2019年北师大版七年级数学上学期期末复习备考之精准复习模拟题(A卷)(原卷版)-精品推荐
最新2018-2019学年北师大版数学七年级上册期末考试模拟试题及答案解析-精编试题

第一学期期末模拟考试初一数学试卷一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109 3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣25.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A .B .C .D .6.已知x=3是关于x 的方程5(x ﹣1)﹣3a=﹣2的解,则a 的值是( )A .﹣4B .4C .6D .﹣67.如图,点C 在线段AB 上,点D 是AC 的中点,如果CB=CD ,AB=10.5cm ,那么BC 的长为( )A .A2.5cmB .3cmC .4.5cmD .6cm8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x ﹣2y+z 的值是( )A .1B .4C .7D .99.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是( )A .200元B .240元C .320元D .360元10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为( )A.2998 B.3001 C.3002 D.3005二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=°.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)= .14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n= .三、解答题(共78分)15.(5分)计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)16.(5分)解方程: =1+.17.(5分)如图,已知线段a、b,求作线段AB,使AB=2a+b.18.(5分)先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.19.(7分)一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.20.(7分)如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB和∠AOC的度数.21.(7分)如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.22.(7分)某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?23.(8分)某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林 B:汽车限行C:拆除燃煤小锅炉 D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.24.(10分)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?25.(12分)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?参考答案与试题解析一、选择题1.如果水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作()A.﹣3m B.3m C.﹣4m D.10m【考点】正数和负数.【分析】水位升高7m记作﹢7m,升高和下降是互为相反意义的量,所以水位下降几m就记作负几m.【解答】解:上升和下降是互为相反意义的量,若上升记作正,那么下降就记作负.水位升高7m时水位变化记作+7m,那么水位下降4m时水位变化记作﹣4m.故选C.【点评】本题考查了正负数在生活中的应用.理解互为相反意义的量是关键.2.在2016年11月3日举行的第九届中国四部投资说明会上,现场签约116个项目,投资金额达130 944 000 000元,将130 944 000 000用科学记数法表示为()A.1.30944×1012B.1.30944×1011C.1.30944×1010D.1.30944×109【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将130 944 000 000用科学记数法表示为:1.30944×1011.故选B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列调查中,最适宜用普查方式的是()A.对一批节能灯使用寿命的调查B.对我国初中学生视力状况的调查C.对最强大脑节目收视率的调查D.对量子科卫星上某种零部件的调查【考点】全面调查与抽样调查.【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【解答】解:A、对一批节能灯使用寿命的调查,调查具有破坏性,适合抽样调查,故A错误;B、对我国初中学生视力状况的调查,调查范围广适合抽样调查,故B错误;C、对最强大脑节目收视率的调查,调查范围广适合抽样调查,故C错误;D、对量子科卫星上某种零部件的调查,要求精确度高的调查,适合普查,故D 正确;故选:D.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.若﹣4x m+2y4与2x3y n﹣1为同类项,则m﹣n()A.﹣4 B.﹣3 C.﹣2 D.﹣2【考点】同类项.【分析】根据同类项:所含字母相同,并且相同字母的指数也相同,可得关于m 和n的方程,解出可得出m和n的值,代入可得出代数式的值.【解答】解:∵﹣4x m+2y4与2x3y n﹣1是同类项,∴m+2=3,n﹣1=4,解得:m=1,n=5,∴m﹣n=﹣4.故选A.【点评】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项:所含字母相同,并且相同字母的指数也相同,难度一般.5.圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是()A .B .C .D .【考点】点、线、面、体.【分析】如图本题是一个平面图形围绕一条边为中心对称轴旋转一周根据面动成体的原理即可解.【解答】解:由长方形绕着它的一边所在直线旋转一周可得到圆柱体,如图立体图形是两个圆柱的组合体,则需要两个一边对齐的长方形,绕对齐边所在直线旋转一周即可得到, 故选:A .【点评】本题考查面动成体,需注意可把较复杂的体分解来进行分析.6.已知x=3是关于x 的方程5(x ﹣1)﹣3a=﹣2的解,则a 的值是( )A .﹣4B .4C .6D .﹣6【考点】一元一次方程的解.【分析】把x=3代入方程得出关于a 的方程,求出方程的解即可.【解答】解:把x=3代入方程5(x ﹣1)﹣3a=﹣2得:10﹣3a=﹣2,解得:a=4,故选B .【点评】本题考查了一元一次方程的解,解一元一次方程等知识点,能得出关于a 的一元一次方程是解此题的关键.7.如图,点C在线段AB上,点D是AC的中点,如果CB=CD,AB=10.5cm,那么BC的长为()A.A2.5cm B.3cm C.4.5cm D.6cm【考点】两点间的距离.【分析】根据线段中点的性质,可得DA与CD的关系,根据线段的和差,可得关于BC的方程,根据解方程,可得答案.【解答】解:由CB=CD,得CD=BC.由D是AC的中点,得AD=CD=BC.由线段的和差,得AD+CD+BC=AB,即BC+BC+BC=10.5.解得BC=4.5cm,故选:C.【点评】本题考查了两点间的距离,利用线段的和差得出关于BC的方程是解题关键.8.如图是一个正方体的表面展开图,如果相对面上所标的两个数互为相反数,那么x﹣2y+z的值是()A.1 B.4 C.7 D.9【考点】专题:正方体相对两个面上的文字;相反数.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再求出x、y、z的值,然后代入代数式计算即可得解.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“﹣8”是相对面,“y”与“﹣2”是相对面,“z”与“3”是相对面,∵相对面上所标的两个数互为相反数,∴x=8,y=2,z=﹣3,∴x﹣2y+z=8﹣2×2﹣3=1.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.9.某种商品因换季准备打折出售,如果按照原定价的七五折出售,每件将赔10元,而按原定价的九折出售,每件将赚38元,则这种商品的原定价是()A.200元B.240元C.320元D.360元【考点】一元一次方程的应用.【分析】如果设这种商品的原价是x元,本题中唯一不变的是商品的成本,根据利润=售价﹣成本,即可列出方程求解.【解答】解:设这种商品的原价是x元,根据题意得:75%x+10=90%x﹣38,解得x=320.故选C.【点评】本题考查了一元一次方程的应用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.10.下列图形都是由同样大小的⊙按一定规律所组成的,其中第1个图形中一共有5个⊙,第2个图形中一共有8个⊙,第3个图形中一共有11个⊙,第4个图形中一共有14个⊙,…,按此规律排列,第1001个图形中基本图形的个数为()A.2998 B.3001 C.3002 D.3005【考点】规律型:图形的变化类.【分析】将原图形中基本图形划分为中间部分和两边部分,中间基本图形个数等于序数,两边基本图形的个数和等于序数加1的两倍,据此规律可得答案.【解答】解:∵第①个图形中基本图形的个数5=1+2×2,第②个图形中基本图形的个数8=2+2×3,第③个图形中基本图形的个数11=3+2×4,第④个图形中基本图形的个数14=4+2×5,…∴第n个图形中基本图形的个数为n+2(n+1)=3n+2当n=1001时,3n+2=3×1001+2=3005,故选:D.【点评】本题考查了图形的变化类,对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的,解决本题的关键在于将原图形划分得出基本图形的数字规律.二、填空题(共4小题,每小题3分,共12分)11.计算:18°36′=18.6 °.【考点】度分秒的换算.【分析】根据小单位华大单位除以进率,可得答案.【解答】解:18°36′=18°+(36÷60)°=18.6°,故答案为:18.6.【点评】本题考查了度分秒的换算,利用小单位华大单位除以进率是解题关键.12.九年级(3)班共有50名同学,如图是该班一次体育模拟测试成绩的频数分布直方图(满分为30分,成绩均为整数).若将不低于23分的成绩评为合格,则该班此次成绩达到合格的同学占全班人数的百分比是92% .【考点】频数(率)分布直方图.【分析】利用合格的人数即50﹣4=46人,除以总人数即可求得.【解答】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=92%.故答案是:92%.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.13.现定义新运算“※”,对任意有理数a、b,规定a※b=ab+a﹣b,例如:1※2=1×2+1﹣2=1,则计算3※(﹣5)= ﹣7 .【考点】有理数的混合运算.【分析】根据※的含义,以及有理数的混合运算的运算方法,求出3※(﹣5)的值是多少即可.【解答】解:3※(﹣5)=3×(﹣5)+3﹣(﹣5)=﹣15+3+5=﹣7故答案为:﹣7.【点评】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.14.如图是一个运算程序,若输入x的值为8,输出的结果是m,若输入x的值为3,输出的结果是n,则m﹣2n= 16 .【考点】代数式求值.【分析】先求出m、n的值,再代入求出即可.【解答】解:∵x=8是偶数,∴代入﹣x+6得:m=﹣x+6=﹣×8+6=2,∵x=3是奇数,∴代入﹣4x+5得:n=﹣4x+5=﹣7,∴m﹣2n=2﹣2×(﹣7)=16,故答案为:16.【点评】本题考查了求代数式的值,能根据程序求出m、n的值是解此题的关键.三、解答题(共78分)15.计算:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)【考点】有理数的混合运算.【分析】根据有理数的混合运算的运算方法,求出算式的值是多少即可.【解答】解:75×(﹣)2﹣24÷(﹣2)3+4×(﹣2)=3﹣24÷(﹣8)+4×(﹣2)=3+3﹣8=﹣2【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.16.解方程: =1+.【考点】解一元一次方程.【分析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:去分母得:3x+6=12+8x+4,移项合并得:﹣5x=10,解得:x=﹣2.【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.17.如图,已知线段a、b,求作线段AB,使AB=2a+b.【考点】作图—复杂作图.【分析】在射线AM上延长截取AC=CD=a,DB=b,则线段AB满足条件.【解答】解:如图,线段AB为所作.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.18.先化简,再求值:2(3xy2﹣2x2y)﹣3(2xy2﹣x2y)+4(xy2﹣2x2y),其中x=﹣2,y=﹣1.【考点】整式的加减—化简求值.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=6xy2﹣4x2y﹣6xy2+3x2y+4xy2﹣8x2y=4xy2﹣9x2y,当x=﹣2,y=﹣1时,原式=﹣8+36=28.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.19.一个几何体由大小相同的小立方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小方块搭成,从上面看到的几何体的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数,请画出从正面和从左面看到的这个几何体的形状图.【考点】作图-三视图;由三视图判断几何体.【分析】主视图有3列,每列小正方形数目分别为3,4,2,左视图有2列,每列小正方数形数目分别为4,2,据此可画出图形.【解答】解:如图所示:.【点评】本题考查几何体的三视图画法.由几何体的俯视图及小正方形内的数字,可知主视图的列数与俯视数的列数相同,且每列小正方形数目为俯视图中该列小正方形数字中的最大数字.左视图的列数与俯视图的行数相同,且每列小正方形数目为俯视图中相应行中正方形数字中的最大数字.20.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB 和∠AOC的度数.【考点】角平分线的定义.【分析】先根据角平分线,求得∠BOE的度数,再根据角的和差关系,求得∠BOF 的度数,最后根据角平分线,求得∠BOC、∠AOC的度数.【解答】解:∵∠AOB=90°,OE平分∠AOB∴∠BOE=45°又∵∠EOF=60°∴∠FOB=60°﹣45°=15°∵OF平分∠BOC∴∠COB=2×15°=30°∴∠AOC=∠BOC+∠AOB=30°+90°=120°【点评】本题主要考查了角平分线的定义,根据角的和差关系进行计算是解题的关键.注意:也可以根据∠AOC的度数是∠EOF度数的2倍进行求解.21.如图所示,已知数轴上两点A、B对应的数分别为﹣2、4,点P为数轴上一动点.(1)写出点A对应的数的倒数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.【考点】数轴;绝对值;倒数.【分析】(1)根据倒数的定义和绝对值的性质可得点A对应的数的倒数和绝对值;(2)根据中点坐标公式可得点P在数轴上对应的数;(3)根据将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,可以得到点C表示的数,从而可以在数轴上表示出点C,并得到点C表示的数.【解答】解:(1)点A对应的数的倒数是﹣,点A对应的数的绝对值是2;(2)(﹣2+4)÷2=2÷2=1.故点P在数轴上对应的数是1;(3)如图所示:点C表示的数是﹣1.【点评】本题考查数轴、倒数、绝对值,解题的关键是明确数轴的含义,利用数形结合的思想解答问题.22.某企业已收购毛竹90吨,根据市场信息,如果对毛竹进行粗加工,每天可加工8吨,每吨可获利60元;如果进行精加工,每天可加工0.5吨,每吨可获利1200元.由于条件限制,在同一天中只能采用一种方式加工,并且必须在一个月(30天)内将这批毛竹全部销售,现将部分毛竹精加工,其余毛竹粗加工,并且恰好用30天完成.(1)求精加工和粗加工的天数;(2)该企业总共获得的利润是多少元?【考点】一元一次方程的应用.【分析】(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据总质量=粗加工质量+精加工质量即可得出关于x的一元一次方程,解之即可得出结论;(2)根据总利润=粗加工的利润+精加工的利润代入数据即可得出结论.【解答】解:(1)设粗加工的天数为x天,则精加工的天数为(30﹣x)天,根据题意得:8x+0.5(30﹣x)=90,解得:x=10,30﹣x=20.答:粗加工的天数为10天,精加工的天数为20天.(2)10×8×60+20×0.5×1200=16800(元).答:该企业总共获得的利润是16800元.【点评】本题考查了一元一次方程的应用,根据数量关系列出一元一次方程(或列式计算)是解题的关键.23.某市对市民看展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:A:绿化造林 B:汽车限行C:拆除燃煤小锅炉 D:使用清洁能源.调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:(1)这次被调查的市民共有多少人?(2)请你将统计图1补充完整;(3)求图2中D项目对应的扇形的圆心角的度数.【考点】条形统计图;扇形统计图.【分析】(1)根据A组有20人,所占的百分比是10%,据此即可求得总人数;(2)用(1)中求得的总人数减去其它三种的人数可得认同拆除燃煤小锅炉的人数,再补充统计图1即可;(3)用D项目对应的人数除以总人数,再乘以360度即可得对应的扇形的圆心角.【解答】解:(1)20÷10%=200(人).答:这次被调查的市民总人数是200人;(2)C组的人数是:200﹣20﹣80﹣40=60(人),统计图1补充如下:;(3)×360°=72°.答:图2中D项目对应的扇形的圆心角的度数是72°.【点评】本题主要考查了条形统计图的应用和利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.24.(10分)(2016秋•榆林期末)某天一个巡警骑摩托车在一条南北大道上巡逻,他从岗亭出发,巡逻了一段时间停留在A处,规定以岗亭为原点,向北方向为正,这段时间行驶记录如下(单位:千米):+10,﹣9,+7,﹣15,+6,﹣14,+4,﹣2(1)A在岗亭哪个方向?距岗亭多远?(2)若摩托车行驶1千米耗油0.12升,且最后返回岗亭,摩托车共耗油多少升?【考点】正数和负数.【分析】(1)将各数相加,得数若为负,则A在岗亭南方,若为正,则A在岗亭北方;(2)将各数的绝对值相加,求得摩托车共行驶的路程,即可解答.【解答】解:(1)+10﹣9+7﹣15+6﹣14+4﹣2=10+7+6+4﹣9﹣15﹣14﹣2=﹣13(千米),答:A在岗亭南方,距离岗亭13千米处.(2))|+10|+|﹣9|+|+7|+|﹣15|+|+6|+|﹣14|+|+4|+|﹣2|=10+9+7+15+6+14+4+2+13=80(千米),0.12×80=9.6(升),答:摩托车共耗油9.6升.【点评】本题主要考查正数和负数的应用,解决此类问题时,要特别注意第(2)小题,无论向南行驶还是向北行驶,都是要耗油的.25.(12分)(2016秋•榆林期末)为发展校园足球运动,某县城区四校决定联合购买一批足球运动装备,市场调查发现,甲、乙两商场以同样的价格出售同种品牌的足球队服和足球,已知每套队服比每个足球多50元,两套队服与三个足球的费用相等,经洽谈,甲商场优惠方案是:每购买十套队服,送一个足球,乙商场优惠方案是:若购买队服超过80套,则购买足球打八折.(1)求每套队服和每个足球的价格是多少?(2)若城区四校联合购买100套队服和a(a>10)个足球,请用含a的式子分别表示出到甲商场和乙商场购买装备所花的费用;(3)在(2)的条件下,若a=60,假如你是本次购买任务的负责人,你认为到甲、乙哪家商场购买比较合算?【考点】一元一次方程的应用;列代数式.【分析】(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据两套队服与三个足球的费用相等列出方程,解方程即可;(2)根据甲、乙两商场的优惠方案即可求解;(3)把a=60代入(2)中所列的代数式,分别求得在两个商场购买所需要的费用,然后通过比较得到结论:在乙商场购买比较合算.【解答】解:(1)设每个足球的定价是x元,则每套队服是(x+50)元,根据题意得2(x+50)=3x,解得x=100,x+50=150.答:每套队服150元,每个足球100元;(2)到甲商场购买所花的费用为:150×100+100(a﹣)=100a+14000(元),到乙商场购买所花的费用为:150×100+0.8×100•a=80a+15000(元);(3)在乙商场购买比较合算,理由如下:将a=60代入,得100a+14000=100×60+14000=20000(元).80a+15000=80×60+15000=19800(元),因为20000>19800,所以在乙商场购买比较合算.【点评】本题考查了一元一次方程的应用解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.。
北师大版(完整版)七年级数学上册期末模拟试卷及答案

北师大版(完整版)七年级数学上册期末模拟试卷及答案一、选择题1.如图,在数轴上,若A 、B 、C 三点表示的数为a 、b 、c ,则下列结论正确的是( )A .c >a >bB .1b >1cC .|a |<|b |D .abc >02.如图,在纸面所在的平面内,一只电子蚂蚁从数轴上表示原点的位置O 点出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位,其移动路线如图所示,第1次移动到A 1,第2次移动到A 2,第3次移动到A 3,……,第n 次移动到A n ,则△OA 2A 2019的面积是( )A .504B .10092C .10112D .10093.对于一个自然数n ,如果能找到正整数x 、y ,使得n x y xy =++,则称n 为“好数”.例如:31111=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数共有( )个 A .1B .2C .3D .44.按照如图所示的运算程序,若输入的x 的值为4,则输出的结果是( )A .21B .89C .261D .3615.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是( )A .美B .丽C .琼D .海6.计算22221111 (11223320152015)++++++++的结果为( ) A .1 B .20142015C .20152016D .201620157.若3x-2y-7=0,则 4y-6x+12的值为( )A .12B .19C .-2D .无法确定8.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .329.下列方程为一元一次方程的是( ) A .x+2y =3B .y+3=0C .x 2﹣2x =0D .1y+y =0 10.如果有理数,a b ,满足0,0ab a b >+<,则下列说法正确的是( ) A .0,0a b >> B .0,0a b <>C .0,0a b <<D .0,0a b ><11.下列计算正确的是( )A .b ﹣3b =﹣2B .3m +n =4mnC .2a 4+4a 2=6a 6D .﹣2a 2b +5a 2b =3a 2b12.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6 C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13x D .由1226x x -+-=2,得3x ﹣3﹣x +2=12 13.如图,已知矩形的长宽分别为m ,n ,顺次将各边加倍延长,然后顺次连接得到一个新的四边形,则该四边形的面积为( )A .3mnB .5mnC .7mnD .9mn14.下列图形都是由同样大小的黑色正方形纸片组成,其中第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,按此规律排列下去第n 个图中黑色正方形纸片的张数为( )….A .4n+1B .3n+1C .3nD .2n+115.下列运算正确的是( ) A .()a b c a b c -+=-+ B .2(1)21x y x y --=-+ C .22223m n nm m n -=- D .532x x -=16.如图所示的四个几何体中,从正面、上面、左面看得到的平面图形都相同的有( )A .1个B .2个C .3个D .4个17.观察下列算式:122=,224=,328=,4216=,5232=,6264=,72128=,82256=,…….根据上述算式中的规律,你认为20192的个位数字是( ) A .2 B .4 C .6 D .818.小牧用60根长短相同的小木棍按照下图所示的方式,先连续摆出若干正方形,再摆出一些六边形,摆出的正方形和六边形一共有1个,要求所有的图形都摆在一行上,且相邻的图形只有一条公共边,同时没有木棍剩余.则t 可以取( )个不同的值.A .2B .3C .4D .519.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >020.把方程13124x x -+=-去分母,得( ) A .2(1)1(3)x x -=-+ B .2(1)4(3)x x -=++C .2(1)43x x -=-+D .2(1)4(3)x x -=-+21.已知a ,b 是有理数,若表示它们的点在数轴上的位置如图所示,则|a |–|b |的值为( )A .零B .非负数C .正数D .负数22.在数轴上,a ,b 所表示的数如图所示,下列结论正确的是( )A .a +b >0B .|b |<|a |C .a ﹣b >0D .a •b >023.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m 元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%; 方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多( ) A .方案一B .方案二C .方案三D .不能确定24.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是( )A .中B .国C .梦D .强25.将1,2,3,...,30,这30个整数,任意分为15组,每组2个数.现将每组数中的一个数记为x ,另一个数记为y ,计算代数式()1||||2x y x y -++的值,15组数代入后可得到15个值,则这15个值之和的最小值为( )A .2252B .120C .225D .24026.下列运算中正确的是( )A .235a b ab +=B .220a b ba -=C .32534a a a +=D .22321a a -=27.长方形ABCD 中,将两张边长分别为a 和b (a >b )的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示.设图1中阴影部分的周长为C 1,图2中阴影部分的周长为C 2,则C 1 -C 2的值为( )A .0B .a -bC .2a -2bD .2b -2a28.已知关于x 的方程432x m -=的解是x m =-,则m 的值是( ) A .2B .-2C .-27D .2729.下列生活、生产现象:①用两颗钉子就可以把木条固定在墙上;②从甲地到乙地架设电线,总是沿线段架设;③把弯曲的公路改直就能缩短路程;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线.其中能用“两点之间线段最短”来解释的现象是( )A .①②B .②③C .①④D .③④30.如图,一副三角尺按不同的位置摆放,摆放位置中αβ∠=∠的图形的个数是( )A .1B .2C .3D .4【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】先确定出a 、b 、c 的取值范围,然后根据有理数的运算法则解答即可. 【详解】解:观察数轴,可知:﹣2<a <﹣1,0<b <1,1<c <2, ∴c >b >a ,1b >1c,|a |>|b |,abc <0. 故选:B . 【点睛】本题考查了利用数轴比较有理数的大小,以及有理数的运算法则,熟练掌握有理数的运算法则是解答本题的关键.2.B解析:B 【解析】 【分析】观察图形可知:2n OA n =,由2016OA 1008=,推出2019OA 1009=,由此即可解决问题. 【详解】观察图形可知:点2n A 在数轴上,2n OA n =,2016OA 1008=,2019OA 1009∴=,点2019A 在数轴上,22019OA A 11009S1009122∴=⨯⨯=, 故选B . 【点睛】本题考查三角形的面积,数轴等知识,解题的关键是学会探究规律,利用规律解决问题,属于中考常考题型.3.C解析:C 【解析】 【分析】根据题意,由n =x +y +xy ,可得n +1=x +y +xy +1,所以n +1=(x +1)(y +1),因此如果n +1是合数,则n 是“好数”,据此判断即可. 【详解】 根据分析, ∵8=2+2+2×2, ∴8是好数; ∵9=1+4+1×4, ∴9是好数;∵10+1=11,11是一个质数, ∴10不是好数; ∵11=2+3+2×3, ∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11. 故选C . 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n +1是合数,则n 是“好数”.4.D解析:D 【解析】 【分析】首先把输入的x 的值乘4,求出积是多少;然后用所得的积加上5,判断出和是多少,依此类推,直到输出的结果不小于100为止. 【详解】解:4×4+5=16+5=21, 21<100,21×4+5=84+5=89, 89<100,89×4+5=356+5=361, ∴输出的结果是361. 故选:D . 【点睛】此题主要考查了代数式求值,以及有理数的混合运算.熟练掌握代数式求值的方法,以及有理数的混合运算的法则是解题的关键.5.B解析:B 【解析】 【分析】利用正方体及其表面展开图的特点解题即可. 【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对; 故选:B . 【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.6.C解析:C 【解析】 【分析】根据数字的变化寻找规律,再根据有理数的混合运算即可求解. 【详解】解:22221111···11223320152015++++++++ =21111261220152015+++++=111111112233420152016-+-+-++-= 112016-=20152016 故选:C . 【点睛】本题考查了数字的变化规律、有理数的混合运算,解决本题的关键是寻找数字的变化规律.7.C解析:C【解析】【分析】把(3x-2y)看作一个整体并求出其值,再代入所求代数式进行计算即可得解.【详解】解:∵3x-2y-7=0,∴3x-2y=7,∴4y-6x+12=-2(3x-2y)+12=-2×7+12=-14+12=-2.故选:C.【点睛】本题考查了代数式求值,整体思想的利用是解题的关键.8.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,++++++=.所以最大正方形面积为:122412416故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.9.B解析:B【解析】【分析】根据一元一次方程的定义即可求出答案.【详解】解:只含有一个未知数,且未知数的高次数是1,等号两面都是整式,这样的方程叫做一元一次方程,A. x+2y=3,两个未知数;B. y+3=0,符合;C. x2﹣2x=0,指数是2;D. 1y+y=0,不是整式方程.故选:B.【点睛】考核知识点:一元一次方程.理解定义是关键.10.C解析:C【解析】【分析】此题首先利用同号两数相乘得正判定a,b同号,然后根据同号两数相加,符号取原来加数的符号.即可判定a,b的符号.【详解】解:∵ab>0,∴a,b同号,∵a+b<0,∴a<0,b<0.故选:C.【点睛】此题比较简单,主要利用了有理数的加法法则和乘法法则解决问题.11.D解析:D【解析】【分析】根据合并同类项的法则即可求出答案.【详解】A. b﹣3b=﹣2b,故原选项计算错误;B. 3m+n不能计算,故原选项错误;C. 2a4+4a2不能计算,故原选项错误;D.﹣2a2b+5a2b=3a2b计算正确.故选D.【点睛】本题考查合并同类项的法则,解题的关键是熟练运用合并同类项的法则,本题属于基础题型.12.B解析:B 【解析】 【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C 选项利用等式的性质进行化简. 【详解】解:A 、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误; B 、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C 、0.5x-0.7x=5-1.3x ,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x ,故本选项错误;D 、1226x x -+-=2,去分母得:3x-3-x-2=12,故本选项错误; 故选:B . 【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.13.B解析:B 【解析】 【分析】如图,可分别求出各个直角三角形的面积,再加上中间的矩形面积即可得到答案. 【详解】如图,根据题意可得:1()2FDE HBG S S n n m mn ∆∆==+=, 1()2ECH GAF S S m m n mn ∆∆==+=, 又矩形ABCD 的面积为mn ,所以,四边形EFGH 的面积为:++++5FDE HBG ECH GAF ABCD S S S S S mn mn mn mn mn mn ∆∆∆∆=++++=矩形,故选:B .【点睛】此题主要考查了根据图形的面积列代数式,熟练掌握直角三角形面积公式易用佌题的关键.14.D解析:D【解析】【分析】根据图形的规律可知,从第二个图形开始,每个图形中的黑色正方形纸片数比前一个图形多2个,由此可推出结果.【详解】第1个图中有3张黑色正方形纸片,第2个图中有5张黑色正方形纸片,第3个图中有7张黑色正方形纸片,…,依次类推,第n 个图中黑色正方形纸片的张数为2n+1,故选:D .【点睛】本题考查了图形的规律,代数式表示图形的个数,掌握图形的规律是解题的关键.15.C解析:C【解析】【分析】分别判断各选项是否正确.【详解】A 中,a b +c a b c -=--(),错误;B 中,2(1)22x y x y --=-+,错误;C 中,22223m n nm m n -=-,正确;D 中,532x x x -=,错误故选:C .【点睛】本题考查整式的加减法,需要注意合并同类项时,仅是系数的加减.16.B解析:B【解析】【分析】分别找出每个图形从三个方向看所得到的图形即可得到答案.【详解】解:①正方体从上面、正面、左侧三个不同方向看到的形状都是正方形,故此选项正确;②球从上面、正面、左侧三个不同方向看到的形状都是圆,故此选项正确;③圆锥,从左边看是三角形,从正面看是三角形,从上面看是圆,故此选项错误;④圆柱从左面和正面看都是矩形,从上边看是圆,故此选项错误;故选B.【点睛】本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.17.D解析:D【解析】【分析】根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,而2019除以4商504余3,故得到所求式子的末位数字为8.【详解】解:根据上述等式,得到结果的末位以四个数(2,4,8,6)依次循环,∵2019÷4=504…3,∴22019的末位数字是8.故选:D【点睛】本题考查有理数的乘方运算,属于规律型试题,弄清本题的规律是解题关键.18.C解析:C【解析】【分析】由题意可知:摆a个正方形需要4+3(a-1)=3a+1根小木棍;摆b个六边形需要6+5(b-1)=5b+1根小木棍;由此得到方程3a+1+5b+1-1=60,再确定正整数解的个数即可求得答案.【详解】设摆出的正方形有a个,摆出的六边形有b个,依题意有3a+1+5b+1-1=60,3a+5b=59,当a=3时,b=10,t=13;当a=8时,b=7,t=15;当a=13时,b=4,t=17;当a=18时,b=1,t=19.故t可以取4个不同的值.故选:C.【点睛】此题考查图形的变化规律,找出图形之间的联系,得出数字之间的运算规律,利用规律解决问题.19.D解析:D【解析】【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.20.D解析:D【解析】【分析】根据解一元一次方程去分母的相关要求,结合等式的基本性质2,对等式两边同时乘以分数的最小公倍数4即可求解.【详解】等式两边同乘4得:2(1)4(3)x x -=-+,故选:D.【点睛】本题主要考查了一元一次方程求解中的去分母,熟练掌握使用等式的基本性质2进行去分母是解决本题的关键.21.D解析:D【解析】【分析】本题根据a 、b 在数轴上的位置判定其绝对值大小,继而作差可直接得出答案.【详解】由已知得:a 离数轴原点的距离相对于b 更近,可知a <b , 故:0a b -<,即其差值为负数;故选:D .【点睛】本题考查根据数轴上点的位置判别式子正负,解题关键在于对数轴相关概念与性质的理解,比较大小注意细心即可.22.C解析:C【解析】【分析】先根据数轴判定a、b、a+b、a-b的正负,然后进行判定即可.【详解】解:由数轴可得,b<﹣2<0<a<2,∴a+b<0,故选项A错误,|b|>|a|,故选项B错误,a﹣b>0,故选项C正确,a•b<0,故选项D错误,故答案为C.【点睛】本题考查了数轴的应用、绝对值、正数和负数的相关知识,解题的关键在于根据数轴判定字母和代数式的正负.23.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m(1-10%)30%=0.37m;方案二降价0.2m+m(1-20%)15%=0.32m;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较.. 24.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.D解析:D【解析】【分析】先分别讨论x和y的大小关系,分别得出代数式的值,进而得出规律,然后以此规律可得出符合题意的组合,求解即可.【详解】①若x>y,则代数式中绝对值符号可直接去掉,∴代数式等于x,②若y>x则绝对值内符号相反,∴代数式等于y,由此可知,原式等于一组中较大的那个数,当相邻2个数为一组时,这样求出的和最小= 2+4+6+…+30=240.故选:D.【点睛】本题考查了绝对值、有理数的加减混合运算,通过假设,把所给代数式化简,然后把满足条件的字母的值代入计算.26.B解析:B【解析】【分析】根据同类项的定义和合并同类项的法则解答.【详解】解:A、2a与3b不是同类项,不能合并,故本选项错误;B、原式=0,故本选项正确;C、a3与3a2不是同类项,不能合并,故本选项错误;D、原式=a2,故本选项错误.故选B.【点睛】此题考查了合并同类项.合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.27.A解析:A【解析】【分析】根据周长的计算公式,列式子计算解答.【详解】解:由题意知:1C =AD+CD-b+AD-a+a-b+a AB a +-,∵ 四边形ABCD 是长方形,∴ AB =CD ,∴1C =AD+CD-b+AD-a+a-b+a AB a=2AD+2AB-2b +-,同理,2C =AD b+AB-a+a-b+a+BC-a+AB=2AD+2AB-2b -,∴C 1 -C 2=0.故选A .【点睛】本题考查周长的计算,“数形结合”是关键.28.C解析:C【解析】【分析】将x =-m 代入方程,解出m 的值即可.【详解】将x =-m 代入方程可得:-4m -3m =2,解得:m =-27. 故选:C .【点睛】本题主要考查一元一次方程的解的意义以及求解方法,将解代入方程求解是解题关键.29.B解析:B【解析】【分析】根据两点确定一条直线,两点之间线段最短的性质对各选项分析判断即可得出结果.【详解】解:①用两颗钉子就可以把木条固定在墙上是利用了“两点确定一条直线”,故错误; ②从甲地到乙地架设电线,总是沿线段架设是利用了“两点之间线段最短”,故正确; ③把弯曲的公路改直就能缩短路程是利用了“两点之间线段最短”,故正确;④植树时只要确定两棵树的位置,就能确定同一行树所在的直线是利用了“两点确定一条直线”,故错误.故选:B【点睛】本题主要考查的是线段的性质和直线的性质,正确的掌握这两个性质是解题的关键.30.C解析:C【解析】【分析】根据直角三角板可得第一个图形∠β=45°,进而可得∠α=45°;根据余角和补角的性质可得第二个图形、第四个图形中∠α=∠β,第三个图形∠α和∠β互补.【详解】根据角的和差关系可得第一个图形∠α=∠β=45°,根据等角的补角相等可得第二个图形∠α=∠β,第三个图形∠α+∠β=180°,不相等,根据同角的余角相等可得第四个图形∠α=∠β,因此∠α=∠β的图形个数共有3个,故选:C.【点睛】此题主要考查了余角和补角,关键是掌握余角和补角的性质:等角的补角相等.等角的余角相等.。
2019年北师大版七年级数学上学期期末复习备考之精准复习模拟题(C卷)(原卷版)

绝密★启用前期末模拟试卷C (数 北师版七年级)考试时间:100分钟;总分:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每小题3分,共42分))A . AB . BC . CD . D2.如图所示图形中,不是正方体的展开图的是( )A .B .C .D .3.有理数a ,b 在数轴上对应的位置如图所示,那么代数式1111a a b aba a ab b +---+-+--的值是()A . ﹣1B . 0C . 1D . 24.如果(a +1)2+(2b +3)2+|c -1|=0,那么3ab c +a c b-的值是( ) A . 32 B . 3 C . 76 D . 116 5.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形…,如此下去,则第2014个图中共有正方形的个数为( )A . 2014.B . 2017C . 6040D . 60446.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“S ”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )【A . 4a -8bB . 2a -3bC . 2a -4bD . 4a -10b7.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a 、b (a >b ),则()a b -等于( )A . 3B . 4C . 5D . 68.当=2时,代数式a 3+b +1的值为3,那么当=-2时,a 3+b +1的值是( )A . -3B . -1C . 1D . 39.已知:点A ,B ,C 在同一条直线上,点M 、N 分别是AB 、AC 的中点,如果AB =10cm ,AC =8cm ,那么线段MN 的长度为( )A . 6cmB . 9cmC . 3cm 或6cmD . 1cm 或9cm10.已知α 、β都是钝角,甲、乙、丙、丁四个同的计算16(α +β)的结果依次为28°、48°、60°、88°,其中只有一个同计算结果是正确的,则得到正确结果的同是( )A . 甲B . 乙C . 丙D . 丁11.平面内两两相交的6条直线,其交点个数最少为m 个,最多为n 个,则m +n 等于( )A . 12B . 16C . 20D . 以上都不对12.小明解方程21332x x a-+=-,去分母时,方程右边的-3忘记乘6,因而求出的解为=2,问原方程正确的解为()A.=5 B.=7C.=-13 D.=-113.下列说法:①若a为任意有理数,则总是正数;②方程是一元一次方程;③若ab>0,a+b<0,则a<0,b<0;④是分数;⑤单项式的系数是,次数是4.其中错误的有()A.1个B.2个C.3个D.4个14.班委会决定组织一次娱乐活动,活动内容从讲故事和唱歌中选择一项,为了决定是讲故事还是唱歌,班委会要进行民间调查,下列说法错误的是()A.调查的问题是:选择讲故事还是唱歌B.调查的范围是:全班同C.调查的方式是:查找资料D.这次调查需要收集的数据是:全班同选择讲故事和唱歌的人数第II 卷(非选择题)二、填空题(每小题3分,共18分) 3,…组成一个数阵 ,观察规律:例如9位于数阵中第4行的第3列(从左往右数),若2017在数阵中位于第m 行的第n 列(从左往右数),则m + n =______.16.若32m x y 与-5nxy 是同类项,则m n -的值是_________.17.有一数值转换器,原理如图所示,若开始输入的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是__________,依次继续下去……第2.016次输出的结果是___________.18.小兰在求一个多项式减去2-3+5时,误认为加上2-3+5,得到的答案是52-2+4,则正确的答案是__________.19.一条直线上有A ,B ,C 三点,AB =6cm ,BC =2cm ,点P ,Q 分别是线段AB ,BC 的中点,则PQ = ______ cm .20.小明做作业时,不小心将方程24123x x --=+●中的一个常数污染了看不清楚,小芳告诉他该方程的解是负数,并且这个常数是负整数,该方程的解是_______.三、解答题(共8个小题,共60分)21.(12分)计算下列各题:(1)17-23÷(-2)×3;(2)2×(-5)+23-3÷12;(3)(-3)3÷214×223⎛⎫-⎪⎝⎭+4-22×13⎛⎫- ⎪⎝⎭;%(4)(-24)÷2223⎛⎫⎪⎝⎭+512×16⎛⎫-⎪⎝⎭-(0.5)2.22.(6分)如图(1),∠AOB=120°,在∠AOB内作两条射线OC和OD,且OM平分∠AOD,ON平分∠BOC.①若∠AOC:∠COD:∠DOB=5:3:4,求∠MON的度数.②若将图(1)中的∠COD绕点O顺时针转一个小于70°的角α如图(2),其它条件不变,请直接写出∠MON的度数.23.(6分)解下列方程:(1)0.12=1+0.30.15x x-;(2)2 1.63318 0.30.63x x x-+-=.24.(5分)某班生以每小时4千米的速度从校步行到校办农场参加劳动,走了1.5小时后,小王奉命回校取一件东西,他以每小时6千米的速度回校取了东西后立即又以同样的速度追赶队伍,结果在距农场2千米处追上了队伍,求校与农场的距离.25.(6分)雨后初晴,小方同几个伙伴八点多上山采蘑菇,临出门他一看钟,时针与分针正好是重合的,下午两点多他回到家里,一进门看钟的时针与分针方向相反,正好成一条直线,问小方采蘑菇是几点去,几点回到家的,共用了多少时间?26.(12分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1c m/s、2c m/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.27.(6分)某市百货商场元旦期间搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元,优惠10%,超过500元的,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元,问:(1)此人两次购物其物品不打折值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将这两次的钱合起购同一商品是更节省还是亏损?说明理由.28.(9分)如图,点A从原点出发沿数轴向右运动,同时,点B也从原点出发沿数轴向左运动3秒后,两点相距18个单位长度.已知点B的速度是点A的速度的5倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原的速度同时沿数轴向右运动,几秒时,原点恰好处在点A、点B的正中间?(3)当A、B两点从(2)中的位置继续以原的速度沿数轴向右运动的同时,另一点C从原点位置也向A 点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B 点追上A点时,C点立即停止运动.若点C一直以10个单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?。
2019期末试卷:数学7年级上(北师大版)1

初中数学七年级(上)期末模拟试卷一.选择题1.下列说法中,正确的有()个.①1乘以任何有理数都等于这个数本身;②0乘以任何数的积均为0;③﹣1乘以任何有理数都等于这个有理数的相反数;④一个数的倒数与本身相等的数只有1.A.1 B.2 C.3 D.42.如图,是一个正方体,用一个平面去截这个正方体,截面形状不可能为下图中的()A.B.C.D.3.要了解某校1000名初中生的课外负担情况,若采用抽样调查的方法进行调查,则在下面哪种调查方式具有代表性?()A.调查全体女生B.调查全体男生C.调查九年级全体学生D.调查七、八年级各100名学生4.计算﹣1﹣1﹣1的结果是()A.﹣3 B.3 C.1 D.﹣15.下列说法错误的是()A.若a=b,则ac=bcB.若b=1,则ab=aC.若,则a=bD.若(a﹣1)c=(b﹣1)c,则a=b6.如图,已知⊙O的半径OA=6,∠AOB=90°,则(圆心角为90°的)扇形AOB 的面积为()A.6πB.9πC.12πD.15π7.在某校选拔毕业晚会主持人的决赛中,参与投票的每名学生必须从进入决赛的四名选手中选1名,且只能选1名,根据投票结果,绘制了如下两幅不完整的统计图,则选手B的得票为()A.300 B.90 C.75 D.858.已知某商店出售了两个进价不同的书包,售价都是42元,其中一个盈利40%,另一个亏损30%,则在这次买卖中,商店的盈亏情况是()A.盈利4.2元B.盈利6元C.不盈不亏D.亏损6元二.填空题9.请你写出一个绝对值小于3.7的负数,你写的是.10.请你举出一个适合抽样调查的例子:;并简单说说你打算怎样抽样:.11.若代数式4x﹣8与3x+22的值互为相反数,则x的值是.12.如图:在桌上摆有一些大小相同的正方体木块,其从正面和从左面看到的形状图如图所示,则要摆出这样的图形至少需要块正方体木块,至多需要块正方体木块.13.频数分布直方图是以小长方形的来反映数据落在各组内的频数的大小,当数据在100个以内时,按照数据的多少常分成组;一组数据的最大值与最小值的差为23,若确定组距为3,则分成的组数是.14.1时30分时,时钟的时针与分针的夹角是.15.一块长、宽、高分别为5cm,4cm,3cm的长方体橡皮泥,要用它来捏一个底面半径为2cm的圆柱,设它的高是hcm,根据题意列方程为.16.幼儿园阿姨给小朋友分苹果,每人分3个则剩1个;每人分4个则差2个,则有个苹果.三.解答题17.如图,已知△ABC,请按下列要求作出图形:(1)用刻度尺画BC边上的高线.(2)用直尺和圆规画∠B的平分线.18.求解下列各题(1)计算下列各题①(﹣)÷()3×()2②+(﹣)÷③﹣3(ab﹣2a2)﹣(2ab+5a2)(2)解方程:(x﹣1)﹣(x+5)=﹣19.如图,点O在直线AB上,OM平分∠AOC,ON平分∠BOC,如果∠1:∠2=1:2,求∠1的度数.20.先阅读下面的材料,然后解答问题.在一条直线上有依次排列的n(n>1)台机床在工作,我们需要设置零件供应站P,使这n台机床到供应站P的距离总和最小.要解决这个问题,先要分析比较简单的情形:如果直线上只有2台机床A1、A2时,很明显供应站P设在A和A2之间的任何地方都行,距离之和等于A1到A2的距离.如果直线上有3 1台机床A1、A2、A3,供应站P应设在中间一台机床A2处最合适,距离之和恰好为A1到A3的距离;如果在直线上4台机床,供应站P应设在第2台与第3台之间的任何地方;如果直线上有5台机床,供应站P应设在第3台的地方.(1)阅读递推:如果在直线上6台机床,供应站P应设在的地方;如果直线上有7台机床,供应站P应设在的地方.(2)问题解决:在同一条直线上,如果有n台机床,供应站P应设在什么位置?(3)联系拓广:根据以上阅读材料,回答当x取什么值时,代数式|x﹣1|+|x﹣2|+|x﹣3|+…+|x﹣99|取到最小值,并求其最小值.21.指出下列立体图形的对应的俯视图,在括号里填上对应的字母.22.某次模拟考试后,抽取m名学生的数学成绩进行整理分组,形成如下表格(x 代表成绩),并绘制出扇形统计图和频数分布直方图(横坐标表示成绩,单位:分).(1)m的值为,扇形统计图中D组对应的圆心角是°.(2)请补全条形统计图,并标注出相应的人数.(3)若此次考试数学成绩130分以上的为优秀,参加此次模拟考的学生总数为2000,请估算此次考试数学成绩优秀的学生人数.23.某圆柱形饮料瓶由铝片加工做成.现有若干张一样大小的铝片,若全部用来做瓶身可做900个,若全部用来做瓶底可做1200个.已知每一张这样的铝片全部做成瓶底比全部做成瓶身多20个.(1)问一张这样的铝片可做瓶底几个?(2)这若干张铝片的张数是多少?(3)若一个瓶身与两个瓶底配成一套,则这若干张铝片中取多少张做瓶身,取多少张做瓶底可使配套做成的饮料瓶最多?24.李华同学准备化简:(3x2﹣5x﹣3)﹣(x2+2x□6),算式中“□”是“+,一,×,÷”中的某一种运算符号(1)如果“□”是“÷”,请你化简:(3x2﹣5x﹣3)﹣(x2+2x÷6);(2)当x=1时,(3x2﹣5x﹣3)﹣(x2+2x□6)的结果是﹣2,请你通过计算说明“□”所代表的运算符号.参考答案与试题解析一.选择题1.【解答】解:①1乘以任何有理数都等于这个数本身,正确;②0乘以任何数的积均为0,正确;③﹣1乘以任何有理数都等于这个有理数的相反数,正确;④一个数的倒数与本身相等的数只有1,错误,还有﹣1;正确的有3个.故选:C.2.【解答】解:用平面去截正方体,得的截面可能为三角形、四边形、五边形、六边形,不可能为七边形.故选:D.3.【解答】解:A、要了解某校1000名初中生的课外负担情况,调查全体女生,这种方式太片面,不合理;B、要了解某校1000名初中生的课外负担情况,调查全体男生,这种方式太片面,不合理;C、要了解某校1000名初中生的课外负担情况,调查九年级全体学生,这种方式太片面,不合理;D、要了解某校1000名初中生的课外负担情况,调查七、八年级各100名学生,具代表性,比较合理;故选:D.4.【解答】解:原式=﹣(1+1+1)=﹣3,故选:A.5.【解答】解:(D)当c=0时,则a不一定等于b,故D错误;故选:D.6.【解答】解:根据扇形面积计算公式可得:圆心角为90°的扇形AOB的面积=9π,故选:B.7.【解答】解:调查总人数:105÷35%=300人,C选手的票数:300×30%=90票,B选手的得票:300﹣105﹣90﹣30=75票故选:C.8.【解答】解:设盈利的书包的进价为x元/个,亏损的书包的进价为y元/个,根据题意得:42﹣x=40%x,42﹣y=﹣30%y,解得:x=30,y=60,∴42×2﹣30﹣60=﹣6(元).答:商店亏损6元.故选:D.二.填空题9.【解答】解:绝对值小于3.7的负数可以是﹣1,答案不唯一,故答案为:﹣1,答案不唯一10.【解答】解:根据适合抽样调查的特点,适合抽样调查的例子可以为:对某种品牌灯泡使用寿命调查,我们可以根据某一批次的灯泡中随机抽取部分进行测试实验.故答案为:对某种品牌灯泡使用寿命调查,随机抽取部分进行测试实验.11.【解答】解:由题意可知:4x﹣8+3x+22=0,∴x=﹣2,故答案为:﹣212.【解答】解:易得第一层最少有4个正方体,最多有12个正方体;第二层最少有2个正方体,最多有4个,故最少有6个小正方形,至多要16块小正方体.故答案为:6,16.13.【解答】解:①小长方形的长为,宽为:组距,∴小长方形的面积为:×组距=频率.∴小长方形的面积表示频率;②当数据在100个以内时,按照数据的多少常分成5﹣12组;③在样本数据中最大值与最小值的差为23,已知组距为23,那么由23÷3=,故可以分成8组.故答案为:面积,5﹣12,8.14.【解答】解:1点30分时针与分针相距4+=,1点30分时针与分针所夹的锐角是30×=135°,故答案是:135°.15.【解答】解:根据等量关系列方程得:3×4×5=4πh,故答案为:3×4×5=4πh.16.【解答】解:设有x个小朋友,根据题意得3x+1=4x﹣2.解得x=3,苹果数为3×3+1=10.故答案为:10.三.解答题17.【解答】解:(1)如图,AD为所作.(2)如图,BE为所作.18.【解答】解:(1)①原式=(﹣)××=﹣1;②原式=+(﹣)×24=+3﹣20=﹣17=﹣16;③原式=﹣3ab+6a2﹣2ab﹣5a2=﹣5ab+a2;(2)x﹣1﹣3(x+5)=﹣1,x﹣1﹣3x﹣15=﹣1,x﹣3x=﹣1+1+15,﹣2x=15,x=﹣.19.【解答】解:∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠1=∠BOC,∠2=∠AOC,∵∠AOC+∠BOC=180°,∴∠1+∠2=90°,∵∠1:∠2=1:2,∴∠1=30°,答:∠1的度数为30°.20.【解答】解:(1)如果在直线上6台机床,供应站P应设在第3台与第4台之间的任何地方的地方;如果直线上有7台机床,供应站P应设在第4台的地方;故答案为:第3台与第4台之间的任何地方的地方;(2)当n为偶数时,P应设在第台和(+1)台之间的任何地方,当n为奇数时,P应设在第台的位置;(3)根据绝对值的几何意义,求|x﹣1|+|x﹣2|+|x﹣3|+|x﹣99|的最小值,就是在数轴上找出表示x的点,使它到表示1,2,3,4…99各点的距离之和最小,根据问题(2)的结论,当x==50,即当x=50时,原式的值最小,∴最小值为(49+48+47+...+2+1)+0+(1+2+ (49)=(49+48+47+…+2+1)×2=(49+1)×49÷2×2=2450.21.【解答】解:A是一圆锥,其俯视图是中间带有一点的圆;B是一圆柱,其俯视图是圆;D是一三棱锥,其俯视图是三角形加中心到三个顶点的连线;D是一长方体,其俯视图是长方形.故:22.【解答】解:(1)m=4÷8%=50(人),扇形统计图中D组对应的圆心角是360°×=72°,故答案为:50,72;(2)C组人数为50×30%=15人,E组人数为50﹣(10+15+16+4)=5(人),补全图形如下:(3)估算此次考试数学成绩优秀的学生人数为2000×=800(人).23.【解答】解:(1)设一张这样的铝片可做瓶底x个.根据题意,得900x=1200(x﹣20)解得x=80.x﹣20=60.经检验x=80是原方程的解.答:一张这样的铝片可做瓶底80个.(2)=15答:这若干张铝片的张数是15张.(3)设这15张铝片中取a张做瓶身,取(15﹣a)张做瓶底可使配套做成的饮料瓶最多.根据题意,得2×60•a=80(15﹣a)解得a=6.答:这若干张铝片中取6张做瓶身,取9张做瓶底可使配套做成的饮料瓶最多.24.【解答】解:(1)原式=(3x2﹣5x﹣3)﹣(x2+x)=3x2﹣5x﹣3﹣x2﹣x =2x2﹣x﹣3;(2)“□”所代表的运算符号是“﹣”,当x=1时,原式=(3﹣5﹣3)﹣(1+2□6)=﹣2,整理得:﹣8﹣□6=﹣2,即□处应为“﹣”.。
2019-2020学年(江西)北师大七年级数学上册期末检测模拟卷(有答案)【精校】.doc

期末检测卷时间:120分钟 满分:120分一、选择题(本大题共6小题,每小题3分,共18分,每小题只有一个正确选项)1.下列各数中,比-3小的数是( ) A.-3 B.-2 C.0 D.-42.如图所示的几何体从上面看到的图形是( )3.下列运算正确的是( )A.4m -m =3B.2a 2-3a 2=-a 2C.a 2b -ab 2=0D.x -(y -x)=-y4.已知方程2x +a =ax +2的解为x =3,则a 的值为( ) A.3 B.2 C.-2 D.±25.如图,两块三角板的直角顶点O 重叠在一起,且OB 恰好平分∠COD ,则∠AOD 的度数为( ) A.100° B.120° C.135° D.150°第5题图 第6题图6.如图,上列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是( )A.y =2n +1B.y =2n +1+n C.y =2n +n D.y =2n +n +1二、填空题(本大题共6小题,每小题3分,共18分)7.我们的梦想:2022年中国足球挺进世界杯!如果小组赛中,中国队胜3场记为+3场,那么-1场表示 .8.据人民网统计,2018年“五一”假期期间江西省以近200亿元的旅游收入位居全国第一,其中200亿用科学记数法表示为 .9.当x = 时,代数式2x +3与6-4x 的值相等.10.如图,已知线段AB =16cm ,点M 在AB 上,AM :BM =1:3,P 、Q 分别为AM 、AB 的中点,则PQ 的长为 .11.小明和小丽同时从甲村出发到乙村,小丽的速度为4km/h ,小明的速度为5km/h ,小丽比小明晚到15min ,则甲、乙两村的距离是 km.12.已知有理数a ,b 满足ab <0,|a|>|b|,2|a +b|=|b -a|,则ab的值为 .三、(本大题共5小题,每小题6分,共30分)13.解下列方程:(1)4-x =3(2-x); (2)2x -13-x +14=1.14.如图,点C 、D 为线段AB 的三等分点,点E 为线段AC 的中点,若AB =12,求线段ED 的长度.15.先化简,再求值:-a 2b +(3ab 2-a 2b)-2(2ab 2-a 2b),其中a =-1,b =2.16.计算:-14-(1-0.5)×13×[3-(-3)2].17.有理数a 、b 在数轴上如图所示. (1)在数轴上表示-a 、-b ;(2)试把a 、b 、0、-a 、-b 五个数用“<”连接起来;(3)用“>”“=”或“<”填空:|a| a ,|b| b.四、(本大题共3小题,每小题8分,共24分)18.周末,小明和爸爸在400米的环形跑道上骑车锻炼,他们在同一地点沿着同一方向同时出发,骑行结束后两人有如下对话:请根据他们的对话内容,求小明和爸爸的骑行速度.19.如图,射线OA的方向是北偏东15°,射线OB的方向是北偏西40°,∠AOB=∠AOC,射线OD是OB的反向延长线.(1)射线OC的方向是;(2)若射线OE平分∠COD,求∠AOE的度数.20.如图所示是长方体的平面展开图,设AB=x,若AD=4x,AN=3x.(1)求长方形DEFG的周长与长方形ABMN的周长(用字母x表示);(2)若长方形DEFG的周长比长方形ABMN的周长少8,求x的值;(3)在第(2)问的条件下,求原长方体的体积.五、(本大题共2小题,每小题9分,共18分)(2)他们6人中最高身高比最矮身高高多少?(3)如果身高达到或超过平均身高时叫达标身高,那么这6名同学身高的达标率是多少?22.全民健身运动已成为一种时尚,为了解南昌市居民健身运动的情况,某健身馆的工作人员开展了一项问卷调查,问卷包括五个项目:A:健身房运动;B:跳广场舞;C:参加暴走团;D:散步;E:不运动.以下是根据调查结果绘制的统计图表的一部分.请你根据以上信息,回答下列问题:(1)接受问卷调查的共有人,图表中的m=,n=;(2)统计图中,A类所对应的扇形圆心角的度数是多少?(3)南昌市体育公园是附近市民喜爱的运动场所之一,每晚都有“暴走团”活动,若最邻近的某社区约有1500人,那么估计一下该社区参加体育公园“暴走团”的大约有多少人?六、(本大题共12分)23.(1)是;第是;(2)若第1行的某一列的数为c,则第2行与它同一列的数为;(3)已知第n列的前三个数的和为2562,若设第n列第1行的数为x,试求x的值.参考答案与解析1.D2.D3.B4.B5.C6.C 解析:观察可知左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为2,22,…,2n ,下边三角形的数字规律为1+2,2+22,…,n +2n ,∴y =2n +n.7.中国队输1场 8.2×1010 9.12 10.6cm 11.512.-3 解析:∵ab <0,|a|>|b|,分以下两种情形:①当a >0,b <0时,a +b >0,b -a <0,可得2(a +b)=a -b ,即a =-3b ,∴ab=-3;②当a <0,b >0时,a +b <0,b -a >0,可得-2(a +b)=b -a ,即a =-3b ,∴a b =-3.综上所述,ab的值为-3.13.解:(1)x =1.(3分)(2)x =195.(6分)14.解:∵C 、D 为线段AB 的三等分点,∴AC =CD =13AB =4.(2分)又∵点E 为AC 的中点,则EC =12AC =2,(4分)∴ED =EC +CD =6.(6分)15.解:原式=-ab 2.(3分)当a =-1,b =2时,原式=4.(6分)16.解:原式=-1-12×13×(-6)=-1+1=0.(6分)17.解:(1)在数轴上表示如图.(2分)(2)a <-b <0<b <-a.(4分) (3)> =(6分)18.解:设小明的骑行速度为x 米/分,则爸爸的骑行速度为2x 米/分,根据题意得2(2x -x)=400,(4分)解得x =200,则2x =400.(7分)答:小明的骑行速度为200米/分,爸爸的骑行速度为400米/分.(8分) 19.解:(1)北偏东70°(3分) (2)∵∠AOB =40°+15°=55°,∠AOC =∠AOB =55°,∴∠BOC =110°.又∵射线OD 是OB 的反向延长线,∴∠BOD =180°,∴∠COD =180°-110°=70°.(5分)∵OE 平分∠COD ,∴∠COE =35°.∴∠AOE =∠AOC +∠COE =90°.(8分)20.解:(1)根据展开图,易知DE =FG =NM =CD =AB =x ,因为AD =4x ,所以BC =2x ,所以EF =DG =2x.故长方形DEFG 的周长为6x ,长方形ABMN 的周长为8x.(3分)(2)依题意得8x -6x =8,解得x =4.(5分) (3)原长方体的体积为x·2x·3x =6x 3.(6分)将x =4代入,得原长方体的体积为6×43=384.(8分) 21.解:(1)从左到右依次为168 0 163 170 +6(3分)(2)根据题意得172-163=9(cm),故这6人中最高身高比最矮身高高9cm.(6分)(3)根据题意得46×100%≈67%,故这6名同学身高的达标率是67%.(9分)22.解:(1)150 45 36(3分)(2)A 类所对应的扇形圆心角的度数为360°×12150=28.8°.(6分)(3)1500×45150=450(人).答:估计该社区参加体育公园“暴走团”的大约有450人.(9分) 23.解:(1)16 32(4分) (2)c +2(8分)(3)第n 列第1行的数为x ,则第2行的数为x +2,第3行的数为x 2,由题意可知x +x +2+x2=2562,解得x =1024.(12分)。
2019-2020年北师大版七年级数学上册期末模拟综合试题及答案解析-精编试题

第一学期期末模拟考试七年级数学试卷一、选择题(共15小题,每小题3分,满分45分)1.|﹣2|等于()A.﹣2 B.﹣C.2 D.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚3.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D.+y=24.下列各组数中,互为相反数的是()A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与15.如图,下列图形全部属于柱体的是()A.B.C. D.6.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0 B.x=3 C.x=﹣3 D.x=27.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是()A.8cm B.84m C.8cm或4cm D.无法确定8.一元一次方程﹣=1,去分母后得()A.2(2x+1)﹣x﹣3=1 B.2(2x+1)﹣x﹣3=6 C.2(2x+1)﹣(x﹣3)=1 D.2(2x+1)﹣(x﹣3)=69.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有()A.1个B.2个C.3个D.4个10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()A.30° B.45° C.50°D.60°11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69° B.111°C.141°D.159°12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为()A.5 B.4 C.3 D.213.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB=AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB中点.其中正确的是()A.①③④B.④C.②③④D.③④15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣xy2的系数是.17.若x=2是方程8﹣2x=ax的解,则a= .18.计算:15°37′+42°51′=.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于cm2(结果保留π).20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD= cm.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE 为度.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2)=;(3)﹣=1;(4)x﹣=1﹣.26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是(请写出盈利或亏损)元.32.|x+2|+|x﹣2|+|x﹣1|的最小值是.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.参考答案与试题解析一、选择题(共15小题,每小题3分,满分45分)1.|﹣2|等于()A.﹣2 B.﹣C.2 D.【考点】绝对值.【专题】探究型.【分析】根据绝对值的定义,可以得到|﹣2|等于多少,本题得以解决.【解答】解:由于|﹣2|=2,故选C.【点评】本题考查绝对值,解题的关键是明确绝对值的定义.2.在墙壁上固定一根横放的木条,则至少需要钉子的枚数是()A.1枚B.2枚C.3枚D.任意枚【考点】直线的性质:两点确定一条直线.【分析】根据直线的性质,两点确定一条直线解答.【解答】解:∵两点确定一条直线,∴至少需要2枚钉子.故选B.【点评】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.3.下列方程为一元一次方程的是()A.y+3=0 B.x+2y=3 C.x2=2x D.+y=2【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:A、正确;B、含有2个未知数,不是一元一次方程,选项错误;C、最高次数是2次,不是一元一次方程,选项错误;D、不是整式方程,不是一元一次方程,选项错误.故选A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,且未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.4.下列各组数中,互为相反数的是()A.﹣(﹣1)与1 B.(﹣1)2与1 C.|﹣1|与1 D.﹣12与1【考点】相反数;绝对值;有理数的乘方.【专题】计算题.【分析】根据相反数得到﹣(﹣1),根据乘方得意义得到(﹣1)2=1,﹣12=﹣1,根据绝对值得到|﹣1|=1,然后根据相反数的定义分别进行判断.【解答】解:A、﹣(﹣1)=1,所以A选项错误;B、(﹣1)2=1,所以B选项错误;C、|﹣1|=1,所以C选项错误;D、﹣12=﹣1,﹣1与1互为相反数,所以D选项正确.故选D.【点评】本题考查了相反数:a的相反数为﹣a.也考查了绝对值与有理数的乘方.5.如图,下列图形全部属于柱体的是()A.B.C. D.【考点】认识立体图形.【专题】常规题型.【分析】根据柱体的定义,结合图形即可作出判断.【解答】解:A、左边的图形属于锥体,故本选项错误;B、上面的图形是圆锥,属于锥体,故本选项错误;C、三个图形都属于柱体,故本选项正确;D、上面的图形不属于柱体,故本选项错误.故选C.【点评】此题考查了认识立体图形的知识,属于基础题,解答本题的关键是掌握柱体和锥体的定义和特点,难度一般.6.若关于x的方程mx m﹣2﹣m+3=0是一元一次方程,则这个方程的解是()A.x=0 B.x=3 C.x=﹣3 D.x=2【考点】一元一次方程的定义.【专题】计算题.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0),高于一次的项系数是0.【解答】解:由一元一次方程的特点得m﹣2=1,即m=3,则这个方程是3x=0,解得:x=0.故选:A.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.7.已知同一平面内A、B、C三点,线段AB=6cm,BC=2cm,则A、C两点间的距离是()A.8cm B.84m C.8cm或4cm D.无法确定【考点】两点间的距离.【分析】根据点B在线段AC上和在线段AC外两种情况进行解答即可.【解答】解:如图1,当点B在线段AC上时,∵AB=6cm,BC=2cm,∴AC=6+2=8cm;如图2,当点CB在线段AC外时,∵AB=6cm,BC=2cm,∴AC=6﹣2=4cm.故选:C.【点评】本题考查的是两点间的距离,正确理解题意、灵活运用分情况讨论思想是解题的关键.8.一元一次方程﹣=1,去分母后得()A.2(2x+1)﹣x﹣3=1 B.2(2x+1)﹣x﹣3=6 C.2(2x+1)﹣(x﹣3)=1 D.2(2x+1)﹣(x﹣3)=6【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】方程两边乘以6去分母得到结果,即可作出判断.【解答】解:去分母得:2(2x+1)﹣(x﹣3)=6,故选D【点评】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把x系数化为1,求出解.9.为了解我区七年级6000名学生期中数学考试情况,从中抽取了500名学生的数学成绩进行统计.下列判断:①这种调查方式是抽样调查;②6000名学生是总体;③每名学生的数学成绩是个体;④500名学生是总体的一个样本.其中正确的判断有()A.1个B.2个C.3个D.4个【考点】总体、个体、样本、样本容量;全面调查与抽样调查.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:①这种调查方式是抽样调查故①正确;②6000名学生的数学成绩是总体,故②错误;③每名学生的数学成绩是个体,故③正确;④500名学生是总体的一个样本,故④正确;故选:C.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.10.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC等于()A.30° B.45° C.50°D.60°【考点】角的计算.【专题】计算题.【分析】从如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=150°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣150°=30°.故选A.【点评】此题主要考查学生对角的计算的理解和掌握,解答此题的关键是让学生通过观察图示,发现几个角之间的关系.11.在灯塔O处观测到轮船A位于北偏西54°的方向,同时轮船B在南偏东15°的方向,那么∠AOB的大小为()A.69° B.111°C.141°D.159°【考点】方向角.【分析】首先计算出∠3的度数,再计算∠AOB的度数即可.【解答】解:由题意得:∠1=54°,∠2=15°,∠3=90°﹣54°=36°,∠AOB=36°+90°+15°=141°,故选:C.【点评】此题主要考查了方向角,关键是根据题意找出图中角的度数.12.如图,M是线段AB的中点,点N在AB上,若AB=10,NB=2,那么线段MN的长为()A.5 B.4 C.3 D.2【考点】两点间的距离.【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10,M是AB中点,∴BM=AB=5,又∵NB=2,∴MN=BM﹣BN=5﹣2=3.故选C.【点评】考查了两点间的距离,根据点M是AB中点先求出BM的长度是解本题的关键.13.某商品每件的标价是330元,按标价的八折销售时,仍可获利10%,则这种商品每件的进价为()A.240元B.250元C.280元D.300元【考点】一元一次方程的应用.【专题】应用题.【分析】设这种商品每件的进价为x元,则根据按标价的八折销售时,仍可获利l0%,可得出方程,解出即可.【解答】解:设这种商品每件的进价为x元,由题意得:330×0.8﹣x=10%x,解得:x=240,即这种商品每件的进价为240元.故选:A.【点评】此题考查了一元一次方程的应用,属于基础题,解答本题的关键是根据题意列出方程,难度一般.14.下列四种说法:①因为AM=MB,所以M是AB中点;②在线段AM的延长线上取一点B,如果AB=2AM,那么M是AB的中点;③因为M是AB的中点,所以AM=MB=AB;④因为A、M、B在同一条直线上,且AM=BM,所以M是AB中点.其中正确的是()A.①③④B.④C.②③④D.③④【考点】比较线段的长短.【专题】应用题.【分析】根据线段中点的定义:线段上一点,到线段两端点距离相等的点,可进行判断解答.【解答】解:①如图,AM=BM,但M不是线段AB的中点;故本选项错误;②如图,由AB=2AM,得AM=MB;故本选项正确;③根据线段中点的定义判断,故本选项正确;④根据线段中点的定义判断,故本选项正确;故选C.【点评】本题考查了线段中点的判断,符合线段中点的条件:①在已知线段上②把已知线段分成两条相等线段的点.15.轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时,若船速为26千米/时,水速为2千米/时,求A港和B港相距多少千米.设A港和B港相距x千米.根据题意,可列出的方程是()A.B.C.D.【考点】由实际问题抽象出一元一次方程.【分析】轮船沿江从A港顺流行驶到B港,则由B港返回A港就是逆水行驶,由于船速为26千米/时,水速为2千米/时,则其顺流行驶的速度为26+2=28千米/时,逆流行驶的速度为:26﹣2=24千米/时.根据“轮船沿江从A港顺流行驶到B港,比从B港返回A港少用3小时”,得出等量关系:轮船从A港顺流行驶到B港所用的时间=它从B港返回A港的时间﹣3小时,据此列出方程即可.【解答】解:设A港和B港相距x千米,可得方程:=﹣3.故选A.【点评】本题考查了由实际问题抽象出一元一次方程,抓住关键描述语,找到等量关系是解决问题的关键.顺水速度=水流速度+静水速度,逆水速度=静水速度﹣水流速度.二、填空题(共8小题,每小题3分,满分24分)16.单项式﹣xy2的系数是﹣.【考点】单项式.【分析】根据单项式系数的定义来求解.单项式中数字因数叫做单项式的系数.【解答】解:单项式﹣xy2的系数是﹣,故答案为:﹣.【点评】本题考查了单项式系数的定义,确定单项式的系数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数的关键.注意π是数字,应作为系数.17.若x=2是方程8﹣2x=ax的解,则a= 2 .【考点】一元一次方程的解.【分析】把x=2,代入方程得到一个关于a的方程,即可求解.【解答】解:把x=2代入方程,得:8﹣4=2a,解得:a=2.故答案是:2.【点评】本题考查了方程的解的定义,理解定义是关键.18.计算:15°37′+42°51′=58°28′.【考点】度分秒的换算.【分析】把分相加,超过60的部分进为1度即可得解.【解答】解:∵37+51=88,∴15°37′+42°51′=58°28′.故答案为:58°28′.【点评】本题考查了度分秒的换算,比较简单,要注意度分秒是60进制.19.在半径为6cm的圆中,60°的圆心角所对的扇形面积等于6πcm2(结果保留π).【考点】扇形面积的计算.【分析】直接利用扇形面积公式计算即可.【解答】解:=6π(cm2).故答案为6π.【点评】此题主要考查了扇形的面积公式:设圆心角是n°,圆的半径为R的扇形面积为S,则S扇=.熟记公式是解题的关键.形20.如图,在线段AB上有两点C、D,AB=24 cm,AC=6 cm,点D是BC的中点,则线段AD= 15 cm.【考点】比较线段的长短.【专题】计算题.【分析】已知AB和AC的长度,即可求出BC的长度,点D是BC的中点,则可求出CD的长度,AD的长度等于AC的长度加上CD的长度.【解答】解:因为AB=24cm,AC=6cm,所以BC=18cm,点D是BC中点,所以CD的长度为:9cm,AD=AC+CD=15cm.【点评】本题关键是根据题干中的图形得出各线段之间的关系,然后根据这些关系并结合已知条件即可求出AD的长度.21.如图,O是直线AB上一点,OD平分∠BOC,∠COE=90°,若∠AOC=40°,则∠DOE 为20 度.【考点】角平分线的定义.【分析】先求出∠BOC=140°,再由OD平分∠BOC,求出∠COD=∠BOC=70°,即可求出∠DOE=20°.【解答】解:∵∠AOC=40°,∴∠BOC=180°﹣∠AOC=140°,∵OD平分∠BOC,∴∠COD=∠BOC=70°,∵∠COE=90°,∴∠DOE=90°﹣70°=20°;故答案为:20.【点评】本题考查了角平分线的定义;弄清各个角之间的数量关系是解决问题的关键.22.如图,把一张长方形的纸按图那样折叠后,B、D两点落在B′、D′点处,若得∠AOB′=70°,则∠B′OG的度数为55 .【考点】轴对称的性质.【分析】根据轴对称的性质可得∠B′OG=∠BOG,再根据∠AOB′=70°,可得出∠B′OG的度数.【解答】解:根据轴对称的性质得:∠B′OG=∠BOG又∠AOB′=70°,可得∠B′OG+∠BOG=110°∴∠B′OG=×110°=55°.【点评】本题考查轴对称的性质,在解答此类问题时要注意数形结合的应用.23.观察下面的一列单项式:2x;﹣4x2;8x3;﹣16x4,…根据你发现的规律,第n个单项式为(﹣1)n+1•2n•x n.【考点】单项式.【专题】规律型.【分析】先根据所给单项式的次数及系数的关系找出规律,再确定所求的单项式即可.【解答】解:∵2x=(﹣1)1+1•21•x1;﹣4x2=(﹣1)2+1•22•x2;8x3=(﹣1)3+1•23•x3;﹣16x4=(﹣1)4+1•24•x4;第n个单项式为(﹣1)n+1•2n•x n,故答案为:(﹣1)n+1•2n•x n.【点评】本题考查了单项式的应用,解此题的关键是找出规律直接解答.三、解答题(共7小题,满分51分)24.计算:(1)﹣14﹣5×[2﹣(﹣3)2](2)先化简再求值(5a2+2a﹣1)﹣4(3﹣8a+2a2),其中a=﹣1.【考点】整式的加减—化简求值;有理数的减法;有理数的乘方.【专题】计算题;整式.【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(2)原式去括号合并得到最简结果,把a的值代入计算即可求出值.【解答】解:(1)原式=﹣1﹣5×(2﹣9)=﹣1+35=34;(2)原式=5a2+2a﹣1﹣12+32a﹣8a2=﹣3a2+34a﹣13,当a=﹣1时,原式=﹣3﹣34﹣13=﹣50.【点评】此题考查了整式的加减﹣化简求值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.25.解方程:(1)2(3﹣y)=﹣4(y+5);(2)=;(3)﹣=1;(4)x﹣=1﹣.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【分析】(1)方程去括号,移项合并,把y系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(3)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(4)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:6﹣2y=﹣4y﹣20,移项合并得:2y=﹣26,解得:x=﹣13;(2)去分母得:6x﹣4=3,移项合并得:6x=7,解得:x=;(3)去分母得:6(3x+4)﹣(7﹣2x)=12,去括号得:18x+24﹣7+2x=12,移项合并得:20x=﹣5,解得:x=﹣0.25;(4)去分母得:6x﹣3(3﹣2x)=6﹣(x+2),去括号得:6x﹣9+6x=6﹣x﹣2,移项合并得:13x=13,解得:x=1.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.26.列方程解应用题:根据图中提供的信息,求出一个杯子的价格是多少元?【考点】一元一次方程的应用.【分析】设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,根据题意列出关于x的方程,求出方程的解即可得到结果.【解答】解:设一个杯子的价格是x元,则一把暖瓶为(43﹣x)元,依题意得:3x+2(43﹣x)=94,解得x=8.答:一个杯子的价格为8元.【点评】本题考查了一元一次方程的应用.关键是根据图,得出保温瓶与杯子的价钱之间的数量关系,再根据数量关系的特点,选择合适的方法进行计算.27.列方程解应用题:已知A、B两地相距48千米,甲骑自行车每小时走18千米,乙步行每小时走6千米,甲乙两人分别A、B两地同时出发.(1)同向而行,开始时乙在前,经过多少小时甲追上乙?(2)相向而行,经过多少小时两人相距40千米?【考点】一元一次方程的应用.【分析】(1)根据题意可以列出相应的方程,本题得以解决;(2)根据题意,分两种情况,一种是相遇前相距40千米,一种是相遇后相距40千米,从而可以分别写出两种情况下的方程,本题得以解决.【解答】解:(1)设同向而行,开始时乙在前,经过x小时甲追上乙,18x﹣6x=48解得,x=4即同向而行,开始时乙在前,经过4小时甲追上乙;(2)设相向而行,经过x小时两人相距40千米,18x+6x=48﹣40或18x+6x=48+40,解得x=或x=即相向而行,经过小时或小时两人相距40千米.【点评】本题考查一元一次方程的应用,解题的关键是明确题意,列出相应的方程,注意第(2)问有两种情况.28.为增强学生的身体素质,教育行政部门规定学生每天户外活动的平均时间少于1小时,为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制成如图所示中两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为0.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间为2小时的扇形圆心角的度数.【考点】频数(率)分布直方图;扇形统计图.【分析】(1)根据时间是1小时的有32人,占40%,据此即可求得总人数;(2)利用总人数乘以百分比即可求得时间是0.5小时的一组的人数,即可作出直方图;(3)利用360°乘以活动时间是2小时的一组所占的百分比即可求得圆心角的度数.【解答】解:(1)调查人数=32÷40%=80(人);(2)户外活动时间为0.5小时的人数=80×20%=16(人);补全频数分布直方图见下图:(3)表示户外活动时间2小时的扇形圆心角的度数=×360°=48°.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.29.已知,如图,∠AOB=150°,OC平分∠AOB,AO⊥DO,求∠COD的度数.【考点】角平分线的定义.【分析】先根据角平分线的性质求出∠AOC的度数,再由AO⊥DO求出∠AOD的度数,根据∠COD=∠AOD﹣∠AOC即可得出结论.【解答】解:∵∠AOB=150°,OC平分∠AOB,∴∠AOC=∠AOB=75°.∵AO⊥DO,∴∠AOD=90°,∴∠COD=∠AOD﹣∠AOC=90°﹣75°=15°.【点评】本题考查的是角平分线的定义,熟知从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线是解答此题的关键.30.已知关于x的方程的解是x=2,其中a≠0且b≠0,求代数式的值.【考点】一元一次方程的解;代数式求值.【专题】计算题.【分析】此题把x的值代入,得出与的值,即可得出此题答案.【解答】解:把x=2代入方程得:,∴3(a﹣2)=2(2b﹣3),∴3a﹣6=4b﹣6,∴3a=4b,∴,,∴.【点评】此题考查的是一元一次方程的解,关键在于解出关于a,b的比值.四、选做题(共3小题,不计入总分)31.某文化商场同时卖出两台电子琴,每台均卖960元,以成本计算,其中一台盈利20%,另一台亏本20%,则本次出售中商场是亏损(请写出盈利或亏损)80 元.【考点】一元一次方程的应用.【分析】设盈利20%的电子琴的成本为x元,设亏本20%的电子琴的成本为y元,再根据(1+利润率)×成本=售价列出方程,解方程计算出x、y的值,进而可得答案.【解答】解:设盈利20%的电子琴的成本为x元,x(1+20%)=960,解得x=800;设亏本20%的电子琴的成本为y元,y(1﹣20%)=960,解得y=1200;∴960×2﹣(800+1200)=﹣80,∴亏损80元,故答案为:亏损;80.【点评】此题主要考查了一元一次方程组的应用,关键是正确理解题意,找出题目中的等量关系,设出未知数,列出方程.32.|x+2|+|x﹣2|+|x﹣1|的最小值是 4 .【考点】绝对值.【分析】根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小.【解答】解:|x+2|+|x﹣2|+|x﹣1|表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小,是4.故答案为:4.【点评】本题主要考查了绝对值的意义,正确理解|x﹣a|表示数轴上x与a之间的距离,是解决本题的关键.33.一个盖着瓶盖的瓶子里面装着一些水(如下图所示),请你根据图中标明的数据,计算瓶子的容积.【考点】圆柱的计算.【专题】计算题.【分析】结合图形,知水的体积不变,从而根据第二个图空着的部分的高度是2cm,可以求得水与空着的部分的体积比为4:2=2:1.结合第一个图中水的体积,即可求得总容积.【解答】解:由已知条件知,第二个图上部空白部分的高为7﹣5=2cm,从而水与空着的部分的体积比为4:2=2:1.由第一个图知水的体积为10×4=40,所以总的容积为40÷2×(2+1)=60立方厘米.【点评】此题的关键是解决不同底的问题,能够有机地把两个图形结合起来,求得水与空着的部分的体积比.。
精品模拟北师大版2019-2020学年(上)七年级数学期末模拟试题题解析版
期末综合训练题测试时间:120分钟满分:120分一.选择题(满分24分,每小题3分)1.2019相反数的绝对值是()A.9102B.﹣2019C.D.20192.下列调查中,适合用普查方式的是()A.检测100只灯泡的质量情况B.了解在南充务工人员月收入的大致情况C.了解全市学生观看“开学第一课”的情况D.了解某班学生对“南充丝绸文化”的知晓率3.下列各图中,可以是一个正方体的平面展开图的是()A.B.C.D.4.给出下列判断:①锐角的补角一定是钝角;②一个角的补角一定大于这个角;③如果两个角是同一个角的余角,那么这两个角相等;④锐角和钝角一定互补,其中正确的有()A.1 个B.2 个C.3 个D.4 个5.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了()A.3场B.4场C.5场D.6场6.小红记录了连续5天最低气温,并整理如下表由于不小心被墨迹污染了一个数据,请你算一算这个数据是()A.21B.18.2C.19D.207.已知a、b、c在数轴上位置如图,则|a+b|+|a+c|=()A.0B.a+b C.b﹣c D.a+c8.一个几何体的三视图如图所示,则该几何体是()A.B.C.D.二.填空题(满分18分,每小题3分)9.十九大报告中指出,过去五年,我国国内生产总值从54万亿元增长到80万亿元,对世界经济增长贡献率超过30%,其中“80万亿元”用科学记数法表示为元.10.若﹣3x2m y3与2x4y n是同类项,则m﹣n=.11.若关于x的方程3x﹣7=2x+a的解与方程4x+3=7的解相同,则a的值为.12.a※b是新规定的这样一种运算法则:a※b=a﹣b+2ab,若(﹣2)※3=.13.射线OC在∠AOB的内部,共有3个角:∠AOB,∠AOC和∠BOC,若其中有一个角的度数是另一个角度数的两倍,则称射线OC是∠AOB的“巧分线”.若∠MPN=75°,且射线PQ绕点P从PN位置开始,以每秒15°的速度逆时针旋转,射线PM同时绕点P 以每秒5°的速度逆时针旋转,当PQ与PN成180°时,PQ与PM同时停止旋转,设旋转的时间为t秒.当射线PQ是∠MPN的“巧分线”时,t的值为.14.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满五进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为个.三.解答题15.(6分)如图,在正方形ABCD中,点M是BC边上任意一点,请你仅用无刻度直尺、用连线的方法,分别在图(1)、图(2)中按要求作图(保留作图痕迹,不写作法).(1)在图(1)中,在AB边上求作一点N,连接CN,使CN=AM;(2)在图(2)中,在AD边上求作一点Q,连接CQ,使CQ∥AM.四.解答题16.(8分)计算﹣32+1÷4×﹣|﹣1|×(﹣0.5)2.17.(6分)先化简,再求值:2(x2﹣2x﹣2)﹣(2x+1),其中x=﹣.18.(10分)解方程:﹣1=.19.(6分)某自行车厂一周计划生产1400辆自行车,平均每天生产200辆,由于各种原因实际每天生产量与计划量相比有出入.下表是某周的生产情况(超产为正、减产为负):(1)产量最多的一天是星期,产量最少一天的是星期;(2)该厂实行每周计件工资制,每生产一辆车可得60元,若超额完成任务,则超过部分每辆另奖15元;少生产一辆扣15元,那么该厂工人这一周的工资总额是多少?20.(8分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.21.(8分)如图,C为线段AD上一点,点B为CD的中点,且AD=8cm,BD=1cm,(1)求AC的长;(2)若点E在直线AD上,且EA=2cm,求BE的长.22.(8分)一项工程由甲单独做需12天完成,由乙单独做需8天完成,若两人合作3天后,剩下部分由乙单独完成,乙还需做多少天?23.(8分)如图所示,图①~图④都是平面图形.(1)每个图中各有多少个顶点?多少条边?这些边围出多少个区域?请将结果填入表格中.(2)根据表中数值,若具有相同规律的平面图形顶点数为n(n为不小于4的偶数),可推断出区域数为;边数为.24.(10分)现在,红旗商场进行促销活动,出售一种优惠购物卡(注:此卡只作为购物优惠凭证不能顶替货款),花300元买这种卡后,凭卡可在这家商场按标价的8折购物.(1)顾客购买多少元金额的商品时,买卡与不买卡花钱相等?在什么情况下购物合算?(2)小张要买一台标价为3500元的冰箱,如何购买合算?小张能节省多少元钱?(3)小张按合算的方案,把这台冰箱买下,如果红旗商场还能盈利25%,这台冰箱的进价是多少元?参考答案一.选择1.解:2019相反数是﹣2019,﹣2019的绝对值是2019,故选:D.2.解:A、检测100只灯泡的质量情况,调查具有破坏性适合抽样调查,故A不符合题意;B、了解在南充务工人员月收入的大致情况,调查范围广适合抽样调查,故B符合题意;C、了解全市学生观看“开学第一课”的情况,调查范围广适合抽样调查,故C不符合题意;D、了解某班学生对“南充丝绸文化”的知晓率,适合用普查方式,符合题意;故选:D.3.解:A、属于“田”字型,不是正方体的展开图,故选项错误;B、属于“7”字型,不是正方体的展开图,故选项错误;C、属于“1+4+1”字型,是正方体的展开图,故选项正确;D、属于“凹”字型,不是正方体的展开图,故选项错误.故选:C.4.解:①锐角的补角一定是钝角,说法正确;②一个角的补角一定大于这个角,说法错误;③如果两个角是同一个角的余角,那么这两个角相等,说法正确;④锐角和钝角一定互补,说法错误,正确的说法有2个,故选:B.5.解:设共胜了x场,则平了(14﹣5﹣x)场,由题意得:3x+(14﹣5﹣x)=19,解得:x=5,即这个队胜了5场.故选:C.6.解:设被墨迹污染了的数据为x,则有(16+18+19+18+x)÷5=18.2,解得:x=20;故选:D.7.解:由数轴知c<a<0<b,且|a|<|b|<|c|,∴a+b>0,a+c<0,则|a+b|+|a+c|=a+b﹣(a+c)=a+b﹣a﹣c=b﹣c,故选:C.8.解:∵该几何体的左视图和侧视图为长方形,主视图是复合图形,∴该几何体图形为,故选:C.二.填空题9.解:80万亿=80 000 000 000 000=8×1013.故答案为:8×1013.10.解:∵﹣3x2m y3与2x4y n是同类项,∴2m=4,n=3,解得m=2,n=3.∴m﹣n=2﹣3=﹣1.故答案为:﹣1.11.解:∵4x+3=7解得:x=1将x=1代入:3x﹣7=2x+a得:a=﹣6.故答案为:﹣6.12.解:∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.13.解:当∠NPQ=∠MPN时,15t=(75°+5t),解得t=3;当∠NPQ=∠MPN时,15t=(75°+5t),解得t=.当∠NPQ=∠MPN时,15t=(75°+5t),解得t=.故t的值为3或或.故答案为:3或或.14.解:2+0×5+3×5×5+2×5×5×5+1×5×5×5×5=952,故答案为:952.三.解答题15.解:(1)连接BD,BD与AM交于点O,连接CO并延长交于AB,则CO与AB的交点为点N,如图1,(2)延长MO交ADE于Q,连结CQ,则CQ为所作,如图2.四.解答题16.解:原式=﹣9+﹣=﹣9.17.解:原式=2x2﹣4x﹣4﹣2x﹣1=2x2﹣6x﹣5当x=时,原式===18.解:去分母,得3(1﹣2x)﹣21=7(x+3),去括号,得3﹣6x﹣21=7x+21,移项,得﹣6x﹣7x=21﹣3+21,合并,得﹣13x=39,系数化1,得x=﹣3,则原方程的解是x=﹣3.19.解:(1)由表格可知:产量最多是星期六产量最少是星期五(2)由题意可知:5+(﹣2)+(﹣4)+13+(﹣10)+(+16)+(﹣9)=9这个一周的生产量为:200×7+9=1409所以本周工资为:1409×60+9×15=84675答:该厂工人这一周的工资总额是84675元故答案为:(1)六;五20.解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数:;答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%,(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×=5.31万(人),答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人;(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:=8.9%,活动前全市骑电瓶车“都不戴”安全帽的百分比:,8.9%<17.7%,因此交警部门开展的宣传活动有效果.21.解:(1)∵点B为CD的中点,BD=1cm,∴CD=2BD=2cm,∵AD=8cm,∴AC=AD﹣CD=8﹣2=6cm(2)若E在线段DA的延长线,如图1∵EA=2cm,AD=8cm∴ED=EA+AD=2+8=10cm,∵BD=1cm,∴BE=ED﹣BD=10﹣1=9cm,若E线段AD上,如图2EA=2cm,AD=8cm∴ED=AD﹣EA=8﹣2=6cm,∵BD=1cm,∴BE=ED﹣BD=6﹣1=5cm,综上所述,BE的长为5cm或9cm.22.解:设乙还需做x天.由题意得:++=1,解之得:x=3.答:乙还需做3天.23.解:(1)完成表格如下:(2)由(1)中的结论得:设顶点数为n,则区域数为+1;边数为n+=,故答案为:+1,.24.(1)解:设顾客购买x元金额的商品时,买卡与不买卡花钱相等.根据题意,得300+0.8x=x,解得x=1500,所以,当顾客消费少于1500元时不买卡合算;当顾客消费等于1500元时买卡与不买卡花钱相等;当顾客消费大于1500元时买卡合算;(2)小张买卡合算,3500﹣(300+3500×0.8)=400,所以,小张能节省400元钱;(3)设进价为y元,根据题意,得(300+3500×0.8)﹣y=25%y,解得y=2480答:这台冰箱的进价是2480元。
精品模拟2019—2020学年北师大版七年级数学上册期末模拟试卷含答案
2019—2020学年北师大版七年级数学上册期末模拟试卷一.选择题(共10小题,每小题3分,共30分) 1.2018的相反数是( ) A .12018-B .12018C .2018-D .02.下列立体图形中,俯视图是三角形的是( )A .B .C .D .3.下列计算结果为正数的是( ) A .21()2--B .01()2--C .31()2-D .1||2-4.下列说法中不正确的是( ) ①过两点有且只有一条直线 ②连接两点的线段叫两点的距离 ③两点之间线段最短④点B 在线段AC 上,如果AB BC =,则点B 是线段AC 的中点 A .①B .②C .③D .④5.当12a <<时,代数式|2||1|a a -+-的值是( ) A .1-B .1C .3D .3-6.如图所示,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒7.在有理数范围内定义运算“*”,其规则为2*3a ba b +=,则方程程4*4x =的解为( ) A .3- B .3 C .2 D .48.下列方程的变形正确的是( ) A .由35x +=,得53x =+ B .由102x =,得2x =C .由74x =-,得47x =-D .由32x =-,得23x =--9.若等腰三角形的一条边长等于4,另一条边长为9,则这个三角形的周长是( ) A .17B .22C .17或22D .1310.下面是一组按规律排列的数:1,2,4,8,16,第2020个数应是( ) A .20192 B .202021-C .20202D .以上答案均不对二.填空题(共8小题,每小题4分,共32分)11.大于 2.6-而又不大于3的非负整数为 .12.代数式23x x ++的值为7,则代数式211344x x +-的值为 .13.单项式6abcπ-的系数为 . 14.将数12000000科学记数法表示为 .15.一件商品按成本价提高20%标价,然后打9折出售,此时仍可获利16元,则商品的成本价为元.16.若42m a b -与325n a b +可以合并成一项,则n m = .17.如图,数轴上有O 、A 、B 三点,点O 对应原点,点A 对应的数为1-,若3OB OA =,则点B 对应的数为 .18.数a ,b ,c 在数轴上的位置如图所示.化简:2||||b a c b ---的值为 .三.解答题(共8小题,满分66分,其中19、21、22每小题6分,20、23每小题8分,24、25每小题10分,26题12分)19.如图是由5个边长为1的正方体叠放而成的一个几何体,请画出这个几何体的三视图.(用铅笔描黑)20.计算:(1)12(18)(7)15--+--;(2)222(31)(53)x x x x ----+-.21.解方程:2143335x xx ---=-.22.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如图不完整的条形统计图和扇形统计图(部分信息未给出) (1)求本次调查学生的人数.(2)求喜爱足球、跑步的人数,并补全条形统计图; (3)求喜爱篮球、跑步的人数占调查人数的百分比.23.先化简,再求值:2223(5)[54(3)]xy x x xy x xy -+----,其中x ,y 满足|2||3|0x y -++=. 24.华联超市第一次用7000元购进甲、乙两种商品,其中甲商品的件数是乙商品件数的2倍,甲、乙两种商品的进价和售价如表:(注:获利=售价-进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍:甲商品按原价销售,乙商品打折销售,第二次两种商品都售完以后获得的总利润比第一次获得的总利润多800元,求第二次乙商品是按原价打几折销售?25.如图,已知AOB ∠内部有三条射线,其中OE 平分角BOC ∠,OF 平分AOC ∠.(1)如图1,若120AOB ∠=︒,50AOC ∠=︒,求EOF ∠的度数; (2)如图2,若AOB α∠=,AOC β∠=,求EOF ∠的度数.26.如图1,已知点C 在线段AB 上,线段10AC =厘米,6BC =厘米,点M ,N 分别是AC ,BC 的中点.(1)求线段MN 的长度;(2)根据第(1)题的计算过程和结果,设AC BC a +=,其他条件不变,求MN 的长度; (3)动点P 、Q 分别从A 、B 同时出发,点P 以2/cm s 的速度沿AB 向右运动,终点为B ,点Q 以1/cm s 的速度沿AB 向左运动,终点为A ,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C 、P 、Q 三点有一点恰好是以另两点为端点的线段的中点?2019—2020学年北师大版七年级数学上册期末模拟试卷一.选择题(共10小题)1.C . 2.C . 3.A . 4.B . 5.B . 6.B . 7.D . 8.C . 9.B . 10.A . 二.填空题(共8小题)11. 0,1,2,3 . 12. 2- . 13. 6π-. 14. 71.210⨯ .15. 200 . 16. 9 . 17. 3 . 18. 23a b c -+ .三.解答题(共8小题)19.如图是由5个边长为1的正方体叠放而成的一个几何体,请画出这个几何体的三视图.(用铅笔描黑)【解】:如图所示:20.计算:(1)12(18)(7)15--+--; (2)222(31)(53)x x x x ----+-.【解】:(1)原式121871530228=+--=-=; (2)原式22226253393x x x x x x =--+-+=-+. 21.解方程:2143335x xx ---=-. 【解】:去分母得:4510512915x x x -+=--, 移项合并得:1438x =-, 解得:197x =-. 22.某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如图不完整的条形统计图和扇形统计图(部分信息未给出) (1)求本次调查学生的人数.(2)求喜爱足球、跑步的人数,并补全条形统计图;(3)求喜爱篮球、跑步的人数占调查人数的百分比.【解】:(1)本次调查的总人数是:1025%40÷=(人), 即本次调查学生有40人;(2)喜欢足球的人数是:4030%12⨯=(人), 喜欢跑步的人数是401012153---=(人), 补全的条形统计图如右图所示; (3)喜爱篮球的人所占的百分比是:15100%37.5%40⨯=, 喜爱跑步的人所占的百分比是:3100%7.5%40⨯=.23.先化简,再求值:2223(5)[54(3)]xy x x xy x xy -+----,其中x ,y 满足|2||3|0x y -++=.【解】:原式2222153512426xy x x xy x xy xy x =-+-+-+=--, 由|2||3|0x y -++=,得到2x =,3y =-, 则原式122412=-=-.24.华联超市第一次用7000元购进甲、乙两种商品,其中甲商品的件数是乙商品件数的2倍,甲、乙两种商品的进价和售价如表:(注:获利=售价-进价)(1)该超市购进甲、乙两种商品各多少件?(2)该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得多少利润?(3)该超市第二次以第一次的进价又购进甲、乙两种商品,其中甲商品的件数不变,乙商品的件数是第一次的3倍:甲商品按原价销售,乙商品打折销售,第二次两种商品都售完以后获得的总利润比第一次获得的总利润多800元,求第二次乙商品是按原价打几折销售? 【解】:(1)设第一次购进乙种商品x 件,则购进甲种商品2x 件, 根据题意得:202307000x x ⨯+=, 解得:100x =, 2200x ∴=件,答:该超市第一次购进甲种商品200件,乙种商品100件. (2)(2520)200(4030)1002000-⨯+-⨯=(元)答:该超市将第一次购进的甲、乙两种商品全部卖完后一共可获得利润2000元. (3)方法一:设第二次乙种商品是按原价打y 折销售 根据题意得:(2520)200(4030)1003200080010y-⨯+⨯-⨯⨯=+, 解得:9y =答:第二次乙商品是按原价打9折销售. 方法二:设第二次乙种商品每件售价为y 元,根据题意得:(2520)200(30)10032000800y -⨯+-⨯⨯=+, 解得:36y = 36100%90%40⨯= 答:第二次乙商品是按原价打9折销售. 方法三:200080010031800+-⨯=元∴1800100063100-=⨯,∴306100%90%40+⨯=, 答:第二次乙商品是按原价打9折销售.25.如图,已知AOB ∠内部有三条射线,其中OE 平分角BOC ∠,OF 平分AOC ∠. (1)如图1,若120AOB ∠=︒,50AOC ∠=︒,求EOF ∠的度数; (2)如图2,若AOB α∠=,AOC β∠=,求EOF ∠的度数.【解】:(1)OF 平分AOC ∠,11502522COF AOC ∴∠=∠=⨯︒=︒, 1205070BOC AOB AOC ∠=∠-∠=︒-︒=︒,OE 平分BOC ∠,1352EOC BOC ∴∠=∠=︒, 60EOF COF EOC ∴∠=∠+∠=︒;(2)OF 平分AOC ∠,12COF AOC ∴∠=∠, 同理,12EOC BOC ∠=∠, EOF COF EOC ∴∠=∠+∠1122AOC BOC =∠+∠ 1()2AOC BOC =∠+∠ 12AOB =∠ 12α=. 26.如图1,已知点C 在线段AB 上,线段10AC =厘米,6BC =厘米,点M ,N 分别是AC ,BC 的中点.(1)求线段MN 的长度;(2)根据第(1)题的计算过程和结果,设AC BC a +=,其他条件不变,求MN 的长度;(3)动点P 、Q 分别从A 、B 同时出发,点P 以2/cm s 的速度沿AB 向右运动,终点为B ,点Q 以1/cm s 的速度沿AB 向左运动,终点为A ,当一个点到达终点,另一个点也随之停止运动,求运动多少秒时,C 、P 、Q 三点有一点恰好是以另两点为端点的线段的中点?【解】:(1)线段10AC =厘米,6BC =厘米,点M ,N 分别是AC ,BC 的中点, 152CM AC ∴==厘米,132CN BC ==厘米, 8MN CM CN ∴=+=厘米;(2)点M ,N 分别是AC ,BC 的中点,12CM AC ∴=,12CN BC =, 111222MN CM CN AC BC a ∴=+=+=; (3)①当05t <…时,C 是线段PQ 的中点,得1026t t -=-,解得4t =;②当1653t <…时,P 为线段CQ 的中点,210163t t -=-,解得265t =; ③当1663t <…时,Q 为线段PC 的中点,6316t t -=-,解得112t =; ④当68t <…时,C 为线段PQ 的中点,2106t t -=-,解得4t =(舍),综上所述:4t =或265或112.。
2019年北师大版七年级数学上学期期末复习备考之精准复习模拟题(C卷)(原卷版)优质版
绝密★启用前期末模拟试卷C(数北师版七年级)考试时间:100分钟;总分:120分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I卷(选择题)一、单选题(每小题3分,共42分))A.A B.B C.C D.D2.如图所示图形中,不是正方体的展开图的是()A.B.C. D.3.有理数a,b在数轴上对应的位置如图所示,那么代数式1111a ab a ba a ab b+---+-+--的值是()A . ﹣1B . 0C . 1D . 24.如果(a +1)2+(2b +3)2+|c -1|=0,那么3ab c +a c b-的值是( ) A . 32 B . 3 C . 76 D . 1165.将图①中的正方形剪开得到图②,图②中共有4个正方形;将图②中一个正方形剪开得到图③,图③中共有7个正方形;将图③中一个正方形剪开得到图④,图④中共有10个正方形…,如此下去,则第2014个图中共有正方形的个数为( )A . 2014.B . 2017C . 6040D . 60446.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“S ”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为( )【A . 4a -8bB . 2a -3bC . 2a -4bD . 4a -10b7.如图,两个平行四边形的面积分别为18、12,两阴影部分的面积分别为a 、b (a >b ),则()a b -等于( )A . 3B . 4C . 5D . 68.当=2时,代数式a 3+b +1的值为3,那么当=-2时,a 3+b +1的值是( )A . -3B . -1C . 1D . 39.已知:点A ,B ,C 在同一条直线上,点M 、N 分别是AB 、AC 的中点,如果AB =10cm ,AC =8cm ,那么线段MN 的长度为( )A . 6cmB . 9cmC . 3cm 或6cmD . 1cm 或9cm10.已知α 、β都是钝角,甲、乙、丙、丁四个同的计算16(α +β)的结果依次为28°、48°、60°、88°,其中只有一个同计算结果是正确的,则得到正确结果的同是( )A . 甲B . 乙C . 丙D . 丁11.平面内两两相交的6条直线,其交点个数最少为m个,最多为n个,则m+n等于()A. 12 B. 16 C. 20 D.以上都不对12.小明解方程21332x x a-+=-,去分母时,方程右边的-3忘记乘6,因而求出的解为=2,问原方程正确的解为()A.=5 B.=7C.=-13 D.=-113.下列说法:①若a为任意有理数,则总是正数;②方程是一元一次方程;③若ab>0,a+b<0,则a<0,b<0;④是分数;⑤单项式的系数是,次数是4.其中错误的有()A. 1个 B. 2个 C. 3个 D. 4个14.班委会决定组织一次娱乐活动,活动内容从讲故事和唱歌中选择一项,为了决定是讲故事还是唱歌,班委会要进行民间调查,下列说法错误的是()A.调查的问题是:选择讲故事还是唱歌B.调查的范围是:全班同C.调查的方式是:查找资料D.这次调查需要收集的数据是:全班同选择讲故事和唱歌的人数第II 卷(非选择题)二、填空题(每小题3分,共18分),…组成一个数阵 ,观察规律:例如9位于数阵中第4行的第3列(从左往右数),若2017在数阵中位于第m 行的第n 列(从左往右数),则m + n =______.16.若32m x y 与-5nxy 是同类项,则 m n -的值是_________.17.有一数值转换器,原理如图所示,若开始输入的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是__________,依次继续下去……第2.016次输出的结果是___________.18.小兰在求一个多项式减去2-3+5时,误认为加上2-3+5,得到的答案是52-2+4,则正确的答案是__________.19.一条直线上有A ,B ,C 三点,AB =6cm ,BC =2cm ,点P ,Q 分别是线段AB ,BC 的中点,则PQ = ______ cm .20.小明做作业时,不小心将方程24123x x --=+●中的一个常数污染了看不清楚,小芳告诉他该方程的解是负数,并且这个常数是负整数,该方程的解是_______.三、解答题(共8个小题,共60分)21.(12分)计算下列各题:(1)17-23÷(-2)×3;(2)2×(-5)+23-3÷12;(3)(-3)3÷214×223⎛⎫-⎪⎝⎭+4-22×13⎛⎫- ⎪⎝⎭;%(4)(-24)÷2223⎛⎫⎪⎝⎭+512×16⎛⎫-⎪⎝⎭-(0.5)2.22.(6分)如图(1),∠AOB=120°,在∠AOB内作两条射线OC和OD,且OM平分∠AOD,ON平分∠BOC.①若∠AOC:∠COD:∠DOB=5:3:4,求∠MON的度数.②若将图(1)中的∠COD绕点O顺时针转一个小于70°的角α如图(2),其它条件不变,请直接写出∠MON 的度数.23.(6分)解下列方程:(1)0.12=1+0.30.15x x-;(2)2 1.63318 0.30.63x x x-+-=.24.(5分)某班生以每小时4千米的速度从校步行到校办农场参加劳动,走了1.5小时后,小王奉命回校取一件东西,他以每小时6千米的速度回校取了东西后立即又以同样的速度追赶队伍,结果在距农场2千米处追上了队伍,求校与农场的距离.25.(6分)雨后初晴,小方同几个伙伴八点多上山采蘑菇,临出门他一看钟,时针与分针正好是重合的,下午两点多他回到家里,一进门看钟的时针与分针方向相反,正好成一条直线,问小方采蘑菇是几点去,几点回到家的,共用了多少时间?26.(12分)如图,P是线段AB上一点,AB=12cm,C、D两点分别从P、B出发以1c m/s、2c m/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上),运动的时间为t.(1)当t=1时,PD=2AC,请求出AP的长;(2)当t=2时,PD=2AC,请求出AP的长;(3)若C、D运动到任一时刻时,总有PD=2AC,请求出AP的长;(4)在(3)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQ的长.27.(6分)某市百货商场元旦期间搞促销活动,购物不超过200元不给优惠;超过200元,而不足500元,优惠10%,超过500元的,其中500元按9折优惠,超过部分按8折优惠,某人两次购物分别用了134元和466元,问:(1)此人两次购物其物品不打折值多少钱?(2)在这次活动中他节省了多少钱?(3)若此人将这两次的钱合起购同一商品是更节省还是亏损?说明理由.28.(9分)如图,点A从原点出发沿数轴向右运动,同时,点B也从原点出发沿数轴向左运动3秒后,两点相距18个单位长度.已知点B的速度是点A的速度的5倍(速度单位:单位长度/秒).(1)求出点A、点B运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置开始,仍以原的速度同时沿数轴向右运动,几秒时,原点恰好处在点A、点B的正中间?(3)当A、B两点从(2)中的位置继续以原的速度沿数轴向右运动的同时,另一点C从原点位置也向A点运动,当遇到A点后,立即返回向B点运动,遇到B点后又立即返回向A点运动,如此往返,直到B点追上A点时,C点立即停止运动.若点C一直以10个单位长度/秒的速度匀速运动,那么点C从开始运动到停止运动,行驶的路程是多少个单位长度?。
2019-2020年北师大版数学七年级上册期末模拟达标测试题及答案解析-精编试题
第一学期期末模拟考试七年级数学试卷(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列各组数中,互为相反数的是( )A.2与B.( - 1)2与1C. - 1与( - 1)2D.2与| - 2|2.若a的相反数是3,那么的倒数是( )A. B.3 C. - 3 D. -3.某大米包装袋上标注着“净含量 0kg± 50g”,小华从商店买了2袋大米,这两袋大米相差的克数不可能是( )A.100gB.150gC.300gD.400g4.据测算,我国每天因土地沙漠化造成的经济损失约为1.5亿元,一年的经济损失约为54750000000元,用科学记数法表示这个数为( )A.5.475× 011B.5.475× 010C.0.5475× 011D.5475× 085.下列适合普查的是( )A.调查郑州市的空气质量B.调查一批炸弹的杀伤范围C.调查河南人民的生活幸福指数D.调查全班同学对电视节目“梨园春”的知晓率6.下列结论正确的是( )A.多项式-7中x2的系数是-7B.单项式m的次数是1,系数是0C.多项式t - 5的项是t和5D.-是二次单项式7.如图所示的是由几个相同的小正方体搭成的一个几何体,从左面看到的图为( )8.“五一”节期间,某电器按成本价提高30%后标价,再打8折(标价的80%)销售,售价为2080元.设该电器的成本价为x元,根据题意,下面所列方程正确的是( )A. + 0% ×80%= 080B.x·30%·80%=2080C. 080× 0%×80%=D.x· 0%= 080×80%9.已知∠AOB= 0°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是( )A. 0°或50°B. 0°或 0°C. 0°或50°D. 0°或 0°10.有一数值转换器,原理如图所示.若开始输入x的值是5,可发现第一次输出的结果是8,第二次输出的结果是4,…,则第2013次输出的结果是( )A.1B.2C.4D.8二、填空题(每小题4分,共32分)11.如果关于x,y的代数式- 4x a y a+1与mx5-的和是3x5y n,则代数式(m+n)(2a - b)的值是.12.若代数式3x2 - 2x+6的值为8,则代数式x2 - x+2的值为.13.若|x - 2|=5,|y|=4,且x>y,则x - y的值为.14.当k= 时,代数式x2 - 3kxy - 3y2+xy - 8中不含xy项.15.观察下列图形,它们是按一定规律排列的,依照此规律,第16个图形共有个★.16.一个几何体由若干大小相同的小立方块搭成,如图所示的分别是从它的正面、左面看到的图形,则搭成该几何体最多需要个小立方块.17.已知三角形的第一边长是a+2b,第二边比第一边长(b - 2),第三边比第二边短5,则三角形的周长为.18.如图所示的是某住宅的平面结构示意图,图中标注了有关尺寸(墙体厚度忽略不计,单位:米).房子的主人计划把卧室以外的地面都铺上地砖,如果他选用地砖的价格是a元/米2,则买砖至少需用元(用含a,x,y的代数式表示).三、解答题(共58分)19.(8分)计算.÷ - 2)3 - | - 22× | - ÷ ×+1;(2) - 32+( - 4 × - 5 ×0. 5 - ÷-.20.(8分)解方程.(1)1 - -= - -;-=2.(2)421.(10分)已知2a3m b和- 2a6b n+2是同类项,化简并求值:2(m2 - mn) - 3(2m2 - 3mn) - 2[m2 - (2m2 - mn+m2)] - 1.22.(10分)如图所示,线段AD=8,点B,C在线段AD上,BC=3,点M,N分别是线段AB,CD的中点,求MN的长.23.(10分)甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元.24.(12分)为了了解学生对体育活动的喜爱情况,某校对参加足球、篮球、乒乓球、羽毛球这四个课外活动小组的人员分布情况进行抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供信息,解答下面问题.(1)此次共调查了多少名同学?(2)将条形统计图补充完整,并计算扇形统计图中的篮球部分的圆心角的度数;(3)如果该校共有1000名学生参加这四个课外活动小组,而每个教师最多只能辅导本组20名学生,请通过计算确定每个课外活动小组至少需要准备多少名教师.【答案与解析】1.C(解析:两数互为相反数,它们的和为0.A.2+5;B.( - 1)2+1=2;C. - 1+( - 1)2=0;D.2+| - 2|=4.故选C.)2.C(解析:∵ 的相反数是 ,∴ = - ,∴= - ,∴的倒数是-3.故选C.)3.D(解析:根据题意得:10+0.15=10.15(kg),10 - 0.15=9.85(kg),因为两袋大米最多差10.15 - 9.85=0.3(kg),0.3kg=300g,所以这两袋大米相差的克数不可能是400g.故选D.)4.B(解析:将54750000000用科学记数法表示为5.475× 010.故选B.)5.D(解析:A.调查郑州市的空气质量,全面调查无法做到,故此选项错误;B.调查一批炸弹的杀伤范围,具有破坏性,故此选项错误;C.调查河南人民的生活幸福指数,全面调查难度较大,故此选项错误;D.调查全班同学对电视节目“梨园春”的知晓率,人数较少,适合普查.故选D.)6.A(解析:A.多项式-7中x2的系数是-7,正确;B.单项式m的次数是1,系数是1,故此选项错误;C.多项式t - 5的项是t和- 5,故此选项错误;D.-是二次多项式,故此选项错误.故选A.)7.A(解析:从左面看易得第一层有3个正方形,第二层最左边有一个正方形.故选A.)8.A(解析:该电器的成本价为x元,则 + 0% ×80%= 080.故选A.)9.C(解析:分为两种情况:如图(1)所示,当∠AOB在∠AOC内部时,∵∠AOB= 0°,∠AOC=4∠AOB,∴∠AOC=80°,∵OD平分∠AOB,OM平分∠AOC,∴∠AOD=∠BOD=∠AOB= 0°,∠AOM=∠COM=∠AOC=40°,∴∠DOM=∠AOM - ∠AOD=40° - 0°= 0°.如图(2)所示,当∠AOB在∠AOC外部时,∠DOM=∠AOM+∠AOD=40°+ 0°=50°.故选C.)10.B(解析:把x=5代入得5+3=8,把x=8代入得×8=4,把x=4代入得×4= ,把x=2代入得× = ,把x=1代入得1+3=4……依此类推,从第二项开始,以4,2,1循环,∵ 0 - ÷ = 70…… ,∴第2013次输出的结果是2.故选B.)11.39(解析:∵关于x,y的代数式- 4x a y a+1与mx5-的和是3x5y n,∴ - 4+m=3,a=5,a+1=b - =n,∴m=7, =5, =7,n= ,∴ m+n - b)=39.)12.3(解析:由题意得:3x2 - 2x+6=8,即3x2 - 2x=2,则原式=(3x2 - 2x)+2=1+2=3.)13.3或11或1(解析:∵| - |=5,| |=4,∴ =7或- , =±4.又 > ,∴ =7, =±4或x= - 3,y= - 4.当x=7,y=4时,x - y=3;当x=7,y= - 4时,x - y=11;当x= - 3,y= - 4时,x - y=1.)14.(解析:∵ 2 - 3kxy - 3y2+xy - 8=x2+-xy - 3y2 - 8,又∵代数式x2 - 3kxy - 3y2+xy - 8中不含xy项,∴- 3k=0,解得k=.)15.49(解析:观察图形会发现,第一个图形的五角星数为: × + ;第二个图形的五角星数为: × + ;第三个图形的五角星数为: × + ;第四个图形的五角星数为:4× + ;…;第16个图形的五角星数为: × + =4 .16.14(解析:根据从左面和从正面看到的图形可得:搭这样的几何体最多需要6+3+5=14个小立方块.)17.3a+8b - 9(解析:三角形的周长为a+2b+a+2b+b - 2+a+2b+b - 2 - 5=3a+8b - 9.) 18.11axy(解析:根据住宅的平面结构示意图,可知:卫生间的面积为(4x - x - × = ;厨房的面积为 × 4 - 2y)=2xy;客厅的面积为 ×4 =8 .因此需要地砖的面积应该是xy+2xy+8xy=11xy,那么买砖需要11axy 元.)19.解:(1)原式= ÷ - 8) - 12 -4+1= -4- 12 -4+1= - 12. (2)原式= - 9+5 - 36= - 40.20.解:(1)去分母得6 - 2(1 - 2x)= - (2 - x),去括号得6 - 2+4x= - 2+x,移项、合并同类项得3x= - 6,解得x= - 2. (2)去分母得3(y+2) - 2(2y - 3)=24,去括号得3y+6 - 4y+6=24,移项、合并同类项得 - y=12,解得y= - 12.21.解:原式=2m 2 - 2mn - 6m 2+9mn - 2m 2+4m 2 - 2mn+2m 2 - 1=5mn - ,∵ 3m b 和 - 2a 6b n+2是同类项,∴ m= ,n+ = ,即m=2,n= - 1,则原式= - 10 - 1= - 11. 22.解:∵M,N分别是AB,CD 的中点,∴MN=MB+BC+NC=AB+BC+CD=(AB+CD)+BC=× AD - BC)+BC=× 8 - 3)+3=5.5.23.解:设甲服装的成本为x 元,则乙服装的成本为(500 - x)元,根据题意得90%·(1+50%)x+90%·(1+40%)(500 - x) - 500=157,解得x=300,500 - 300=200(元).答:甲服装的成本为300元,乙服装的成本为200元.24.解: 0÷45%= 00 名),故此次共调查了200名同学. (2)参加羽毛球活动小组的学生有200 - 20 - 30 - 90=60(人),所以补全的条形统计图如下图所示.参加篮球活动小组的学生占 0÷ 00= 0%,所以扇形统计图中篮球部分的圆心角的度数为 0°× 0%= °.(3)足球组: 000×45%÷ 0= .5 名),至少需要准备23名教师;篮球组: 000× 0%÷ 0=5 名),至少需要准备5名教师;乒乓球组: 0÷ 00× 000÷ 0=7.5 名),至少需要准备8名教师;羽毛球组: 0÷ 00× 000÷ 0= 5 名),至少需要准备15名教师.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
期末模拟试卷A(数 北师版七年级)
考试时间:100分钟;总分:120分
题号 一 二 三 总分
得分
第I卷(选择题)
评卷人 得分
一、选择题(每小题3分,共30分)
1.2 的相反数是 ( )
A. 2 B. 12 C. -2 D. 12
2.如图是一个正方体的表面展开图,若正方体中相对的面上的数或式子互为相反数,则2+y的值为( )
A. 0 B. -1 C. -2 D. 1
3.2.017年遵义市固定资产总投资计划为2.580亿元,将2.580亿用记数法表示为( )
A. 2.58×1011 B. 2.58×1012 C. 2.58×1013 D. 2.58×1014【:21·世纪·教育·】
4.下列各组中的两项不是同类项的是( )
A. ﹣25mm和3mn B. 7.2a2b和a2c
C. 2y2与﹣3y22 D. ﹣125和93
5.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌的电脑按原价降低元后又降20%,现售价为
元,那么该电脑的原售价为 ( )
A. 元 B. 元 C. 元 D. 元
6.以下问题,不适合抽样调查的是( )
A. 了解全市中小生的每天的零花钱 B. 旅客上高铁列车前的安检
C. 调查某批次汽车的抗撞击能力 D. 调查某池塘中草鱼的数量
7.n等于1,2,3,…时,由白色小正方形和黑色小正方形组成的图形分别如图所示,则第n个图形中白
色小正方形和黑色小正方形的个数总和是(用n表示,n是正整数)( )【
A. n+4 B. 4n+8 C. n2+4n D. n2+n
8.下列说法错误的是 ( )
A. 倒数等于本身的数只有±1 B. 323xy 的系数是 23,次数是 4
C. 经过两点可以画无数条直线 D. 两点之间线段最短
9.如图,直线AB,CD相交于点O,射线OM平分∠AOC,∠MON=90°,若∠AO=35°,则∠CON的度数为( )w
A. 35° B. 45° C. 55° D. 65°
10.解方程 124362xxx 步骤如下,开始发生错误的步骤为 ( )
A. 21234xxx B. 2-2-+2=12-3
C. 4=12 D. =3
第II卷(非选择题)
评卷人 得分
二、填空题(每小题3分,共18分)
11.若,则____________
12.已知一个多项式与的和等于,则此多项式是_________________
13.请写出一个所含字母只有、y,且二次项系数和常数项都是-5的三次三项式:
________________________.w
14.线段AB=8㎝,M 是 AB 的中点,点 C 在AM 上,AC=3㎝,N 为 BC 的中点,则 MN= ________________
㎝.
15.已知关于 的方程5+m=-2 的解为=1,则m 的值为________________.
16.若关于的方程(﹣2)|﹣1|+5+1=0 是一元一次方程,则+=_____.
评卷人 得分
三、解答题(共8小题,共62分)
17.(6分)计算题:¥
(1)4593 ; (2)43312424 .
18.(6分)化简:
(1)3m2n+6mn2-5mn2-2nm2; (2)(32+4-1)-3(-2+2+1).
19.(12分)解方程:
(1)12884xx ;(2)233234xx ;
(3)12223xxx ;(4)21220.250.5xx .
20.(8分)化简并求值:
(1)5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=﹣12,b=13.
(2)已知|+1|+(y﹣2)2=0,求(22y﹣2y2)﹣[(32y2+32y)+(32y2﹣3y2)]的值.
21.(8分)A,B两点在数轴上的位置如图所示,其中点A对应的有理数为-4,且AB=10.动点P从点
A
出发,以每秒2个单位长度的速度沿数轴正方向运动,设运动时间为t秒(t>0).2
(1)当t=1时,AP的长为_________,点P表示的有理数为______;
(2)当PB=2时,求t的值;
(3)M为线段AP的中点,N为线段PB的中点. 在点P运动的过程中,线段MN的长度是否发生变化?若变
化,请说明理由;若不变,请你画出图形,并求出线段MN的长.21
22.(6分)某车间有28名工人,生产某种型号的螺栓和螺母.已知平均每人每天生产螺12个或螺母18
个,一个螺栓配两个螺母,怎样分配人力,才能使每天生产的螺栓和螺母正好配套?
23.(6分)某校在开展“校园献爱心”活动中,共筹款4500元捐赠给西部山区校男、女两种款式书包共
70个,已知男款书包的单价为60元/个,女款书包的单价70元/个.那么捐赠的两种书包各多少个?21教育
24.(10分)某同在A、B两家超市发现他看中的随身听的单价相同,书包单价也相同.随身听和书包单
价之和是452元,且随身听的单价是书包单价的4倍少8元.
(1)求该同看中的随身听和书包的单价各是多少元?%
(2)某假期该同上街,恰好赶上商家促销,超市A所有商品打八折销售,超市B全场购满100元返购物券
30元(销售不足100元不返券,购物券全场通用),但他只带了400元钱,如果他只在一家超市购买看中的
这两样物品,你能说出他可以选择在哪一家购买吗?若两家都可以选择,在哪一家购买更省钱?2