九年级数学下册27-1图形的相似教案(一)新人教版

合集下载

(名师整理)数学九年级下册第27章《27.1 图形的相似》优秀教案

(名师整理)数学九年级下册第27章《27.1 图形的相似》优秀教案

27.1图形的相似(第一课时)一、教学目的:1. 通过观察生活中的实例,让学生体会相似图形的概念。

2.经历探究相似多边形特征的过程,掌握相似多边形的特征。

3.在探究相似多边形特征的过程中,培养学生归纳、猜想、合作交流等方面的能力,提高数学思维水平。

二、重点、难点1.重点:相似多边形的主要特征的识别.2.难点:正确地运用相似多边形的特征解决一些实际问题。

三、教学过程一、创设情境感知相似观察图片,体会相似图形1 、同学们初二时,我们研究了全等形的有关知识,在我们生活中,除了全等形之外,我们还经常会见到这样的图形,我们称这样的两个图形是相似的。

从本节课开始我们将开始进入对第27章相似的学习,今天我们先来研究图形的相似。

(通过实例让学生观察相似图形的特点,感受形状相同的概念。

)(个人口答)2 、小组讨论、交流.得到相似图形的概念.提问:什么是相似图形?形状相同的图形叫做相似图形” (教师板书)注意:①相似图形的形状相同。

②相似图形的大小不一定相同。

③两个图形相似,其中一个图形可以看作由另一个图形放大或缩小得到.3、提问:生活中有很多的相似图形,你能举出一些例子与大家分享吗?(个人口答)(让学生寻找生活中的例子,体会生活中的相似,进一步了解相似形的概念。

(师)老师呢也找了几个生活中的几个实例,你们来看看他们是否是相似的4 、思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?观察思考,小组讨论回答:5、练习:(1)如图,从放大镜里看到的三角尺和原来的三角尺相似吗?(2)下列图形中哪些图形是相似的?(3)观察下面的图形(a)-(g),其中哪些是与图形(1)、(2)或(3)相似的?(4)下列图形中,能确定相似的有( )A .两个半径不相等的圆 B.所有的等边三角形 C.所有的等腰三角形D.所有的正方形E.所有的等腰梯形F.所有的正六边形(让学生通过比较,体会相似图形与不相似图形的“形状”特点。

九年级数学下册 27 相似 27.1 图形的相似(1)导学案(

 九年级数学下册 27 相似 27.1 图形的相似(1)导学案(

27.1图形的相似(1)学习目标:1、.从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.2、理解相似图形概念,增强观察、动手能力.学习重点和难点重点:.从生活中形状相同的图形的实例中认识图形的相似,理解相似图形概念.难点:理解相似图形概念,增强观察、动手能力.一、预习内容:阅读教材P24-25,弄清楚相似图形的概念,能正确判断两个图形是否相似;1、把图形叫做相似图形.2、两个图形相似,其中一个图形可以看作是由另一个图形和得到的.3、全等三角形相似吗?4、生活中有哪些相似图形,请举例?二、数学概念1 、同学们,请观察下列几幅图片,你能发现些什么?你能对观察到的图片特点进行归纳吗? (课本图27.1-1)( 课本图27.1-2)归纳:__________________________________________________________________ 2 、思考:如图27.1-3是人们从平面镜及哈哈镜里看到的不同镜像,它们相似吗?三、例题讲解1、如图,下面右边的四个图形中,与左边的图形相似的是()2、下列各图中哪组图形是相似图形( )四、总结反思1.说说你的收获;2.你还有什么问题?五、反馈练习1.下列说法中,不正确的是( )A.两幅比例不同的中国行政地图是相似图形B.两个图形相似与形状有关而与位置无关C.哈哈镜中人的形象与本人是相似的D.同一底片洗出来的不同尺寸的照片是相似的2.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?3.如图,图形a~f中,哪些是与图形(1)或(2)相似的?4、判断题:(1)两个正方形一定相似;()(2)两个菱形一定相似;()(3)有一个底角相等的两个等腰三角形一定相似;()(4)有一个角相等的两个平行四边形相似。

()5、下列说法正确的是()A.小明上幼儿园时的照片和初中毕业时的照片相似.B.商店新买来的一副三角板是相似的.C.所有的课本都是相似的.D.国旗的五角星都是相似的.6、填空题形状的图形叫相似形;两个图形相似,其中一个图形可以看作由另一个图形的或而得到的。

九年级数学下册第二十七章相似27.1图形的相似1教学课件新版新人教版

九年级数学下册第二十七章相似27.1图形的相似1教学课件新版新人教版

新课讲解
例 如图,图形(a)~(f)中,哪些与图形(1)或(2)相似?
解:(d)与(1)相似;(e)与(2)相似.
巩固练习
下列各组图形中,不是相似图形的是( B ).
A
B
C
D
课堂小结
形状相同的图形叫做相似图形. 注意:(1)两个图形相似,其中一个图形可以看 成是由另一个图形放大或缩小得到的; (2)全等的图形可以看成是特殊的相似图形,即 不仅形状相同,大小也相同; (3)判断两个图形是否相似,就是看这两个图形 的形状是否相同,这是相似图形的本质,与大小无关.
两个相似的平面图形之间有什么关系吗?
新课讲解
分析:相似图形的大小不一定相同;两个图形相 似,其中一个图形可以看作是由另一个图形放大或缩 小得到的.
新课讲解
问题3 如下图,国旗上的大五角星和小五角
星是五角星都是相似图形. 发现:两个物体形状相同、大小相同时它们是 全等的,全等是相似的一种特殊情况.如果图形A 与图形B相似,图形B与图形C相似,那么图形A与 图形C也相似.
第27章:相似 27.1图形的相似(1)
导入新课
问题1 观察下列各组图片,你能说出下列各 组图片的共同之处吗?
导入新课
答:它们的大小不等,形状相同. 在日常生活中,我们经常会看到许多形状相同, 而大小不一定相同的图形(如上页图).我们把这种 形状相同的图形叫做相似图形.
新课讲解
问题2 下图是一些相似的平面图形,你能说出
新课讲解
问题4 如图是一个女孩儿从平面镜和哈哈镜里 看到的自己的形象,这些镜中的形象相似吗?
新课讲解
分析:平面镜是表面平整的镜子,它所成像的 形状和大小与物体完全相同,哈哈镜是表面凹凸不 平的镜子,它能使所成的像产生奇异变形,因此哈 哈镜中看到的形象,有的被“压扁”,有的被“拉 长”,这些镜中的形象不相似.

【人教版】九年级数学下册:27.1 图形的相似教案

【人教版】九年级数学下册:27.1 图形的相似教案

第二十七章相似27.1 图形的相似1.从生活中形状相同的图形的实例中认识图形的相似;(重点)2.理解成比例线段的概念,会确定线段的比.(难点)一、情境导入如图是两张大小不同的世界地图,左边的图形可以看作是右边的图形缩小得来的.由于不同的需要,对某一地区,经常会制成各种大小的地图,但其形状(包括地图中所描绘的各个部分)肯定是相同的.日常生活中我们会碰到很多这种形状相同、大小不一定相同的图形,在数学上,我们把具有相同形状的图形称为相似图形.像这样的图形有哪些性质?下面我们就一起探讨一下吧!二、合作探究探究点一:相似图形观察下面图形,指出(1)~(9)中的图形有没有与给出的图形(a)、(b)、(c)形状相同的?解析:通过观察寻找与(a),(b),(c)形状相同的图形,在所给的9个图形中仔细观察,然后作出判断.解:通过观察可以发现:图形(4)、(8)与图形(a)形状相同;图形(6)与图形(b)形状相同;图形(5)与图形(c)形状相同.方法总结:判断两个图形的形状是否相同,应仔细观察,当两个图形的形状除了大小没有其他任何差异时,我们才可以说这两个图形形状相同. 变式训练:见《学练优》本课时练习“课堂达标训练” 第1题探究点二:比例线段【类型一】 判断四条线段是否成比例下列各组中的四条线段成比例的是( )A .4cm ,2cm ,1cm ,3cmB .1cm ,2cm ,3cm ,5cmC .3cm ,4cm ,5cm ,6cmD .1cm ,2cm ,2cm ,4cm解析:选项A.从小到大排列,由于1×4≠2×3,所以不成比例,不符合题意;选项B.从小到大排列,由于1×5≠2×3,所以不成比例,不符合题意;选项C.从小到大排列,由于3×6≠4×5,所以不成比例,不符合题意;选项D.从小到大排列,由于1×4=2×2,所以成比例,符合题意.故选D.方法总结:判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可.变式训练:见《学练优》本课时练习“课堂达标训练”第3题【类型二】 利用成比例线段的定义,求线段的长已知线段a 、b 、c 、d 是成比例线段,其中a =2m ,b =4m ,c =5m ,则d =( )A .1mB .10m C.52m D.85m 解析:∵线段a 、b 、c 、d 是成比例线段,∴a ∶b =c ∶d ,而a =2m ,b =4m ,c =5m ,∴d =b ·c a =4×52=10(m).故选B. 方法总结:求线段之比时,要先统一线段的长度单位,然后根据比例关系求值.变式训练:见《学练优》本课时练习“课堂达标训练”第4题【类型三】 利用比例尺求距离若一张地图的比例尺是1∶150000,在地图上量得甲、乙两地的距离是5cm ,则甲、乙两地的实际距离是( )A .3000mB .3500mC .5000mD .7500m解析:设甲、乙两地的实际距离是x cm ,根据题意得1∶150000=5∶x ,x =750000(cm),750000cm =7500m.故选D.方法总结:比例尺=图上距离∶实际距离.根据比例尺进行计算时,要注意单位的转换. 变式训练:见《学练优》本课时练习“课堂达标训练”第5题探究点三:相似多边形【类型一】 利用相似多边形的性质求线段和角如图所示,给出的两个四边形是相似形,具体数据如图所示,求出未知边a 、b 的长度及角α的值.解析:根据相似多边形对应角相等和对应边成比例解答.解:因为四边形ABCD 与四边形A ′B ′C ′D ′相似,所以∠B ′=∠B =63°,∠D ′=∠D ,AD A ′D ′=AB A ′B ′=BC B ′C ′,所以416=a 20=4.5b ,所以a =5,b =18.在四边形A ′B ′C ′D ′中,∠D ′=360°-(84°+75°+63°)=138°.∠α=∠D =∠D ′=138°.方法总结:若两个多边形相似,那么它们的对应角相等,对应边成比例.在书写两个多边形相似时,要注意把表示对应角顶点的字母写在对应的位置上.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】 相似多边形的判定如图,一块长3m 、宽1.5m 的矩形黑板ABCD 如图所示,镶在其外围的木质边框宽75cm.边框的内边缘所成的矩形ABCD 与边框的外边缘所成的矩形EFGH 相似吗?为什么?解析:两个矩形的四个角虽然相等,但四条边不一定对应成比例,判定两个矩形是否相似,关键是看对应边是否成比例.解:不相似.∵矩形ABCD 中,AB =1.5m ,AD =3m ,镶在其外围的木质边框宽75cm=0.75m ,∴EF =1.5+2×0.75=3m ,EH =3+2×0.75=4.5m ,∴AB EF =1.53=12,AD EH =34.5=23.∵12≠23,∴内边缘所成的矩形ABCD 与边框的外边缘所成的矩形EFGH 不相似. 方法总结:判定两个多边形相似,需要对应角相等,对应边成比例,这两个条件缺一不可.变式训练:见《学练优》本课时练习“课后巩固提升”第10题三、板书设计1.相似图形的概念;2.比例线段;3.相似多边形的判定和性质.本节课中对相似多边形的特征的教学要注意难度的把握,不要过高要求学生掌握更多的内容.学生能了解性质,并能简单运用即可,重要的还是后续的相似三角形的学习,当相似三角形的特征掌握之后,再进一步研究相似多边形的性质,学生就比较容易掌握.。

人教版九年级数学《图形的相似》教学设计

人教版九年级数学《图形的相似》教学设计

人教版九年级数学图形的相似教学设计执教教师:新疆阿克苏市第十三中学赵婷婷设计理念:新课标指出,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,根据九年级课程内容设置,为了让学生能从代数到几何进行快速的思维转换,在义务教育阶段,让学生接触相对完整的图形变换,是义务教育的性质所决定的. 本章是继“图形全等、轴对称、平移、旋转”之后集中研究图形形状的内容,不仅是对图形全等内容的进一步深化和发展,而且是对图形研究方法的综合运用.教材分析:本节课是本章的第一课时,力图通过观察现实生活中的各种相似图形,归纳抽象出数学概念,呈现出有关内容,体现了数学与现实之间的必然联系.教材从生活中形状相同的图形出发,引出相似图形的概念,进而研究相似多边形的特征并进行运用,另外,学习了本节内容,可以使学生更好地认识、描述物体的形状,同时也为下一步《相似三角形》以及高中段“图形与空间”的学习起着铺垫作用.学情分析:九年级学生虽已具备了一定的逻辑思维能力,但学生的知识结构还不完善,数学思想方法的掌握和运用还不熟练,所以类比全等图形知识的学习,通过具体实例认识图形的相似,引导归纳得出相似图形的概念 .教学目标1.知识与技能通过对事物的图形的观察、思考与分析,认识理解相似的图形.2.过程与方法经历动手操作的活动过程,增强学生的观察、动手能力.3.情感、态度与价值观体会图形的相似在现实世界中的存在与运用,进一步提高学生数学应用意识.教学重点认识图形的相似、形成图形相似的概念.教学难点在方格图中画相似图形 .课型:新授课课时安排:1课时教学手段:多媒体教法与学法分析:教学策略:1、情境教学法:创设问题情境,以学生感兴趣的并容易回答的问题为开端。

2、启发性教学法:启发性原则是永恒的,学生在教师的启发下自然而然的成为课堂的主体。

学习策略:本节主要采用小组合作学习方式,围绕“观察猜想,探究验证,归纳总结”的主线开展学习。

辅助策略:利用多媒体直观演示以突破难点。

人教版九年级下册27.1图形的相似教学设计

人教版九年级下册27.1图形的相似教学设计

人教版九年级下册27.1图形的相似教学设计一、教学目标1.学生能够理解什么是相似图形,掌握相似图形的定义及性质。

2.学生能够根据相似比例计算相似图形的边长、面积和周长。

3.学生能够运用相似关系解决实际问题。

二、教学重难点重点:理解相似图形的定义及性质,掌握计算相似图形的边长、面积和周长的方法。

难点:如何运用相似关系解决实际问题。

三、教学过程1. 导入新知识教师先放映一段视频,让学生观看一下两个正在比试的跳水运动员,互相交流自己的感受。

之后,教师带领学生小结,通过分享及展现,将相似性质的问题引入,从而激发学生围绕相似性质的探究兴趣。

2. 相关定义通过讲解PPT,教师带领同学开启探秘相似的新旅程,引导学生了解相似图形的特点、相似比和相似位置。

同时,让同学们能够区分相似图形和全等图形、相似三角形的共性与区别,为后面的教学打下基础。

3. 课堂实践•实践一:测量图形的边长教师准备好不同大小的图形,要求学生进行测量并计算出它们的相似比。

通过实践,让学生体验到相似关系的基本思路,培养学生的观察力和思考能力。

•实践二:计算图形面积教师给学生一些简单的图形,要求学生手算出它们的面积,并且根据相似比来计算出相似图形的面积。

通过做这个实验,能够让学生更好地理解相似图形的面积比值,提高学生的计算与推理能力。

4. 讲解应用通过导入优秀的阐释素材,让学生了解相似图形在生活中的应用,并在课堂上一起探讨进行探究。

教师可以给出一些实际情境,在此基础上实例演练,并引导学生自己思考,遇到实际问题,我们能够如何运用相似关系解决问题。

5. 课后作业布置课后作业,让学生模拟一些具体应用,做一些相应的实践练习,通过实践中总结归纳,巩固教学要点与知识。

四、总结通过以上授课过程,相信学生们已经初步掌握了相似图形的核心概念和基本应用,同时在课堂中也学习-了探究问题、思考问题的能力。

这种教学方式既能够使学生在轻松的氛围中学习到新知识,同时也能够促进学生将知识应用于实践中,从而深入了解相似图形的基本理论知识及其应用,提高学生的数学素养和实际应用能力。

人教版数学九年级下册教案:27.1 图形的相似

第27章相似27.1 图形的相似一、教学目标1.核心素养通过图形相似的学习,初步形成基本的几何直观、运算能力、推理能力.2.学习目标(1)理解并掌握两个图形相似的概念.(2)了解成比例线段的概念,会确定线段的比.(3)了解比例尺的概念.(4)记住相似多边形的性质,会辨别两个多边形是否相似,并会运用其性质进行相关的计算.3.学习重点相似图形的概念和与成比例线段的概念;相似多边形的性质与识别.4.学习难点线段成比例的意义;运用相似多边形的性质进行相关的计算.二、教学设计(一)课前设计1.预习任务任务1.阅读教材P24-25,思考:什么是相似图形?你能正确判断两个图形是否相似吗?任务2.阅读教材P26—P28,思考:什么是相似多边形?什么是相似比?相似多边形有怎样的性质?什么是成比例线段?2.预习自测(1)下列各组图形相似的是()答案:B解析:略(2)下列各组数中成比例的是()A. 2,3,4,1B. 3,5,13,9C. 6,8,9,10D. 10,20,20,40答案:D解析:略(3)如图,四边形EFGH 相似于四边形ABCD,则∠A=______度,∠C=______度,∠H=_____度,x=_____,y=_____,z=_____。

答案:70 120 60 40 45 75解析:∵四边形ABCD 和EFGH 相似,所以它们的对应角相等, 由此可得∠A=∠E=70°,∠C=∠G=120°,∠H=∠D=60°.∵四边形ABCD 和EFGH 相似,所以它们的对应边成比例, 由此可得05203018010===z y x , 解得x=40,y=45,z=75. (二)课堂设计1.知识回顾1.全等形的概念:能够完全重合的两个图形叫做全等形。

2.全等多边形的性质:全等多边形的对应角相等,对应边相等。

3.比的意义:两个数相除又叫做两个数的比。

比号前面的数叫做比的前项,比号后面的数叫做比的后项。

2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版

-学生可以尝试利用计算机软件(如几何画板、Mathematica等)进行位似图形的绘制和变换,感受图形变换的动态过程,增强空间观念和数学应用能力。
课后拓展
1.拓展内容:
-阅读材料:《数学的故事》中关于几何变换的起源和发展,了解位似变换在数学史上的地位。
-视频资源:寻找与位似图形相关的教学视频,如介绍位似变换的基本概念、性质和应用实例。
-学生通过观察生活中的位似图形,将所学知识应用到实际中,提高解决问题的能力。
-鼓励学生针对位似图形的特定性质或应用进行深入研究,撰写研究报告,培养探究精神。
-教师提供必要的指导和帮助,如推荐阅读材料、解答学生在自主学习中遇到的疑问等。
-教师组织学生开展课后讨论活动,让学生分享自己的学习心得和研究成果,促进交流与合作。
三、实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与位似图形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如使用几何画板绘制位似图形,演示位似的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
四、学生小组讨论(用时10分钟)
2.位似比的概念及其计算方法;
3.位似图形的画法,包括位似中心、位似向量、位似图形的作图方法;
4.应用位似变换解决实际问题。
本节课将结合新人教版教材,以生活实例为导入,让学生在实际操作中体会位似图形的特点,培养他们的观察能力和空间想象能力,从而提高解决几何问题的能力。
核心素养目标
本节课旨在培养学生的以下数学核心素养:
2023九年级数学下册第二十七章相似27.3位似第1课时位似图形的概念及画法教案(新版)新人教版
学校
授课教师

人教版九年级数学下册第二十七章27.1图形的相似教案

【教学过程】
环节
教学设计
教学活动设计
问题最佳
解ห้องสมุดไป่ตู้方案




请同学们看演示文件上的图形,感受它们的形状、大小的关系.(还可以再举几个例子)
教师出示问题
从几个图片(如图)引入相似图形,学生自己动手、动脑,亲身体会相似图形与我们的生活有着密切的关系,孕育良好的学习心境,
教师放映图片,并提出问题.
学生通过观察,感性认识形状相同大小不同的含义,并解决教师提出的问题
师生共同评析.存在的共性问题共同讨论解决.
鼓励学生独立思考后解决.感觉有困难的学生可以寻求同学的帮助,然后完成.小组交流内.




1.练习册20页-23页
2.家庭作业:亲自动手制作相似图形
教师布置作业,并提出要求.
学生课下独立完成,延续课堂.




同学们思考、讨论、交换意见给出实例
教师赞扬举例子比较好的同学.
教师出示以下图片
让学生感受生活中和数学中的相似




1.如图,从放大镜里看到的三角尺和原来的三角尺相似吗?
2.如图,图形a ~ f中,哪些是与图形(1)或(2)相似的?
3.查一查下图中哪些图形是相似图形?
教师出示题目.
学生观察并回答
教师规范解答








问题1.下面这些图形有什么共同的特点?
问题2.什么是相似图形?
【教师点评】在实际生活中,我们见到过许多大小不一但形状相同的图形,我们把这种形状相同的图形叫做相似图形.
问题3.请同学们举出一些相似的几何图形的例子.

新人教版九年级数学下册《二十七章 相似 27.1 图形的相似 相似多边形》教案_11

课题:27.1 相似多边形一、教材分析1、本节主要内容:相似图形的含义相似多边形的性质及其应用。

九年级下册第27章第一节的内容,本章是继“图形全等、三角形全等”之后集中研究图形形状的内容,不仅是对图形全等内容的进一步深化和发展,而且是对图形研究方法的综合运用。

因此学习本节内容,不仅是认识、描述物体的形状,更好地刻画现实世界的必要手段,也是密切数学与现实之间必然联系以及“图形与空间”各部分之间内在联系的重要桥梁。

本节从实际问题引入,通过对生活中的实例认识图形的相似,让学生理解图形相似的概念,通过学习本节课,使学生认识图形除轴对称、平移和旋转之外的另一种变换——相似.这节课为全章后续学习相似三角形打下了坚实的基础3、教学目标(一)知识与技能1.通过大量现实模型、事例,使学生认识、感受形状相同的图形的基本含义,从整体上把握“形状相同”的内涵。

感知相似图形在现实中的应用,认识形状相同的图形,感悟形状相同图形的基本含义。

2。

了解相似多边形的概念、性质,探索两个多边形相似的条件。

3.引导学生从具体实例认识两个多边形相似的本质。

4.会用多边形相似知识解决一些实际问题。

(二)过程与方法通过典型实例观察和认识现实生活中物体的相似,并结合具体实例认识形状相同的图形(图形的相似),体会图形相似在现实中的广泛存在性以及数学的人文价值,进一步提高数学应用意识。

经历测量长度和角度,发现相似多边形对应角相等,对应边的比相等的性质的过程。

(三)情感、态度与价值观经历自主探究、合作交流等学习方式的学习及激励评价,让学生在学习中锻炼能力,培养良好的情感、态度和价值观。

培养学生发展审美能力,使学生体验数学来源于生活,服务于生活。

教学重点1.结合具体实例认识感受形状相同的图形。

2.相似多边形的特征。

教学难点体会图形相似在现实中的广泛存在性以及数学的价值。

正确运用相似多边形的性质解决实际生活中的具体问题教具准备多媒体课件幻灯片图片平面镜放大镜教学方法观察、体会、探究、交流、启发二、学情分析分析学生的状况及制定相关教法学法在教科书前面,已经研究图形的全等,也研究了一些图形的变换,如平移、轴对称、旋转等,本章将在前面的基础上进一步研究一种变换──相似在现实世界中广泛存在着图形相似的现象,探究相似图形一些重要性质的过程,使学生更好的认识、描述形状相同的物体,体会相似图形在刻画现实世界中重要作用;在解决实际问题中,发展学生数学应用意识和合作交流能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图形的相似
教学时间 课题 27.1 图形的相似(一) 课型 新授课




知 识

能 力

1. 理解并掌握两个图形相似的概念.

2. 了解成比例线段的概念,会确定线段的比.

过 程

方 法
情 感
态 度
价值观

教学重点 相似图形的概念与成比例线段的概念.

教学难点 成比例线段概念.
教学准备 教师 多媒体课件 学生 “五个一”
课 堂 教 学 程 序 设 计 设计意图
课堂引入
1.(1)请同学们看黑板正上方的五星红旗,五星红旗上的大五角星与小五角星他们
的形状、大小有什么关系?再如下图的两个画面,他们的形状、大小有什么关系.(还
可以再举几个例子)

(2)教材P34.引入.
(3)相似图形概念:把形状相同的图形说成是相似图形.(强调:见前面)
(4)让学生再举几个相似图形的例子.
(5)讲解例1.
2.问题:如果把老师手中的教鞭与铅笔,分别看成是两条线段AB和CD,那么这两
条线段的长度比是多少?
归纳:两条线段的比,就是两条线段长度的比.
3.成比例线段:对于四条线段a,b,c,d,如果其中两条线段的比与另两条线段的比
相等,如(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.
【注意】(1)两条线段的比与所采用的长度单位没有关系,在计算时要注意统
一单位;(2)线段的比是一个没有单位的正数;(3)四条线段a,b,c,d成比例,记

作或a:b=c:d;(4)若四条线段满足,则有ad=bc.

例题讲解
例1(补充:选择题)如图,下面右边的四个图形中,与左边的图形相似的是( )

分析:因为图A是把图拉长了,而图D是把图压扁了,因此它们与左图都不相
似;图B是正六边形,与左图的正五边形的边数不同,故图B与左图也不相似;而
图C是将左图绕正五边形的中心旋转180º后,再按一定比例缩小得到的,因此图C
与左图相似,故此题应选C.
例2(补充)一张桌面的长a=1.25m,宽b=0.75m,那么长与宽的比是多少?
(1)如果a=125cm,b=75cm,那么长与宽的比是多少?
(2)如果a=1250mm,b=750mm,那么长与宽的比是多少?

解:略.()

小结:上面分别采用m、cm、mm三种不同的长度单位,求得的的值是相等的,
所以说,两条线段的比与所采用的长度单位无关,但求比时两条线段的长度单位必
须一致.
例3(补充)已知:一张地图的比例尺是1:32000000,量得北京到上海的图上
距离大约为3.5cm,求北京到上海的实际距离大约是多少km?
分析:根据比例尺=,可求出北京到上海的实际距离.

解:略
答:北京到上海的实际距离大约是1120 km.
课堂练习
1.教材P35的观察.
2.下列说法正确的是()
A.小明上幼儿园时的照片和初中毕业时的照片相似.
B.商店新买来的一副三角板是相似的.
C.所有的课本都是相似的.
D.国旗的五角星都是相似的.
3.如图,请测量出右图中两个形似的长方形的长和宽,
(1)(小)长是_______cm,宽是_______cm; (大)长是_______cm,宽是_______cm;
(2)(小);(大).

(3)你由上述的计算,能得到什么结论吗?

相关文档
最新文档