2. EBSD晶体学与织构基础

材料科学基础-晶体缺陷

材料科学基础-晶体缺陷 (总分:430.00,做题时间:90分钟) 一、论述题(总题数:43,分数:430.00) 1.设Cu中空位周围原子的振动频率为1013S-1,△E v为0.15×10-18J,exp(△S m/k)约为1,试计算在700K和室温(27℃)时空位的迁移频率。 (分数:10.00) __________________________________________________________________________________________ 正确答案:(空位的迁移频率 [*] [*]) 解析: 2.Nb的晶体结构为bcc,其晶格常数为0.3294nm,密度为8.57g/cm3,试求每106Nb中所含的空位数目。 (分数:10.00) __________________________________________________________________________________________ 正确答案:(设空位之粒子数分数为x, [*] 106×7.1766×10-3=7176.6(个) 所以,106个Nb中有7176.6个空位。) 解析: 3.Pt的晶体结构为fcc,其晶格常数为0.3923nm,密度为21.45g/cm3,试计算其空位粒子数分数。 (分数:10.00) __________________________________________________________________________________________ 正确答案:(设空位所占粒子数分数为x, [*]) 解析: 4.若fcc的Cu中每500个原子会失去1个,其晶格常数为0.3615nm,试求Cu的密度。 (分数:10.00) __________________________________________________________________________________________ 正确答案:( [*]) 解析: 5.由于H原子可填入α-Fe的间隙位置,若每200个铁原子伴随着1个H原子,试求α-Fe理论的和实际的密度与致密度(已知α-Fe的a=0.286nm,r Fe=0.1241nm,r H=0.036nm)。 (分数:10.00) __________________________________________________________________________________________ 正确答案:( [*])

晶体学基础知识点及思维导图教学内容

晶体学基础知识点及 思维导图

HOMEWORKS 知识点 晶体结构Crystal structure 点阵结构Lattice 晶胞Unit cells 晶系Crystal systems 布拉菲格子The Bravais lattices 点群 point group 空间群space group

关系Relationships/思维导图Mind mapping

具体中文解释 粒子抽象成点,形成了点阵结构,而这些点连接起来就形成了晶格,可以说点阵和晶格具有同一性,但区别于点阵具有唯一性,晶格不具有。同样我们需要区别“lattice”的意义 它在这应该准确的代表点阵结构而不是单单的点阵,点阵结构是具体的客观存在的而点阵是人为抽象出来的,相比于点阵对应的点阵点,点阵结构对应的就是结构基元。 晶胞堆砌成了点阵结构,晶胞又具有晶胞参数和晶胞内容两方面,也就是说可以这么表示晶胞=点阵格子+结构基元。根据晶胞的晶胞参数我们可以把晶体的结构从宏观上分为七个方面,也就是七大晶系.七大晶系结合晶胞类型产生了14种Bravais晶格 点群表示的是晶体中所包含所有点对称操作的(旋转、反应、反演)的集合。(晶体的宏观性质不变)。点群描述了分子结构和晶体的宏观对称性(后来老师讲点群只是对于结构基元里的原子的对称排布,我个人后来查阅思考了一下,这是局限的,点群所描述的对称性正是可以描述宏观的晶格以及肉眼可见 的晶体的对称性,所以它才被 引为宏观对称性。) 微观对称元素:点阵、滑移面、旋转轴(无数阶次) 而晶体的宏观对称元素和微观对称元素在内的全部对称元素的一种组合就构成晶体的一种微观对称类型也就是空间群,它反应的是内部微观结构的对称性(结构基元内部原子)或者是微观的晶胞堆积方式的不同。 晶体的宏观对称性就是晶体微观对称性的宏观表现。 晶系与对称的关系:七种晶系从宏观的对称操作来看,有旋转、反射、反演,这些构成的是32种点群。而晶系必须符合平移操作(晶体对称定律的要求),结合平移我们限定了它有14种Bravais 格子。再结合微观对称元素,就会得到230种空间群。

材料科学基础—晶体学基础(下)(专业课)

你现时的得分是55! 你的成绩低于作业及格要求,请重做! 错误情况: 单选题 ---------------------------------------------------------------------------------------------------- 3.当晶带轴和光轴重合时,晶带轴的极射赤面投影是? 正确答案:D.基圆 6.下列()属于极射赤面投影的应用。 正确答案:B.多晶体的择优取向 多选题 ---------------------------------------------------------------------------------------------------- 1.下列关于四轴坐标系中矢量表示错误的是()? 正确答案:B.OK=ua1+va2+ta3 C.OK=ua1+ua2+ua3+wc D.OK=ua1+ta2+ta3+wc 4.选择下列有关分子键描述正确的项()。 正确答案:A.以弱静电吸引的方式 B.分子或原子团相互连接 C.原子间存在相互作用 D.原子能够相互结合成分子或晶体 5.选择下列有关分子键描述正确的项() 正确答案:A.以弱静电吸引的方式 B.分子或原子团相互连接 C.原子间存在相互作用 D.原子能够相互结合成分子或晶体 6.下列选项中属于结构通报符号的有()? 正确答案:A.A1-fcc B.A2-bcc C.B1-NA,Cl结构 D.B2-CeCl结构 判断题 ---------------------------------------------------------------------------------------------------- 1.球面投影不可以真实的表示晶体上的各种要素的空间几何关系。 正确答案:错 3.极射赤面投影,把一个晶体当中的面和方向投影到一个平面上,一般分为球面投影和平面投影两步。 正确答案:对 5.平移一个周期相当于不动,所以反演和四次旋转-反演轴均不能与平移结合而形成新的宏观对称元素。 正确答案:错 返回

材料科学基础作业六晶体结构.

《材料科学基础》作业六:晶体结构 一.判断是非题,对的在括号中划“∨”,错的划“×”: 1.布拉非点阵与晶体结构是同一概念,因此不管离子晶体,分子晶体,还是原子晶体,晶体结构类型共有14种。() 2.如果某晶面(hkl)平行于某晶向[uvw] ,晶向与晶面之间存在hu+kv+lw=1的关系()3.fcc结构中,四面体间隙数是单胞原子数的1倍。() 4.温度相同时,碳原子在α-Fe中的溶解度小于在γ-Fe中的溶解度,这是因为α-Fe的致密度小于γ-Fe的致密度。() 5.fcc结构的晶体中(111)晶面上含有[110]、[101]、[011]三个最密排方向。() 二.填空题 1.<111>晶向族包括————————————————————————————————————————组晶向。2.{110}晶面族包括————————————————————————————————————————组晶面。 3.晶面(123)和(101)为共带面,其晶带轴的晶向指数为————————————————。4.fcc结构晶体的滑移面(密排晶面)是—————,滑移方向(密排晶向)是—————;bcc结构晶体的滑移面是——————,滑移方向为——————;hcp结构的滑移面是——————,滑移方向为————————。 5.某晶体的致密度为74%,该晶体的晶体结构为————————————————————。 三.问答题 1.画图并计算fcc和bcc结构晶体的八面体间隙半径大小。 a≌1.633 。 2.画图并说明hcp结构不是一种空间点阵的原因,并计算c 3.作图表示(111)、(111)、(112)晶面及[111]、[112]晶向。 4.求bcc结构(111)、(100)及(110)晶面的面间距大小,并指出面间距最大的晶面。

材料科学基础习题答案_整理版

2-1 名词解释:配位数与配位体,同质多晶与多晶转变,位移性转变与重建性转变,晶体场理论与配位场理论 答:配位数:晶体结构中与一个离子直接相邻的异号离子数。 配位体:晶体结构中与某一个阳离子直接相邻、形成配位关系的各个阴离子中心连线所构成的多面体。 同质多晶:同一化学组成在不同外界条件下(温度、压力、pH值等),结晶成为两种以上不同结构晶体的现象 多晶转变:当外界条件改变到一定程度时,各种变体之间发生结构转变,从一种变体转变成为另一种变体的现象 位移性转变:不打开任何键,也不改变原子最邻近的配位数,仅仅使结构发生畸变,原子从原来位置发生少许位移,使次级配位有所改变的一种多晶转变形式 重建性转变:破坏原有原子间化学键,改变原子最邻近配位数,使晶体结构完全改变原样的一种多晶转变形式。 晶体场理论:认为在晶体结构中,中心阳离子与配位体之间是离子键,不存在电子轨道的重迭,并将配位体作为点电荷来处理的理论。 配位场理论:除了考虑到由配位体所引起的纯静电效应以外,还考虑了 共价成键的效应的理论。 2-2 面排列密度的定义为:在平面上球体所占的面积分数。 (a)画出MgO(NaCl型)晶体(111)(110)和(100)晶面上的原子排布(b )计算这三面的面排列密度 解:MgO晶体中O2-做紧密堆积,Mg2+填充在八面体空隙中。 (a)(111)(110)和(100)晶面上的氧离子排布情况如图2-1所示。 (b)在面心立方紧密堆积的单位晶胞中, (111)面:面排列密度 = (110)面:面排列密度 = (100)面:面排列密度 = 2-4 设原子半径为R,试计算体心立方堆积结构的(100)、(110)、(111)面的面排列密度和晶面族的面间距。解:在体心立方堆积结构中: (100)面:面排列密度 = 面间距 = (110)面:面排列密度 = 面间距 = (111)面:面排列密度 = 面间距 = 2-8 试根据原子半径R计算面心立方晶胞、六方晶胞、体心立方晶胞的体积。 解:面心立方晶胞: 六方晶胞(1/3): 体心立方晶胞: 2-9 MgO具有NaCl结构。根据O2-半径为0.140nm和Mg2+半径为0.072nm,计算球状离子所占据的体积分数和计算MgO的密度。并说明为什么其体积分数小于74.05%? 解:在MgO晶体中,正负离子直接相邻,a0=2(r++r-)=0.424(nm) 体积分数=4×(4π/3)×(0.143+0.0723)/0.4243=68.52% 密度=4×(24.3+16)/[6.023×1023×(0.424×10-7)3]=3.5112(g/cm3) MgO体积分数小于74.05%,原因在于r+/r-=0.072/0.14=0.4235>0.414,正负离子紧密接触,而负离子之间不直接接触,即正离子将负离子形成的八面体空隙撑开了,负离子不再是紧密堆积,所以其体积分数小于等径球体紧密堆积的体积分数74.05%。

晶体学基础知识点及思维导图

HOMEWORKS 知识点 晶体结构Crystal structure 点阵结构Lattice 晶胞Unit cells 晶系Crystal systems 布拉菲格子The Bravais lattices 点群point group 空间群space group

关系Relationships/思维导图Mind mapping

具体中文解释 粒子抽象成点,形成了点阵结构,而这些点连接起来就形成了晶格,可以说点阵和晶格具有同一性,但区别于点阵具有唯一性,晶格不具有。同样我们需要区别“lattice”的意义它在这应该准确的代表点阵结构而不是单单的点阵,点阵结构是具体的客观存在的而点阵是人为抽象出来的,相比于点阵对应的点阵点,点阵结构对应的就是结构基元。 晶胞堆砌成了点阵结构,晶胞又具有晶胞参数和晶胞内容两方面,也就是说可以这么表示晶胞=点阵格子+结构基元。根据晶胞的晶胞参数我们可以把晶体的结构从宏观上分为七个方面,也就是七大晶系.七大晶系结合晶胞类型产生了14种Bravais晶格 点群表示的是晶体中所包含所有点对称操作的(旋转、反应、反演)的集合。(晶体的宏观性质不变)。点群描述了分子结构和晶体的宏观对称性(后来老师讲点群只是对于结构基元里的原子的对称排布,我个人后来查阅思考了一下,这是局限的,点群所描述的对称性正是可以描述宏观的晶格以及肉眼可见的晶体的对称性,所以它才被引为宏观对称性。) 微观对称元素:点阵、滑移面、旋转轴(无数阶次) 而晶体的宏观对称元素和微观对称元素在内的全部对称元素的一种组合就构成晶体的一种微观对称类型也就是空间群,它反应的是内部微观结构的对称性(结构基元内部原子)或者是微观的晶胞堆积方式的不同。 晶体的宏观对称性就是晶体微观对称性的宏观表现。 晶系与对称的关系:七种晶系从宏观的对称操作来看,有旋转、反射、反演,这些构成的是32种点群。而晶系必须符合平移操作(晶体对称定律的要求),结合平移我们限定了它有14种Bravais 格子。再结合微观对称元素,就会得到230种空间群。

XRD,以及晶体结构的相关基础知识

XRD,以及晶体结构的相关基础知识(ZZ) Theory 2009-10-25 17:55:42 阅读355 评论0 字号:大中小 做XRD有什么用途啊,能看出其纯度?还是能看出其中含有某种官能团? X射线照射到物质上将产生散射。晶态物质对X射线产生的相干散射表现为衍射现象,即入射光束出射时光束没有被发散但方向被改变了而其波长保持不变的现象,这是晶态物质特有的现象。 绝大多数固态物质都是晶态或微晶态或准晶态物质,都能产生X射线衍射。晶体微观结构的特征是具有周期性的长程的有序结构。晶体的X射线衍射图是晶体微观结构立体场景的一种物理变换,包含了晶体结构的全部信息。用少量固体粉末或小块样品便可得到其X射线衍射图。 XRD(X射线衍射)是目前研究晶体结构(如原子或离子及其基团的种类和位置分布,晶胞形状和大 小等)最有力的方法。 XRD 特别适用于晶态物质的物相分析。晶态物质组成元素或基团如不相同或其结构有差异,它们的衍射谱图在衍射峰数目、角度位置、相对强度次序以至衍射峰的形状上就显现出差异。因此,通过样品的X射线衍射图与已知的晶态物质的X射线衍射谱图的对比分析便可以完成样品物相组成和结构的定性鉴定;通过对样品衍射强度数据的分析计算,可以完成样品物相组成的定量分析; XRD还可以测定材料中晶粒的大小或其排布取向(材料的织构)...等等,应用面十分普遍、广泛。 目前XRD主要适用于无机物,对于有机物应用较少。 关于XRD的应用,在[技术资料]栏目下有介绍更详细的文章,不妨再深入看看。 如何由XRD图谱确定所做的样品是准晶结构?XRD图谱中非晶、准晶和晶体的结构怎么严格区分? 三者并无严格明晰的分界。 在衍射仪获得的XRD图谱上,如果样品是较好的"晶态"物质,图谱的特征是有若干或许多个一般是彼此独立的很窄的"尖峰"(其半高度处的2θ宽度在0.1°~0.2°左右,这一宽度可以视为由实验条件决定的晶体衍射峰的"最小宽度")。如果这些"峰"明显地变宽,则可以判定样品中的晶体的颗粒尺寸将小于300nm,可以称之为"微晶"。晶体的X射线衍射理论中有一个Scherrer公式,可以根据谱线变宽的量估算晶粒在 该衍射方向上的厚度。 非晶质衍射图的特征是:在整个扫描角度范围内(从2θ 1°~2°开始到几十度)只观察到被散射的X 射线强度的平缓的变化,其间可能有一到几个最大值;开始处因为接近直射光束强度较大,随着角度的增加强度迅速下降,到高角度强度慢慢地趋向仪器的本底值。从Scherrer公式的观点看,这个现象可以视为由于晶粒极限地细小下去而导致晶体的衍射峰极大地宽化、相互重叠而模糊化的结果。晶粒细碎化的极限就是只剩下原子或离子这些粒子间的"近程有序"了,这就是我们所设想的"非晶质"微观结构的场景。非晶质衍射图上的一个最大值相对应的是该非晶质中一种常发生的粒子间距离。

第2章 晶体学基础(1)

第二章晶体学基础 1、晶体结构与空间点阵 2、晶向、晶面及指标 3、晶面间距 4、晶面族 5、倒易空间以及倒易点阵

教学目标 通过本章学习,掌握表达晶体周期性结构与它的点阵的各种概念;掌握晶面指数与晶向指数的标定,晶面间距与晶面夹角的表达;倒易点阵。 学习要点 ⑴⑵⑶(4) 晶体结构周期性与点阵。 7个晶系和14种Bravias空间格子。 晶胞,晶带,晶向,晶面,晶面间距,晶面夹角。倒易点阵 学时安排 学时----- 2学时

2.1、晶体结构与空间点阵 2.1.1空间点阵(Space Lattice) 晶体结构的几何特征是其结构基元(原子、离子、分子或其它原子集团)一定周期性的排列。通常将结构基元看成一个相应的几何点,而不考虑实际物质内容。 这样就可以将晶体结构抽象成一组无限多个作周期性排列的几何点。这种从晶体结构抽象出来的,描述结构基元空间分布周期性的几何点,称为晶体的空间点阵。几何点为阵点。

结构基元 在晶体的点阵结构中每个阵点所代表的具体内容,包括原子或分子的种类和数量及其在空间按一定方式排列的结构,称为晶体的结构基元。结构基元是指重复周期中的具体内容。 点阵点 点阵点是代表结构基元在空间重复排列方式的抽象的点。如果在晶体点阵中各点阵点位置上,按同一种方式安置结构基元,就得整个晶体的结构。 所以可简单地将晶体结构示意表示为: 晶体结构= 点阵+ 结构基元

2.1.2 基本矢量与晶胞 一个结点在空间三 个方向上,以a , b , c 重 复出现即可建立空间点 阵。重复周期的矢量a , b , c 称为点阵的基本矢 量。 由基本矢量构成的 平行六面体称为点阵的 单位晶胞。

晶体学基础材料

第一章晶体结构 在自然界的固态物质中,具有规则几何外形的晶体很早就引起了人们的关注,尽管目前对非晶态物质的研究日趋活跃,但迄今为止,人们对固体的了解大部分来自对晶体的研究。本章主要讨论晶体中原子排列的几何特征,并简要地介绍X射线衍射的原理和方法。 §1.1晶体的共性 如果将大量的原子聚集到一起构成固体,那么显然原子会有无限多种不同的排列方式。而在相应于平衡状态下的最低能量状态,则要求原子在固体中有规则地排列。若把原子看作刚性小球,按物理学定律,原子小球应整齐地排列成平面,又由各平面重叠成规则的三维形状的固体。 人们很早就注意一些具有规则几何外形的固体,如岩盐、石英等,并将其称为晶体。显然,这是不严格的,它不能反映出晶体内部结构本质。事实上,晶体在形成过程中,由于受到外界条件的限制和干扰,往往并不是所有晶体都能表现出规则外形;一些非晶体,在某些情况下也能呈现规则的多面体外形。因此,晶体和非晶体的本质区别主要并不在于外形,而在于内部结构的规律性。迄今为止,已经对五千多种晶体进行了详细的X射线研究,实验表明:组成晶体的粒子(原子、离子或分子)在空间的排列都是周期性的有规则的,称之为长程有序;而非晶体内部的分布规律则是长程无序。 各种晶体由于其组分和结构不同,因而不仅在外形上各不相同,而且在性质上也有很大的差异,尽管如此,在不同晶体之间,仍存在着某些共同的特征,主要表现在下面几个方面。1.自范性 晶体物质在适当的结晶条件下,都能自发地成长为单晶体,发育良好的单晶体均以平面作为它与周围物质的界面,而呈现出凸多面体。这一特征称之为晶体的自范性。

2. 晶面角守恒定律 由于外界条件和偶然情况不同,同一类型的晶体,其外形不尽相同。图1-1-1给出理想石英晶体的外形,图1-1-2是一种人造的石英晶体,表明由于外界条件的差异,晶体中某组晶面可以相对地变小、甚至消失。所以,晶体中晶面的大小和形状并不是表征晶体类型的固 有特征。 那么,由晶体内在结构所决定的晶体外形的固有特征是什么呢?实验表明:对于一定类型的晶体来说,不论其外形如何,总存在一组特定的夹角,如石英晶体的m 与m 两面夹角为60°0′,m 与R 面之间的夹角为38°13′,m 与r 面的夹角为38°13′。对于其它品种晶体,晶面间则有另一组特 征夹角。这一普遍规律称为晶面角守恒定律,即同一种晶体在相同的温度和压力下,其对应晶面之间的夹角恒定不变。 3. 解理性 当晶体受到敲打、剪切、撞击等外界作用时,可有沿某一个或几个具有确定方位的晶面 图1-1-1 理想石英晶体 图1-1-2 一种人造石英

材料科学基础总复习

《材料科学基础》上半学期内容重点 第一章固体材料的结构基础知识 键合类型(离子健、共价健、金属健、分子健力、混合健)及其特点;键合的本质及其与材料性能的关系,重点说明离子晶体的结合能的概念; 晶体的特性(5个); 晶体的结构特征(空间格子构造)、晶体的分类; 晶体的晶向和晶面指数(米勒指数)的确定和表示、十四种布拉维格子; 第二章晶体结构与缺陷 晶体化学基本原理:离子半径、球体最紧密堆积原理、配位数及配位多面体; 典型金属晶体结构; 离子晶体结构,鲍林规则(第一、第二);书上表2-3下的一段话;共价健晶体结构的特点;三个键的异同点(举例); 晶体结构缺陷的定义及其分类,晶体结构缺陷与材料性能之间的关系(举例); 第三章材料的相结构及相图 相的定义 相结构 合金的概念:

固溶体 置换固溶体 (1)晶体结构 无限互溶的必要条件—晶体结构相同 比较铁(体心立方,面心立方)与其它合金元素互溶情况(表3-1的说明) (2)原子尺寸:原子半径差及晶格畸变; (3)电负性定义:电负性与溶解度关系、元素的电负性及其规律;(4)原子价:电子浓度与溶解度关系、电子浓度与原子价关系;间隙固溶体 (一)间隙固溶体定义 (二)形成间隙固溶体的原子尺寸因素 (三)间隙固溶体的点阵畸变性 中间相 中间相的定义 中间相的基本类型: 正常价化合物:正常价化合物、正常价化合物表示方法 电子化合物:电子化合物、电子化合物种类 原子尺寸因素有关的化合物:间隙相、间隙化合物 二元系相图: 杠杆规则的作用和应用; 匀晶型二元系、共晶(析)型二元系的共晶(析)反应、包晶(析)

型二元系的包晶(析)反应、有晶型转变的二元系相图的特征、异同点; 三元相图: 三元相图成分表示方法; 了解三元相图中的直线法则、杠杆定律、重心定律的定义; 第四章材料的相变 相变的基本概念:相变定义、相变的分类(按结构和热力学以及相变方式分类); 按结构分类:重构型相变和位移型相变的异同点; 马氏体型相变:马氏体相变定义和类型、马氏体相变的晶体学特点,金属、陶瓷中常见的马氏体相变(举例)(可以用许教授提的一个非常好的问题――金属、陶瓷马氏体相变性能的不同――作为题目)有序-无序相变的定义 玻璃态转变:玻璃态转变、玻璃态转变温度、玻璃态转变点及其黏度按热力学分类:一级相变定义、特点,属于一级相变的相变;二级相变定义、特点,属于二级相变的相变; 按相变方式分类:形核长大型相变、连续型相变(spinodal相变)按原子迁动特征分类:扩散型相变、无扩散型相变

第3讲 晶体学基础知识

第3讲 教学要求:1. 复习明确晶体和非晶体的概念 2. 明确格子构造的概念以及与实际晶体构造之间的关系 3. 大致了解晶体的分类知识 4. 详细讲解并要求学生掌握记熟空间格子构造,熟练掌握14种布拉维格子 的构造特点及晶格参数的特点 5.熟练掌握晶面指数的标定步骤 教学重点:晶体的概念、布拉维格子构造、晶面指数的标定 教学难点:晶体学基础比较抽象,备课中需多准备形象立体感强的图形,讲解速度控制较慢,尽量引导学生课堂中记忆布拉维格子构造,通过例子联系晶面指数标 定过程 教学拓展:介绍《物相分析》、《材料研究方法》、《材料结构表征及应用》书中相应的部分以便学生课后参看 讨论:课堂上提问学生所掌握的晶体学基础知识的内容,比较选修有关结晶学课程的学生和未选修结晶学课程学生掌握晶体学知识的范围差异,抽10分钟左右的 时间讨论,以便掌握讲课难度和速度。 作业:1. 晶体和非晶体的概念? 2. 熟练写出布7种拉维格子的名称和相应的晶格参数? 晶体学基础知识 一.晶体的定义与特征 晶体的概念:人类对晶体的认识,是从石英开始的。古代人们把外形上具有规则的几何 多面体形态的石英(水晶)称为晶体。后来,人们把凡是天然的具有几何多面体的固体,例 如:石盐、方解石、磁石等都成为晶体。 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

本世纪初(1912),X射线衍射分析方法的应用研究了晶体内部结构后,发现:一切晶体不论其外形如何,它的内部质点(原子、离子、、分子)都是有规则排列的,即:晶体内部相同质点在三维空间均呈周期性重复,构成了格子构造。因此,对晶体做出如下定义:晶体是内部质点在三维空间成周期性重复排列的固体。或者:晶体是具有格子构造的固体。 ?晶体是原子或者分子规则排列的固体; ?晶体是微观结构具有周期性和一定对称性的固体; ?晶体是可以抽象出点阵结构的固体; ?在准晶出现以后,国际晶体学联合会在 1992年将晶体的定义改为:“晶体是能够给出明锐衍射的固体。” 非晶质体:晶体内部质点在三维空间不做规律排列,不具格子构造,称为非晶质体或非晶质。例如:玻璃、塑料、沥青等。从内部结构来看,非晶质体中质点的分布无任何规律可循,其内部结构只具有统计均一性,非晶质体的性质在不同方向上是同一的。在外形上非晶质体不能自发地长成规则的几何多面体形态,而是一种无规则形态的无定形体。 晶体与非晶体 非晶体是指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体。它没有一定规则的外形,如玻璃、松香、石蜡等。它的物理性质在各个方向上是相同的,叫“各向同性”。它没有固定的熔点。所以有人把非晶体叫做“过冷液体”或“流动性很小的液体”。 晶体和非非晶质体在一定条件下是可以转换的。列如:使用年久的玻璃,常会出现一些所谓的“霉点”,是因为玻璃向结晶态转变的雏晶,此过程成为:晶化或脱玻化,相反的转化,晶体因内部质点的规律排列受到破坏而向非晶体转变,称为非晶化或玻璃化。例如,某些含放射性元素的矿物晶体,由于放射性元素在蜕变过程中放出核能,破坏了晶体内部的结构,而产生了非晶质化的现象。

晶体学基础资料

竞赛要求: 初赛要求:晶体结构。晶胞。原子坐标。晶格能。晶胞中原子数或分子数的计算及与化学式的关系。分子晶体、原子晶体、离子晶体和金属晶体。配位数。晶体的堆积与填隙模型。常见的晶体结构类型,如NaCl、CsCl、闪锌矿(ZnS)、萤石(CaF2)、金刚石、石墨、硒、冰、干冰、尿素、金红石、钙钛矿、钾、镁、铜等。 决赛要求:晶体结构。点阵的基本概念。晶系。宏观对称元素。十四种空间点阵类型。 第七章晶体学基础 Chapter 7. The basic knowledge of crystallography §7.1 晶体结构的周期性和点阵 (Periodicity and lattices of crystal structures) 一、.晶体 远古时期,人类从宝石开始认识晶体。红宝石、蓝宝石、祖母绿等晶体以其晶莹剔透的外观,棱角分明的形状和艳丽的色彩,震憾人们的感官。名贵的宝石镶嵌在帝王的王冠上,成为权力与财富的象征,而现代人类合成出来晶体,如超导晶体YBaCuO、光学晶体BaB2O4、LiNbO3、磁学晶体NdFeB等高科技产品,则推动着人类的现代化进程。 世界上的固态物质可分为二类,一类是晶态,一类是非晶态。自然界存在大量的晶体物质,如高山岩石、地下矿藏、海边砂粒、两极冰川都是晶体组成。人类制造的金属、合金器材,水泥制品及食品中的盐、糖等都属于晶体,不论它们大至成千万吨,小至毫米、微米,晶体中的原子、分子都按某种规律周期性地排列。另一类固态物质,如玻璃、明胶、碳粉、塑料制品等,它们内部的原子、分子排列杂乱无章,没有周期性规律,通常称为玻璃体、无定形物或非晶态物质。 晶体结构最基本的特征是周期性。晶体是由原子或分子在空间按一定规律周期重复排列构成的固态物质,具有三维空间周期性。由于这样的内部结构,晶体具有以下性质: 1、均匀性:一块晶体内部各部分的宏观性质相同,如有相同的密度,相同的化学组成。晶体的均匀性来源于晶体由无数个极小的晶体单位(晶胞)组成,每个单位里有相同的原子、

晶体学基础知识点小节

第一章晶体与非晶体 ★相当点(两个条件:1、性质相同,2、周围环境相同。) ★空间格子的要素:结点、行列、面网 ★晶体的基本性质: 自限性:晶体能够自发地生长成规则的几何多面体形态。 均一性:同一晶体的不同部分物理化学性质完全相同。晶体是绝对均一性,非晶体是统计的、平均近似 均一性。 异向性:同一晶体不同方向具有不同的物理性质。例如:蓝晶石的不同方向上硬度不同。 对称性:同一晶体中,晶体形态相同的几个部分(或物理性质相同的几个部分)有规律地重复出现。 最小内能性:晶体与同种物质的非晶体相比,内能最小。 稳定性:晶体比非晶体稳定。 ■本章重点总结:本章包括3组重要的基本概念: 1)晶体、格子构造、空间格子、相当点;它们之间的关系。 2)结点、行列、面网、平行六面体;结点间距、面网间距与面网密度的关系. 3)晶体的基本性质:自限性、均一性、异向性、对称性、最小内能、稳定性,并解释为什么。 第二章晶体生长简介 2.1晶体形成的方式 ★液-固结晶过程:⑴溶液结晶:①降温法②蒸发溶剂法③沉淀反应法 ⑵熔融结晶:①熔融提拉②干锅沉降③激光熔铸④区域熔融 ★固-固结晶过程:①同质多相转变②晶界迁移结晶③固相反应结晶④重结晶⑤脱玻化 2.2晶核的形成 ?思考:怎么理解在晶核很小时表面能大于体自由能,而当晶核长大后表面能小于体自由能?因为成核过程有一个势垒:能越过这个势垒的就可以进行晶体生长了,否则不行。 ★均匀成核:在体系内任何部位成核率是相等的。 ★非均匀成核:在体系的某些部位(杂质、容器壁)的成核率高于另一些部位。 ?思考:为什么在杂质、容器壁上容易成核?为什么人工合成晶体要放籽晶? 2.3晶体生长 ★层生长理论模型(科塞尔理论模型) 层生长理论的中心思想是:晶体生长过程是晶面层层外推的过程。 ★螺旋生长理论模型(BCF理论模型) ?思考:这两个模型有什么联系与区别? 联系:都是层层外推生长;区别:生长新的一层的成核机理不同。 ?思考:有什么现象可证明这两个生长模型? 环状构造、砂钟构造、晶面的层状阶梯、螺旋纹 2.4晶面发育规律 ★★布拉维法则(law of Bravais):晶体上的实际晶面往往平行于面网密度大的面网。 为什么?面网密度大一面网间距大一对生长质点吸引力小一生长速度慢一在晶形上保留—生长速度快一尖灭 ★PBC (周期性键链)理论: 晶面分为三类:F面(平坦面,两个Periodic Bond Chain PBC)晶形上易保留。 S面(阶梯面,一个PBC)可保留或不保留。 K面(扭折面,不含PBC),晶形上不易保留。 ★居里-吴里弗原理(最小表面能原理):晶体上所有晶面的表面能之和最小的形态最稳定。

晶体学基本(晶向指数与晶面指数)

1.4 晶向指数和晶面指数 一晶向和晶面 1 晶向 晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。晶体中的某些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线的指向。 2 晶面 晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。晶体中原子所构成的平面。 不同的晶面和晶向具有不同的原子排列和不同的取向。材料的许多性质和行为(如各种物理性质、力学行为、相变、X光和电子衍射特性等)都和晶面、晶向有密切的关系。所以,为了研究和描述材料的性质和行为,首先就要设法表征晶面和晶向。为了便于确定和区别晶体中不同方位的晶向和晶面,国际上通用密勒(Miller)指数来统一标定晶向指数与晶面指数。 二晶向指数和晶面指数的确定 1 晶向指数的确定方法 三指数表示晶向指数[uvw]的步骤如图1所示。 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长a,b,c,坐标原点在待标晶向上。 (2)选取该晶向上原点以外的任一点P(xa,yb,zc)。 (3)将xa,yb,zc化成最小的简单整数比u,v,w,且u∶v∶w = xa∶yb∶zc。 (4)将u,v,w三数置于方括号内就得到晶向指数[uvw]。

图1 晶向指数的确定方法 图2 不同的晶向及其指数 当然,在确定晶向指数时,坐标原点不一定非选取在晶向上不可。若原点不在待标晶向上,那就需要选取该晶向上两点的坐标P (x 1,y 1,z 1)和Q (x 2,y 2,z 2),然后将(x 1-x 2),(y 1-y 2),(z 1-z 2)三个数化成最小的简单整数u ,v ,w ,并使之满足u ∶v ∶w =(x 1-x 2)∶(y 1-y 2)∶(z 1-z 2)。则[uvw ]为该晶向的指数。 显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指数的数字相同,但符号相反,如图3中[001]与[010]。 说明: a 指数意义:代表相互平行、方向一致的所有晶向。 b 负值:标于数字上方,表示同一晶向的相反方向。 c 晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。用表示,数字相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密度相同的等同晶向称为晶向轴,用表示。 <100>:[100] [010] [001] [001] [010] [100]

材料科学基础习题库第一章-晶体结构

(一).填空题 1.同非金属相比,金属的主要特性是__________ 2.晶体与非晶体的最根本区别是__________ 3.金属晶体中常见的点缺陷是__________ ,最主要的面缺陷是__________ 。4.位错密度是指__________ ,其数学表达式为__________ 。 5.表示晶体中原子排列形式的空间格子叫做__________ ,而晶胞是指__________ 。 6.在常见金属晶格中,原子排列最密的晶向,体心立方晶格是__________ ,而面心立方晶格是__________ 。 7.晶体在不同晶向上的性能是__________,这就是单晶体的__________现象。 一般结构用金属为__________ 晶体,在各个方向上性能__________ ,这就是实际金属的__________现象。 8.实际金属存在有__________ 、__________ 和__________ 三种缺陷。位错是__________ 缺陷。实际晶体的强度比理想晶体的强度__________ 得多。。9.常温下使用的金属材料以__________ 晶粒为好。而高温下使用的金属材料在一定范围内以__________ 晶粒为好。‘ 10.金属常见的晶格类型是__________、__________ 、__________ 。 11.在立方晶格中,各点坐标为:A (1,0,1),B (0,1,1),C (1,1,1/2),D(1/2,1,1/2),那么AB晶向指数为__________ ,OC晶向指数为__________ ,OD晶向指数为__________ 。 12.铜是__________ 结构的金属,它的最密排面是__________ ,若铜的晶格常数a=0.36nm,那么最密排面上原子间距为__________ 。 13 α-Fe、γ-Fe、Al、Cu、Ni、Pb、Cr、V、Mg、Zn中属于体心立方晶格的有 __________ ,属于面心立方晶格的有__________ ,属于密排六方晶格的有__________ 。 14.已知Cu的原子直径为0.256nm,那么铜的晶格常数为__________ 。1mm3Cu 中的原子数为__________ 。 15.晶面通过(0,0,0)、(1/2、1/4、0)和(1/2,0,1/2)三点,这个晶面的晶面指数为() 16.在立方晶系中,某晶面在x轴上的截距为2,在y轴上的截距为1/2;与z轴平行,则该晶面指数为__________ . 17.金属具有良好的导电性、导热性、塑性和金属光泽主要是因为金属原子具有__________ 的结合方式。 18.同素异构转变是指__________ 。纯铁在__________ 温度发生__________ 和__________ 多晶型转变。 19.在常温下铁的原子直径为0.256nm,那么铁的晶格常数为__________ 。20.金属原子结构的特点是______________________________________。21.物质的原子间结合键主要包括__________ 、__________ 和__________ 三种。 22.大部分陶瓷材料的结合键为__________ 。 23.高分子材料的结合键是__________ 。 25.位错线与柏氏矢量垂直,该位错为_________,位错线与柏氏矢量平行时为_______位错。

《材料科学基础》习题附答案

第二章 思考题与例题 1. 离子键、共价键、分子键和金属键的特点,并解释金属键结合的固体材料的密度比离子 键或共价键固体高的原因? 2. 从结构、性能等方面描述晶体与非晶体的区别。 3. 何谓理想晶体?何谓单晶、多晶、晶粒及亚晶?为什么单晶体成各向异性而多晶体一般 情况下不显示各向异性?何谓空间点阵、晶体结构及晶胞?晶胞有哪些重要的特征参数? 4. 比较三种典型晶体结构的特征。(Al 、α-Fe 、Mg 三种材料属何种晶体结构?描述它们的 晶体结构特征并比较它们塑性的好坏并解释。)何谓配位数?何谓致密度?金属中常见的三种晶体结构从原子排列紧密程度等方面比较有何异同? 5. 固溶体和中间相的类型、特点和性能。何谓间隙固溶体?它与间隙相、间隙化合物之间 有何区别?(以金属为基的)固溶体与中间相的主要差异(如结构、键性、性能)是什么? 6. 已知Cu 的原子直径为2.56A ,求Cu 的晶格常数,并计算1mm 3Cu 的原子数。 7. 已知Al 相对原子质量Ar (Al )=26.97,原子半径γ=0.143nm ,求Al 晶体的密度。 8 bcc 铁的单位晶胞体积,在912℃时是0.02464nm 3;fcc 铁在相同温度时其单位晶胞体积 是0.0486nm 3。当铁由bcc 转变为fcc 时,其密度改变的百分比为多少? 9. 何谓金属化合物?常见金属化合物有几类?影响它们形成和结构的主要因素是什么? 其性能如何? 10. 在面心立方晶胞中画出[012]和[123]晶向。在面心立方晶胞中画出(012)和(123)晶面。 11. 设晶面(152)和(034)属六方晶系的正交坐标表述,试给出其四轴坐标的表示。反之,求(3121)及(2112)的正交坐标的表示。(练习),上题中均改为相应晶向指数,求相互转换后结果。

材料科学基础答案

第1章晶体结构 1.在立方晶系中,一晶面在x轴的截距为1,在y轴的截距为1/2,且平行于z 轴,一晶向上某点坐标为x=1/2,y=0,z=1,求出其晶面指数和晶向指数,并绘图示之。 2.画出立方晶系中下列晶面和晶向:(010),(011),(111),(231),(321),[010], [011],[111],[231],[321]。 3.纯铝晶体为面心立方点阵,已知铝的相对原子质量Ar(Al)=27,原子半径r=0.143nm,求铝晶体的密度。 4.何谓晶体?晶体与非晶体有何区别? 5.试举例说明:晶体结构与空间点阵?单位空间格子与空间点阵的关系?6.什么叫离子极化?极化对晶体结构有什么影响? 7.何谓配位数(离子晶体/单质)? 8.何谓对称操作,对称要素? 9.计算面心立方结构(111)与(100)晶面的面间距及原子密度(原子个数/单位面积)。 10.已知室温下α-Fe(体心)的点阵常数为0.286nm,分别求(100)、(110)、(123)的晶面间距。 11.已知室温下γ-Fe(面心)的点阵常数为0.365nm,分别求(100)、(110)、 (112)的晶面间距。 12.已知Cs+半径为0.170nm,Cl-半径为0.181 nm,计算堆积系数。

13.MgO 属NaCl型结构,若r Mg2+=0.078nm,r O2-=0.132nm,(1)试用鲍林 规则 分析氧化镁晶体结构?(2)计算堆积密度?(3)画出氧化镁在(100)、(110)、 (111)晶面上的结点和离子排布图?

答案 1.答:晶面指数为:(120),见图ABCD面;晶向指数为:[102],见图OP向。 2.答: 3.答: 2 22 2 . 1 4 30 . 4 4 a r n m n m ===, 3 32 37 33 4()4 2 7 2 .7 2 1 / 6 .0 2 1 0( .4 4 1 ) A r A l g c m N a c m ρ - ? === ??? 4.答:晶体:内部质点在三维空间呈周期性重复排列的固体,即晶体是具有格子构造的固体。

整理后的材料科学基础名词解释要点

第二章固体结构 1、晶体:是指原子(或分子)在三维空间按一定规律作周期性排列的固体。 非晶体:原子杂乱分布,或仅有局部区域为短程规则排列。 2、晶体结构(晶体点阵): 晶体中,实际原子、分子、离子或原子集团按一定几何规律的具体排列方式。 5、空间点阵:由周围环境相同的阵点在空间排列的三维阵列。 3、晶格:用直线将空间点阵的各阵点连接起来,构成一个三维空间格架。这种用于描述晶体中原子排列规律的空间格架称为晶格。 4、晶胞:晶格中,能完全反映晶格特征的最小几何单元称为晶胞。 6、结构晶胞:如果在点阵晶胞的范围内,标出相应晶体结构中各原子的位臵,这部分原子构成了晶体结构中有代表性额部分,含有这一附加信息的晶胞称为结构晶胞。 8、晶体结构与空间点阵的区别:空间点阵只有14种,晶体结构是无限多的; 9、结构晶胞与点阵晶胞的区别: 点阵晶胞—仅反映周期性最小的,体积最小,但不一定反映点阵的对称性,只含一个结点。 结构晶胞--具有较高对称性的最小重复单元,既反映周期性,也反映对称性,但不一定最小。 10、晶向:晶体中,穿过两个以上阵点的任意直线,都代表晶体中一个原子列的空间位向,称为晶向. 晶面:晶体中,某些原子构成的原子平面,称为晶面. 11、密勒指数: 国际通用、用以表示晶向和晶面空间位臵的符号,分晶向指数和晶面指数. 12、晶向族:原子排列相同但空间位向不同的所有晶向。 13、面心立方结构(A1) Al, 贵金属, α-Fe, Ni, Pb, Pd, Pt等 体心立方结构(A2) 碱金属, V, Nb, Ta, Cr, Mo, W, -Fe等 密排六方结构(A3) α-Ti, Be, Zn, Mg, Cd等 14、配位数CN —晶体中,与任一原子最近邻且等距离的原子数 致密度:晶体结构中原子体积占总体积的百分数。 k = nv/V n:晶胞原子数 v:单原子的体积 V:晶胞体积 15、晶体的多晶型性(同素异构):化学组成相同的物质在不同温度或压力条件下具有不同的晶体结构的现象,称为多晶型性(同素异构)。 1、肖脱基空位:离位原子迁移到晶体的外表面or内界面,这种空位叫肖脱基空位。

相关文档
最新文档