)

zplane(b3,a3)

title('极点在单位圆的共轭复数')

subplot(1,2,2)

impz(b3,a3,30);grid on;

figure

程序运行结果分别如图3-2的(a)所示。

(a)

当极点位于单位圆时,)(n

h为衰减序列;当极点位于单位圆上时,)(n

h为等幅序列;当极点位于单位圆外时,)(n

h为增幅序列。若)(n

h有一阶实数极点,则)(n

h为指数序列;若)(n

h有一阶共轭极点,则)(n

h为指数振荡序列;若)(n

h的极点位于虚轴左边,则)(n

h序列按一正一负的规律交替变化。

(三)离散时间LTI系统的频率特性分析

图3-2 系统函数的零极点分布与其时域特性的关系

对于因果稳定的离散时间系统,如果激励序列为正弦序列)()sin()(n u n A n x ω=,则系

统的稳态响应为)()](sin[|)(|)(n u n e H A n y j ss ω?ωω+=。其中,()j H e ω通常是复数。

离散时间系统的频率响应定义为

)(|)(|)(ω?ωωj j j e e H e H = (3-4)

其中,|)(|ωj e H 称为离散时间系统的幅频特性;)(ω?称为离散时间系统的相频特性;)(ωj e H 是以s ω(T s πω2=

,若零1=T ,πω2=s )为周期的周期函数。因此,只要分析)(ωj e H 在πω≤||围的情况,便可分析出系统的整个频率特性。

MATLAB 提供了求离散时间系统频响特性的函数freqz ,调用freqz 的格式主要有两种。一种形式为

[H,w]=freqz(B,A,N)

其中,B 与A 分别表示)(z H 的分子和分母多项式的系数向量;N 为正整数,默认值为512;返回值w 包含],0[π围的N 个频率等分点;返回值H 则是离散时间系统频率响应)(ωj e H 在π~0围N 个频率处的值。另一种形式为

[H,w]=freqz(B,A,N,’whole ’)

与第一种方式不同之处在于角频率的围由],0[π扩展到]2,0[π。

【实例6】 用MATLAB 命令绘制系统8109

.056.19028.096.0)(22+-+-=z z z z z H 的频率响应曲线。

解:利用函数freqz 计算出)(ωj e H ,然后利用函数abs 和angle 分别求出幅频特性与相频特性,最后利用plot 命令绘出曲线。MATLAB 源程序为

b=[1 -0.96 0.9028];

a=[1 -1.56 0.8109];

[H,w]=freqz(b,a,400,'whole');

Hm=abs(H);

Hp=angle(H);

subplot(211)

plot(w,Hm),grid on

xlabel('\omega(rad/s)'),ylabel('Magnitude')

title('离散系统幅频特性曲线')

subplot(212)

plot(w,Hp),grid on

xlabel('\omega(rad/s)'),ylabel('Phase')

title('离散系统相频特性曲线')

程序运行结果如图3-3所示。

图3-3 离散系统频响特性曲线

1、计算9.0||,))9.01()9.01(1)(121>+-=--z z z z X 的Z 反变换。

提示:b=1;a=poly([0.9 0.9 -0.9]);

[r,p,k]=residuez(b,a) 因此得到9.0||9.0125.0)9.01(5.09.0125.0)(1

211>++-+-=---z z z z z X 相应的 )()9.0(25.0)1()9.0)(1(9

5)()9.0(25.0)(1n u n u n n u n x n n n -++++=+ 2、已知某离散系统的系统函数为3

.0005.05.012)(232+--++=z z z z z z H 试用MATLAB 求出该系统的零极点,并画出零极点分布图,求系统的单位冲激

1、讨论极点与系统稳定性的关系?根据程序运行结果判断该系统的稳定性。

2、根据实验程序的运行结果写出z 反变换x(n)。

现代控制理论实验报告

实验报告 ( 2016-2017年度第二学期) 名称:《现代控制理论基础》 题目:状态空间模型分析 院系:控制科学与工程学院 班级: ___ 学号: __ 学生姓名: ______ 指导教师: _______ 成绩: 日期: 2017年 4月 15日

线控实验报告 一、实验目的: l.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验内容 1 第一题:已知某系统的传递函数为G (s) S23S2 求解下列问题: (1)用 matlab 表示系统传递函数 num=[1]; den=[1 3 2]; sys=tf(num,den); sys1=zpk([],[-1 -2],1); 结果: sys = 1 ------------- s^2 + 3 s + 2 sys1 = 1 ----------- (s+1) (s+2) (2)求该系统状态空间表达式: [A1,B1,C1,D1]=tf2ss(num,den); A = -3-2 10 B = 1 C = 0 1

第二题:已知某系统的状态空间表达式为: 321 A ,B,C 01:10 求解下列问题: (1)求该系统的传递函数矩阵: (2)该系统的能观性和能空性: (3)求该系统的对角标准型: (4)求该系统能控标准型: (5)求该系统能观标准型: (6)求该系统的单位阶跃状态响应以及零输入响应:解题过程: 程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0; [num,den]=ss2tf(A,B,C,D); co=ctrb(A,B); t1=rank(co); ob=obsv(A,C); t2=rank(ob); [At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' ); [Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' ); Ao=Ac'; Bo=Cc'; Co=Bc'; 结果: (1) num = 0 01 den = 1 32 (2)能控判别矩阵为: co = 1-3 0 1 能控判别矩阵的秩为: t1 = 2 故系统能控。 (3)能观判别矩阵为: ob = 0 1

关于零点和极点的讨论

【转】关于零点和极点的讨论 2011-08-13 19:46 转载自wycswycs 最终编辑hyleon023 一、传递函数中的零点和极点的物理意义: 零点:当系统输入幅度不为零且输入频率使系统输出为零时,此输入频率值即为零点。极点:当系统输入幅度不为零且输入频率使系统输出为无穷大(系统稳定破坏,发生振荡)时,此频率值即为极点。举例:有时你家音响或电视机壳发出一阵阵尖厉嘶嘶声,此时聪明的你定会知道机壳螺丝松了,拧紧螺丝噪声问题就解决了。其实,你所做的就是极点补偿,拧紧螺丝——你大大降低了系统极点频率。当然此处系统是指机械振动系统不是电路系统,但原理一样。抛砖引玉尔,希望更多答案。(这一段有待讨论) 二、每一个极点之处,增益衰减-3db, 并移相-45度。极点之后每十倍频,增益下降20db.零点与极点相反;每一个零点之处,增益增加3db,并移相45度。零点之后,每十倍频,增益增加20db。波特图如下: 以下是极点图,零点图与极点图相反。极点零点一般用于环路的稳定性分析。 附上一个零点图

1、由于在CMOS里面一般栅端到地的电容较大,所以一般人们就去取这个极点,也就是说输入信号频率使得节点到地的阻抗无穷大(也就是所谓的1/RC)R为到地电阻,C为到地电容(并联产生极点)零点在CMOS中往往是由于信号通路上的电容产生的,即使得信号到地的阻抗为0,在密勒补偿中,不只是将主极点向里推,将次极点向外推(增大了电容),同时还产生了一个零点(与第三极点频率接近),只不过人们一般只关心前者。 2、经验上来讲,放大器电路中高阻抗的节点都要注意,即使这点上电容很小,都会产生一个很大的极点。零点一般就不那么直观了,通常如果两路out of phase的信号相交就会产生零点,但这不能解释所有的零点。 3、个人觉得零点、极点只是电路分析中抽象出来的辅助方法,可以通过零极点分析电路动作特征,然而既然有抽象肯定有它的物理表现,极点从波特图上看两个作用:延时和降低增益,在反馈系统中作用就是降低反馈信号幅度以及反馈回去的时间,所以如果某个节点存在对地电容,必然会对电容充电,同时电容和前级输出电阻还存在分压,所以这个电容会产生极点!而要保持稳定,则要看在激励情况下反馈信号会不会持续增加?而这就需要分析信号在通过电路的过程中的衰减或增加和加快或者减慢,零极点这就表征了电路的这种特性,所以可能某个节点会产生极点,也可能整个系统不同信号通路相互作用产生零极点。 俺也谈谈我的看法: 1。零/极点的产生与反馈与否似乎没有直接联系。一个电路的小信号模型中存在某一个节点,这个节点有两条通路与其

倒立摆状态空间极点配置控制实验实验报告

《现代控制理论》实验报告 状态空间极点配置控制实验 一、实验原理 经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。 1.状态空间分析 对于控制系统X = AX + Bu 选择控制信号为:u = ?KX 式中:X 为状态向量( n 维)u 控制向量(纯量) A n × n维常数矩阵 B n ×1维常数矩阵 求解上式,得到 x(t) = (A ? BK)x(t) 方程的解为: x(t) = e( A?BK )t x(0) 状态反馈闭环控制原理图如下所示: 从图中可以看出,如果系统状态完全可控,K 选择适当,对于任意的初始状态,当t趋于无穷时,都可以使x(t)趋于0。 2.极点配置的设计步骤 1) 检验系统的可控性条件。 2) 从矩阵 A 的特征多项式 来确定 a1, a2,……,an的值。 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 其中 M 为可控性矩阵, 4) 利用所期望的特征值,写出期望的多项式 5) 需要的状态反馈增益矩阵 K 由以下方程确定: 二、实验内容 针对直线型一级倒立摆系统应用极点配置法设计控制器,进行极点配置并用Matlab进行仿真实验。 三、实验步骤及结果 1.根据直线一级倒立摆的状态空间模型,以小车加速度作为输 入的系统状态方程为: 可以取1 l 。则得到系统的状态方程为: 于是有:

直线一级倒立摆的极点配置转化为: 对于如上所述的系统,设计控制器,要求系统具有较短的调整时间(约 3 秒)和合适的阻尼(阻尼比? = 0.5)。 2.采用四种不同的方法计算反馈矩阵 K。 方法一:按极点配置步骤进行计算。 1) 检验系统可控性,由系统可控性分析可以得到,系统的状态完全可控性矩阵的秩等于系统的状态维数(4),系统的输出完全可控性矩阵的秩等于系统输出向量y 的维数(2),所以系统可控。 倒立摆极点配置原理图 2) 计算特征值 根据要求,并留有一定的裕量(设调整时间为 2 秒),我们选取期望的闭环极点s =μi (i = 1,2,3,4) ,其中: 其中,μ 3,μ 4 使一对具有的主导闭环极点,μ 1 ,μ 2 位于 主导闭环极点的左边,因此其影响较小,因此期望的特征方程为: 因此可以得到: 由系统的特征方程: 因此有 系统的反馈增益矩阵为: 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 式中: M = 0 1.0000 0 0 1.0000 0 0 0 0 0.7500 0 5.5125 0.7500 0 5.5125 0 W = 0 -7.3500 -0.0000 1.0000 -7.3500 -0.0000 1.0000 0 -0.0000 1.0000 0 0 1.0000 0 0 0 于是可以得到: T = -7.3500 -0.0000 1.0000 0 0 -7.3500 -0.0000 1.0000 0 -0.0000 0.7500 0 -0.0000 0 -0.0000 0.7500 T’= -7.3500 0 0 -0.0000 -0.0000 -7.3500 -0.0000 0 1.0000 -0.0000 0.7500 -0.0000 0 1.0000 0 0.7500

零极点对系统的性能影响分析

零极点对系统性能的影响分析 1任务步骤 1.分析原开环传递函数G0(s)的性能,绘制系统的阶跃响应曲线得到系 统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 2.在G0(s)上增加零点,使开环传递函数为G1(s),绘制系统的根轨迹, 分析系统的稳定性; 3.取不同的开环传递函数G1(s)零点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 4.综合数据,分析零点对系统性能的影响 5.在G0(s)上增加极点,使开环传递函数为G2(s),绘制系统的根轨迹, 分析系统的稳定性; 6.取不同的开环传递函数G2(s)极点的值,绘制系统的阶跃响应曲线得 到系统的暂态性能(包括上升时间,超调时间,超调量,调节时间); 7.综合数据,分析极点对系统性能的影响。 8.增加一对离原点近的偶极子和一对距离原点远的偶极子来验证偶极子 对消的规律。

2原开环传递函数G0(s)的性能分析 2.1 G0(s)的根轨迹 取原开环传递函数为: Matlab指令: num=[1]; den=[1,0.8,0.15]; rlocus(num,den); 得到图形: 图1 原函数G0(s)的根轨迹 根据原函数的根轨迹可得:系统的两个极点分别是-0.5和-0.3,分离点为-0.4,零点在无限远处,系统是稳定的。 2.2 G0(s)的阶跃响应 Matlab指令: G=zpk([],[-0.3,-0.5],[1]) sys=feedback(G,1) step(sys) 得到图形:

图2 原函数的阶跃响应曲线 由阶跃响应曲线分析系统暂态性能: 曲线最大峰值为1.12,稳态值为0.87, 上升时间tr=1.97s 超调时间tp=3.15s 调节时间ts=9.95s ,2=? 超调量% p σ=28.3%

现代控制理论课程设计(大作业)

现代控制理论课 程设计报告 题目打印机皮带驱动系统能控能观和稳定性分析 项目成员史旭东童振梁沈晓楠 专业班级自动化112 指导教师何小其 分院信息分院 完成日期 2014-5-28

目录 1. 课程设计目的 (3) 2.课程设计题目描述和要求 (3) 3.课程设计报告内容 (4) 3.1 原理图 (4) 3.2 系统参数取值情况 (4) 3.3 打印机皮带驱动系统的状态空间方程 (5) 4. 系统分析 (7) 4.1 能控性分析 (7) 4.2 能观性分析 (8) 4.3 稳定性分析 (8) 5. 总结 (10)

项目组成员具体分工 打印机皮带驱动系统能控能观和稳定性 分析 课程设计的内容如下: 1.课程设计目的 综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。加强大家对专业理论知识的理解和实际运用。培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会使用标准、手册、查阅有关技术资料。加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。 2.课程设计题目描述和要求 (1)环节项目名称:能控能观判据及稳定性判据 (2)环节目的: ①利用MATLAB分析线性定常系统的可控性和客观性。 ②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。 (3)环节形式:课后上机仿真 (4)环节考核方式: 根据提交的仿真结果及分析报告确定成绩。 (5)环节内容、方法: ①给定系统状态空间方程,对系统进行可控性、可观性分析。 ②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验

证上述判断。 3.课程设计报告内容 3.1 原理图 在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。它用于驱动打印头沿打印页面横向移动。图1给出了一个装有直流电机的皮带驱动式打印机的例子。其光传感器用来测定打印头的位置,皮带张力的变化用于调节皮带的实际弹性状态。 图1 打印机皮带驱动系统 3.2 系统参数取值情况 表1打印装置的参数

零极点分布对系统频率响应的影响

备注:(1)、按照要求独立完成实验内容。 (2)、实验结束后,把电子版实验报告按 要求格式改名(例:09 号_张三 _实验七.doc)后,实验室统一刻 盘留档。 实验三零极点分布对系统频 率响应的影响 一、实验目的 1. 掌握系统差分方程得到系统函数的方法; 2. 掌握系统单位脉冲响应获取系统函数的方法; 3. 掌握用系统函数零级点分布的几何方法分析研究系统的频率响应 二、实验原理 在MA TLAB 中,可以用函数[z,p,K]=tf2zp ( num ,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane( z,p)绘出 零、极点分布图;也可以用函数 zplane( num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MA TLAB 中,可以用函数[r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos( z,p,K )完成三、实验内容(包括代码与产生的图形) 1. 假设系统用下面差分方程描述: y(n)=x(n)+ay(n-1) 假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。 B=1; A=[1,-0.7]; subplot(3,3,1);zplane(B,A); xlabel(' 实部Re'); ylabel(' 虚部Im'); title('y(n)=x(n)+0.7y(n-1) 传输函数零、极点分布'); grid on [H,w]=freqz(B,A,'whole'); subplot(3,3,4); 将高阶系统分解为 2 阶系统的串联。plot(w/pi,abs(H),'linewidth',2);

基于极点配置的控制器设计与仿真

计算机控制理论与设计作业 题目:基于极点配置方法的直流调速系统的控制器设计

摘要 本文目的是用极点配置方法对连续的被控对象设计控制器。基本思路是对连续系统进行数学建模,将连续模型进行离散化,针对离散的被控对象,用极点配置的方法分别在用状态方程和传递函数两种描述方法下设计前馈和反馈控制器,并用MATLAB仿真。文中具体以直流调速系统作为研究对象,对直流调速系统的组成和结构进行了分析,把各个部分进行数学建模,求出其传递函数,组成系统结构框图,利用自控原理的知识对结构图化简,求出被控对象的传递函数和状态方程,进一步得将其离散化。第一种是通过极点配置设计方法的原理,用状态方程设计被控对象的控制律,因为直流调速系统存在噪声,实际状态不可测,故选择了全阶的观测器,又因为采样时间小于计算延时,所以选择了预报观测器。利用所学知识对此闭环系统设计前馈和反馈控制器[1]。第二种利用传统的离散传递函数,从代数多项式的角度进行复合控制器的设计,在保证系统稳定的情况下,分析系统的可实现性,稳定性,静态指标,动态指标,抗干扰等方面性能研究前馈反馈相结合控制器设计。重点是保证被控对象的不稳定的零极点不能被抵消。最后利用MATLAB的Simulink进行仿真,观察系统的输出的y和u和收敛性,并加入扰动看其抗干扰性能,得出结论。 经研究分析,对于直流调速系统,基于极点配置设计的前馈反馈相结合的控制器,具有良好的稳定性能和抗干扰性能。运行结果符合实际情况。 关键词:极点配置;状态方程;直流调速系统;代数多项式;Matlab;

1绪论 1.1论文的背景及意义 在工业生产和日常生活中,自动控制系统分为确定性系统和不确定性系统两类,确定性系统是指系统的结构和参数是确定的,确定的输入下,输出也确定的一类系统。确定性系统相对于不确定性系统而言的。在确定的系统中所用的变量都可用确切的函数关系来描述,系统的运动特性可以完全确定。以确定性系统为研究对象的控制理论称为确定性控制理论。本文以直流调速系统为研究对象,利用极点配置的设计方法,包括利用状态空间模型和传递函数模型分别描述线性系统,采用闭环极点为指标的控制器设计的理论和方法,设计出前馈和反馈控制器,组建闭环控制系统,用Matlab进行仿真可以逼真地还原出实际系统。 1.2 论文的主要内容 本文直流电机的调速系统的模型作为研究对象,利用线性系统极点配置的设计方法,设计前馈反馈控制器。论文研究的主要内容: (1)阅读学习国内外期刊文献,研究了极点配置的基本原理和Matlab的实现方法。 (2)系统的说明直流电机的系统结构和工作原理并分析,建立直流调速系统的数学模型,将其进行离散化,并讨论其传递函数与状态方程之间的关系。 (3)分析极点配置控制器的设计原理,利用状态方程设计控制器。 (4)将被控对象的传递函数离散化,利用传递函数模型设计控制器。 (4)在MATLAB中建立闭环直流调速系统的模型,根据闭环极点配置的设计步骤编写程序,用Simulink搭建仿真系统,对闭环直流调速系统的输出进行仿真分析。 (5)对仿真结果分析。将仿真结果与实际直流调速系统的阶跃响应的各项参数相比较,得出结论。

零极点分布对系统频率响应的影响

备注:(1)、按照要求独立完成实验内容。 (2)、实验结束后,把电子版实验报告 按要求格式改名(例:09号_张 三_实验七.doc)后,实验室统一 刻盘留档。 实验三零极点分布对系统频 率响应的影响 一、实验目的 1.掌握系统差分方程得到系统函数的方法; 2.掌握系统单位脉冲响应获取系统函数的方法; 3.掌握用系统函数零级点分布的几何方法分析研究系统的频率响应 二、实验原理 在MA TLAB中,可以用函数[z,p,K]=tf2zp (num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane(num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MA TLAB中,可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。三、实验内容(包括代码与产生的图形) 1. 假设系统用下面差分方程描述: y(n)=x(n)+ay(n-1) 假设a=0.7, 0.8, 0.9 ,分别在三种情况下分析系统的频率特性,并打印幅度特性曲线。 B=1; A=[1,-0.7]; subplot(3,3,1);zplane(B,A); xlabel('实部Re'); ylabel('虚部Im'); title('y(n)=x(n)+0.7y(n-1)传输函数零、极点分布'); grid on [H,w]=freqz(B,A,'whole'); subplot(3,3,4); plot(w/pi,abs(H),'linewidth',2);

matlab实验四 系统的零极点分析

实验四连续时间系统复频域分析和离散时间系统z域分析 一.实验目的: 1.掌握连续信号拉氏变换和拉氏反变换的基本实现方法。 2.熟悉laplace函数求拉普拉斯变换,ilaplace函数求拉氏反变换 的使用。 3.掌握用ztrans函数,iztrans函数求离散时间信号z变换和逆z 变换的基本实现方法。 4.掌握用freqs函数,freqz函数由连续时间系统和离散时间系统 系统函数求频率响应。 5.掌握zplane零极点绘图函数的使用并了解使用零极点图判断系 统稳定性的原理。 二、实验原理: 1.拉氏变换和逆变换 原函数()() ?象函数 f t F s 记作:[()]() =→拉氏变换 L f t F s 1[()]() -=→拉氏反变换 L F s f t 涉及函数:laplace,ilapace. 例如:

syms t;laplace(cos(2*t)) 结果为:ans =s/(s^2+4) syms s;ilaplace(1./(s+1)) 结果为:ans = exp(-t) 2. 系统传递函数H(s)或H(z)。 12121212...()()()...m m m n n n b s b s b B s H s A s a s a s a ----+++==+++ 112112...()()()...m m m n n n b z b z b B z H z A z a z a z a --+--++++==+++ 其中,B 为分子多项式系数,A 为分母多项式系数。 涉及函数:freqz,freqs. 3. 系统零极点分布与稳定性的判定。 对于连续时间系统,系统极点位于s 域左半平面,系统稳定。 对于离散时间系统,系统极点位于z 域单位圆内部,系统稳定。 涉及函数:zplane. 三、 实验内容 1. 验证性实验 a) 系统零极点的求解和作图

零点、极点和偶极子对系统性能的影响

零点、极点和偶极子对系统性能的影响 我们知道在系统之中,适当的加入零点,极点还有偶极子,可以在某些方面提升系统的性能。但是加入某项时候,到底是如何提升的呢?为此,我们用matlab 软件来帮助我们分析,以方便我们进行比较。为了方便我们的比较,我们还将零点,极点还有偶极子对系统性能的影响分开来进行一个一个的讨论。这样我们可以更加直观的感受到他们的影响。(在分析的时候选择稳定的原始系统) 在分析的时候我们选择的原系统的闭环传递函数为: 通过matlab 编程和绘图我们可以得到()s G 的单位阶跃响应曲线如下图:

现在我们开始分析加入零点,极点和偶极子对系统性能的影响! 一、零点 为了在方程之中添加一个零点,我们将系统的闭环传递函数变为: 我们可以通过matlab 编程,绘出 () 1s G 和()s G 的响应曲线,通过分析相应的 响应曲线,我们就可以得出相应的结论! matlab 的编程为: n=4; d=[4,1,4]; t1=0:0.1:15; y1=step(n,d,t1); n1=[3,4]; y2=step(n1,d,t1); plot(t1,y1,'-r',t1,y2,'-g'),grid xlabel('t'),ylabel('c(t)'); title('单位阶跃响应')

两者的响应曲线为: 通过对两条响应曲线的分析我们不难得出以下的结论: (1)系统的稳定性没变,还是稳定系统; (2)系统的上升时间r t 减小; (3)系统的超调时间p t 减小; (4)系统的超调量 % p 变长; (5)系统的调节时间 s t 变长;

综合性实验 极点配置全状态反馈控制指导书

综合性实验极点配置全状态反馈控制 一、实验目的 1.学习并掌握用极点配置方法设计全状态反馈控制系统的方法。 2.用电路模拟与软件仿真方法研究参数对系统性能的影响。 二、实验内容 1.设计典型二阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。 2.设计典型三阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。 三、实验前准备工作 1 推导图1的数学模型(状态空间表达式),分析系统的能控性。 2 若系统期望的性能指标为:超调量,峰值时间,求出期望的极点值。根据以上性能指标要求设计出状态反馈控制器。 3 推导图2的数学模型(传递函数),求出其单位阶跃响应的动态性能指标(超调量、调节时间、静态速度误差系数)。 4 推导图4的数学模型(状态空间表达式),分析系统的能控性。 5考虑系统稳定性等要求,选择理想极点为:S1=-9,S2 =-2+j2,S3=-2-j2, 根据以上性能指标要求思考如何设计状态反馈控制器。 6 推导图7的数学模型(传递函数)。 四、实验步骤 1.典型二阶系统 (1)对一已知二阶系统(见图1)用极点配置方法设计全状态反馈系数。 (2)见图2和图3,利用实验箱上的电路单元U9、U11、U12和U8,按设计参数设计并连接成系统模拟电路,测取阶跃响应,并与软件仿真结果比较。 (3)改变系统模拟电路接线,使系统恢复到图1所示情况,测取阶跃响应,并与软件仿真结果比较。 (4)对实验结果进行比较、分析,并完成实验报告。 2.典型三阶系统 (1)对一已知三阶系统(见图4)用极点配置方法设计全状态反馈系数。 (2)见图5和图7,利用实验箱上的电路单元U9、U11、U12、U15和

自控原理实验(平台课)

实验一 控制系统的初步认识 过程控制CS4000系统介绍 过程控制是针对工业生产过程中液位、流量、温度、压力等参数的控制。 一、 CS4000系统组成 1、 双管路流量系统 系统包括两个独立的水路动力系统,一路由 水泵、电动调节阀、电磁流量计组成(主管路), 由电动调节阀调节流量,电磁流量计检测流量; 另一路由变频器、水泵、涡轮流量计组成(副管路),由变频器调节流量,涡轮流量计检测流量。如右图: 双管路流量系统可以完成多种方式下的流量控制实验:a.单回路流量控制实验b.流量比值控制实验 2、 四容水箱液位系统 系统提供一组有机玻璃四容水箱,每个水箱装有 液位变送器;通过阀门切换,任何两组动力的水流可以到达任何一个水箱。因此系统可以完成多种方式下的液位、流量及其组合实验。如右图: 3、 热水箱-纯滞后水箱温度系统 系统提供了一个加热水箱和一个温度纯滞后水箱,加热水箱及纯滞后水箱不同时间常数位置装有Pt100热电阻检测温度,由可控硅控制电加热管提供可调热源,系统可以完成多种温度实验 二、 执行机构 1、可控硅移相调压装置 通过4-20mA 电流控制信号控制单相220V 交流电源在0-220V 之间实现连续变化,从而调节电加热管的功率。 2、调节阀 电动调节阀 电动调节阀通过改变管路的流通面积来改变控制通过的流量,由电动执行机构和调节阀两部分组成。调节阀部分主要由阀杆、阀体、阀芯、及阀座等部件组成。当阀芯在阀体内上

下移动时,可改变阀芯阀座间的流通面积。 电动执行机构一般采用随动系统的方案组成,如上图所示。从调节器来的信号通过伺服放大器驱动电动机,经减速器带动调节阀,同时经位置发生器将阀杆行程反馈给伺服放大器,组成位置随动系统。依靠位置负反馈,保证输入信号准确地转换为阀杆的行程。 为了简单,电动执行器中常使用两位式放大器和交流鼠笼式电机组成交流继电器式随动系统。执行器中的电机常处于频繁的启动制动过程中,在调节器输出过载或其他原因使阀卡住时,电机还可能长期处于堵转状态。为了保证电机在这种情况下不至因过热而烧毁,电动执行器都使用专门的异步电机,以增大转子电阻的办法,减小启动电流,增加启动力矩,使电机在长期堵转时温升也不超出允许范围。这样做虽使电机效率降低,但大大提高了执行器的工作可靠性。 三、检测机构 1、扩散硅式压力传感器 2、涡轮流量计 3、电磁流量计 4、Pt100热电阻温度传感器 四、控制系统 1、智能调节仪控制系统 智能调节仪型号为上海万迅仪表有限公司AI818A,系统中有两块AI818A,以便可以实现串级等复杂控制。AI818A与电脑通过串口通讯。上位机软件采用MCGS。AI818A 与MCGS的使用参照相关手册。 2、DDC计算机直接控制系统 采用集智达R-8000系列RemoDAQ- R-8017模拟量输入模块, RemoDAQ-R-8024模拟量输出模块。与电脑串口通讯。上位机DDC实验软件是厂家面向过程控制实验特点,结合本过程控制实验对象,开发的一套DDC实验软件。运行电脑桌面的“中控教仪过程控制实验软件”图标即可打开实验软件。实验内容参照相应的实验指导书。 3、PLC可编程控制器控制系统 采用西门子s7-300PLC,电脑上安装了一块CP5621西门子通讯卡(PCI-E插槽),通讯线将卡接口连到PLC的cpu的MPI端口,实现通讯。PLC中运行的程序采用西门子STEP7设计并下载到PLC中、上位机程序采用西门子Wincc设计,存放在电脑C盘基础性/总线型目录的PLC子目录下,运行电脑桌面的WINCC图标可打开该实验软件,再参照相应的实验指导书完成实验。 4、C3000过程控制器 C3000 是国产的一种采用32 位微处理器和5.6 英寸TFT彩色液晶显示屏的可编程多回路控制器。C3000 过程控制器主要有控制、记录、分析等功能。可通过串口、以太网和CF卡实现与上位机的数据交换。本装置中采用串口与上位机通讯。C3000内部有3个程序控制模块、4 个单回路PID控制模块、6 个ON/OFF 控制模块,可实现串级、分程、三冲量、比值控制及用户定制等多种复杂的控制方案。

实验Z变换离散系统零极点分布和频率分析

实验三 Z 变换、离散系统零极点分布和频率分析 一、 实验目的 ● 学会运用MATLAB 求离散时间信号的z 变换和z 反变换; ● 学会运用MATLAB 分析离散时间系统的系统函数的零极点; ● 学会运用MATLAB 分析系统函数的零极点分布与其时域特性的关系; ● 学会运用MATLAB 进行离散时间系统的频率特性分析。 二、 实验仪器:电脑一台,MATLAB6.5或更高级版本软件一套。 三、 实验原理及实例分析 (一)离散时间信号的Z 变换 1.利用MATLAB 实现z 域的部分分式展开式 MATLAB 的信号处理工具箱提供了一个对F(Z)进行部分分式展开的函数residuez(),其调用形式为: [r,p,k]=residuez(num,den) 式中,num 和den 分别为F(Z)的分子多项式和分母多项式的系数向量,r 为部分分式的系数向量,p 为极点向量,k 为多项式的系数向量。 【实例3-1】 利用MATLAB 计算3 21431818 ) (-----+z z z z F 的部分分式展开式。 解:利用MATLAB 计算部分分式展开式程序为 % 部分分式展开式的实现程序 num=[18]; den=[18 3 -4 -1]; [r,p,k]=residuez(num,den) 2.Z 变换和Z 反变换 MATLAB 的符号数学工具箱提供了计算Z 变换的函数ztrans()和Z 反变换的函数iztrans (),其调用形式为 )()(F iztrans f f ztrans F ==

上面两式中,右端的f 和F 分别为时域表示式和z 域表示式的符号表示,可应用函数sym 来实现,其调用格式为 ()A sym S = 式中,A 为待分析的表示式的字符串,S 为符号化的数字或变量。 【实例3-2】求(1)指数序列()n u a n 的Z 变换;(2)()() 2 a z az z F -= 的Z 反变换。 解 (1)Z 变换的MATLAB 程序 % Z 变换的程序实现 f=sym('a^n'); F=ztrans(f) 程序运行结果为: z/a/(z/a-1) 可以用simplify( )化简得到 : -z/(-z+a) (2)Z 反变换的MATLAB 程序 % Z 反变换实现程序 F=sym('a*z/(z-a)^2'); f=iztrans(F) 程序运行结果为 f = a^n*n (二)系统函数的零极点分析 1. 系统函数的零极点分布 离散时间系统的系统函数定义为系统零状态响应的z 变换与激励的z 变换之比,即 ) () ()(z X z Y z H = (3-1) 如果系统函数)(z H 的有理函数表示式为:

自控原理实验

实验八典型非线性环节的静态特性 一、实验目的 1. 了解典型非线性环节输出—输入的静态特性及其相关的特征参数; 2. 掌握典型非线性环节用模拟电路实现的方法。 二、实验内容 1. 继电器型非线性环节静特性的电路模拟; 2. 饱和型非线性环节静特性的电路模拟; 3. 具有死区特性非线性环节静特性的电路模拟; 4. 具有间隙特性非线性环节静特性的电路模拟。 三、实验原理 控制系统中的非线性环节有很多种,最常见的有饱和特性、死区特性、继电器特性和间隙特性。基于这些特性对系统的影响是各不相同的,因而了解它们输出-输入的静态特性将有助于对非线性系统的分析研究。 1. 继电型非线性环节 图7-1为继电器型非线性特性的模拟电路和静态特性。 图8-1 继电器型非线性环节模拟电路及其静态特性 继电器特性参数M是由双向稳压管的稳压值(4.9~6V)和后级运放的放大倍数(R X/R1)决定的,调节可变电位器R X的阻值,就能很方便的改变M值的大小。输入u i信号用正弦信号或周期性的斜坡信号(频率一般均小于10Hz)作为测试信号。实验时,用示波器的X-Y显示模式进行观测。 2. 饱和型非线性环节 图7-2为饱和型非线性环节的模拟电路及其静态特性。 图8-2 饱和型非线性环节模拟电路及其静态特性 图中饱和型非线性特性的饱和值M等于稳压管的稳压值(4.9~6V)与后一级放大倍数的乘积。线性部分斜率k等于两级运放增益之积。在实验时若改变前一级运放中电位器的阻值

可改变k 值的大小,而改变后一级运放中电位器的阻值则可同时改变M 和k 值的大小。 实验时,可以用周期性的斜坡或正弦信号作为测试信号,注意信号频率的选择应足够低(一般小于10Hz )。实验时,用示波器的X-Y 显示模式进行观测。 3. 具有死区特性的非线性环节 图7-3为死区特性非线性环节的模拟电路及其静态特性。 图8-3 死区特性非线性环节的模拟电路及其静态特性 图中后一运放为反相器。由图中输入端的限幅电路可知,当二极管D 1(或D 2)导通时的临界电压U io 为 E 1E R R u 2 1io α α -±=±=(在临界状态时: E R R R u R R R 2 11 0i 212+±=+) (7-1) 其中,2 11 R R R +=α。当0i i u u >时,二极管D 1(或D 2)导通,此时电路的输出电压 为 ))(1()(2 12 io i io i o u u u u R R R u --±=-+± =α 令)1(α-=k ,则上式变为 )(io i o u u k u -±= (7-2) 反之,当0i i u u ≤时,二极管D 1(或D 2)均不导通,电路的输出电压o u 为零。显然,该非 线性电路的特征参数为k 和io u 。只要调节α,就能实现改变k 和io u 的大小。 实验时,可以用周期性的斜坡或正弦信号作为测试信号,注意信号频率的选择应足够低(一般小于10Hz )。实验时,用示波器的X-Y 显示模式进行观测。 4. 具有间隙特性的非线性环节 间隙特性非线性环节的模拟电路图及静态特性如图7-4所示。 由图7-4可知,当E u i α α -< 1时,二极管D 1和D 2均不导通,电容C 1上没有电压,即U C (C 1两端的电压)=0,u 0=0;当E u i α α->1时,二极管D 2导通,u i 向C 1充电,其电压为 ))(1(io i o u u u --±=α 令)1(α-=k ,则上式变为 )(io i o u u k u -±=

离散系统的频率响应分析和零极点分布

离散系统的频率响应分析和零极点分布 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

实验2 离散系统的频率响应分析和零、极点分布一、实验目的 通过MATLAB仿真简单的离散时间系统,研究其时域特性,加深对离散系统的冲激响应,频率响应分析和零、极点分布的概念的理解。 二、基本原理 离散系统的时域方程为 其变换域分析方法如下: 频域 ) ( ) ( ) ( ] [ ] [ ] [ ] [ ] [ω ω ωj j j m e H e X e Y m n h m x n h n x n y= ? - = * =∑∞ -∞ = 系统的频率响应为 ω ω ω ω ω ω ω jN N j jM M j j j j e d e d d e p e p p e D e p e H - - - - + + + + + + = = ... ... ) ( ) ( ) ( 1 1 Z域 ) ( ) ( ) ( ] [ ] [ ] [ ] [ ] [z H z X z Y m n h m x n h n x n y m = ? - = * =∑∞ -∞ = 系统的转移函数为 N N M M z d z d d z p z p p z D z p z H - - - - + + + + + + = = ... ... ) ( ) ( ) ( 1 1 1 1 分解因式 ∏- ∏- = ∑ ∑ = = - = - = - = - N i i M i i N i i k M i i k z z K z d z p z H 1 1 1 1 ) 1( ) 1( ) ( λ ξ ,其中i ξ 和i λ 称为零、极点。 在MATLAB中,可以用函数[z,p,K]=tf2zp(num,den)求得有理分式形式的系统转移函数的零、极点,用函数zplane(z,p)绘出零、极点分布图;也可以用函数zplane(num,den)直接绘出有理分式形式的系统转移函数的零、极点分布图。 另外,在MATLAB中,可以用函数 [r,p,k]=residuez(num,den)完成部分分式展开计算;可以用函数sos=zp2sos(z,p,K)完成将高阶系统分解为2阶系统的串联。

零极点对系统性能的影响分析

摘要 本次课程设计主要是分析零极点对系统性能的影响。首先从根轨迹、奈奎斯特 曲线、伯德图和阶跃响应四方面分析原开环传递函数时的系统性能,然后在原开环 传递函数基础上增加一个零点,并且让零点的位置不断变化,分析增加零点之后系 统的性能,同时与原系统进行分析比较,发现增加的零点与虚轴的距离决定了对系 统影响的大小;再在原开环传递函数基础上增加一个极点,并且令极点位置不断变 化,分析增加极点后系统的性能,同时与原系统进行分析比较,同样发现增加的极 点与虚轴的距离决定了对系统的影响大小。 关键词:零极点开环传递函数系统性能 MATLAB 谐振带宽 The curriculum design is mainly the analysis of effect of zero pole on the performance of the system. First from the root locus, Nyquist curve, Bode diagram and step response analysis of four aspects of the original open-loop transfer function of the system performance, and then in the original open-loop transfer function is added on the basis of a zero, and let the zero point position changes continuously, increase system performance analysis of zero, at the same time and the original system analysis that increase, the zeros and the imaginary axis distance determines the impact on the system size; adding a pole in the original open-loop transfer function based on pole position, and make the changes, analysis of increasing performance point system, at the same time and the analysis of the original system, also found that increasing pole and the imaginary axis distance determines the impact on the size of the system. Keywords: zero pole open loop transfer function of system performance of MATLAB resonant bandwidth

零点与极点计算和分析

关于放大器极、零点与频率响应的初步实验 1.极零点的复杂性与必要性 一个简单单级共源差分对就包含四个极点和四个零点,如下图所示: 图1 简单单级共源全差分运放极零点及频率、相位响应示意图 上图为简单共源全差分运放的极零点以及频率响应的示意图,可以看到,运放共有四个极点,均为负实极点,共有四个零点,其中三个为负实零点,一个为正实零点。后面将要详细讨论各个极零点对运放的频率响应的影响。 正在设计中的折叠共源共栅运算放大器的整体极零点方针则包括了更多的极零点(有量级上的增长),如下图所示:

图2 folded-cascode with gain-boosting and bandgap all-poles details

图3 folded-cascode with gain-boosting and bandgap all-zeros details 从上述两张图可以看到,面对这样数量的极零点数量(各有46个),精确的计算是不可能的,只能依靠计算机仿真。但是手算可以估计几个主要极零点的大致位置,从而预期放大器的频率特性。同时从以上图中也可以看到,详细分析极零点情况也是很有必要的。可以看到46个极点中基本都为左半平面极点(负极

点)而仿真器特别标出有一个正极点(RHP )。由于一般放大器的极点均应为LHP ,于是可以预期这个右半平面极点可能是一个设计上的缺陷所在。(具体原因现在还不明,可能存在问题的方面:1。推测是主放大器的CMFB 的补偿或者频率响应不合适。 2。推测是两个辅助放大器的带宽或频率响应或补偿电容值不合适)其次可以从极零点的对应中看到存在众多的极零点对(一般是由电流镜产生),这些极零点对产生极零相消效应,减少了所需要考虑的极零点的个数。另外可以看到46个零点中45个为负零点,一个为正零点,这个正零点即是需要考虑的对放大器稳定性产生直接影响的零点。 以上只是根据仿真结果进行的一些粗略的分析,进一步的学习和研究还需要 进行一系列实验。 1. 单极点传输函数——RC 低通电路 首先看一个最简单的单极点系统——RC 低通电 路,其中阻值为1k ,电容为1p ,传输函数为: sRC s H +=11)( 则预计极点p0=1/(2πRC )=1.592e8 Hz ,仿真得 到结果与此相同。 而从输出点的频率响应图中可以得到以下几个结 论: 图4 一阶RC 积分电路 1)-3dB 带宽点(截止频率)就是传输函数极点,此极点对应相位约为-45°。 2)相位响应从0°移向高频时的90°,即单极点产生+90°相移。 3)在高于极点频率时,幅度响应呈现-20dB/十倍频程的特性。 图5 一阶RC 电路极点与频率响应(R=1k C=1p )

相关文档
最新文档