初二下学期期末考试数学模拟试卷
八年级数学下学期期末考试试卷及答案解释

八年级数学下学期期末考试试卷及答案解释八年级数学下学期期末考试试卷及答案解释引导语:只要有勇气,就一定能掌握自己的前途和命运。
以下是店铺分享给大家的八年级数学下学期期末考试试卷及答案解释,欢迎阅读!一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于( )A.﹣lB.1C.D.02.下列根式中,与是同类二次根式的是( )A. B. C. D.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A. B. C. D.4.已知1A.2x﹣5B.﹣2C.5﹣2xD.25.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( )A. B. C. D.6.在函数 (k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),( ,y3),函数值y1,y2,y3的大小为( )A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y27.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A. B. C. D.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是( )A. B. C. D.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是( )A.△AED≌△BFAB.DE﹣BF=EFC.△BGF∽△DAED.DE﹣BG=FG10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为( )A.6B.2C.4D.4二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y= 中,自变量x的取值范围是.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= .15.代数式a+2 ﹣ +3的值等于.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式 + 的值等于.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△P RM的面积是4:1,则k等于.18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ= CE时,EP+BP= .三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1) ﹣( )2﹣ +| ﹣2|(2)( ﹣)÷ .20.解分式方程:(1) =(2) = ﹣1.21.先化简,再求值:(1﹣)÷ ,其中a= ﹣1.22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(),B′(),C′();(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为( ).25.如图在平面直角坐标系xOy中,反比例函数y1= (x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC= AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的`值.参考答案与试题解析一、选择题(本大题共10小题,每小题2分,共20分;在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案填涂在答题卡上)1.若分式的值为零,则x等于( )A.﹣lB.1C.D.0【考点】分式的值为零的条件.【分析】根据分式值为零的条件可得x+1=0,且3x﹣2≠0,再解即可.【解答】解:由题意得:x+1=0,且3x﹣2≠0,解得:x=﹣1,故选:A.2.下列根式中,与是同类二次根式的是( )A. B. C. D.【考点】同类二次根式.【分析】运用化简根式的方法化简每个选项.【解答】解:A、 =2 ,故A选项不是;B、 =2 ,故B选项是;C、 = ,故C选项不是;D、 =3 ,故D选项不是.故选:B.3.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是( )A. B. C. D.【考点】中心对称图形.【分析】根据中心对称图形的定义和图形的特点即可求解.【解答】解:由中心对称图形的定义知,绕一个点旋转180°后能与原图重合,只有选项B是中心对称图形.故选:B.4.已知1A.2x﹣5B.﹣2C.5﹣2xD.2【考点】二次根式的性质与化简.【分析】首先根据x的范围确定x﹣3与x﹣2的符号,然后即可化简二次根式,然后合并同类项即可.【解答】解:∵1∴x﹣3<0,x﹣2≤0,∴原式=3﹣x+(2﹣x)=5﹣2x.故选C.5.小明的讲义夹里放了大小相同的试卷共12页,其中语文4页、数学2页、英语6页,他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为( )A. B. C. D.【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵小明的讲义夹里放了大小相同的试卷共12页,数学2页,∴他随机地从讲义夹中抽出1页,抽出的试卷恰好是数学试卷的概率为 = .故选C.6.在函数 (k为常数)的图象上有三个点(﹣2,y1),(﹣1,y2),( ,y3),函数值y1,y2,y3的大小为( )A.y1>y2>y3B.y2>y1>y3C.y2>y3>y1D.y3>y1>y2【考点】反比例函数图象上点的坐标特征.【分析】先判断出﹣k2﹣2<0的符号,再根据反比例函数的性质进行比较.【解答】解:∵﹣k2﹣2<0,∴函数图象位于二、四象限,∵(﹣2,y1),(﹣1,y2)位于第二象限,﹣2<﹣1,∴y2>y1>0;又∵( ,y3)位于第四象限,∴y3<0,∴y2>y1>y3.故选B.7.如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是( )A. B. C. D.【考点】相似三角形的判定.【分析】根据网格中的数据求出AB,AC,BC的长,求出三边之比,利用三边对应成比例的两三角形相似判断即可.【解答】解:根据题意得:AB= = ,AC= ,BC=2,∴AC:BC:AB= :2: =1::,A、三边之比为1::2 ,图中的三角形(阴影部分)与△ABC不相似;B、三边之比为::3,图中的三角形(阴影部分)与△ABC不相似;C、三边之比为1::,图中的三角形(阴影部分)与△ABC相似;D、三边之比为2::,图中的三角形(阴影部分)与△ABC不相似.故选C.8.反比例函数的图象如图所示,则这个反比例函数的解析式可能是( )A. B. C. D.【考点】反比例函数的图象.【分析】首先设出函数关系式,根据图象可以计算出k的取值范围,再根据k的取值范围选出答案即可.【解答】解:设函数关系式为y= (k≠0),当函数图象经过A(1,2)时,k=1×2=2,当函数图象经过B(﹣2,﹣2)时,k=(﹣2)×(﹣2)=4,由图象可知要求的函数解析式的k的取值范围必是:2故选:C.9.如图,ABCD是正方形,G是BC上(除端点外)的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F.下列结论不一定成立的是( )A.△AED≌△BFAB.DE﹣BF=EFC.△BGF∽△DAED.DE﹣BG=FG【考点】相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质.【分析】由四边形ABCD是正方形,可得AB=AD,由DE⊥AG,BF∥DE,易证得BF⊥AG,又由同角的余角相等,可证得∠BAF=∠ADE,则可利用AAS判定△AED≌△BFA;由全等三角形的对应边相等,易证得DE﹣BF=EF;有两角对应相等的三角形相似,可证得△BGF∽△DAE;利用排除法即可求得答案.【解答】解:∵四边形ABCD是正方形,∴AB=AD,AD∥BC,∵DE⊥AG,BF∥DE,∴BF⊥AG,∴∠AED=∠DEF=∠BFE=90°,∵∠BAF+∠DAE=90°,∠DAE+∠ADE=90°,∴∠BAF=∠ADE,∴△AED≌△BFA(AAS);故A正确;∴DE=AF,AE=BF,∴DE﹣BF=AF﹣AE=EF,故B正确;∵AD∥BC,∴∠DAE=∠BGF,∵DE⊥AG,BF⊥AG,∴∠AED=∠GFB=90°,∴△BGF∽△DAE,故C正确;∵DE,BG,FG没有等量关系,故不能判定DE﹣BG=FG正确.故选D.10.如图,矩形ABCD中,E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交CD于F点,若CF=2,FD=4,则BC的长为( )A.6B.2C.4D.4【考点】翻折变换(折叠问题);矩形的性质.【分析】首先过点E作EM⊥BC于M,交BF于N,易证得△ENG≌△BNM(AAS),MN是△BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=6,继而求得BF的值,又由勾股定理,即可求得BC的长.【解答】解:过点E作EM⊥BC于M,交BF于N,∵四边形ABCD是矩形,∴∠A=∠ABC=90°,AD=BC,∵∠EMB=90°,∴四边形ABME是矩形,∴AE=BM,由折叠的性质得:AE=GE,∠EGN=∠A=90°,∴EG=BM,在△ENG与△BNM中,,∴△ENG≌△BNM(AAS),∴NG=NM,∴CM=DE,∵E是AD的中点,∴AE=ED=BM=CM,∵EM∥CD,∴BN:NF=BM:CM,∴BN=NF,∴NM= CF=1,∴NG=1,∵BG=AB=CD=CF+DF=6,∴BN=BG﹣NG=6﹣1=5,∴BF=2BN=10,∴BC= = =4 .故选D.二、填空题(本大题共8小题,每小题3分,共24分,请把答案直接填写在答卷纸相应位置上)11.在函数y= 中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.12.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,则CD的长为 4 .【考点】射影定理.【分析】根据射影定理得到:CD2=AD•BD,把相关线段的长度代入计算即可.【解答】解:∵在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,AD=8,DB=2,∴CD2=AD•BD=8×2,则CD=4.故答案是:4.13.某校九年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分100分,学生成绩取整数),则成绩在90.5~95.5这一分数段的频率是0.4 .【考点】频数(率)分布直方图.【分析】由每一组内的频数总和等于总数据个数得到学生总数,再由频率=频数÷数据总和计算出成绩在90.5~95.5这一分数段的频率.【解答】解:读图可知:共有(1+4+10+15+20)=50人,其中在90.5~95.5这一分数段有20人,则成绩在90.5~95.5这一分数段的频率是 =0.4.故本题答案为:0.4.14.如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= 2 .【考点】三角形中位线定理.【分析】由题意可知EF是△ADC的中位线,由此可求出AD的长,再根据中线的定义即可求出BD的长.【解答】解:∵点E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴EF= AD,∵EF=1,∴AD=2,∵CD是△ABC的中线,∴BD=AD=2,故答案为:2.15.代数式a+2 ﹣ +3的值等于 4 .【考点】二次根式有意义的条件.【分析】根据二次根式的意义先求出a的值,再对式子化简.【解答】解:根据二次根式的意义,可知,解得a=1,∴a+2 ﹣ +3=1+3=4.16.已知a2+3ab+b2=0(a≠0,b≠0),则代数式+ 的值等于﹣3 .【考点】分式的化简求值.【分析】将a2+3ab+b2=0转化为a2+b2=﹣3ab,原式化为 = ,约分即可.【解答】解:∵a2+3ab+b2=0,∴a2+b2=﹣3ab,∴原式= = =﹣3.故答案为:﹣3.17.如图,直线与双曲线(k>0)在第一象限内的交点为R,与x轴的交点为P,与y轴的交点为Q;作RM⊥x轴于点M,若△OPQ与△PRM的面积是4:1,则k等于.【考点】反比例函数综合题.【分析】先求出Q的坐标为(0,﹣2),P点坐标为( ,0),易证Rt△OQP∽Rt△MRP,根据三角形相似的性质得到 = = ,分别求出PM、RM,得到OM的长,从而确定R点坐标,然后代入 (k>0)求出k的值.【解答】解:对于y= x﹣2,令x=0,则y=﹣2,∴Q的坐标为(0,﹣2),即OQ=2;令y=0,则x= ,∴P点坐标为( ,0),即OP= ;∵Rt△OQP∽Rt△MRP,而△OPQ与△PRM的面积是4:1,∴ = = ,∴PM= OP= ,RM= OQ=1,∴OM=OP+PM= ,∴R点的坐标为( ,1),∴k= ×1= .故答案为 .18.如图所示,在△ABC中,BC=4,E、F分别是AB、AC上的点,且EF∥BC,动点P在射线EF上,BP交CE于点D,∠CBP的平分线交CE于Q,当CQ= CE时,EP+BP= 8 .【考点】相似三角形的判定与性质.【分析】如图,延长EF交BQ的延长线于G.首先证明PB=PG,EP+PB=EG,由EG∥BC,推出 = =2,即可求出EG解决问题.【解答】解:如图,延长EF交BQ的延长线于G.∵EG∥BC,∴∠G=∠GBC,∵∠GBC=∠GBP,∴∠G=∠PBG,∴PB=PG,∴PE+PB=PE+PG=EG,∵CQ= EC,∴EQ=2CQ,∵EG∥BC,∴ = =2,∵BC=4,∴EG=8,∴EP+PB=EG=8,故答案为8三、解答题(本大题共9小题,共56分,请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.计算:(1) ﹣( )2﹣ +| ﹣2|(2)( ﹣)÷ .【考点】二次根式的混合运算;分式的混合运算.【分析】(1))原式各项化为﹣3﹣3 +2﹣,合并同类二次根式即可得到结果.(2)先计算括号里面的分式的减法,再分式的除法的方法计算.【解答】(1)解:(1)原式= ﹣3﹣3 +2﹣=﹣1﹣3 ;(2)原式= ﹣= .20.解分式方程:(1) =(2) = ﹣1.【考点】解分式方程.【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:(1)去分母,得x+2=3,解得:x=1经检验,x=1是增根,原方程无解;(2)去分母,得3(5x﹣4)=﹣(4x+10)﹣3(x﹣2),解得:x= ,经检验,x= 是原方程的解.21.先化简,再求值:(1﹣)÷ ,其中a= ﹣1.【考点】分式的化简求值.【分析】先根据整式混合运算的法则把原式进行化简,再把a的值代入进行计算即可.【解答】解:原式= ÷= ×=a+1.当a= ﹣1时,原式= ﹣1+1= .22.如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【分析】(1)根据全等三角形的判定定理ASA证得△AFD≌△CEB;(2)利用(1)中的全等三角形的对应边相等得到AD=CB,则由“有一组对边相等且平行的四边形是平行四边形”证得结论.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.23.“保护环境,人人有责”,为了了解某市的空气质量情况,某校环保兴趣小组,随机抽取了2014年内该市若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据图中提供的信息,解答下列问题:(1)补全条形统计图;(2)估计该市这一年空气质量达到“优”和“良”的总天数;(3)计算随机选取这一年内某一天,空气质量是“优”的概率.【考点】条形统计图;用样本估计总体;扇形统计图;概率公式.【分析】(1)根据良的天数除以良的天数所占的百分比,可得样本容量,根据样本容量乘以轻微污染所占的百分比求出轻微污染的天数,可得答案;(2)根据一年的时间乘以优良所占的百分比,可得答案;(3)根据根据一年中优的天数比上一年的天数,可得答案.【解答】解:(1)样本容量3÷5%=60,60﹣12﹣36﹣3﹣2﹣1=6,条形统计图如图:(2)这一年空气质量达到“优”和“良”的总天数为:365× =292;(3)随机选取这一年内某一天,空气质量是“优”的概率为: = .24.如图,在正方形网格中,四边形TABC的顶点坐标分别为T(1,1),A(2,3),B(3,3),C(4,2).(1)以点T(1,1)为位似中心,在位似中心的同侧将四边形TABC放大为原来的2倍,放大后点A,B,C的对应点分别为A′,B′,C′画出四边形TA′B′C′;(2)写出点A′,B′,C′的坐标:A′(3,5 ),B′(5,5 ),C′(7,3 );(3)在(1)中,若D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为( 2a﹣1,2b﹣1 ).【考点】作图﹣位似变换.【分析】(1)利用位似图形的性质得出变化后图形即可;(2)利用已知图形得出对应点坐标;(3)利用各点变化规律,进而得出答案.【解答】解:(1)如图所示:四边形TA′B′C′即为所求;(2)A′(3,5),B′(5,5),C′(7,3);故答案为:(3,5),(5,5),(7,3);(3)在(1)中,∵A(2,3),B(3,3),C(4,2),A′(2×2﹣1=3,2×3﹣1=5),B′(2×3﹣1=5,2×3﹣1=5),C′(2×4﹣1=7,2×2﹣1=3);∴D(a,b)为线段AC上任一点,则变化后点D的对应点D′的坐标为(2a﹣1,2b﹣1).故答案为:(2a﹣1,2b﹣1).25.如图在平面直角坐标系xOy中,反比例函数y1= (x>0)的图象与一次函数y2=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)观察图象,直接写出使y1≥y2的x的取值范围;(3)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,请写出点P的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)将A点坐标代入代入y= (x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)根据图象即可求得;(3)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.【解答】解:(1)将A(m,2)代入y= (x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵A(2,2),∴当0(3)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为B(0,﹣2),S△ABP=S△ACP+S△BPC,∴ ×2CP+ ×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).26.小明用12元买软面笔记本,小丽用21元买硬面笔记本.(1)已知每本硬面笔记本比软面笔记本贵1.2元,小明和小丽能买到相同数量的笔记本吗?(2)已知每本硬面笔记本比软面笔记本贵a元,是否存在正整数a,使得每本硬面笔记本、软面笔记本的价格都是正整数,并且小明和小丽能买到相同数量的笔记本?若存在,求出a的值;若不存在,请说明理由.【考点】分式方程的应用.【分析】(1)设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,根据小明和小丽能买到相同数量的笔记本建立方程求出其解就可以得出结论;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,根据小明和小丽能买到相同数量的笔记本建立方程就可以得出m与a的关系,就可以求出结论.【解答】解:(1))设每本软面笔记本x元,则每本硬面笔记本(x+1.2)元,由题意,得,解得:x=1.6.此时 =7.5(不符合题意),所以,小明和小丽不能买到相同数量的笔记本;(2)设每本软面笔记本m元(1≤m≤12的整数),则每本硬面笔记本(m+a)元,由题意,得,解得:a= m,∵a为正整数,∴m=4,8,12.∴a=3,6,9.当时, (不符合题意)∴a的值为3或9.27.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC= AC.(1)求过点A,B的直线的函数表达式;(2)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(3)在(2)的条件下,若P、Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,若△APQ与△ADB相似,求出m的值.【考点】相似形综合题.【分析】(1)根据点A、C的坐标求出AC的长,根据题意求出点B 的坐标,利用待定系数法求出过点A,B的直线的函数表达式;(2)过点B作BD⊥AB,交x轴于点D,根据相似三角形的性质列出比例式,计算即可;(3)分PQ∥BD时和PQ⊥AD时两种情况,根据相似三角形的性质列出比例式,计算即可.【解答】解:(1)∵点A(﹣3,0),C(1,0),∴AC=4,又BC= AC,∴BC=3,∴B点坐标为(1,3),设过点A,B的直线的函数表达式为:y=kx+b,则,解得,,∴直线AB的函数表达式为:y= x+ ;(2)如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ABD=∠ACB,∴△ADB∽△ABC,∴D点为所求,∵△ADB∽△ABC,∴ ,即 = ,解得,CD= ,∴ ,∴点D的坐标为( ,0);(3)在Rt△ABC中,由勾股定理得AB= =5,如图2,当PQ∥BD时,△APQ∽△ABD,则 = ,解得,m= ,如图3,当PQ⊥AD时,△APQ∽△ADB,则 = ,解得,m= ,所以若△APQ与△ADB相似时,m= 或 . 下载全文。
八年级下期末考试数学试卷四套试卷(含答案)

017-2018学年下学期期末考试八年级数学试题说明:1.考试用时100分钟,满分为120分;2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卷上填写自己的姓名、考试号、座位号等;3.考生必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卷各题目区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效;4.考生务必保持答题卷的整洁.考试结束时,将答题卷交回.一、选择题(本大题10小题,每小题3分,共30分;在每小题列出的四个选项中,只有一个是正确的,请将正确答案填写在答题卷相应的位置上).1.有意义,则x 的取值范围是( ). A .3x ≥B .3x >C .3x ≤D .3x <2.下列各式中属于最简二次根式的是( ).A B .12D .5.0 3.一次数学测验中,某小组五位同学的成绩分别是:110,105,90,95,90.则这五个数据的中位数是( ).A .90B .95C .100D .1054.下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ). A .甲B .乙C .丙D .丁5.下列各组数中,不能构成直角三角形的是( ).A .3,4,5B .6,8,10C .4,5,6D .5,12,13 6.点A (1,-2)在正比例函数(0)y kx k =≠的图象上,则k 的值是( ). A .1B .-2C .12D .12-7.一次函数y =3x -2的图象不经过( ).A .第一象限B .第二象限C .第三象限D .第四象限8.如图,在△ABC 中,点D ,E 分别是AB ,AC 的中点, 若BC =6,则DE 等于( ). A .3 B .4 C .5 D .69.如图,□ABCD 中,下列说法一定正确的是( ). A .AC =BD B .AC ⊥BD C .AB =CD D .AB =BC10.如图,将一个长为10cm ,宽为8cm 的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为( ). A .210cmB .220cmC .240cmD .280cm第9题图 第10题图二、填空题(本大题6小题,每小题4分,共24分;请将下列各题的正确答案填写在答题卷相应的位置上).11.在新年晚会的投飞镖游戏环节中,7名同学的投掷成绩(单位:环)分别是:7,9,9,4,9,8,8,则这组数据的众数是.12.若x 、y 为实数,且满足,则x +y 的值是.13.在直角三角形中,两条直角边分别是3cm 和4cm ,则斜边上的中线长是cm . 14.一次函数y =(m -3)x +5的函数值y 随着x 的增大而减小,则m 的取值范围. 15.一次函数y =kx +3的图象如图所示,则方程kx +3=0的解为.16.如图(1),已知小正方形ABCD 的面积为1,把它的各边延长一倍得到新正方形A 1B 1C 1D 1;把正方形A 1B 1C 1D 1边长按原法延长一倍得到正方形A 2B 2C 2D 2(如图(2));以此下去···,则正方形A 4B 4C 4D 4的面积为__________.三、解答题(一)(本大题3小题,每小题6分,共18分). 17.01)-+.18.已知,如图在ΔABC 中,AB =BC =AC =2cm ,AD 是边BC 上的高.求AD 的长.第15题图第16题图(1)1B 1C 1D 1A BC D D 2A 2B 2C 2D 1C 1B 1A 1A BC D 第16题图(2)19.如图,□ABCD 中,E 、F 分别是AD 、BC 的中点,求证:BE =DF .四、解答题(二)(本大题3小题,每小题7分,共21分). 20.一次函数y =2x -4的图像与x 轴的交点为A ,与y 轴的交点为B . (1)A ,B 两点的坐标分别为A (,),B (,); (2)在平面直角坐标系中,画出此一次函数的图像.21.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙两个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙两个小组各项得分如下表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果研究报告、小组展示、答辩按照4:3:3计算成绩,哪个小组的成绩最高?22.如图,在海上观察所A ,我边防海警发现正北5km 的B 处有一可疑船只正在向东方向12km 的C 处行驶.我边防海警即刻派船前往C 处拦截.若可疑船只的行驶速度为60km/h ,则我边防海警船的速度为多少时,才能恰好在C 处将可疑船只截住?12km CAB 5km五、解答题(三)(本大题3小题,每小题9分,共27分). 23.观察下列各式:312311=+; 413412=+; 514513=+;…… 请你猜想:(1=,=;(2) 计算(请写出推导过程). (3)请你将猜想到的规律用含有自然数n (n ≥1)的代数式表达出来. .24.如图1,将一张矩形纸片ABCD 沿着对角线BD 向上折叠,顶点C 落到点E 处,BE 交AD 于点F .(1)求证:BF =DF ;(2)如图2,过点D 作DG ∥BE ,交BC 于点G ,连结FG 交BD 于点O .①求证:四边形BFDG 是菱形; ②若AB =3,AD =4,求FG 的长.25.已知一次函数y =kx +b 的图象过P (1,4),Q (4,1)两点,且与x 轴交于A 点.(1)求此一次函数的解析式; (2)求△POQ 的面积;(3)已知点M 在x 轴上,若使MP +MQ 的值最小, 求点M 的坐标及MP +MQ 的最小值.参考答案1-10、ABBBC BBACA11、912、013、14、m<315、x=316、62517、18、19、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,DE∥BF,∴四边形DEBF是平行四边形,∴BE=DF.20、解:(1)A(2,0)、B(0,-4).(2)作直线AB,直线AB就是此一次函数的图象.21、(1)乙组第一名、甲组第二名(2)甲组成绩最高22、23、24、(1)证明:如图1,根据折叠,∠DBC=∠DBE,又AD∥BC,∴∠DBC=∠ADB,∴∠DBE=∠ADB,∴DF=BF;(2)①∵四边形ABCD是矩形,∴AD∥BC,∴FD∥BG,又∵DG∥BE,∴四边形BFDG是平行四边形,∵DF=BF,∴四边形BFDG是菱形;②∵AB=3,AD=4,∴BD=5.25、解:(1)把P(1,4),Q(4,1)代入一次函数解析式,则此一次函数的解析式为y=-x+5;(2)对于一次函数y=-x+5,令y=0,得到x=5,∴A(5,0),(3)如图,作Q点关于x轴的对称点Q′,连接PQ′交x轴于点M,则MP+MQ的值最小.∵Q(4,1),∴Q′(4,-1).设直线PQ′的解析式为y=mx+n.2017-2018八年级(下)期末数学试卷一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一个选项正确,请将你认为正确答案的序号填在题后的括号内)1.(3分)要使二次根式有意义,字母的取值范围是()A.x≥B.x≤C.x>D.x<2.(3分)下列计算正确的是()A.+=B.2+=2C.=+D.﹣=03.(3分)下列四组线段中,可以构成直角三角形的是()A.1,, B.2,3,4 C.1,2,3 D.4,5,64.(3分)一次函数y=﹣x+1的图象不经过的象限是()A.第一象限B.第二象限C.第三象限D.第四象限5.(3分)在中山市举行“慈善万人行”大型募捐活动中,某班50位同学捐款金额统计如下:则在这次活动中,该班同学捐款金额的众数和中位数分别是()A.20元,30元B.20元,35元C.100元,35元D.100元,30元6.(3分)10名学生的平均成绩是x,如果另外5名学生每人得90分,那么整个组的平均成绩是()A.B.C. D.7.(3分)如图,在平行四边形ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF 等于()A.2 B.3 C.4 D.68.(3分)矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等D.对角线互相平分9.(3分)如图,在△ABC中,∠A=45°,∠B=30°,CD⊥AB,垂足为D,CD=1,则AB 的长为()A.B.2 C.D.210.(3分)直线y=﹣kx+k﹣3与直线y=kx在同一坐标系中的大致图象可能是()A.B.C.D.二、填空题(本题共8小题,每小题3分,共24分,请将答案直接填写在题中的横线上)11.(3分)计算:=.12.(3分)某茶叶厂用甲,乙,丙三台包装机分装质量为200g的茶叶,从它们各自分装的茶叶中分别随机抽取了20盒,得到它们的实际质量的方差如下表所示:根据表中数据,可以认为三台包装机中,包装茶叶的质量最稳定是.13.(3分)如图,在菱形ABCD中,AC=8,BD=6,则△ABC的周长是.14.(3分)一次函数y=(2m﹣1)x+1,若y随x的增大而增大,则m的取值范围是15.(3分)如图,已知一次函数y=kx+b的图象如图所示,当y≤0时,x的取值范围是.16.(3分)某公司招聘一名人员,应聘者小王参加面试和笔试,成绩(100分制)如表所示:如果面试平均成绩与笔试成绩按6:4的比确定,请计算出小王的最终成绩.17.(3分)如图,E为正方形ABCD对角线BD上一点,且BE=BC,则∠DCE=.18.(3分)如图,Rt△ABC中,∠ABC=90°,点D,F分别是AC,AB的中点,CE∥DB,BE∥DC,AD=3,DF=1,四边形DBEC面积是三、解答题(3小题,共32分)19.(20分)计算:(1)+﹣(2)2(3)(+3﹣)(4)(2﹣3)2﹣(4+3)(4﹣3)20.(6分)如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,请问△BCD是直角三角形吗?请说明你的理由.21.(6分)已知:实数a,b在数轴上的位置如图所示,化简:+2﹣|a﹣b|.四、解答题(2小题,共16分)22.(8分)如图,已知直线l1:y=2x+3,直线l2:y=﹣x+5,直线l1、l2分别交x轴于B、C两点,l1、l2相交于点A.(1)求A、B、C三点坐标;(2)求△ABC的面积.23.(8分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.五、解答题(2小题,共18分)24.(9分)某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量](1)该商场计划购进国外品牌、国内品牌两种手机各多少部?(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润25.(9分)四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE 于点H.(1)如图1,当点E、F在线段AD上时,求证:∠DAG=∠DCG;(2)如图1,猜想AG与BE的位置关系,并加以证明;(3)如图2,在(2)条件下,连接HO,试说明HO平分∠BHG.2017-2018学年广东省潮州市湘桥区八年级(下)期末数学试卷参考答案一、选择题1.B ;2.D ;3.A ;4.C ;5.A ;6.D ;7.C ;8.C ;9.C ;10.B ; 二、填空题 11.﹣; 12.乙; 13.18; 14.m >; 15.x ≤2;16.89.6分; 17.22.5°; 18.4;三、解答题(3小题,共32分)19.(1)4(2)35 (3)23 (4)49-20.21.;四、解答题(2小题,共16分) 22.23、五、解答题(2小题,共18分)24、25、2017-2018学年下学期期末考试八年级数学试卷一、选择题(本大题共12小题,每小题3分,共36分在每小题给出的A、B、C、D四个选项中,只有一项符合题目要求.)1.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(-1,2).故选:A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.2.如图所示是一些常用图形的标志,其中是轴对称图形但不是中心对称图形的是()【专题】常规题型.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,也是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项错误.故选:B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.关于函数y=﹣x+3,下列结论正确的是()A.它的图象必经过点(1,1)B.它的图象经过第一、二、三象限C.它的图象与y轴的交点坐标为(0,3)D.y随x的增大而增大【专题】函数及其图象.【分析】根据一次函数的性质对各选项进行逐一判断即可.【解答】解:A、∵当x=1时,y=2,∴图象不经过点(1,1),故本选项错误;B、∵k=-1<0,b=3>0,∴图象经过第一、二、四象限,故本选项错误C、∵当x=0时,y=3,∴图象与y轴的交点坐标为(0,3),故本选项正确;D、∵k=-1<0,∴y随x的增大而减小,故本选项错误;故选:C.【点评】本题考查的是一次函数的性质,熟知一次函数y=kx+b(k≠0),当k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降是解答此题的关键.4.如图,在▱ABCD中,AD=8,点E,F分别是BD,CD的中点,则EF等于()A.2 B.3 C.4 D.5【分析】由四边形ABCD是平行四边形,根据平行四边形的对边相等,可得BC=AD=8,又由点E、F分别是BD、CD的中点,利用三角形中位线的性质,即可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴BC=AD=8,∵点E、F分别是BD、CD的中点,故选:C.【点评】此题考查了平行四边形的性质与三角形中位线的性质.此题比较简单,注意掌握数形结合思想的应用.5.如图所示的是一扇高为2m,宽为1.5m的长方形门框,光头强有一些薄木板要通过门框搬进屋内,在不能破坏门框,也不能锯短木板的情况下,能通过门框的木板最大的宽度为()A.1.5m B.2m C.2.5m D.3m【专题】计算题.【分析】利用勾股定理求出门框对角线的长度,由此即可得出结论.【解答】故选:C.【点评】本题考查了勾股定理的应用,利用勾股定理求出长方形门框对角线的长度是解题的关键.6.如图,Rt△ABC中,∠C=90°,AD平分∠BAC,交BC于点D,AB=10,S△ABD=15,则CD的长为()A.3 B.4 C.5 D.6【分析】过点D作DE⊥AB于E,根据角平分线上的点到角的两边距离相等可得DE=CD,然后利用△ABD的面积列式计算即可得解.【解答】解:如图,过点D作DE⊥AB于E,∵∠C=90°,AD平分∠BAC,∴DE=CD,解得DE=3.故选:A.【点评】本题考查了角平分线上的点到角的两边距离相等的性质,三角形的面积,熟记性质是解题的关键.7.如图,△ABC中,∠C=90°,AC=3,∠B=30°,点P是BC边上的动点,则AP长不可能是()A.3.5 B.4.2 C.5.8 D.7【分析】利用垂线段最短分析AP最小不能小于3;利用含30度角的直角三角形的性质得出AB=6,可知AP最大不能大于6.此题可解.【解答】解:根据垂线段最短,可知AP的长不可小于3;∵△ABC中,∠C=90°,AC=3,∠B=30°,∴AB=6,∴AP的长不能大于6.故选:D.【点评】本题主要考查了垂线段最短的性质和含30度角的直角三角形的理解和掌握,解答此题的关键是利用含30度角的直角三角形的性质得出AB=6.8.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣,﹣1),则点C的坐标是()A.(﹣3,)B.(,﹣3)C.(3,) D.(,3)【分析】由矩形的性质可知AB=CD=3,AD=BC=4,【解答】解:∵四边形ABCD是长方形,∴AB=CD=3,AD=BC=4,故选:D.【点评】本题主要考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.9.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A.OA=OC,OB=OD B.∠BAD=∠BCD,AB∥CDC.AD∥BC,AD=BC D.AB=CD,AO=CO【分析】根据平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形,对每个选项进行筛选可得答案.【解答】解:A、根据对角线互相平分,可得四边形是平行四边形,故此选项可以证明四边形ABCD是平行四边形;B、根据AB∥CD可得:∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又由∠BAD=∠BCD可得:∠ABC=∠ADC,根据两组对角对应相等的四边形是平行四边形可以判定;C、根据一组对边平行且相等的四边形是平行四边形可以证明四边形ABCD是平行四边形;D、AB=CD,AO=CO不能证明四边形ABCD是平行四边形.故选:D.【点评】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.10.如图,一艘巡逻船由A港沿北偏西60°方向航行5海里至B岛,然后再沿北偏东30°方向航行4海里至C岛,则A、C两港相距()A.4海里B.海里 C.3海里D.5海里【专题】计算题.【分析】连接AC,根据方向角的概念得到∠CBA=90°,根据勾股定理计算即可.【解答】解:连接AC,由题意得,∠CBA=90°,故选:B.【点评】本题考查的是勾股定理的应用和方向角,掌握勾股定理、正确标注方向角是解题的关键.11.如图,购买一种苹果,所付款金额y(元)与购买量x(千克)之间的函数图象由线段OA和射线AB组成,则一次购买5千克这种苹果比分五次购买1千克这种苹果可节省()元.A.4 B.5 C.6 D.7【分析】观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式,再分别求出当x=1和x=5时,y值,用10×5-44即可求出一次购买5千克这种苹果比分五次购买1千克这种苹果节省的钱数.【解答】解:设y关于x的函数关系式为y=kx+b,当0≤x≤2时,将(0,0)、(2,20)代入y=kx+b中,∴y=8x+4(x≥2).当x=1时,y=10x=10;当x=5时,y=44.10×5-44=6(元).故选:C.【点评】本题考查了一次函数的应用、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象找出点的坐标,利用待定系数法求出线段OA和设AB的函数关系式是解题的关键.12.已知:如图,在矩形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点F从点B 出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点F的运动时间为y秒,当y的值为()秒时,△ABF和△DCE全等.A.1 B.1或3 C.1或7 D.3或7【分析】分点F在BC上和点F在AD上两种情况进行讨论,根据题意得出BF=2t=2和AF=16-2t=2即可求得.【解答】解:当点F在BC上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:BF=2t=2,所以t=1,点F在AD上时,∵在△ABF与△DCE中,∴△ABF≌△DCE,由题意得:AF=16-2t=2,解得t=7.所以,当t的值为1或7秒时.△ABF和△DCE全等.故选:C.【点评】本题考查了全等三角形的判定,关键是根据三角形全等的判定方法有:ASA,SAS,AAS,SSS,HL解答.二、填空题(本大题共6小题,每小题3分,共18分13.将直线y=2x+4向下平移3个单位,则得到的新直线的解析式为.【专题】一次函数及其应用.【分析】根据函数的平移规律,可得答案.【解答】解:将直线y=2x+4向下平移3个单位,得y=2x+4-3,化简,得y=2x+1,故答案为:y=2x+1.【点评】本题考查了一次函数图象与几何变换,利用函数图象的平移规律:上加下减,左加右减是解题关键.14.在平面直角坐标系中,点A(x,y)在第三象限,则点B(x,﹣y)在第象限.【专题】平面直角坐标系.【分析】根据各象限内点的坐标特征,可得答案.【解答】解:由点A(x,y)在第三象限,得x<0,y<0,∴x<0,-y>0,点B(x,-y)在第二象限,故答案为:二.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).15.若三角形三边分别为6,8,10,那么它最长边上的中线长是.【专题】计算题.【分析】根据勾股定理的逆定理可得三角形是直角三角形,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【解答】解:∵三角形三边分别为6,8,10,62+82=102∴该三角形为直角三角形.∵最长边即斜边为10,∴斜边上的中线长为:5.故答案为:5.【点评】此题主要考查学生对勾股定理的逆定理及直角三角形斜边上的中线的性质的理解及运用.16.如图,在▱ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm.则▱ABCD的周长为,面积为.【分析】根据角平分线的定义和平行线的性质得到等腰三角形ABE和等腰三角形CDE和直角三角形BCE.根据直角三角形的勾股定理得到BC=13.根据从而求得该平行四边形的周长;根据直角三角形的面积可以求得平行四边形BC边上的高.【解答】解:∵BE、CE分别平分∠ABC、∠BCD,∵AD∥BC,AB∥CD,∴∠2=∠3,∠BCE=∠CED,∠ABC+∠BCD=180°,∴∠1=∠2,∠DCE=∠CED,∠3+∠BCE=90°,∴AB=AE,CD=DE,∠BEC=90°,在直角三角形BCE中,根据勾股定理得:BC=13cm,根据平行四边形的对边相等,得到:AB=CD,AD=BC,∴平行四边形的周长等于:AB+BC+CD+AD=6.5+13+6.5+13=39cm.故答案为:39cm,60cm2.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.17.如图,直线AB的解析式为y=x+4,与y轴交于点A,与x轴交于点B,点P为线段AB上的一个动点,作PE⊥y轴于点E,PF⊥x轴于点F,连接EF,则线段EF的最小值为.【专题】函数及其图象.【分析】由矩形的性质可知EF=OP,可知当OP最小时,则EF有最小值,由垂线段最短可知当OP ⊥AB时,满足条件,由条件可证明△AOB∽△OPB,利用相似三角形的性质可求得OP的长,即可求得EF的最小值.【解答】∴A(0,4),B(-3,0).∵PE⊥y轴于点E,PF⊥x轴于点F,∴四边形PEOF是矩形,且EF=OP,∵O为定点,P在线段上AB运动,∴当OP⊥AB时,OP取得最小值,此时EF最小,∵A(0,4),点B坐标为(-3,0),∴OA=4,O B=3,故答案为125【点评】本题考查的是一次函数图象上点的坐标特点,熟知坐标轴上点的坐标特点是解答此题的关键.18.如图,某小区有一块直角三角形绿地,量得直角边AC=4m,BC=3m,考虑到这块绿地周围还有足够多的空余部分,于是打算将这块绿地扩充成等腰三角形,且扩充部分是以AC为一条直角边的直角三角形,则扩充的方案共有种.【专题】分类讨论.【分析】由于扩充所得的等腰三角形腰和底不确定,若设扩充所得的三角形是△ABD,则应分为①AB=AD,②AB=BD,③AD=BD,3种情况进行讨论.【解答】解:如图所示:故答案是:3.【点评】此题主要考查了等腰三角形的性质以及勾股定理的应用,关键是正确进行分类讨论.三、解答题(本大题共8小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)19.(7分)如图,点E、F在线段BD上,AF⊥BD,CE⊥BD,AD=CB,DE=BF,求证:AF=CE.【专题】常规题型.【分析】首先证明BE=DF,然后依据HL可证明Rt△ADF≌Rt△CBE,从而可得到AF=CE.【解答】证明:∵DE=BF,∴DE+EF=BF+EF,即DF=BE.∴Rt△ADF≌Rt△CBE.∴AF=CE.【点评】本题主要考查的是全等三角形的性质和判定,熟练掌握全等三角形的性质和判定定理是解题的关键.20.(8分)直线AB与x轴交于点A(1,0),与y轴交于点B(0,﹣2).(1)求直线AB的表达式.(2)若直线AB上有一动点C,且S△BOC=2,求点C的坐标.【专题】常规题型.【分析】(1)根据待定系数法得出解析式即可;(2)设C点坐标,根据三角形面积公式解答即可.【解答】解:(1)设直线解析式为y=kx+b,∵直线AB与x轴交于点A(1,0),与y轴交于点B(0,-2).【点评】本题考查了一次函数图象上点的坐标特征:一次函数图象上点的坐标满足其解析式.21.(8分)如图,在平面直角坐标系中,网格中每一个小正方形的边长为1个单位长度,(1)请在所给的网格内画出以线段AB、BC为边的菱形,并写出点D的坐标.(2)线段BC的长为,菱形ABCD的面积等于【专题】作图题;网格型.【分析】(1)菱形要求四边相等,根据AB,BC的位置及长度可确定D点位置及坐标,如图所示;(2)在网格中,运用勾股定理求BC、对角线AC,BD的长度,再计算面积.【解答】(1)解:正确画出图(4分)D(-2,1)(5分)【点评】本题考查了菱形的性质,图形画法,菱形面积的求法及勾股定理的运用,需要形数结合,培养学生动手能力.22.(8分)为了庆祝即将到来的2018年国庆节,某校举行了书法比赛,赛后整理了参赛同学的成绩,并制作了如下两幅不完整的统计图表请根据以上图表提供的信息,解答下列问题:(1)这次共调查了名学生;表中的数m= ,n= .(2)请补全频数直方图;(3)若绘制扇形统计图,则分数段60≤x<70所对应的扇形的圆心角的度数是.【专题】统计的应用.【分析】(2)求出70~80的人数,画出直方图即可;(3)根据圆心角=360°×百分比即可解决问题;【解答】解:(1)30÷0.15=200,m=200×0.45=90,故答案为200,90,0.30.(2)频数直方图如图所示,故答案为54°【点评】本题考查了数据的分析,以及读频数分布直方图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.23.(8分)某产品每件的成本为10元,在试销阶段每件产品的日销售价x(元)与产品的日销售量y(件)之间的关系如下表:(1)观察与猜想y与x的函数关系,并说明理由.(2)求日销售价定为30元时每日的销售利润.【专题】常规题型.【分析】(1)设y与x的函数关系式为y=kx+b,任取两对,利用待定系数法求函数解析式;(2)将x=30代入求得y的值,然后依据销售利润=每件的利润×销售件数即可.【解答】解:(1)设经过点(15,25)(20,20)的函数关系式为y=kx+b.∴y=-x+40.∴y与x的函数关系式是y=-x+40;(2)当x=30时,y=-30+40=10,每日的销售利润=(30-10)×10=200元.【点评】本题主要考查待定系数法求一次函数解析式,熟练掌握待定系数法求一次函数解析式的步骤和方法是解题的关键.24.(8分)如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为.(2)若正方形ABCD的边长为a,求k的值.【专题】一次函数及其应用.【分析】(1)根据正方形的边长,运用正方形的性质表示出点B、C的坐标;(2)根据正方形的边长,运用正方形的性质表示出C点的坐标,再将C的坐标代入函数中,从而可求得k的值.【解答】解:(1)∵正方形边长为2,∴AB=2,在直线y=2x中,当y=2时,x=1,∴B(1,2),∵OA=1,OD=1+2=3,∴C(3,2)故答案为:(1,2),(3,2);【点评】本题主要考查正方形的性质与正比例函数的综合运用,灵活运用正方形的性质是解题的关键.25.(9分)如图,在△ABC中,∠ACB=90°,点D,E分别是边BC,AB上的中点,连接DE并延长至点F,使EF=2DE,连接CE、AF.(1)证明:AF=CE;(2)当∠B=30°时,试判断四边形ACEF的形状并说明理由.【分析】(1)由三角形中位线定理得出DE∥AC,AC=2DE,求出EF∥AC,EF=AC,得出四边形ACEF是平行四边形,即可得出AF=CE;(2)由直角三角形的性质得出证出△AEC是等边三角形,得出AC=CE,即可得出结论.【解答】(1)证明:∵点D,E分别是边BC,AB上的中点,∴DE∥AC,AC=2DE,∵EF=2DE,∴EF∥AC,EF=AC,∴四边形ACEF是平行四边形,∴AF=CE;(2)解:当∠B=30°时,四边形ACEF是菱形;理由如下:∵∠ACB=90°,∠B=30°,∴△AEC是等边三角形,∴AC=CE,又∵四边形ACEF是平行四边形,∴四边形ACEF是菱形.【点评】本题考查了平行四边形的判定与性质、菱形的判定、三角形中位线定理、直角三角形斜边上的中线性质、等边三角形的判定与性质;熟练掌握平行四边形的判定与性质,证明三角形是等边三角形是解决问题的关键.26.(10分)如图1,在正方形ABCD中,点E是AB上一点,点F是AD延长线上一点,且DF=BE,连接CE、CF.(1)求证:CE=CF.(2)在图1中,若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?(3)根据你所学的知识,运用(1)、(2)解答中积累的经验,完成下列各题,如图2,在四边形ABCD。
2023—2024学年度下学期济南市八年级期末考试数学试卷及参考答案

2023—2024学年度下学期八年级数学学科参考答案及评分标准一、选择题(每小题3分,共计30分)二、填空题(每小题3分,共计30分)三、解答题(其中21题6分,22-24题各8分,25-27题各10分,共计60分)21.(本题6分)解:22231x x x -+=+22410x x -+=......................................................................1分241a b c ==-=,,224(4)b ac D =-=--4×2×1=8>0.....................................................2分方程有两个不等的实数根................................2分即12222222x x +-==,........................................................1分22.(本题8分)解:(1)如图1,正确画图(答案不唯一)...................................................4分(2)如图2,正确画图....................................................................4分12345678910ABBBCDCDAC题号1112131415答案x≠2-18x≥223题号1617181920答案5.8205±12②③(第22题答案图1)(第22题答案图2)23.(本题8分)解:(1)14.5.............................................................................2分+分(2)∠BCD 是直角,理由:连接BD.由勾股定理得,2222420BC =+=,222125CD =+=,2223425BD =+=......................................................................1分∴22220525BC CD BD +=+==.........................................................2分∴∠BCD 是直角...........................................................................1分24.(本题8分)解:(1)设(0)y kx b k =+≠根据题意,得0.2200.2822k b k b +=⎧⎨+=⎩...............................................................2分解得2515k b =⎧⎨=⎩.............................................................................2分2515y x ∴=+............................................................................1分(2)当0.3x m =时,250.31522.5()y m =⨯+=................................................2分∴当这种树的胸径为0.3m 时,其树高为22.5m ................................................1分25.(本题10分)解:(1)450.............................................................................2分6750....................................................................................2分(2)设销售单价定位x 元时,利润为8000元.根据题意,得[](40)50010(50)8000x x ---=.................................................2分解得126080x x ,==......................................................................1分当x=60时,销售量为500-10(60-50)=400(套),成本为400×40=16000>10000...................1分当x=80时,销售量为500-10(80-50)=200(套),成本为200×40=8000<10000....................1分∴x=80答:月销售成本不超过10000元的情况下,该商品的销售单价应定为每套80元可使月销售利润达到8000元......................................................................................1分26.(本题10分)解:(1)①∠DEF 的大小不发生变化,∠DEF=90°............................................1分理由:如图1,作EG⊥AB,EH⊥AD,垂足分别为点G、H.∵四边形ABCD 是正方形∴∠DAB=90°,∠BAC=∠DAC=12∠DAB=45°,AC⊥BD ∴EG=EH又∵EF=DE∴Rt△EFG≌Rt△EDH.............................................1分∴AG=AH,∠FEG=∠DEH 在四边形AGEH 中,∠GEH=360°-90°-90°-90°=90°∴∠DEF=∠DEH+∠FEH=∠FEG+∠FEH=∠GEH=90°..............................................1分∴∠DEF 的大小不发生变化,∠DEF=90°②AF=2OE..............................................................................1分理由:如图1,令AG=m,OE=2n ,则AH=m.在Rt△AEH 中∵∠AEH=90°-∠EAH=90°-45°=45°=∠EAH∴EH=AH=m∴22222AE AH EH m m m =+=+=.....................................................1分∴OA=AE+OE=222()m n m n +=+同理:在Rt△OAD 中,22()2()AD m n m n =⨯+=+∴DH=AD-AH=2(m+n)-m=m+2n=FG ∴AF=FG-AG=m+2n-m=2n∴AF=2OE......................1分(2)AF=CE理由:如图2,作EM⊥AB,EN⊥AD,垂足分别为点M、N.令AM=a,OE=b.∵四边形ABCD 是菱形∴AB=BC=AD ,∠BAC=∠DAC,AC⊥BD,AC=2OA......................1分∴EM=EN 又∵EF=DE∴Rt△EFM≌Rt△EDN.............................................1分∴FM=DN∵AB=BC,∠ABC=60°∴△ABC 为等边三角形∴∠DAC=∠BAC=60°,AC=AB∵∠EAM=∠EAN,∠EMA=∠ENA=90°,AE=AE ∴△AEM≌Rt△AEN∴AN=AM=a在Rt△AEN 中∵∠AEN=90°-∠EAN=90°-60°=30°∴AE=2AN=2a...........................1分∴OA=AE+OE=2a+b ∴AC=2OA=4a+2b=AD∴CE=AC-AE=4a+2b-2a=2a+2b∵FM=DN=AD-AN=4a+2b-a=3a+2b ∴AF=FM-AM=3a+2b-a=2a+2b=CE.............................1分27.(本题10分)解:(1)y=3x+3当x=0时,y=3×0+3=3∴C(0,3)当y=0时,0=3x+3∴x=-1∴B(-1,0)..........................................1分∴OB=1∴OA=3×1=3∴A(3,0)设直线AC 解析式为y=kx+b∴303bk b=⎧⎨=+⎩解得13k b =-⎧⎨=⎩(第26题答案图1)(第26题答案图2)∴直线AC 的解析式为y=-x+3...............................................................1分(2)如图1,∵点D 是线段AC 上一个动点,且横坐标为t∴D(t,-t+3)过点D 作DK⊥x 轴于K,则DK=-t+3..........................................................1分∵A(3,0),B(-1,0)∴AB=3-(-1)=4∴12ABC ABD S S S △△=-=×AB×OC-12×AB×DK=12×4×3-12×4×(-t+3)=2t.....................2分(3)过点D 作DR⊥x 轴于R,过点G 作GP⊥AE 于P,过点G 作直线l∥x 轴交y 轴于T,过点A 作AN⊥l于N,过点E 作EM⊥l 于M,交x 轴于L.∵AE∥BD,BF//AC ∴四边形ADBF 是平行四边形,∠DAR=∠FBO ∴AD=BF又∵∠ARD=∠BOF=90°∴△ADR≌△BFO∴AR=OB=1,OF=DR∴t=OR=OA-AR=3-1=2∴OF=DR=-t+3=1,S=2t=4∴F(0,-1).................................................1分设直线AF 的解析式为y=mx+n∴103n m n -=⎧⎨=+⎩解得131m n ⎧=⎪⎨⎪=-⎩∴直线AF 的解析式为113y x =-由33113y x y x =+⎧⎪⎨=-⎪⎩解得3232x y ⎧=-⎪⎪⎨⎪=-⎪⎩∴E(32-,32-)∵MN∥AL ∴∠ALE+∠M=180°∴∠ALE=180°-90°=90°=∠M=∠N ∴四边形ALMN 为矩形∴AN=ML,MN=AL=3+32=92在Rt△AEL 中,2222333()(3)10222AE EL AL =+=++=∵454545432328AEG S S ==´=△∴12×3102×GP=458∴GP=3104...................1分∵GE=GA,GP⊥AE∴AP=EP=12AE=3104=GP ∴∠PEG=∠PGE,∠PAG=∠PGA,2222333(10)(10)5442EG EP GP =+=+=又∵∠PEG+∠PGE=90°,∠PAG+∠PGA=90°∴∠PGE=∠PGA=45°∴∠EGA=90°(第27题答案图1)(第27题答案图2)∴∠AGN+∠EGM=90°又∵∠GEM+∠EGM=90°∴∠AGN=∠GEM 又∵∠N=∠M=90°,AG=EG∴△AGN≌△GEM∴GN=EM,AN=MG 令EM=c,则GN=c,MG=AN=ML=c+32∵MG+GN=MN ∴c+32+c=92∴c=32∴MG=3=AN=ML ∴GT=MG-MT=3-32=32∵∠OLM=∠M=∠LOT=90°∴四边形OLMT 为矩形∴OT=ML=3∴G(32,-3)..............1分当点G,E,H 在同一条直线时,GH EH EG-=当点G,E,H 不在同一条直线时,在△EGH 中,GH EH EG -<综上所述:GH EH EG -£=,GH EH -...........................1分此时点H 是直线EG 与x 轴的交点设直线EG 的解析式为y=ex+f∴3322332e f e f ⎧-=-+⎪⎪⎨⎪-=+⎪⎩解得1294e f ⎧=-⎪⎪⎨⎪=-⎪⎩∴直线EG 的解析式为1924y x =--当y=0时,19024x =--∴x=92-∴H(92-,0)....................................1分(以上各解答题如有不同解法并且正确,请按相应步骤给分)。
【浙教版】初二数学下期末模拟试题(带答案)(1)

一、选择题1.某校九年级(1)班部分学生上学路上所花时间如图所示.设他们上学路上所花时间的平均数为a ,中位数为b ,众数为c ,则有( )A .b a c >>B .c a b >>C .a b c >>D .b c a >>2.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6 D .5或63.一组数据:1、2、3、4、1,这组数据的众数与中位数分别为( ) A .1、3B .2、2.5C .1、2D .2、24.如表记录了甲、乙、丙、丁四名跳远运动员选拔赛成绩的平均数与方差:甲 乙 丙 丁平均数x (厘米) 375 350 375 350 方差2s12.5 13.5 2.45.4要从中选择一名成绩好又发挥稳定的运动员参加决赛,最合适的是( ) A .甲B .乙C .丙D .丁5.小明和小华同时从小华家出发到球场去.小华先到并停留了8分钟,发现东西忘在了家里,于是沿原路以同样的速度回家去取.已知小明的速度为180米/分,他们各自距离小华家的路程y (米)与出发时间x (分)之间的函数关系如图所示,则下列说法正确的是( )A .小明到达球场时小华离球场3150米B .小华家距离球场3500米C .小华到家时小明已经在球场待了8分钟D .整个过程一共耗时30分钟6.下列图象中,不表示y 是x 的函数的是( )A .B .C .D .7.若点(-2,y 1),(3,y 2)都在函数y =-2x +b 的图像上,则y 1与y 2的大小关系是( ) A .y 1>y 2B .y 1=y 2C .y 1<y 2D .无法确定8.函数2y x x=+-的图象上的点()P x,y 一定在第( )象限 A .第一象限 B .第二象限 C .第三象限 D .第四象限 9.下列各组线段能构成直角三角形的一组是( ) A .30,40,50B .8,12,13C .5,9,13D .3,4,610.若二次根式1x -有意义,则x 的取值范围是( ) A .x <1 B .x >1C .x≥1D .x≤111.如图,直线L 上有三个正方形,,a b c ,若,a c 的边长分别为1和3,则b 的面积为( )A .8B .9C .10D .1112.如图,菱形ABCD 中,∠ABC=60°,AB=4,E 是边AD 上一动点,将△CDE 沿CE 折叠,得到△CFE ,则△BCF 面积的最大值是( )A .8B .83C .16D .163二、填空题13.某市某一周的PM 2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物指数)如表,则该周PM 2.5指数的众数为________.14.一组数据:3、5、8、x 、6,若这组数据的极差为6,则x 的值为__________. 15.如图,直线y =kx +1经过点A (-2,0)交y 轴于点B ,以线段AB 为一边,向上作等腰Rt ABC ,将ABC 向右平移,当点C 落在直线y =kx +1上的点F 处时,则平移的距离是_________.16.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号) 17.如图,在ABCD 中,AC 与BD 相交于点O ,(1)若18cm,24cm AC BD ==,则AO =_______,BO =_______.又若13AB =厘米,则COD △的周长为________.(2)若AOB 的周长为30cm ,12cm AB =,则对角线AC 与BD 的和是________. 18.如图,在矩形ABCD 中,AB =3,BC =4,点M 为AD 的中点,点N 为AB 上一点,连接MN ,CN ,将△AMN 沿直线MN 折叠后,点A 恰好落在CN 上的点P 处,则CN 的长为_____.19.已知51x =-,求229x x ++=______.20.如图,已知圆柱的底面周长为10cm ,高AB 为12cm ,BC 是底面的直径,一只蚂蚁沿着圆柱侧面爬行觅食从点C 爬到点A ,则蚂蚁爬行的最短路线为________cm .三、解答题21.在推进杭州市城乡生活垃圾分类的行动中,某校为了考察该校初中生掌握垃圾分类知识的情况,进行了一次测试,并随机抽取了若干名学生的测试成绩进行整理,绘制了如图所示不完整的频数直方图(每组含前一个边界值,不含后一个边界值)和扇形统计图. (1)求样本容量,并补充完整频数直方图.(2)在抽取的这些学生中,玲玲的测试成绩为85分,你认为85分一定是这些学生成绩的中位数吗?请简要说明理由.(3)若成绩在80分以上(包括80分)为优秀,请估计全校1400名学生中成绩优秀的人数.22.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生287女生7.92 1.998(1)这个班共有男生人,共有女生人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并说明理由.(至少从两个不同的角度说明推断的合理性)23.某水果超市营销员的个人收入与他每月的销售量成一次函数关系,其图象如下,请你根据图象提供的信息,解答以下问题:x )之间的函数关(1)求营销员的个人收入y(元)与营销员每月销售量x(千克)(0系式;(2)营销员佳妮想得到收入1600元,她应销售水果多少千克?24.下图所示的三种拼块A,B,C,每个拼块都是由一些大小相同、面积为1个单位的小正方形组成,如编号为A的拼块的面积为3个单位.现用若干个这三种拼块拼正方形,拼图时每种拼块都要用到,且这三种拼块拼图时可平移、旋转,或翻转.(1)若用1个A 种拼块,2个B 种拼块,4个C 种拼块,则拼出的正方形的面积为 个单位;(2)在图1和图2中,各画出了一个正方形拼图中1个A 种拼块和1个B 种拼块,请分别用不同的拼法将图1和图2中的正方形拼图补充完整.要求:所用的A ,B ,C 三种拼块的个数与(1)不同,用实线画出边界线,拼块之间无缝隙,且不重叠.25.计算:1(27)33-÷. 26.如图,//,90AD BC A ∠=︒,E 是AB 上的点,且,12AD BE =∠=∠.(1)求证:ADE BEC ≌△△.(2)若30,3AED AE ∠=︒=,求线段CD 的长度.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先根据图形得出相关数据,再分别求出平均数、中位数、众数,由此即可得. 【详解】由图可知,统计的学生人数为43310++=(人),他们上学路上所花时间分别为20,20,20,20,30,30,30,40,40,40,则平均数202020203030304040402910a+++++++++==,中位数3030302b+==,因为20出现的次数最多,所以众数20c=,因此有b a c>>,故选:A.【点睛】本题考查了平均数、中位数、众数,熟练掌握相关定义和计算公式是解题关键.2.C解析:C【解析】根据数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同这个结论即可解决问题.解:∵一组数据2,2,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同解决问题,属于中考常考题型.3.C解析:C【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【详解】数据1出现了2次,次数最多,所以众数是1;数据按从小到大排列:1,1,2,3,4,所以中位数是2.故选C.【点睛】本题考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.4.C解析:C【分析】先比较平均数,平均数相同时选择方差更小的参加.【详解】因为乙和丁的平均数最小,所以应该从甲和丙中选择一人参加比赛,又因为丙的方差小于甲的方差,所以丙的成绩更具有稳定性,所以应该选择丙参赛.故选:C.【点睛】考查了平均数和方差,解题关键是利用了:方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定.5.A解析:A【分析】先设小华的速度为x米/分,再根据小华返回时与小明相遇时所走的路程之和=小华家与球场之间的距离列出方程求出小华的速度为450米/分,再根据图象求出小明到达球场的时间,从而求出当小时到达球场时小华从球场出发返回家所用的时间为7分钟,所以根据“路程=速度×时间”即可求出当小时到达球场时小华离球场的距离.【详解】解:设小华的速度为x米/分,则依题意得:(20-18)x+180×20=10x解得:x=450∴(450×10-3600)÷180=5(分)∴当小明到达球场时小华离球场的距离为:450×(5+2)=3150(米).故A选项正确;小华家距球场450×10=4500米,故B选项错误;小华到达家时小明在球场呆的时间为:10+8+10-4500÷180=3(分)故C选项错误;整个过程耗时10+8+10=28(分)故D选项错误.故选A.【点睛】本题考查了从函数图象上获取信息的能力,注意观察函数图象,设出合适的未知数求出小华的速度是解题的关键.6.A解析:A【分析】依据函数的定义,x取一个值,y有唯一值对应,可直接得出答案.【详解】解:A 、根据图象知给自变量一个值,可能有2个函数值与其对应,故A 选项不是函数, B 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故B 选项是函数, C 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故C 选项是函数, D 、根据图象知给自变量一个值,有且只有1个函数值与其对应,故D 选项是函数, 故选:A . 【点睛】此题主要考查了函数概念,任意画一条与x 轴垂直的直线,始终与函数图象有一个交点,那么y 是x 的函数.7.A解析:A 【分析】根据一次函数的性质得出y 随x 的增大而减小,进而求解. 【详解】由一次函数y=-2x+b 可知,k=-2<0,y 随x 的增大而减小, ∵-2<3, ∴12y y >, 故选:A . 【点睛】本题考查一次函数的性质,熟知一次函数y=kx+b (k≠0),当k <0时,y 随x 的增大而减小是解题的关键.8.B解析:B 【分析】由二次根式和分式有意义的条件,得到0x <,然后判断得到0y >,即可得到答案. 【详解】 解:根据题意,则∵00x -≥⎧⎪≠,解得:0x <, ∴20x >0>,∴20y x =+>, ∴点(,)P x y 一定在第二象限; 故选:B . 【点睛】本题考查了二次根式和分式有意义的条件,以及判断点所在的象限,解题的关键是熟练掌握所学的知识进行解题.9.A解析:A 【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形. 【详解】解:A 、∵302+402=502,∴该三角形符合勾股定理的逆定理,故是直角三角形,故正确; B 、∵82+122≠132,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; C 、∵52+92≠122,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; D 、∵32+42≠62,∴该三角形不符合勾股定理的逆定理,故不是直角三角形,故错误; 故选:A . 【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.10.C解析:C 【分析】直接利用二次根式有意义的条件分析得出答案. 【详解】∵二次根式1x -有意义, ∴x−1≥0, 解得:x≥1. 故选:C . 【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.11.C解析:C 【分析】运用正方形边长相等,再根据同角的余角相等可得BAC DCE ∠=∠,然后证明ACB DCE ∆≅∆,再结合全等三角形的性质和勾股定理来求解即可. 【详解】 解:如图:由于a 、b 、c 都是正方形,所以AC CD =,90ACD ∠=︒;90ACB DCE ACB BAC ,即BAC ECD ∠=∠,在ABC ∆和CED ∆中,90ABC CED ACB CDEAC DC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()ACB CDE AAS ,AB CE ∴=,BC DE =; 在Rt ABC ∆中,由勾股定理得:22222221310AC AB BC AB DE , 即10b S , 则b 的面积为10,故选:C .【点睛】本题主要考查对全等三角形和勾股定理的综合运用,证明ACB DCE ∆≅∆是解题的关键. 12.A解析:A【分析】由三角形底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积.【详解】解:在菱形ABCD 中,BC=CD=AB=4又∵将△CDE 沿CE 折叠,得到△CFE ,∴FC=CD=4由此,△BCF 的底边BC 是定长,所以当△BCF 的高最大时,△BCF 的面积最大,即当FC ⊥BC 时,三角形有最大面积∴△BCF 面积的最大值是1144822BC FC =⨯⨯= 故选:A .【点睛】本题考查菱形的性质和折叠的性质,掌握三角形面积的计算方法和菱形的性质正确推理计算是解题关键.二、填空题13.150【分析】先求出PM25指数为150的天数再根据众数的定义以及性质求出众数即可【详解】∵PM25指数为150的天数∴该周PM25指数的众数为150故答案为:150【点睛】本题考查了众数的问题掌握解析:150【分析】先求出PM2.5指数为150的天数,再根据众数的定义以及性质求出众数即可.【详解】∵PM2.5指数为150的天数72113=---=∴该周PM2.5指数的众数为150故答案为:150.【点睛】本题考查了众数的问题,掌握众数的定义以及性质是解题的关键.14.2或9【解析】【分析】根据极差的定义先分两种情况进行讨论当x最大时或最小时分别进行求解即可【详解】∵数据358x6的极差是6∴当x最大时:x ﹣3=6解得:x=9;当x最小时8﹣x=6解得:x=2∴x解析:2或 9【解析】【分析】根据极差的定义先分两种情况进行讨论,当x最大时或最小时分别进行求解即可.【详解】∵数据3、5、8、x、6的极差是6,∴当x最大时:x﹣3=6,解得:x=9;当x最小时,8﹣x=6,解得:x=2,∴x的值为2或9.故答案为:2或9.【点睛】本题考查了极差,掌握极差的定义是解题的关键;求极差的方法是用一组数据中的最大值减去最小值.15.5【分析】先把A坐标代入y=kx+1求得k=则直线AB的解析式为y=x+1再确定B点坐标(01)作CH⊥x轴于H如图根据等腰直角三角形的性质得AC=AB∠BAC=90°接着证明△ABO≌△CAH得到解析:5【分析】先把A坐标代入y=kx+1求得k=12,则直线AB的解析式为y=12x+1,再确定B点坐标(0,1),作CH⊥x轴于H,如图,根据等腰直角三角形的性质得AC=AB,∠BAC=90°,接着证明△ABO≌△CAH,得到OB=AH=1,OA=CH=2,于是可确定C点坐标(-3,2),然后根据平移的性质得点F的纵坐标与C点的纵坐标相等,则可把y=2代入y=1 2 x+1得12x+1=2,解得x=2,所以F点的坐标为(2,2),点F与点C的横坐标之差就是平移的距离.【详解】解:把A(-2,0)代入y=kx+1得-2k+1=0,解得k=12,则直线AB的解析式为y=12x+1,当x=0时,y=12x=1=1,则B点坐标为(0,1),如图,作CH⊥x轴于H∵△ABC为等腰直角三角形,∴AC=AB,∠BAC=90°,∴∠BAO+∠CAH=90°,而∠BAO+∠ABO=90°,∴∠ABO=∠CAH,在△ABO和△CAH中,AOB CHAABO CAHAB CA∠∠⎧⎪∠∠⎨⎪⎩===,∴△ABO≌△CAH,∴OB=AH=1,OA=CH=2,∴OH=OA+AH=3,∴C点坐标为(-3,2),∵△ABC向右平移,∴F的纵坐标与C点的纵坐标相等,把y=2代入y=12x+1得12x+1=2,解得x=2,∴F点的坐标为(2,2),∴点C 向右平移了2-(-3)=5个单位.故答案为5.【点睛】本题考查了一次函数图象上点的坐标特征:一次函数y =kx +b ,(k ≠0,且k ,b 为常数)的图象是一条直线.它与x 轴的交点坐标是(-bk ,0);与y 轴的交点坐标是(0,b ).直线上任意一点的坐标都满足函数关系式y =kx +b .也考查了等腰直角三角形的性质和平移的性质.16.①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤【分析】根据一次函数的定义进行一一判断.【详解】①3x y =是一次函数;②y =是一次函数,③1y x =不是一次函数,④23y x =-是一次函数,⑤()222121y x x x x =--+=+是一次函数.故答案为:①②④⑤.【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数. 17.9cm12cm34cm36cm 【分析】(1)根据平行四边形对角线互相平分对边相等可得结果;(2)根据△AOB 的周长和AB 的长度得到AO+BO 从而得到AC+BD 【详解】解:(1)在平行四边形ABCD 中解析:9cm 12cm 34cm 36cm【分析】(1)根据平行四边形对角线互相平分,对边相等可得结果;(2)根据△AOB 的周长和AB 的长度,得到AO+BO ,从而得到AC+BD .【详解】解:(1)在平行四边形ABCD 中,∵AC=18cm ,BD=24cm ,∴AO=12AC=9cm=CO ,BO=12BD=12cm=DO , ∵AB=13cm ,∴CD=13cm ,∴COD △的周长为CO+DO+CD=9+12+13=34cm ,故答案为:9cm ,12cm ,34cm ;(2)∵△AOB 的周长为30cm ,∴AB+AO+BO=30cm ,∵AB=12cm ,∴AO+BO=30-12=18cm ,∴AC+BD=2AO+2BO=36cm .【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分,平行四边形的对边相等. 18.【分析】连接CM 由题意易证即得到PC=DC=3设AN=x 则PN=xBN=3-xCN=3+x 在中利用勾股定理即可求出x 即可得到CN 的长【详解】如图连接CM 由题意可知在和中∴∴PC=DC=3设AN=x 则 解析:133 【分析】连接CM ,由题意易证DMC PMC ≅,即得到PC=DC=3.设AN=x ,则PN= x ,BN=3-x ,CN=3+ x .在Rt BCN △中利用勾股定理即可求出x ,即可得到CN 的长.【详解】如图,连接CM ,由题意可知122AM DM PM AD ====, 在Rt DMC 和Rt PMC 中,PM PD MC MC=⎧⎨=⎩, ∴DMC PMC ≅,∴PC=DC=3. 设AN=x ,则PN= x ,BN=3-x ,CN=3+ x .在Rt BCN △中,222BC BN CN +=,即2224(3)(3)x x +-=+,解得:43x =, ∴CN=3+413333CN +==.故答案为:133. 【点睛】 本题考查翻折的性质,矩形的性质,三角形全等的判定和性质以及勾股定理.作出常用的辅助线是解答本题的关键.19.13【分析】先变形为然后代入求值即可【详解】解:当时原式==13故答案是:13【点睛】本题考查了利用完全平方公式进行求值及二次根式的性质熟悉公式是解题关键解析:13【分析】先变形为222918x x x ++=++(),然后代入求值即可.【详解】解:2222921818x x x x x ++=+++=++(), 当51x =-时,原式=25118-++=13. 故答案是:13.【点睛】本题考查了利用完全平方公式进行求值及二次根式的性质,熟悉公式是解题关键. 20.13【分析】把圆柱沿母线AB 剪开后展开点C 展开后的对应点为C′利用两点之间线段最短可判断蚂蚁爬行的最短路径为AC′然后利用勾股定理计算出AC′即可【详解】把圆柱沿母线AB 剪开后展开点C 展开后的对应点解析:13【分析】把圆柱沿母线AB 剪开后展开,点C 展开后的对应点为C′,利用两点之间线段最短可判断蚂蚁爬行的最短路径为AC′,然后利用勾股定理计算出AC′即可.【详解】把圆柱沿母线AB 剪开后展开,点C 展开后的对应点为C′,则蚂蚁爬行的最短路径为AC′,如图,∵AB =12, BC′=5,在Rt △ABC′,AC′2251213+=∴蚂蚁爬行的最短路程为13cm .故答案是:13【点睛】本题考查了平面展开−最短路径问题,先根据题意把立体图形展开成平面图形后,再确定两点之间的最短路径.一般情况是两点之间,线段最短.在平面图形上构造直角三角形解决问题.三、解答题21.(1)50;见解析;(2)不一定;见解析;(3)728【分析】(1)由总人数为100可得m的值,从而补全图形;(2)根据中位数的定义判断即可得;(3)样本中成绩在80分以上(包括80分)占调查人数的161050+,因此利用样本估计总体的方法列出算式1610140050+⨯,求解可得结果.【详解】解:(1)样本容量是:10÷20%=50.70≤a<80的频数是50−4−8−16−10=12(人),补全图形如下:(2)不一定是这些学生成绩的中位数.理由:将50名学生知识测试成绩从小到大排列,第25、26名的成绩都在分数段80≤a≤90中,他们的平均数不一定是85分,因为25、26的成绩的平均数才是整组数据的中位数.(3)全校1400名学生中成绩优秀的人数为:1610140072850+⨯=(人).【点睛】本题考查了条形统计图、用样本估计总体、统计量的选择,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.22.(1)20,25;(2)7.9,8;(3)女生队表现更突出,理由见解析【分析】(1)由条形图可得男生总人数,总人数减去男生人数可得女生人数;(2)根据平均数和众数定义可得.(3)可从平均数、方差、众数和中位数的意义求解可得.【详解】解:(1)这个班共有男生1+2+6+3+5+3=20(人),共有女生45﹣20=25(人), 故答案为:20、25;(2)男生的平均分为120×(5+6×2+7×6+8×3+9×5+10×3)=7.9(分),女生的众数为8分,补全表格如下:理由为:女生队的平均数较高,表示女生队测试成绩较好;女生队的方差小,表示女生队测试成绩比较集中,整体水平较好;女生队的众数较高,女生队的众数为8,中位数也为8,而男生队众数为7低于中位数8,表示女生队的测试成绩高分较多.【点睛】本题主要考查加权平均数、利用众数、方差、平均数、众数作出决策.注意方差越小,说明数据越稳定.23.(1)0.2500y x =+;(2)营销员佳妮想得到收入1600元,她应销售5500斤水果.【分析】(1)设500y kx =+,用待定系数法求解即可;(2)令y=1600求解即可.【详解】解:(1)设500y kx =+,把x=4000,y=1300代入得40005001300k +=,解得 0.2k =,∴ y 与x 之间的函数关系式是0.2500y x =+.(2)当1600y =时,0.25001600x +=,解得 5500x =,答:营销员佳妮想得到收入1600元,她应销售5500斤水果.【点睛】本题考查了一次函数的应用,熟练掌握待定系数法是解答本题的关键.24.(1)25;(2)补图见解析.【分析】(1)根据题意,知A 的拼块的面积为 3 个单位,B的面积为3个单位,C的面积为4个单位,即可得出;(2)图1用了3个A,2个B,1个C,图2用了4个A,1个B,1个C,和(1)不同即可.【详解】(1)13234425⨯+⨯+⨯=,∴正方形的面积为25;(2)答案不唯一,如:【点睛】本题主要考查了正方形的面积组合,读懂题意是解题的关键.25.8 3【分析】根据二次根式的运算法则计算即可求解.【详解】解:原式=3333⎛⎝⎭8333=83=.【点睛】本题考查了二次根式的混合运算,熟知运算法则并能正确将二次根式进行化简是解题关键.26.(1)证明见详解;(2)26【分析】(1)根据已知可得到∠A=∠B=90°,DE=CE,AD=BE从而利用HL判定两三角形全等;(2)由三角形全等可得到对应角相等,对应边相等,由已知可推出∠DEC=90°,由30,3AED AE∠=︒=,可求得AD、DE的长,再利用勾股定理求得CD的长即可.【详解】(1)∵AD∥BC,∠A=90°,∴∠A=∠B=90°,∵∠1=∠2,∴DE =CE .∵AD =BE ,在Rt △ADE 与Rt △BEC 中AD BE DE CE =⎧⎨=⎩, ∴Rt △ADE ≌Rt △BEC (HL )(2)由△ADE ≌△BEC 得∠AED =∠BCE ,AD =BE .DE=CE ,∴∠AED +∠BEC =∠BCE +∠BEC =90°.∴∠DEC =90°.在Rt △ADE 中又∵30,3AED AE ∠=︒=设AD =x ,则DE =2x,由勾股定理222AD AE DE +=,即2294x x +=解得x =∴在Rt △CDE 中由勾股定理,DC 2=DE 2+CE 2∴CD【点睛】本题主要考查全等三角形的判定与性质的运用,熟练掌握等三角形的判定与性质的运用是解题关键.。
【浙教版】初二数学下期末模拟试题及答案

一、选择题1.已知5个数1a 、2a 、3a 、4a 、5a 的平均数是a ,则数据11a +、22a +、33a +、44a +、55a +的平均数为( )A .aB .3a +C .56a D .15a +2.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.如图是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据的中位数的年份是( )A .1999年B .2004年C .2009年D .2014年3.某校10名学生参加某项比赛成绩统计如图所示。
对于这10名学生的参赛成绩,下列说法中错误的是( )A .众数是90B .中位数是90C .平均数是90D .参赛学生最高成绩与最低成绩之差是154.某校八年级有八个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .将八个班级各自的平均成绩之和除以8,就得到全年级学生的平均成绩B .全年级学生的平均成绩一定在这八个班级各自的平均成绩的最小值与最大值之间C .这八个班级各自的平均成绩的中位数就是全年级学生的平均成绩D .这八个班级各自的平均成绩的众数不可能是全年级学生的平均成绩5.下列图形中,表示一次函数y =mx +n 与正比例函数y =mnx (m ,n 为常数,且mn≠0)的图象的是( )A .B .C .D .6.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( ) A .12m <B .12m >C .m 1≥D .1m <7.已知关于x ,y 的二元一次方程组(7)2(31)5y k x y k x =--⎧⎨=-+⎩无解,则一次函数32y kx =-的图象不经过的象限是( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限8.如图,直线y =kx (k≠0)与y =23x+2在第二象限交于A ,y =23x+2交x 轴,y 轴分别于B 、C 两点.3S △ABO =S △BOC ,则方程组0236kx y x y -=⎧⎨-=-⎩的解为( )A .143x y =-⎧⎪⎨=⎪⎩B .321x y ⎧=-⎪⎨⎪=⎩C .223x y =-⎧⎪⎨=⎪⎩D .3432x y ⎧=-⎪⎪⎨⎪=⎪⎩9.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE CD ⊥,GF BC ⊥,1500m AD =,小敏行走的路线为B A G E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为( )A.3100m B.4600m C.5500m D.6100m10.如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为()A.4﹣22B.32﹣4 C.1 D.2a=a那么a应满足什么条件()11.已知,()22A.a>0 B.a≥0C.a =0 D.a任何实数12.勾股定理是人类最伟大的科学发现之一,在我国古代《周髀算经》中早有记载.如图①,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图②的方式放置在最大正方形内.若图中阴影部分图形的面积为3,则较小两个正方形重叠部分图形的面积为()A.2 B.3 C.5 D.6二、填空题13.某中学篮球队12名队员的年龄情况如下:年龄(单位:1415161718岁)人数14322则这个队队员年龄的众数和中位数分别是_____岁、_____岁.14.有一组数据:1,3,5,3,若再添加一个数,所得的新一组数据与原数据的中位数,众数,平均数都没有发生变化,则添加的数为____.15.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶,设行驶的时间为x (时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系,已知两车相遇时快车比慢车多行驶40千米,快车到达乙地时,慢车还有______千米到达甲地.16.已知直线22y x =-与x 轴交于A ,与y 轴交于B ,若点C 是坐标轴上的一点,且AC AB =,则点C 的坐标为________.17.菱形ABCD 有一个内角是60°,它的边长是2,则此菱形的对角线AC 长为_________.18.生活中,有人喜欢把传送的便条折成形状,折叠过程如图所示(阴影部分表示纸条的反面):已知由信纸折成的长方形纸条(图①)长为25cm ,宽为cm x .如果能折成图④的形状,且为了美观,纸条两端超出点P 的长度相等,即最终图形是轴对称图形,则在开始折叠时起点M 与点A 的距离(用x 表示)为______cm . 19.比较大小:23_____32(填“>”、“<”或“=”).20.已知一个三角形工件尺寸(单位dm )如图所示,则高h =__dm .三、解答题21.某公司共有三个部门,根据每个部门的员工人数和相应每人所创的年利润绘制成如下的统计表和扇形图.各部门人数及每人所创年利润统计表部门员工人数每人所创的年利润/万元A510B 8C5(1)①在扇形图中,C部门所对应的圆心角的度数为___________;②在统计表中,___________,___________;(2)求这个公司平均每人所创年利润.22.在“全民读书月”活动中,小明调查了班级里40名同学本学期计划购买课外书的花费情况,并将结果绘制成如图所示的统计图,请根据相关信息,解答下列问题:(直接填写结果)(1)本次调查获取的样本数据的众数是;(2)这次调查获取的样本数据的中位数是;(3)若该校共有学生1000人,根据样本数据,估计本学期计划购买课外书花费50元的学生有人.23.为了加强公民的节水意识,某地规定用水收费标准如下:每户每月用水量不超过36m 时,水费按每立方米1.1元收费,超过36m 时,超过部分每立方米按1.6元收费,设每户每月用水量为3m x ,应缴水费为y 元. (1)写出y 与x 之间的函数表达式;(2)如果有两户家庭某月份需缴纳水费为5.5元和9.8元时,求这两户家庭这个月的用水量分别是多少?24.已知:平行四边形ABCD 中,点M 为边CD 的中点,点N 为边AB 的中点,联结AM 、CN .(1)求证:AM ∥CN ;(2)过点B 作BH AM ⊥,垂足为H ,联结CH .求证:△BCH 是等腰三角形.25.计算:(1)2(132)486-+-÷ (2)(263)(326)---26.已知长方形纸片ABCD ,将长方形纸片按如图所示的方式折叠,使点D 与点B 重合,折痕为EF .(1)△BEF 是等腰三角形吗?若是,请说明理由; (2)若AB =4,AD =8,求BE 的长.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的和多15,可得数据11a +、22a +、33a +、44a +、55a +的平均数比a 多3,据此求解即可 【详解】解:a+()()24512345132+4+51+3+-+a a a a a a a a a a ++++++++⎡⎤⎣⎦ ÷5 =a+[1+2+3+4+5] ÷5 =a+15÷5 =a+3 故选:B 【点睛】此题主要考察了算术平均数的含义和求法,解题关键是判断出:数据11a +、22a +、33a +、44a +、55a +比数据1a 、2a 、3a 、4a 、5a 的平均数多3.2.C解析:C 【分析】把数据的年份从小到大排列,根据中位数的定义即可得答案, 【详解】把数据的年份从小到大排列为:2014年、1994年、2009年、2004年、1999年, ∵中间的年份是2009年,∴五次统计数据的中位数的年份是2009年, 故选:C . 【点睛】本题考查中位数,把一组数据按从小到大的数序排列,在中间的一个数字(或两个数字的平均值)叫做这组数据的中位数.3.C解析:C 【分析】根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案. 【详解】解:∵90出现了5次,出现的次数最多,∴众数是90; 故A 正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;参赛学生最高成绩与最低成绩之差是:95-80=15;故D正确.故选:C.【点睛】此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.4.B解析:B【分析】A、由于这八个班的人数不一定相等,故全年级学生的平均成绩应等于所有学生成绩的和除以学生人数;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间;C、由于这八个班的人数不一定相等,故这10个平均成绩的中位数不一定是全年级学生的平均成绩;D、众数是一组数据中出现次数最多的数,能反映数据的集中程度,平均数也能反映数据的集中程度,是有可能相等的.【详解】A、全年级学生的平均成绩应等于所有学生成绩的和除以学生人数,而这八个班的人数不一定相等,故错误;B、由于全年级学生的平均成绩等于所有学生成绩的和除以学生人数,故全年级学生的平均成绩一定在这八个平均成绩的最小值与最大值之间,故正确;C、中位数不一定与平均数相等,故错误;D、众数与平均数有可能相等,故错误.故选B.【点睛】本题考查了平均数、中位数、众数的关系,它们有可能相等,也可能不相等.5.A解析:A【分析】根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【详解】解:①当mn>0,m,n同号,同正时y=mx+n过1,3,2象限,同负时过2,4,3象限;②当mn<0时,m,n异号,则y=mx+n过1,3,4象限或2,4,1象限.故选:A.【点睛】此题主要考查一次函数与正比例函数的图象判断,解题的关键是熟知一次函数的图象与性质.6.A解析:A【分析】由题目条件可判断出一次函数的增减性,则可得到关于m的不等式,可求得m的取值范围.【详解】解:∵点P(-1,y1)、点Q(3,y2)在一次函数y=(2m-1)x+2的图象上,∴当-1<3时,由题意可知y1>y2,∴y随x的增大而减小,∴2m-1<0,解得m<12,故选:A.【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.7.B解析:B【分析】先根据二元一次方程组无解,得出k的值,再利用一次函数图象与系数的关系可得出一次函数的图象经过第一、三、四象限,进而可得出一次函数322y x=-的图象不经过第二象限.【详解】解:∵(7)2(31)5 y k xy k x=--⎧⎨=-+⎩∴(7-k)x-2=(3k-1)x+5(7-k)x-(3k-1)x=7(7-k-3k+1)x=7(8-4k)x=7∵二元一次方程组无解∴8-4k=0解得:k=2∴将k=2代入一次函数32y kx =- 得322y x =-∵k=2﹥0,b=32-<0 ∴一次函数322y x =-的图象不经过第二象限 故选:B 【点睛】本题考查了一次函数图象与系数的关系,牢记“k ﹥0,b <0⇔y =kx +b 的图象在一、三、四象限”是解题的关键.8.C解析:C 【分析】 先根据223y x =+可得B 、C 的坐标,进而确定OB 、OC 的长,然后根据3S △ABO =S △BOC 结合点A 在第二象限确定A 点的纵坐标,然后再根据点A 在y =23x+2上,可确定点A 的横坐标即可解答. 【详解】解:由223y x =+可得B (﹣3,0),C (0,2), ∴BO =3,OC =2, ∵3S △ABO =S △BOC ,∴3×12×3×|yA|=12×3×2, 解得y A =±23, 又∵点A 在第二象限, ∴y A =23, 当y =23时,23=23x+2,解得x =﹣2, ∴方程组0236kx y x y -=⎧⎨-=-⎩的解为223x y =-⎧⎪⎨=⎪⎩.故答案为C . 【点睛】本题主要考查了一次函数与二元一次方程组,理解方程组的解就是两个相应的一次函数图象的交点坐标成为解答本题的关键.9.B解析:B【分析】连接CG ,由正方形的对称性,易知AG=CG ,由正方形的对角线互相平分一组对角,GE ⊥DC ,易得DE=GE .在矩形GECF 中,EF=CG .要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【详解】解:连接GC ,∵四边形ABCD 为正方形,所以AD=DC ,∠ADB=∠CDB=45°,∵∠CDB=45°,GE ⊥DC ,∴△DEG 是等腰直角三角形,∴DE=GE .在△AGD 和△GDC 中,AD CD ADG CDG DG DG ⎧⎪∠∠⎨⎪⎩===,∴△AGD ≌△GDC (SAS )∴AG=CG ,在矩形GECF 中,EF=CG ,∴EF=AG .∵BA+AD+DE+EF-BA-AG-GE ,=AD=1500m .∵小敏共走了3100m ,∴小聪行走的路程为3100+1500=4600(m ),故选:B .【点睛】本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF ,DE=GE .10.A解析:A【分析】根据正方形的对角线平分一组对角可得∠ABD =∠ADB =45°,再求出∠DAE 的度数,根据三角形的内角和定理求∠AED ,从而得到∠DAE =∠AED ,再根据等角对等边的性质得到AD =DE ,然后求出正方形的对角线BD ,再求出BE ,最后根据等腰直角三角形的直角边等于斜边的2倍计算即可得解. 【详解】解:在正方形ABCD 中,∠ABD =∠ADB =45°,∵∠BAE =22.5°,∴∠DAE =90°﹣∠BAE =90°﹣22.5°=67.5°,在△ADE 中,∠AED =180°﹣45°﹣67.5°=67.5°,∴∠DAE =∠AED ,∴AD =DE =4,∵正方形的边长为4,∴BD =∴BE =BD ﹣DE =﹣4,∵EF ⊥AB ,∠ABD =45°,∴△BEF 是等腰直角三角形,∴EF =2BE =2×(﹣4)=4﹣. 故选:A .【点睛】本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,等角对等边的性质,正方形的对角线与边长的关系,等腰直角三角形的判定与性质,根据角的度数的相等求出相等的角,再求出DE=AD 是解题的关键,也是本题的难点.11.B解析:B【分析】与a 的取值范围即可得到答案.【详解】∵a 的取值范围是0a ≥a 的取值范围是任意实数, 故a 应满足的条件是0a ≥,故选:B.【点睛】此题考查二次根式的性质:双重非负性,二次根式的被开方数满足大于等于零的条件. 12.B解析:B【分析】由图①结合勾股定理可得三个正方形面积之间的关系,在图②中,可知两个小正方形的面积与阴影部分面积之和减去大正方形的面积即可得到重叠部分的面积.【详解】设以直角三角形三边为边长的正方形面积分别为S1,S2,S3,大小正方形重叠部分的面积为S,则由勾股定理可得:S1+S2=S3,在图②中,S1+S2+3-S=S3,∴S=3,故选:B.【点睛】本题主要考查勾股定理与图形面积,灵活运用勾股定理处理图形面积之间的转化是解题关键.二、填空题13.1615【分析】根据中位数和众数的定义求解【详解】解:从小到大排列此数据数据15出现了四次最多为众数16和16处在第5位和第六位它两个数的平均数为16为中位数故答案为:1615【点睛】本题属于基础题解析:16 15【分析】根据中位数和众数的定义求解.【详解】解:从小到大排列此数据,数据15出现了四次最多为众数,16和16处在第5位和第六位,它两个数的平均数为16为中位数.故答案为:16,15.【点睛】本题属于基础题,考查了确定一组数据的中位数和众数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14.3【分析】依据定义和公式分别计算新旧两组数据的平均数中位数众数求解即可【详解】原数据的1335的平均数为=3中位数为=3众数为3;添加的数为3后新数据13335的平均数为=3中位数为3众数为3;故答解析:3.【分析】依据定义和公式分别计算新旧两组数据的平均数、中位数、众数求解即可.【详解】原数据的1、3、3、5的平均数为13354+++ =3,中位数为332+=3,众数为3; 添加的数为3后,新数据1、3、3、3、5的平均数为133355++++ =3,中位数为3,众数为3;故答案为:3.【点睛】 此题考查众数、中位数、平均数,熟练掌握相关概念和公式是解题的关键.15.70【分析】利用待定系数法求出相遇前y 与x 的关系式确定出甲乙两地的距离进而求出两车的速度即可确定出所求【详解】解:设线段AB 的解析式为把与代入得:解得即令则即甲乙两地相距280千米设两车相遇时慢车行 解析:70【分析】利用待定系数法求出相遇前y 与x 的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可确定出所求.【详解】解:设线段AB 的解析式为y kx b =+,把()1.5,70与()2,0代入得: 1.57020k b k b +=⎧⎨+=⎩, 解得140280k b =-⎧⎨=⎩, 即140280y x =-+,令0x =,则280y =,即甲乙两地相距280千米,设两车相遇时,慢车行驶了x 千米,则快车行驶了()40x +千米,根据题意得:40280x x ++=,解得:120x =,即两车相遇时,慢车行驶了120千米,则快车行驶了160千米,∴快车的速度为80千米/时,慢车速度为60千米/时,根据题意得:()28016080 1.5-÷=(小时),1.56090⨯=(千米),2801209070--=(千米),则快车到达乙地时,慢车还有70千米到达甲地.【点睛】本题考查一次函数的应用,解题的关键是能看懂函数图象,利用数形结合的思想将图象与已知条件联系在一起,灵活变化,找出所求问题需要的条件.16.【分析】利用待定系数法求出两点坐标利用勾股定理求出根据确定点坐标即可【详解】解:令得到令得到以为圆心长为半径作圆交坐标轴即为点或故答案为:【点睛】本题考查一次函数的应用等腰三角形的判定和性质等知识熟 解析:()15,0+()15,0-()0,2 【分析】利用待定系数法求出A 、B 两点坐标,利用勾股定理求出AB ,根据AC AB =,确定点C 坐标即可.【详解】解:令0x =,得到2y =-,(0,2)B ,令0y =,得到1x =,(1,0)A ∴,1OA ∴=,2OB =,22125AB ,以A 为圆心,AB 长为半径作圆,交坐标轴即为C 点,5ACAB , (15C ,0),(15,0)或(0,2), 故答案为:()15,0+、()15,0-、()0,2. .【点睛】本题考查一次函数的应用,等腰三角形的判定和性质等知识,熟练掌握待定系数法确定交点坐标是解题的关键.17.或2【分析】根据菱形有一个内角为60°可以得到等边三角形分两种情况画出图形结合勾股定理求出AC 的长【详解】解:∵四边形ABCD 是菱形∴AC⊥BDOA=OCOB=ODAD=AB=2若∠BAD=60°∴解析:23或2【分析】根据菱形有一个内角为60°可以得到等边三角形,分两种情况,画出图形,结合勾股定理求出AC的长.【详解】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,AD=AB=2,若∠BAD=60°,∴△ABD是等边三角形,∴BD=2,∴OD=1,∴OA=22213-=,∴AC=23;若∠ABC=60°,∴△ABC是等边三角形,∴AC=2;故答案为:32.【点睛】此题考查了菱形的性质和勾股定理,等边三角形的判定和性质,要记住菱形的对角线互相平分且垂直,菱形的四条边都相等.18.【分析】按图中方式折叠后可得到除去两端纸条使用的长度为5个宽由此解题即可【详解】解:根据折叠的过程发现中间的长度有5个宽则在开始折叠时起点与点的距离为:故答案为:【点睛】本题考查翻折变换(折叠问题)解析:2552x-【分析】按图中方式折叠后,可得到除去两端,纸条使用的长度为5个宽,由此解题即可.【详解】解:根据折叠的过程,发现中间的长度有5个宽,则在开始折叠时起点M与点A的距离为:2552x-,故答案为:2552x-.【点睛】本题考查翻折变换(折叠问题),是重要考点,难度较易,掌握相关知识是解题关键.19.<【分析】先把根号的外的因式移入根号内再比较大小即可【详解】∵==<∴<故答案为:<【点睛】本题考查了比较二次根式的大小能选择适当的方法比较两个实数的大小是解此题的关键解析:<【分析】先把根号的外的因式移入根号内,再比较大小即可.【详解】∵,∴故答案为:<【点睛】本题考查了比较二次根式的大小,能选择适当的方法比较两个实数的大小是解此题的关键.20.4【分析】过点A作AD⊥BC于点D则AD=h根据等腰三角形的性质求出BD=BC=3dm利用勾股定理求出h【详解】解:过点A作AD⊥BC于点D则AD=h∵AB=AC=5dmBC=6dm∴AD是BC的垂解析:4【分析】过点A作AD⊥BC于点D,则AD=h,根据等腰三角形的性质求出BD=12BC=3dm,利用勾股定理求出h.【详解】解:过点A作AD⊥BC于点D,则AD=h.∵AB=AC=5dm,BC=6dm,∴AD是BC的垂直平分线,∴BD=12BC=3dm.在Rt△ABD中,AD4=dm,即h=4(dm).答:h的长为4dm.故答案为:4..【点睛】此题考查勾股定理的实际应用,等腰三角形三线合一的性质,正确理解题意构建直角三角形,利用勾股定理解决问题是解题的关键.三、解答题21.(1)①108°;②9,6;(2)7.6万元.【解析】试题分析:(1)①在扇形图中,由C部门所占比例乘以360°即可得出C部门所对应的圆心角的度数.②先计算出A部门所占比例,再计算出总人数,根据B、C部门所占比例即可求出b、c的值.(2)利用加权平均数的计算公式计算即可.试题(1)①360°×30%=108°;②∵a%=1-45%-30%=25%5÷25%=20∴20×45%=9(人)20×30%=6(人)(2)10×25%+8×45%+5×30%=7.6答:这个公司平均每人所创年利润是7.6万元.考点:1.扇形统计图;2.加权平均数.22.(1)30元;(2)50元;(3)250.【分析】(1)根据众数的定义即可判判断;(2)根据中位数的定义即可判断;(3)先计算出样本中计划购买课外书花费50元的学生所占的比例,然后在乘以总人数即可;【详解】(1)花费30元的有12人,最多,故众数是30元;(2)一共有40个数据,排序后第20、21个数据的平均数即是中位数,6+12=18<20,6+12+10=28>20,故第20、21个数据都是50元,故中位数是50元;(3)10÷40×2400=600(人),故估计本学期计划购买课外书花费50元的学生有50人.23.(1)1.1(06)1.63(6)x xyx x≤≤⎧=⎨->⎩;(2)这两户家庭这个月的用水量分别为35m和38m【分析】(1)由题意可分06x ≤≤,x>6两种情况写出y 与x 之间的函数表达式;(2)首先判断消费是否大于1.1×6,若不大于,则采用(1)中06x ≤≤的函数关系式求解,若大于,则采用x>6的函数关系式求解.【详解】解:(1)当06x ≤≤时, 1.1y x =;当6x >, 1.16 1.6(6)y x =⨯+⨯-即 1.63y x =-,所以y 与x 之间的函数表达式为 1.1(06)1.63(6)x x y x x ≤≤⎧=⎨->⎩, (2)因为5.5 1.16<⨯所以用水量不超过6立方米,所以当 5.5y =时,5.5 1.1x =,解得5x =.因为9.8 1.16>⨯所以用水量超过6立方米,所以当9.8y =时,9.8 1.63x =-,解得8x =.答:这两户家庭这个月的用水量分别为35m 和38m【点睛】本题考查一次函数的应用,熟练掌握分段函数的特点和解决方法是解题关键 . 24.(1)见解析;(2)见解析【分析】(1)由四边形ABCD 是平行四边形,根据平行四边形的性质,可得AB ∥CD ,AB=CD ,又由点M 为边CD 的中点,点N 为边AB 的中点,即可得CM=AN ,继而可判定四边形ANCM 是平行四边形,则可证得AM ∥CN .(2)由AM ∥CN ,BH ⊥AM ,点N 为边AB 的中点,可证得BH ⊥CN ,ME 是△BAH 的中位线,则可得CN 是BH 的垂直平分线,继而证得△BCH 是等腰三角形.【详解】解:(1)证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB CD =.∵点M 、N 分别是边CD 、AB 的中点, ∴12CM CD =,1AN AB 2=. ∴CM AN =.又∵AB ∥CD ,∴四边形ANCM 是平行四边形∴AM ∥CN .(2)设BH 与CN 交于点E ,∵AM ∥CN ,BH ⊥AM ,∴BH ⊥CN ,∵N 是AB 的中点,∴EN 是△BAH 的中位线,∴BE=EH ,∴CN 是BH 的垂直平分线,∴CH=CB ,∴△BCH 是等腰三角形.【点睛】此题考查了平行四边形的判定与性质、线段垂直平分线的性质以及等腰三角形的判定.此题难度适中,注意掌握数形结合思想的应用.25.(1)2;(2)-15.【分析】(1)利用二次根式的加减运算法则计算即可;(2)根据平方差公式计算.【详解】(1)原式=2622--2(2)原式=22(326)(326)(3)6)92415-+--=--=-=-【点睛】本题考查了二次根式的加减法及平方差公式,掌握二次根式的加减法的运算法则是解题的关键.26.(1)BEF 是等腰三角形,理由见解析;(2)5.【分析】(1)先根据长方形的性质可得//AD BC ,再根据平行线的性质可得DEF BFE ∠=∠,然后根据折叠的性质可得DEF BEF ∠=∠,从而可得BFE BEF ∠=∠,最后根据等腰三角形的判定即可得;(2)先根据长方形的性质可得90A ∠=︒,再根据折叠的性质可得BE DE =,然后设BE DE x ==,从而可得8AE x =-,最后在Rt ABE △中,利用勾股定理即可得.【详解】(1)BEF 是等腰三角形,理由如下:四边形ABCD 是长方形,//AD BC ∴,DEF BFE ∴∠=∠,由折叠的性质得:DEF BEF ∠=∠,BFE BEF ∴∠=∠,BEF ∴是等腰三角形;(2)四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,222AB AE BE +=,即2224(8)x x +-=,解得5x =,即BE 的长为5.【点睛】本题考查了长方形与折叠问题、勾股定理、等腰三角形的判定等知识点,熟练掌握各判定定理与性质是解题关键.。
辽宁省朝阳市八年级下学期数学期末考试试卷

八年级下学期数学期末考试试卷一、选择题(共10题;共20分)1.不等式的解集是()A. B. C. D.2.若分式中的、的值都变为原来的3倍,则此分式的值()A. 不变B. 是原来的3倍C. 是原来的D. 是原来的3.下列图案中,不是中心对称图形的是()A. B. C. D.4.多项式各项的公因式是()A. B. C. D.5.如图,在四边形ABCD中,AB=CD,M,N,P分别是AD,BC,BD的中点,若∠MPN=130°,则∠NMP的度数为()A. 10°B. 15°C. 25°D. 40°6.如果一个多边形的每一个内角都是,那么这个多边形是()A. 四边形B. 五边形C. 六边形D. 七边形7.如图,中,的垂直平分线交于,如果,,那么的周长是()A. B. C. D.8.若解分式方程= 产生增根,则m=()A. 1B. 0C. ﹣4D. ﹣59.下列命题中是真命题的是()A. 若,则B. 有两个角为的三角形是等边三角形C. 一组对边相等,另一组对边平行的四边形是平行四边形D. 如果,那么,10.如图,在中,,,将绕点逆时针旋转,得到,连接,则的长是()A. B. C. D.二、填空题(共6题;共9分)11.分解因式:________.12.关于x的不等式组的解集为-3<x<3,则a,b的值分别为________.13.如图,在□中,⊥于点,⊥于点.若,,且□的周长为40,则□的面积为________。
14.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书的数量________本.15.如图,已知正五边形ABCDE,AF∥CD,交DB的延长线于点F,则∠DFA=________度.16.如图,矩形ABCD的面积为20cm2,对角线交于点O;以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B;…;依此类推,则平行四边形AO4C5B的面积为________.三、解答题(共9题;共63分)17.先化简,再求值:.其中,.18.解不等式组:,并把它的解集在数轴上表示出来19.解分式方程:.20.如图是一种儿童的游乐设施—儿童荡板.小明想验证这个荡板上方的四边形是否是平行四边形,现在手头只有一根足够长的绳子,请你帮助他设计一个验证方案,并说明理由.21.某商店购进甲、乙两种商品,已知每件甲种商品的价格比每件乙种商品的价格贵10元,用350元购买甲种商品的件数恰好与用300元购买乙种商品的件数相同.(1)求甲、乙两种商品每件的价格各是多少元?(2)计划购买这两种商品共50件,且投入的经费不超过3200元,那么最多购买多少件甲种商品?22.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的格点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.(1)在网格中画出△A1B1C1和△A1B2C2;(2)计算线段AC从开始变换到A1 C2的过程中扫过区域的面积(重叠部分不重复计算)23.如图,在中,平分,,交的延长线于点,点在上,且,求证:点是的中点.24.如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=________ cm;DP=________ cm;BQ=________ cm;CQ=________ cm. (2)当t为何值时,四边形APQB是平行四边形?(3)当t为何值时,四边形PDCQ是平行四边形?25.为执行中央“节能减排,美化环境,建设美丽新农村”的国策,我市某村计划建造两种型号的沼气池共20个,以解决该村所有农户的燃料问题,两种型号沼气池的占地面积、使用农户数及造价见下表:型号占地面积(/个)使用农户数(户1520已知可供建造沼气池的占地面积不超过,该村农户共有492户.(1)满足条件的方案共有几种?写出解答过程;(2)通过计算判断,哪种建造方案最省钱.答案解析部分一、选择题1.【解析】【解答】解:−3x<−2,不等式两边同除以−3,得,故答案为:A.【分析】根据不等式的性质,在不等式的两边都除以-3,不等号方向改变即可得出答案.2.【解析】【解答】解:∵分式中的、的值都变为原来的3倍∴∴此分式的值不变.故答案为:A【分析】用3x,3y替换原题中的x、y,再分子、分母分别分解因式后约分即可得出答案.3.【解析】【解答】解:A、是中心对称图形,故A选项错误;B、是中心对称图形,故B选项错误;C、不是中心对称图形,故C选项正确;D、是中心对称图形,故D选项错误.故答案为:C.【分析】中心对称图形是图形绕某一点旋转180°后与原来的图形完全重合,再对各选项逐一判断即可。
初二数学下册期末考试试卷(含-答案)人教版
明.)20。
如图,在四边形ABCD 中,AB =AD ,CB =CD ,E 为AB 的中点,在AC 上求作点P ,使EP +BP 的值最小。
(1)画出点P 的位置(保留作图痕迹,不写画法);(2)若AD =6,∠DAC =30°,求EP+BP 的最小值。
21.,办场时买来的80头小羊经过精心饲养,七个月就可以出售了。
下表数据是这些羊出售时的体重:(1)求这些“大耳羊"在出售时平均体重是多少? (2)“大耳羊”购进时每只成本平均为420元,饲养时每只成本平均为1060元,若按每千克32元的价格可以全部售完,在不计其它成本的情况下,求该农民合作组织饲养这批“大耳羊”可以获得多少利润(利润=总售价-购羊成本-饲养成本).22.某车间计划生产100件产品,由于采用新技术,每天可多生产4件,这样实际生产148件产品的时间与计划生产100件产品所需要的时间相等,求计划生产100件产品所需要的时间是多少天?23。
如图,反比例函数的图象经过边长为3正方形OABC 的顶点B ,点P (m ,n )为该函数图象上的一动点,过点P 分别作x 轴、y 轴的垂线,垂足分别为E 、F ,设矩形OEPF 和正方形OABC 不重合部分的面积为S (即图中阴影部分的面积). (1)求k 的值;(2)当m =4时,求n 和S 的值; (3)求S 关于m 的函数解析式.24.如图,四边形ABCD 是直角梯形,∠B =90°,AB =8cm,AD =24cm,BC =26cm 。
点P 从A 出发,以1cm/s 的速度向点D 运动;点Q 从点C 出发,以3cm/s 的速度向B 运动,若它们同时出发,运动时间为t 秒,并且当其中一个动点到达端点时,另一动点也随之停止运动,运动时间为t 秒.(1)当t =3时,求出P 、Q 两点运动的路程分别是多少?(3)四边形PQCD 有可能为菱形吗?试说明理由。
八年级(初二)数学参考答案与评分建议一、选择题(本大题共8小题,每小题3分,共24分.)1. B ; 2.C ; 3.A ; 4.A ; 5.C ; 6.D ; 7.B; 8.C .二、填空题(本大题共8小题,每小题3分,共24分.)9.; 10.; 11.6; 12. 1;13。
2020年初二下学期期末考试数学模拟试题(青岛版)
2020年初二下学期期末考试数学模拟试题(青岛版)一、选择题(本大题共12小题,共48分)1.下列命题是真命题的是()A. 四条边都相等的四边形是正方形B. 四个角相等的四边形是矩形C. 平行四边形,菱形,矩形都既是轴对称图形,又是中心对称图形D. 顺次连接一个四边形四边中点得到的四边形是矩形,则原来的四边形一定是菱形2.小明的作业本上有以下四题:①√16a4=4a2;②√5a×√10a=5√2a;③√18=3√2;④√3a−√2a=√a.做错的题是A. ①B. ②C. ③D. ④3.下列四个图案中,既可用旋转来分析整个图案的形成过程,又可用平移来分析整个图案的形成过程的图案是【】A. B. C. D.4.如图,在△ABC中,∠ACB=90∘,AC=BC=4,P是△ABC的高CD上一个动点,以B点为旋转中心把线段BP逆时针旋转45°得到BP′,连接DP′,则DP′的最小值是()A. 2√2−2B. 4−2√2C. 2−√2D. √2−14 5 85.如图,平行四边形ABCD中,对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=12BC=2,则下列结论:①∠CAD=30°;②OE=14AD;③S平行四边形ABCD =AB·AC;④BD=2√7;⑤S△BEP=S△APO;其中正确的个数是()A. 2B. 3C. 4D. 56.某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到敬老院慰问老人.如果分给每位老人4盒牛奶,那么剩下28盒牛奶;如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒.则这个敬老院的老人最少有()A. 29人B. 30人C. 31人D. 32人7.如果a>b,那么下列不等式中正确的是()A. −a2>−b2B. ac2>bc2C. 2−a<2−bD. b−a>08.如图所示,ABCD是长方形地面,长AB=20,宽AD=10,中间竖有一堵砖墙高MN=2,一只蚂蚁从A点爬到C点,它必须翻过中间那堵墙,则它至少要走()A. 20B. 24C. 25D. 269.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()3A. 2B. 2√2C. √2D. √210.−64的立方根与√81的平方根之和是()A. −7B. −1或−7C. −13或5D. 511.如图,一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0,n>0)的图象是()A. B. C. D.12.甲、乙二人从学校出发去新华书店看书,甲步行一段时间后,乙骑自行车沿相同路线行进两人均匀速前行,他们之间的距离s(米)与甲出发时间t(分)之间的函数关系如图所示.下列说法错误的是()A. 乙的速度是甲速度的2.5倍B. a=15C. 学校到新华书店共3800米D. 甲第25分钟到达新华书店12 13二、填空题(本大题共6小题,共24分)13.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE//BD,EF⊥BC,EF=√3,则AB的长是_____.14.在同一直角坐标系中,对于以下四个函数①y=−x+1;②y=x+1;③y=−(x+1);④y=−2(x+1)的图像,下列说法正确的是_________________(填ABCD).A.关于x轴对称的是②和③B.在x轴上交点相同的是②和④C. 函数①可以由函数③向上平移2个单位得到D.函数①和②的图像和x轴围成的图形面积为2.15.如图,学校操场边上有一块四边形空地ABCD,该空地的阴影部分需要绿化,经测量发现,∠ADC=∠DAE=∠DCE=90°,CD=8m,AD=6m,BC=24m,AB=26m,那么需要绿化部分的面积为__________________.16.不等式组{x−a>0,1−x>2x−5有3个整数解,则a的取值范围是.17.如图,正比例函数y=kx(k≠0)的图象经过点A(2,4),AB⊥x轴于点B,将△ABO绕点A逆时针旋转90°得到△ADC,则直线AC的函数表达式为__________.18.化简二次根式a√−a+1a2的结果是_______________15 17三、解答题19.(8分)计算:(1)√18−√8+(√3+1)(√3−1)(2)√12×√323÷√1320.(8分)已知不等式4−5x2−1<6的负整数解是方程3x−4=ax的解,试求出不等式组{7(x−a)−3x>315x+1≤a的解集.21.(10分)如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(−2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.(1)求k、b的值;(2)若点D在y轴负半轴上,且满足S△COD=13S△BOC,求点D的坐标.22.(12分)如图,在边长为1的正方形ABCD中,E是边CD的中点,点P是边AD上一点(与点A、D不重合),射线PE与BC的延长线交于点Q.(1)求证:;(2)过点E作EF//BC交PB于点F,连接AF,当PB=PQ时,①求证:AF//PE;②请判断四边形AFEP是否为菱形,并说明理由.23.(12分)四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交射线BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)如图1,求证:矩形DEFG是正方形;(2)若AB=2,CE=√2求CG的长度(2)当线段DE与正方形ABCD的某条边的夹角是32°时,求∠EFC的度数.24.(13分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120t去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,提供的信息如下表:土特产种类甲乙丙每辆汽车运载量(t)865每吨土特产获利(百元)121610解答以下问题:(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数表达式;(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种?写出每种安排方案;(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?求出最大利润的值.25.(15分)如图 ①,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF//AB交PQ于F,连接BF.(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动; ①当点Q与点C重合时(如图 ②),求菱形BFEP的边长; ②若限定P,Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.答案和解析1.【答案】B【解析】【分析】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.根据正方形的判定、矩形的判定、中点四边形的性质判断即可.【解答】解:四条边相等的多边形是菱形,A是假命题;四个角相等的四边形是矩形,B是真命题;菱形,矩形都既是轴对称图形,又是中心对称图形,平行四边形不是轴对称图形,C是假命题;依次连接一个四边形四边中点得到的四边形是矩形,则原来的四边形不一定是菱形,D是假命题.故选B.2.【答案】D【解析】【分析】本题考查二次根式的化简、二次根式的乘法与加法运算.利用化简二次根式、二次根式的乘法与加法运算法则逐个计算判定,即可得出答案.【解答】解:①√16a4=4a2,故①正确;②√5a·√10a=√50a2=5√2a,故②正确;③√18=3√2,故③正确;④√3a−√2a不是同类二次根式不能合并,故④错误.故选D.3.【答案】C【解析】解:A、B、C、D四个选项中的图形都可以看成是图形的一半旋转180°得到,若一个图形可以通过某一个基本图形平移得到,则这个图形可以分成几个相同的基本图形,且基本图形之间对应点的连线应该是平行的,故A、B、D不能由平移得到,只有C选项的图形,可看成是由基本图形通过平移得到,故选C.分别根据旋转的定义及平移的定义逐项分析即可.本题主要考查旋转和平移的定义,掌握平移和旋转的特征是解题的关键.4.【答案】A【解析】【分析】此题是几何变换综合题,主要考查了旋转的旋转,全等三角形的判定和性质,等腰直角三角形的判定,勾股定理,解题的关键是构造△BP′C′≌△BPC,从而判断出P′点运动的轨迹,根据点到直线的距离垂线段最短解答,是一道难度比较大的中考常考题.【解答】解:在BA上取一点C’,使BC′=BC,连接P′C′,作DH⊥P′C′.易证△BP′C′≌△BPC,在△ABC中,∠ACB=90∘,AC=BC=4,CD是△ABC的高,∴∠BCP=45°,BD=2√2,∴∠BC′P′=∠BCP=45°,C′D=BC−BD=4−2√2,∵DH⊥C′P′,∴DH=C′H,∴√2DH=C′D,∴DH=√2=2√2−2.2即当DP′⊥C′P′时,DP’的最小值是2√2−2.故选A.5.【答案】D【解析】【分析】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握三角形面积的关系.分别根据平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积,逐项计算判定,即可求得答案.【解答】解:①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD//BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=2,∴△ABE是等边三角形,∴AE=BE=2,∵BC=4,∴EC=2,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD//BC,∴∠CAD=∠ACE=30°,故①正确;④∵BE=EC,OA=OC,∴OE=12AB=1,OE//AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=√3,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=√22+(√3)2=√7,∴BD=2OD=2√7,故④正确;③由④知:∠BAC=90°,∴S▱ABCD=AB⋅AC,故③正确;②由④知:OE是△ABC的中位线,∴OE=12AB,∵AB=12BC,∴OE=14BC=14AD,故②正确;⑤∵四边形ABCD是平行四边形,AB=12BC=2,∴AC=√BC2−AB2=√42−22=2√3,∴OA=OC=√3,∴S△ABO=S△EOC=12AB⋅AO=12×2×√3=√3,∵OE=14BC=14AD=1,AO=OC,∴OE是△ABC的中位线,即BE=EC=2,∵∠ADC=60°,AE平分∠BAD,∠BAE=60°,∴△ABE为边长为2的等边三角形,BE边上高=√22−12=√3,∴S△ABE=12BE⋅√3=12×2×√3=√3,∴S△ABO=S△ABE;即S△ABO−S△ABP=S△ABE−S△ABP,∴⑤S△BEP=S△APO,正确;正确的个数为5个.故选:D.6.【答案】B【解析】【分析】此题主要考查了一元一次不等式组的应用,解该不等式组并找出整数解,解决问题的关键是读懂题意,找到关键描述语,列出不等式组.首先设这个敬老院的老人有x 人,则有牛奶(4x +28)盒,根据关键语句“如果分给每位老人5盒牛奶,那么最后一位老人分得的牛奶不足4盒,但至少1盒”可得不等式组,解出不等式组后再找出符合条件的整数.【解答】解:设这个敬老院的老人有x 人,依题意得:{4x +28−5(x −1)<44x +28−5(x −1)≥1, 解得:29<x ≤32,∵x 为整数,∴x 可取值30,31,32,∴x 最少为30,故选B .7.【答案】C【解析】【分析】本题主要考查了不等式的基本性质,不等式的基本性质有三条:①不等式的两边同时加上或减去同一个数或整式,不等号的方向不变,②不等式的两边同时乘以或除以一个相同的正数,不等号的方向不变,③不等式的两边同时乘以或除以同一个负数,不等号的方向改变.解答此题根据不等式的基本性质进行变形判断即可.【解答】解:A.∵a >b ,∴−a 2<−b2,故A 选项错误;B .∵c 2可能等于0,故ac 2有可能等于bc 2,故B 选项错误;C .∵a >b ,∴−a <−b ,∴2−a <2−b ,故C 选项正确;D .∵a >b ,∴0>b −a ,即b −a <0,故D 选项错误.故选C .8.【答案】D【解析】【分析】本题考查的是平面展开最短路线问题及勾股定理,根据题意画出图形是解答此题的关键.连接AC ,利用勾股定理求出AC 的长,再把中间的墙平面展开,使原来的矩形长度增加而宽度不变,求出新矩形的对角线长即可.【解答】解:如图所示,将图展开,图形长度增加2MN ,原图长度增加4米,则AB =20+4=24,连接AC ,∵四边形ABCD 是长方形,AB =24,宽AD =10,∴AC 2=AB 2+BC 2=242+102=262,∴蚂蚱从A 点爬到C 点,它至少要走26的路程.故选D.9.【答案】C【解析】【分析】本题主要考查算术平方根、立方根及实数的定义,看懂流程图且熟练计算算术平方根、立方根是解题的关键.根据输入x的值为64按照流程逐一计算、判断可得.【解答】解:当输入x的值为64时,√64=8,是有理数,3=2,是有理数,√8√2是无理数,输出,即y=√2,故选C.10.【答案】B【解析】【分析】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.根据题意列出算式,计算即可得到结果.【解答】解:根据题意得:−64的立方根为−4,√81=9,9的平方根为±3,则−64的立方根与√81的平方根之和是−4+3=1或−4−3=−7.故选B.11.【答案】A【解析】【分析】本题主要考查了一次函数的图像和正比例函数的图像的知识点,根据“两数相乘,同号得正,异号得负”分两种情况讨论mn的符号,然后根据m、n同正时,一负一正时,利用一次函数的性质进行判断.【解答】解:已知n>0,可分两种情况讨论,①当mn>0时,m,n同号,则m>0,y=mx+n过一,二,三象限,y=mnx过一,三象限;②当mn<0时,m,n异号,则m<0,y=mx+n过一,二,四象限,y=mnx过二,四象限.故选A.12.【答案】C【解析】解:由图象得出甲步行720米,需要9分钟,∴甲的运动速度为:720÷9=80(m/分),∵甲19分钟运动距离为:19×80=1520(m),当第19分钟以后两人之间距离越来越近,说明乙已经到达终点,则乙先到达新华书店,此时乙运动19−9= 10(分钟),乙比甲多走480米,∴乙的运动速度为:(1520+480)÷10=200(m/分),∴200÷80=2.5,∴乙的速度是甲速度的2.5倍,故选项A说法正确;设乙x分后追上甲,根据题意得:720+80x=200x,解得x=6∴a=9+6=15,故选项B说法正确;学校到新华书店距离为:10×200=2000(m),故选项C说法错误;甲运动时间为:2000÷80=25(分钟),故甲第25分钟到达新华书店,故选项D说法正确;故选:C.根据甲步行720米,需要9分钟,进而得出甲的运动速度,利用图形得出乙的运动时间以及运动距离,进而分别判断得出答案.本题考查一次函数的应用,解答此类问题的关键是明确题意,利用数形结合的思想解答.13.【答案】1【解析】【分析】本题考查平行四边形的性质和判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.根据平行四边形的判定和性质,解直角三角形可以求得AB的长,本题得以解决.【解答】解:∵四边形ABCD是平行四边形,∠ABC=60°,∴AB//CD,AB=CD,∴∠ABC=∠ECF=60°,∵AB//DE,AE//BD,∴四边形ABDE是平行四边形,∴AB=DE,CE,∴AB=CD=DE=12∵EF⊥BC,EF=√3,∠ECF=60°,∴CE=2,∴AB=1,故答案为1.14.【答案】B、C【解析】【分析】本题主要考查了一次函数的图象、一次函数的性质、一次函数图象与几何变换以及一次函数与一元一次方程.根据一次函数的图象、一次函数的性质、一次函数图象与几何变换以及一次函数与一元一次方程,对各项分析判定即可.【解答】解:A.②和③的图象不关于x轴对称,故A错误;B.②在x轴上交点是(−1,0),④在x轴上交点是(−1,0),故B正确;C. 函数①可以由函数③向上平移2个单位得到,故C正确;D.函数①和②的交点是(0,1),①的图像和x轴交点是(1,0),②的图像和x轴的交点是(−1,0),函数①和②的图像和x轴围成的图形面积为1,故Dcw.故答案为B、C.15.【答案】96m2【解析】【分析】本题考查的是勾股定理的应用,本题的关键是确定AC2+BC2=AB2,然后利用面积公式即可求解.由AC2+BC2=100+576=676=262=AB2,则△ABC为直角三角形,即可求解.【解答】解:连接AC,∵∠AEC=90°,∴AC2=AD2+CD2=36+64=100,∴AC=10,∵AC2+BC2=100+576=676=262=AB2,∴△ABC为直角三角形,需要绿化部分的面积=S△ACB−S△ACE=12×AC⋅BC−12AE×CE=12×10×24−12×8×6=120−24=96(m2)故答案为96m2.16.【答案】−2≤a<−1【解析】【分析】本题主要考查了不等式组的整数解和不等式组解集的理解,解答此题可先求出不等式组中每个不等式的解集,然后将不等式组的解集用含a的代数式表示,再根据不等式组有3个整数解可确定a的取值范围.【解答】解:解不等式x−a>0,得x>a,解不等式1−x>2x−5,得x<2,因为不等式组有3个整数解,所以不等式组的整数解为−1,0,1,则−2≤a<−1.17.【答案】y=−12x+5【解析】【分析】本题考查一次函数图象与几何变换,系数法求一次函数的解析式,旋转的性质,由A(2,4),AB⊥x轴于点B,可得出OB,AB的长,再由△ABO绕点A逆时针旋转90°得到△ADC,由旋转不变性的性质可知DC=OB,AD=AB,故可得出C点坐标,再把C点和A点坐标代入y=ax+b,解出解析式即可.【解答】解:∵正比例函数y=kx(k≠0)经过点A(2,4),∴4=2k,解得:k=2,∴y=2x;∵A(2,4),AB⊥x轴于点B,∴OB=2,AB=4,∵△ABO 绕点A 逆时针旋转90∘得到△ADC ,∴DC =OB =2,AD =AB =4∴C(6,2)设直线AC 的解析式为y =ax +b ,把(2,4)(6,2)代入解析式可得:{2a +b =46a +b =2, 解得:{a =−12b =5, 所以解析式为:y =−12x +518.【答案】−√−a −1【解析】【分析】本题考查的是二次根式的化简,掌握二次根式的性质,首先根据二次根式成立的条件求出a 的取值范围,然后在化简即可.【解答】 解:, ∴−a+1a 2≥0,∴a +1≤0, ∴a ≤−1,, ∴故答案为−√−a −1.19.【答案】解:(1)原式=3√2−2√2+(3−1)=2+√2;(2)原式=2√3×4√23×√3=8√2.【解析】本题主要考查了二次根式的混合运算,在运算过程中注意对二次根式的化简;(1)前两项可化简后合并,再运用平方差公式计算(√3+1)(√3−1),最后进行加法即可;(2)除法转化为乘法同时化简二次根式,进行乘法运算即可.20.【答案】解:∵4−5x2−1<6,4−5x −2<12,−5x <10,x >−2,∴不等式得负整数解为:−1,把x =−1代入3x −4=ax 得:−3−4=−7,解得:a =7,把a =7代入不等式组得{7(x −7)−3x >315x +1≤7,解不等式组得:13<x ≤30.【解析】本题考查了解一元一次不等式和一元一次不等式组的解法,以及一元一次方程的解法,主要考查学生的计算能力.先求出不等式的解集,找出符合题意的负整数解,代入方程3x −4=ax ,转化为关于a 的方程,解方程求出a 的值,将a 的值代入一元一次不等式组,解不等式组,求出其解集即可. 21.【答案】解:(1)当x =1时,y =3x =3,∴点C 的坐标为(1,3).将A(−2,6)、C(1,3)代入y =kx +b ,得:{−2k +b =6k +b =3, 解得:{k =−1b =4. (2)当y =0时,有−x +4=0,解得:x =4,∴点B 的坐标为(4,0).设点D 的坐标为(0,m)(m <0),∵S △COD =13S △BOC ,即−12m =13×12×4×3,解得:m =−4,∴点D 的坐标为(0,−4).【解析】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k 、b 的值;(2)利用三角形的面积公式结合结合S △COD =13S △BOC ,找出关于m 的一元一次方程.(1)利用一次函数图象上点的坐标特征可求出点C 的坐标,根据点A 、C 的坐标,利用待定系数法即可求出k 、b 的值;(2)利用一次函数图象上点的坐标特征可求出点B 的坐标,设点D 的坐标为(0,m)(m <0),根据三角形的面积公式结合S △COD =13S △BOC ,即可得出关于m 的一元一次方程,解之即可得出m 的值,进而可得出点D 的坐标.22.【答案】解:(1)证明:∵四边形ABCD 是正方形,∴∠D =∠ECQ =90∘.∵E 是CD 的中点,∴DE =CE ,∵.(2)①证明:∵PB =PQ ,∴∠PBQ =∠Q ,∵AD//BC ,∴∠APB =∠PBQ =∠Q =∠EPD ,,∴PE =QE .∵EF//BQ ,∴∠PFE =∠PBQ =∠Q =∠PEF ,∴PE =PF ,∴PE =12PQ =12PB . ∴PF =BF .∴在RtΔPAB 中,AF =PF =BF ,∴∠APF =∠PAF ,∴∠PAF =∠EPD ,∴AF//PE .②四边形AFEP 不是菱形.理由:∵EF//BQ//AD ,AF//PE ,∴四边形AFEP 是平行四边形.设AP =x ,则PD =1−x ,若四边形AFEP 是菱形,则PE =PA =x ,∵CD =1,E 是CD 中点,∴DE =12. 在RtΔPDE 中,由PD 2+DE 2=PE 2得(1−x )2+(12)2=x 2, 解得x =58.∴PD =1−58=38.由题可得:PE =EF =PF ,∴ΔPEF 是等边三角形.∴∠PEF =60∘,∴∠PED =30∘.在RtΔPDE 中,PD =12PE =516≠38.∴四边形AFEP 不能是菱形.【解析】本题主要考查的是正方形的性质,等腰三角形的性质,含30度角的直角三角形,等边三角形的判定及性质,全等三角形的判定及性质,勾股定理,平行四边形的判定及性质,菱形的性质和判定等有关知识.(1)利用ASA 证明三角形全等即可;(2)①根据PB =PQ 得到∠PBQ =∠Q ,然后利用平行线的性质和全等三角形的性质得到PE =QE ,结合平行线的性质得到PE =PF ,进而得到PF =BF ,根据AF =PF =BF 得到∠APF =∠PAF ,然后根据平行线的判定求证即可;②利用平行四边形的判定得到四边形AFEP 是平行四边形,设AP =x ,则PD =1−x ,若四边形AFEP 是菱形,则PE =PA =x ,求出DE ,再利用勾股定理求出x ,证出△PEF 为等边三角形,进而得到∠PED=30°,从而求出PD=12PE=516≠38,从而得到四边形AFEP不是菱形.23.【答案】(1)证明:作EP⊥CD于P,EQ⊥BC于Q,∵∠DCA=∠BCA,∴EQ=EP,∵∠QEF+∠FEC=45°,∠PED+∠FEC=45°,∴∠QEF=∠PED,在Rt△EQF和Rt△EPD中,{∠QEF=∠PED EQ=EP∠EQF=∠EPD,∴Rt△EQF≌Rt△EPD,∴EF=ED,∴矩形DEFG是正方形;(2)解:如图2中,在Rt△ABC中,AC=√2AB=2√2,∵EC=√2,∴AE=CE,∴点F与C重合,此时△DCG是等腰直角三角形,易知CG=√2.(3)①当DE与AD的夹角为32°时,点F在BC边上,∠ADE=32°,如图3所示:则∠CDE=90°−32°=58°,在四边形CDEF中,由四边形内角和定理得:∠EFC=360°−90°−90°−58°=122°,②当DE与DC的夹角为32°时,点F在BC的延长线上,∠CDE=32°,如图4所示:∵∠HCF=∠DEF=90°,∠CHF=∠EHD,∴∠EFC=∠CDE=32°,综上所述,∠EFC=122°或32°.【解析】本题考查正方形的性质、矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.纠错部分使用.(1)作EP ⊥CD 于P ,EQ ⊥BC 于Q ,证明Rt △EQF≌Rt △EPD ,得到EF =ED ,根据正方形的判定定理证明即可;(2)通过计算发现E 是AC 中点,点F 与C 重合,△CDG 是等腰直角三角形,由此即可解决问题.(3)分两种情形考虑问题即可.24.【答案】解:(1)设装运甲种土特产的车辆数为x ,装运乙种土特产的车辆数为y ,则装运丙种土特产的车辆数为20−x −y .根据共装运120吨去外地销售,可得8x +6y +5(20−x −y)=120得y =20−3x ,(2)由{x ≥320−3x ≥320−x −(20−3x )≥3, 解得,3≤x ≤173且x 为正整数,故x =3,4,5,车辆安排有三种方案:方案一:装运甲种土特产3辆;装运乙种土特产20−3×3=11辆;装运丙种土特产20−3−11=6辆; 方案二:装运甲种土特产4辆;装运乙种土特产20−3×4=8辆;装运丙种土特产20−4−8=8辆; 方案三:装运甲种土特产5辆;装运乙种土特产20−3×5=5辆;装运丙种土特产20−5−5=10辆;(3)设此次销售利润为w 百元.w =8x ×12+6(20−3x)×16+5[20−x −(20−3x)]×10=1920−92x ,w 随x 的增大而减小,由(2)知x =3,4,5,故x =3时w 最大=1644(百元)=16.44万元答:要使此次获利最大,应采用(2)中方案一,最大利润为16.44万元.【解析】本题考查根据实际问题建立函数模型,考查方案的设计及利润最大问题,读懂题意,正确求解是关键.(1)根据装运甲种土特产的车辆数为x ,装运乙种土特产的车辆数为y ,则装运丙种土特产的车辆数为20−x −y ,结合表格数据,可得y 与x 之间的函数关系式;(2)根据(1)中的函数及装运每种土特产的车辆都不少于3辆,可得车辆的安排方案;(3)根据表格写出利润函数,结合(2)中的方案,即可求得最大利润的值.25.【答案】(1)证明:∵折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,∴点B 与点E 关于PQ 对称,∴PB =PE ,BF =EF ,∠BPF =∠EPF ,又EF//AB ,∴∠BPF =∠EFP ,∴∠EPF =∠EFP ,∴EP =EF ,∴BP =BF =EF =EP ,∴四边形BFEP 为菱形.(2)解: ①∵四边形ABCD 是矩形,∴BC =AD =5cm ,CD =AB =3cm ,∠A =∠D =90∘,∵点B 与点E 关于PQ 对称,∴CE =BC =5cm ,在Rt △CDE 中,DE =√CE 2−CD 2=4cm ,∴AE =AD −DE =5−4=1(cm),在Rt △APE 中,AE =1,AP =3−PB =3−PE ,∴EP2=12+(3−EP)2,cm,解得EP=53cm.∴菱形BFEP的边长为53②当点Q与点C重合时,如图①点E离点A最近,由①知,此时AE=1cm,当点P与点A重合时,如图②.点E离点A最远,此时四边形ABQE为正方形,AE=AB=3cm,∴点E在边AD上移动的最大距离为2cm.【解析】本题是四边形综合题目,考查了矩形的性质、折叠的性质、菱形的判定、平行线的性质、等腰三角形的判定、勾股定理、正方形的性质等知识;本题综合性强,有一定难度.(1)由折叠的性质得出PB=PE,BF=EF,∠BPF=∠EPF,由平行线的性质得出∠BPF=∠EFP,证出∠EPF=∠EFP,得出EP=EF,因此BP=BF=EF=EP,即可得出结论;(2)①由矩形的性质得出BC=AD=5cm,CD=AB=3cm,∠A=∠D=90°,由对称的性质得出CE= BC=5cm,在Rt△CDE中,由勾股定理求出DE=4cm,得出AE=AD−DE=1cm;在Rt△APE中,由cm即可;勾股定理得出方程,解方程得出EP=53②分析点Q与点C重合及点P与点A重合时,求点E离点A的距离,即可得出答案.。
湖南省株洲市八年级下学期数学期末考试试卷
湖南省株洲市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2020八下·陆川期末) 下列式子中,属于最简二次根式的是()A .B .C .D .2. (2分) (2020八上·沈阳期中) 下列四组数中,能作为直角三角形三边长的是()A . 1,2,3B . 2,3,4C . 1,,D . ,,,3. (2分) (2017八下·巢湖期末) 如果数据1,2,2,x的平均数与众数相同,那么x等于()A . 1B . 2C . 3D . 44. (2分) (2020八上·陈仓期末) 一次函数的图象大致是()A .B .C .D .5. (2分) (2019八下·龙州期末) 数据3,2,0,1,的方差等于()A . 0B . 1C . 2D . 36. (2分) (2020八下·三台期中) 如图,顺次连接四边形ABCD各边中点,得到四边形EFGH,下列条件中,可使四边形EFGH是矩形的是()A . AB=CDB . AC⊥BDC . AC=BDD . AD∥BC7. (2分)函数y=2x,y=﹣3x,y=﹣x的共同特点是()A . 图象位于同样的象限B . y随x的增大而减小C . y随x的增大而增大D . 图象都过原点8. (2分)(2016·藁城模拟) 将矩形纸片ABCD按如图所示的方式折叠,AE,EF为折痕,∠BAE=30°,AB= ,折叠后,点C落在AD边上的C1处,并且点B落在EC1边上的B1处.则BC的长为()A .B . 2C . 3D . 29. (2分) (2020八上·南宁期末) 工人师傅常用角尺平分一个角,具体做法如下:如图,在∠AOB的边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,则过角尺顶点P的射线OC便是∠AOB 的平分线,其中证明△MOP≌△NOP时运用的判定定理是()A . SSSB . SASC . ASAD . AAS10. (2分)(2019·叶县模拟) 如图,以矩形ABOD的两边OD、OB为坐标轴建立直角坐标系,若E是AD的中点,将△ABE沿BE折叠后得到△GBE,延长BG交OD于F点.若OF=1,FD=2,则G点的坐标为()A . ( , )B . ( , )C . ( , )D . ( , )二、填空题 (共6题;共6分)11. (1分)(2020·绥化) 在函数中,自变量x的取值范围是________.12. (1分) (2019八下·宽城期末) 如图,在菱形ABCD中,对角线AC,BD交于点O,AB=5,BD=6,则菱形ABCD的面积是________.13. (1分) (2020八上·黄陂开学考) 将y=2x﹣3的图象向上平移2个单位长度得到的直线表达式为________.14. (1分)(2017·黄州模拟) 如图,直线y=kx+b经过A(3,1)和B(6,0)两点,则不等式组0<kx+b < x的解集为________.15. (1分) (2020八下·龙江月考) 在平面直角坐标系中,直线y=kx+x+1过一定点A,坐标系中有点B(2,0)和点C,要使以A、O、B、C为顶点的四边形为平行四边形,则点C的坐标为________16. (1分)(2017·深圳模拟) 如图,一只小猫被关在正方形ABCD区域内,点O是对角线的交点,∠MON=90°,OM、ON分别交线段AB、BC于M、N两点,则小猫停留在阴影区域的概率为________.三、解答题 (共10题;共96分)17. (10分) (2020八上·碑林期末) 计算:(1)(2).18. (5分)如图,在平面直角坐标系xoy中,⊙A与y轴相切于点B(0,),与x轴相交于M、N两点.如果点M 的坐标为(,0),求点N的坐标.19. (5分) (2019九下·中山月考) 如图,在□ABCD中,以点A为圆心,以任意长为半径画圆弧,分别交边AD、AB于点M、N,再分别以点M、N为圆心,以大于 MN长为半径画圆弧,两弧交于点P,作射线AP交边CD于点E,过点E作EF//BC交AB于点F.求证:四边形ADEF是菱形.20. (11分)某市的7月中旬最高气温统计如下(1)在这十个数据中,34的权是________,32的权是________.(2)该市7月中旬最高气温的平均数是________,这个平均数是________平均数.21. (10分)(2020·郑州模拟) 如图,AB为⊙O的直径,DB⊥AB于B,点C是弧AB上的任一点,过点C作⊙O的切线交BD于点E.连接OE交⊙O于F.(1)求证:CE=ED;(2)填空:①当∠D=________时,四边形OCEB是正方形;②当∠D=________时,四边形OACF是菱形.22. (15分)(2020·南昌模拟) 如图,一次函数的图象与反比例函数的图象交于两点.(1)求一次函数和反比例函数的解析式;(2)若是反比例函数图象上任意两点,且满足,求的值.23. (10分) (2020八下·宜兴期中) 如图,在菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE,∠E=50°.(1)求证:BD=EC;(2)求∠BAO的大小.24. (10分) (2019八下·贵池期中) 如图,在四边形ABCD中,AB=BC=2,CD=3,DA=1,且AB⊥BC于B .求:(1)∠BAD的度数;(2)四边形ABCD的面积.25. (10分) (2020七下·滨州月考) 如图,在平面直角坐标系中,△ABC的顶点都在网格点上,其中C点坐标为(1,2)。
苏科版八年级苏科初二数学下学期期末测试题及答案(共五套)
苏科版八年级苏科初二数学下学期期末测试题及答案(共五套)一、解答题1.某校数学兴趣小组成员小华对本班上学期期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成如下频数分布直方图和频数、频率分布表.请你根据图表提供的信息,解答下列问题:分组 49.5~59.5 59.5~69.569.5~79.5 79.5~89.5 89.5~100.5 合计 频数 2a2016450频率0.04 0.16 0.40 0.32 b 1(1)频数、频率分布表中a = ,b = ; (2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是多少. 2.解下列方程:(1)9633x x =+- ; (2)241111x x x -+=-+ . 3.已知:如图,在 ABCD 中,点E 、F 分别在AD 、BC 上,且∠ABE =∠CDF . 求证:四边形BFDE 是平行四边形.4.如图,在▱ABCD 中,BE=DF .求证:AE=CF .5.正方形ABCD 中,点O 是对角线DB 的中点,点P 是DB 所在直线上的一个动点,PE ⊥BC 于E ,PF ⊥DC 于F .(1)当点P 与点O 重合时(如图①),猜测AP 与EF 的数量及位置关系,并证明你的结论;(2)当点P 在线段DB 上(不与点D 、O 、B 重合)时(如图②),探究(1)中的结论是否成立?若成立,写出证明过程;若不成立,请说明理由;(3)当点P 在DB 的长延长线上时,请将图③补充完整,并判断(1)中的结论是否成立?若成立,直接写出结论;若不成立,请写出相应的结论.6.如图,在平面直角坐标系中,△ABC 的三个顶点坐标分别为A (﹣3,﹣1)、B (﹣1,0)、C (0,﹣3)(1)点A 关于坐标原点O 对称的点的坐标为 .(2)将△ABC 绕点C 顺时针旋转90°,画出旋转后得到的△A 1B 1C ,A 1A 的长为 .7.计算:242933x x x x x -----8.如图,反比例函数ky x=的图像经过第二象限内的点(1,)A m -,AB x ⊥轴于点B ,AOB ∆的面积为2.若直线y ax b =+经过点A ,并且经过反比例函数ky x=的图像上另一点(,2)C n -.(1)求反比例函数ky x=与直线y ax b =+的解析式; (2)连接OC ,求AOC ∆的面积;(3)不等式0kax b x+-≥的解集为_________(4)若()11,D x y 在ky x=(0)k ≠图像上,且满足13y ≥-,则1x 的取值范围是_________.9.如图,在矩形ABCD 中,AB =1,BC =3.(1)在图①中,P 是BC 上一点,EF 垂直平分AP ,分别交AD 、BC 边于点E 、F ,求证:四边形AFPE 是菱形;(2)在图②中利用直尺和圆规作出面积最大的菱形,使得菱形的四个顶点都在矩形ABCD 的边上,并直接..标出菱形的边长.(保留作图痕迹,不写作法)10.如图,在△ABC 中,DE ∥BC ,EF ∥AB ,BE 平分∠ABC ,试判断四边形DBFE 的形状,并说明理由.11.如图1,在正方形ABCD 中,点E 是边AB 上的一个动点(点E 与点A ,B 不重合)连接CE ,过点B 作BF ⊥CE 于点G ,交AD 于点F .(1)求证:△ABF≌△BCE;(2)如图2,连接EF、CF,若CE=8,求四边形BEFC的面积;(3)如图3,当点E运动到AB中点时,连接DG,求证:DC=DG.12.为了提高学生阅读能力,我区某校倡议八年级学生利用双休日加强课外阅读,为了解同学们阅读的情况,学校随机抽查了部分同学周末阅读时间,并且得到数据绘制了不完整的统计图,根据图中信息回答下列问题:(1)将条形统计图补充完整;被调查的学生周末阅读时间众数是小时,中位数是小时;(2)计算被调查学生阅读时间的平均数;(3)该校八年级共有500人,试估计周末阅读时间不低于1.5小时的人数.13.(数学实验)小明在学习轴对称一章角平分线一节后,做了一个实验:第一步:如图1在一张纸上画了一个平角∠AOB;第二步:如图2在平角∠AOB内画一条射线,沿着射线将平角∠AOB裁开;第三步:如图3将∠AO'C'放在∠COB内部,使两边分别与OB、OC相交,且O'A=O'C';第四步:连接OO',测量∠COB度数和∠COO'度数.(数学发现与证明)通过以上实验,小明发现OO'平分∠COB.你能根据小明的实验给出的条件:(1)∠AO'C'与∠COB的关系是;(2)线段O'A与O'C'的关系是.请您结合图3将小明的实验条件和发现结论完成下面“已知”“求证”,并给出证明.已知: 求证: 证明:14.发现:如图1,点A 为线段BC 外一动点,且(),,BC a AB c a c ==>.(1)填空:当点A 位于 上时,线段AC 的长取得最小值,且最小值为 (用含,a c 的式子表示)(2)应用:如图2,点A 为线段BC 外一动点,且3,1BC AB ==,分别以,AB AC 为边,作等腰直角ABD ∆和等腰直角ACE ∆,连接,CD BE . ①请找出图中与BE 相等的线段,并说明理由; ②直接写出BE 长的最小值.(3)拓展:如图3,在平面直角坐标系中,点A 的坐标为()2,0,点B 的坐标为()10,0,点P 为线段AB 外一动点,且2,,PA PM PB ==60BPM ︒∠=,请直接写出AM 长的最小值及此时点P 的坐标.15.如图,已知()()1,0,0,3,90,30A B BAC ABC ︒︒∠=∠=.(1)求ABC ∆的面积;(2)在y 轴上是否存在点Q 使得QAB ∆为等腰三角形,若存在,请直接写出点Q 所有可能的坐标,若不存在,请说明理由;(3)如果在第二象限内有一点3P m ⎛ ⎝⎭,且过点P 作PH x ⊥轴于H ,请用含m 的代数式 表示梯形PHOB 的面积,并求当ABP ∆与ABC ∆面积相等时m 的值?【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)a =8,b =0.08;(2)作图见解析;(3)14. 【分析】(1)根据频数之和等于总个数,频率之和等于1求解即可; (2)直接根据(1)中的结果补全频数分布直方图即可; (3)根据89.5~100.5这一组的人数及概率公式求解即可. 【详解】解:(1)由题意得a =50-2-20-16-4=8,b =1-0.04-0.16-0.40-0.32=0.08; (2)如图所示:(3)由题意得张明被选上的概率是14. 【点睛】本题考查频数分布直方图,频数分布直方图的应用是初中数学的重点,是中考常见题,一般难度不大,要熟练掌握. 2.(1)35x =;(2)原方程无解 【分析】(1)分式方程两边同乘以(3+x )(3﹣x )去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程两边同乘以(x +1)(x ﹣1)去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即得结果. 【详解】解:(1)方程两边同乘(3+x )(3﹣x ),得9(3﹣x )=6(3+x ), 解这个方程,得x =35,检验:当x =35时,(3+x )(3﹣x )≠0, ∴x =35是原方程的解; (2)方程两边同乘(x +1)(x ﹣1),得4+x 2﹣1=(x ﹣1)2, 解这个方程,得x =﹣1,检验:当x =﹣1时,(x +1)(x ﹣1)=0, ∴x =﹣1是增根,原方程无解. 【点睛】本题考查了分式方程的解法,属于基本题型,熟练掌握解分式方程的方法是解题的关键. 3.见解析 【分析】先根据平行四边形的性质,得出ED ∥BF ,再结合已知条件∠ABE =∠CDF 推断出EB ∥DF ,即可证明. 【详解】证明:∵四边形ABCD 为平行四边形, ∴AD ∥BC ,∠ABC =∠ADC , ∴∠ADF =∠DFC ,ED ∥BF , ∵∠ABE =∠CDF ,∴∠ABC -∠ABE =∠ADC -∠CDF ,即∠EBC =∠ADF , ∴∠EBC =∠DFC , ∴EB ∥DF ,∴四边形BFDE 是平行四边形. 【点睛】本题考查了平行四边形的性质和平行四边形的判定定理,掌握知识点是解题关键. 4.证明见解析. 【解析】试题分析:由平行四边形的性质得出AD ∥BC ,AD=BC ,证出∠ADE=∠CBF ,再由BE=DF ,得出DE=BF ,证明△ADE ≌△CBF ,即可得出结论. 试题解析:∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD=BC , ∴∠ADE=∠CBF , ∵BE=DF , ∴DE=BF ,在△ADE 和△CBF 中,{AD CBADE CBF DE BF=∠=∠=, ∴△ADE ≌△CBF (SAS ),∴AE=CF.考点:平行四边形的性质;全等三角形的判定与性质.5.(1)AP=EF,AP⊥EF,理由见解析;(2)仍成立,理由见解析;(3)仍成立,理由见解析;【解析】【分析】(1)正方形中容易证明∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,利用AAS证明△AMO≌△FOE.(2) (3)按照(1)中的证明方法证明△AMP≌△FPE(SAS),结论依然成立.【详解】解:(1)AP=EF,AP⊥EF,理由如下:连接AC,则AC必过点O,延长FO交AB于M;∵OF⊥CD,OE⊥BC,且四边形ABCD是正方形,∴四边形OECF是正方形,∴OM=OF=OE=AM,∵∠MAO=∠OFE=45°,∠AMO=∠EOF=90°,∴△AMO≌△FOE(AAS),∴AO=EF,且∠AOM=∠OFE=∠FOC=45°,即OC⊥EF,故AP=EF,且AP⊥EF.(2)题(1)的结论仍然成立,理由如下:延长AP交BC于N,延长FP交AB于M;∵PM⊥AB,PE⊥BC,∠MBE=90°,且∠MBP=∠EBP=45°,∴四边形MBEP是正方形,∴MP=PE,∠AMP=∠FPE=90°;又∵AB﹣BM=AM,BC﹣BE=EC=PF,且AB=BC,BM=BE,∴AM=PF,∴△AMP≌△FPE(SAS),∴AP=EF,∠APM=∠FPN=∠PEF,∵∠PEF+∠PFE=90°,∠FPN=∠PEF,∴∠FPN+∠PFE=90°,即AP⊥EF,故AP=EF,且AP⊥EF.(3)题(1)(2)的结论仍然成立;如右图,延长AB交PF于H,证法与(2)完全相同.【点睛】利用正方形,等腰三角形,菱形等含等边的特殊图形,不管其他条件如何变化,等边作为证明等边三角形的隐含条件,证明三角形的全等,是证明此类问题的关键.6.(1)(3,1);(226.【分析】(1)根据对称性即可得点A关于坐标原点O对称的点的坐标;(2)根据旋转的性质即可将△ABC 绕点C 顺时针旋转90°,画出旋转后得到的△A 1B 1C ,进而可得A 1A 的长. 【详解】(1)∵A (﹣3,﹣1),∴点A 关于坐标原点O 对称的点的坐标为(3,1). 故答案为:(3,1); (2)如图,△A 1B 1C 即为所求,A 1A 2215+26. 26 【点睛】本题考查了作图-旋转变换,解决本题的关键是掌握旋转的性质.7.3x -【分析】先把分式进行合并,再进行因式分解,然后约分,即可得到答案. 【详解】解:原式22242969(3)3333x x x x x x x x x x --+-+-====----;【点睛】本题考查了分式的混合运算,分式的化简求值,解题的关键是熟练掌握运算法则进行解题. 8.(1)4y x -=;22y x =-+ (2)3 (3)1x ≤-或02x <≤ (4)43x ≥或x <0 【分析】(1)根据k 的几何意义即可求出k ;求出k 后利用交点C 即可求出一次函数 (2)利用割补法即可求出面积(3)根据A ,C 的坐标,结合图象即可求解; (4)先求出3y =-时,43x =,再观察图像即可求解. 【详解】(1)∵点(1,)A m -在第二象限内, ∴AB m =,1OB =, ∴122ABO S AB BO ∆=⋅=即:1122m ⨯=,解得4m =,∴(1,4)A -,∵点(1,4)A -,在反比例函数k y x =的图像上, ∴41k =-,解得4k =-, ∵反比例函数为4y x-=, 又∵反比例函数4y x -=的图像经过(,2)C n -, ∴42n--=,解得2n =, ∴(2,2)C -,∵直线y ax b =+过点(1,4)A -,(2,2)C -,∴422a b a b =-+⎧⎨-=+⎩解方程组得22a b =-⎧⎨=⎩, ∴直线y ax b =+的解析式为;22y x =-+;(2)24y x =-+当0y =时,220x -+=,1x =,∴22y x =-+与x 轴的交点坐标为(1,0)设直线22y x =-+与x 轴的交点为E ,则1OE =∴AOC AOE COE S S S =+11141222=⨯⨯+⨯⨯ 3=(3)由题:k ax b x+≥ 由图像可知:当1x ≤-或02x <≤时,符合条件;故答案为:1x ≤-或02x <≤;(4)3y =-时,43x =,结合图像可知:当13y ≥-,则1x 的取值范围是43x ≥或x <0. 故答案为:43x ≥或x <0. 【点睛】本题主要考查了反比例函数,待定系数法求函数解析式,综合性较强,但只要细心分析题目难度不大.9.(1)见解析;(2)见解析【分析】(1)根据矩形的性质和EF垂直平分AP推出AF=PF=AE=PE即可判断;(2)以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,此时的菱形即为矩形ABCD内面积最大的菱形.【详解】(1)证明:如图①∵四边形ABCD是矩形,∴AD∥BC,∴∠1=∠2,∵EF垂直平分AP,∴AF=PF,AE=PE,∴∠2=∠3,∴∠1=∠3,∴AE=AF,∴AF=PF=AE=PE,∴四边形AFPE是菱形;(2)如图②,以矩形的一条对角线和这条对角线的垂直平分线作菱形的对角线,连接各个点,所得的菱形即为矩形ABCD内面积最大的菱形;此时设菱形边长为x,则可得12+(3-x)2=x2,解得x=53,所以菱形的边长为53.【点睛】本题考查了矩形的性质,菱形的性质和判定,掌握知识点是解题关键.10.菱形,理由见解析【分析】根据平行四边形的判定得出四边形BDEF是平行四边形,再利用平行四边形的性质和等腰三角形的判定得出DE=BD,进而利用菱形的判定解答即可.【详解】四边形DBFE是菱形,理由如下:∵DE ∥BC ,EF ∥AB ,∴四边形DBEF 是平行四边形,∴DE ∥BC ,∴∠DEB =∠EBF ,∵BE 平分∠ABC ,∴∠DBE =∠EBF ,∴∠DBE =∠DEB ,∴BD =DE ,∴平行四边形DBEF 是菱形.【点睛】此题考查菱形的判定,关键是根据平行四边形的判定得出四边形BDEF 是平行四边形解答.11.(1)见解析;(2)32;(3)见解析【分析】(1)根据同角的余角相等得到∠GCB =∠FBA ,利用ASA 定理证明△ABF ≌△BCE ; (2)根据全等三角形的性质得到BF =CE =8,根据三角形的面积公式计算,得到答案; (3)作DH ⊥CE ,设AB =CD =BC =2a ,根据勾股定理用a 表示出CE ,根据三角形的面积公式求出BG ,根据勾股定理求出CG ,证明△CHD ≌△BGC ,得到CH =BG ,证明CH =GH ,根据线段垂直平分线的性质证明结论.【详解】(1)证明:∵BF ⊥CE ,∴∠CGB =90°,∴∠GCB +∠CBG =90,∵四边形ABCD 是正方形,∴∠CBE =90°=∠A ,BC =AB ,∴∠FBA +∠CBG =90,∴∠GCB =∠FBA ,在△ABF 和△BCE 中,A CBE AB BCABF BCE ⎧∠=∠⎪=⎨⎪∠=∠⎩, ∴△ABF ≌△BCE (ASA );(2)解:∵△ABF ≌△BCE ,∴BF =CE =8,∴四边形BEFC 的面积=△BCE 的面积+△FCE 的面积 =12×CE ×FG +12×CE ×BG =12×CE ×(FG +BG )=12×CE×BF=12×8×8=32;(3)证明:如图3,过点D作DH⊥CE于H,设AB=CD=BC=2a,∵点E是AB的中点,∴EA=EB=12AB=a,∴CE=225BE BC a+=,在Rt△CEB中,12BG•CE=12CB•EB,∴BG=255CB EBa CE⋅=,∴CG=2245 5BC BG a-=,∵∠DCE+∠BCE=90°,∠CBF+∠BCE=90°,∴∠DCE=∠CBF,∵CD=BC,∠CHD=∠CGB=90°,∴△CHD≌△BGC(AAS),∴CH=BG=25a,∴GH=CG﹣CH=25a=CH,∵CH=GH,DH⊥CE,∴CD=GD;【点睛】本题通过正方形动点问题引入,考查了三角形全等、勾股定理和垂直平分线定理的应用.12.(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【分析】(1)根据统计图可以求得本次调查的学生数,从而可以求得阅读时间1.5小时的学生数,进而可以将条形统计图补充完整;由补全的条形统计图可以得到抽查的学生周末阅读时间的众数、中位数.(2)根据补全的条形统计图可以求得所有被调查学生阅读时间的平均数.(3)用总人数乘以样本中周末阅读时间不低于1.5小时的人数占总人数的比例即可得.【详解】解:(1)由题意可得,本次调查的学生数为:30÷30%=100,阅读时间1.5小时的学生数为:100﹣12﹣30﹣18=40,补全的条形统计图如图所示,由补全的条形统计图可知,被调查的学生周末阅读时间众数是1.5小时,中位数是1.5小时,故答案为1.5,1.5;(2)所有被调查学生阅读时间的平均数为:1100×(12×0.5+30×1+40×1.5+18×2)=1.32小时,即所有被调查同学的平均阅读时间为1.32小时.(3)估计周末阅读时间不低于1.5小时的人数为500×40+18100=290(人). 故答案为(1)补全的条形统计图如图所示,见解析,被调查的学生周末阅读时间的众数是1.5小时,中位数是1.5小时;(2)所有被调查学生阅读时间的平均数为1.32小时;(3)估计周末阅读时间不低于1.5小时的人数为290人.【点睛】本题考查条形统计图、扇形统计图、加权平均数、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答问题.13.(1)互补;(2)相等;证明见解析【分析】根据题意写出已知、求证,过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,证明Rt △Rt AO D '≅△C O E '',推出O D O E '=',利用角平分线的判定定理即可证明'OO 平分∠COB .【详解】(1)∠AO'C'与∠COB 的关系是互补;(2)线段O'A 与O'C'的关系是相等.已知:AO C ∠''+∠COB=180︒,O'A=O'C',求证:'OO 平分∠COB .证明:过O '作O D '⊥OC 于D ,O E '⊥OB 于E ,∵O C B O OB C O O ∠=∠+∠''''',∠AO C ''+∠COB=180︒,∴AO O ∠'+'AOO ∠ =180︒-(O OB C O O ∠+∠'''),即O C B O OB C O O ∠=∠+∠'''''=180︒-(AO O ∠'+'AOO ∠),又OAO ∠'=180︒-(AO O ∠'+'AOO ∠),∴O C B OAO ∠=∠''',∵O'A=O'C',∴Rt △Rt AO D '≅△C O E '',∴O D O E '=',∵O D '⊥OC ,O E '⊥OB ,∴'OO 平分∠COB .【点睛】本题考查了全等三角形的判定和性质,角平分线的判定,三角形内角和定理,三角形的外角性质,作出合适的辅助线构造全等三角形是解题的关键.14.(1);BC a c -;(2)①BE DC =,证明见解析,②32;(3)AM 最小为(6,3P 或(33.【分析】(1)根据点A 位于CB 上时,线段AC 的长取得最小值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB ,AC=AE ,∠BAD=∠CAE=90°,推出△CAD ≌△EAB ,根据全等三角形的性质得到CD=BE ;②由于线段BE 长的最大值=线段CD 的最大值,根据(1)中的结论即可得到结果; (3)以AP 为边向右边作等边三角形APC ,连接BE 后,易证APM CPB ≅,此时AM=BC ,然后根据(1)的结论求值即可,点P 坐标可根据等边三角形性质求.【详解】解:()1AC BC AB a c ≥-=-当A 位于BC 线段上AO ,取到最小值a c -故答案为:;BC a c - ()2①ABO ∆和AEC ∆均为等腰直角三角形,1,AB AD AE AC ∴===,2BAD EACBD ∠=∠=BAE BAD EAD EAC EAD DAC ∴∠=∠-∠=∠-∠=∠∴在ABE ∆和ADC ∆中AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩()BAE DAC SAS ∴∆≅∆BE DC ∴=②而32DC BC BD ≥-=-BE 最小值为32-,当且仅当D 在线段BC 上取到()3以AP 为边向右边作等边三角形APC ,连接BCAPC ∆为正三角形,2,60AC AP PC APC ︒∴===∠=又60MPB ︒∠=APM APC MPC ∴∠=∠-∠60MPC ︒=-∠MPB MPC =∠-∠CPB =∠∴在APM ∆和CPB ∆中AP CP APM CPB PM PB =⎧⎪∠=∠⎨⎪=⎩()APM CPB SAS ∴∆≅∆()10226AM BC AB AC ∴=≥-=--=AM ∴最小为6,此时C 在线段AB 上,P 的横坐标为1232AP +⨯=纵坐标为==((3,P ∴或.【点睛】本题考查等腰直角三角形的性质、全等三角形的判定和性质等知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题.15.(12)存在.(0,2Q 或()2或(0,或⎛ ⎝⎭;(2)PHOB S 梯形=,56m =-时,ABC ABP S S ∆∆=. 【分析】 (1)根据勾股定理和直角三角形中30°角所对直角边等于斜边的一半求出AB 、AC 的长,再利用三角形面积公式求解即可;(2)设Q (0,a ),分三种情况①AB=BQ 时;②AB=AQ 时;③BQ=AQ 时进行讨论求解即可;(3)由题意,OH=﹣m ,利用梯形面积公式得()12PHOB S OB PH OH =⨯+⨯梯形=,结合图形可得ABP ABO PAH S S S S ∆∆∆=+-梯形PHOB =,再由ABP ABC S S ∆∆=得到关于m 的方程,解方程即可求解m 值.【详解】()()(11,0,A B , 2AB ∴=,又90,30BAC ABC ︒︒∠=∠=, 2BC AC ∴=,设AC a =,则2BC a =,在Rt ABC ∆中,由勾股定理得:222BC AB AC =+,即()2224a a =+,得:a = 11222ABC S AC AB ∆∴==⨯=; ()2存在设()0,Q a ,则()2224,3AB BQ a ==-,221AQ a =+,①当AB BQ =时,即22AB BQ =,()243a ∴=-,解得:123a =+或232a =-, ()()120,23,0,32Q Q ∴=+=-;②当AB AQ =时,即22AB AQ =, 241a ∴=+解得:3a =-或3a =(舍去,与B 重合),()30,3Q ∴-;③当BQ AQ =时,即22BQ AQ =, ()2231,232a a a ∴-=+=,解得:3a =, 430,Q ⎛⎫∴= ⎪ ⎪⎝⎭,综上:在y 轴上存在一点()0,23Q +或()0,32-或()0,3-或30,3⎛⎫ ⎪ ⎪⎝⎭,使QAB ∆为等腰三角形;()33,2P m ⎛ ⎝⎭, (),0H m ∴,,12OH m PH AH m ∴=-==-+, ()12PHOB S OB PH OH ∴=⨯+⨯梯形,()12m =⨯⨯-⎭=,1113222AOB S OA OB ∆==⨯⨯=,()111222APH S AH PH m ∆==⨯-⨯)14m =-, ABP ABO PAH S S S S ∆∆∆∴=+-梯形PHOB)1m =-42=-, ABP ABC S S ∆∆=,24∴-+=, ∴112243m =-, 解得:56m =-,即S =梯形PHOB ,当56m =-时,ABC ABP S S ∆∆=. 【点睛】本题考查了坐标与图形、含30°角的直角三角形的性质、勾股定理、等腰三角形的性质、平方根、解一元一次方程等知识,解答的关键是利用数形结合思想,将各知识点串起来,进行探究、推理和计算.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学下学期期末考试模拟试卷
一、选择题(每小题3分,共30分)
1、在函数y=1x-3 中,自变量x的取值范围是
( )
A.3x B.0x C.3x D.3x
2、下列计算正确的是
( )
A.623xxx B.248139xx C.111362aaa
D.021x
3、下列说法中错误的是
( )
A.两条对角线互相平分的四边形是平行四边形;
B.两条对角线相等的四边形是矩形;
C.两条对角线互相垂直的矩形是正方形; D.两条对角
线相等的菱形是正方形
4、刘翔为了迎战2008年北京奥运会刻苦进行110米拦训练,教
练对他的10次训练成绩进行统计分析,若要判断他的成绩是否
稳定,则教练需要知道刘翔这10次成绩的
( )
A.平均数 B.中位数 C.众数 D.方差
5、点P(3,2)关于x轴的对称点'P的坐标是
( )
A.(3,-2) B.(-3,2) C.(-3,-2) D.(3,
2)
6、下列运算中正确的是
( )
A.1yxxy B.2233xyxy C.221xyxyxy
D. 22xyxyxy
7、如图,已知P、Q是△ABC的BC边上的两点,且BP=PQ=QC=AP=AQ,
则∠BAC的大小为
( )
A.120° B.110° C.100°
D.90°
8、如图,在□ABCD的面积是12,点E,F在AC上,且AE=
EF=FC,则△BEF的面积为
( )
A. 6 B. 4 C. 3 D. 2
C
QP
B
A
E
F
D C
B A
y
x
o
y
x
o
y
x
o
y
x
o
9、小明骑自行车上学,开始以正常速度匀速行驶,但行至中途
自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,
他比修车前加快了骑车的速度继续匀速行驶,下面是行使路程
s
(米)关于时间t(分)的函数图象,那么符合这个同学行驶情
况的图像大致是
( )
A . B. C .
D.
10、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误
的是( )
A.梯形的下底是上底的两倍 B.梯形最大角是120°
C.梯形的腰与上底相等 D.梯形的
底角是60°
二、填空题(每小题3分,共30分)
E
C
B
D
A
11、若分式x2-4x2-x-2 的值为零,则x的值是 .
12、已知1纳米=1109 米,一个纳米粒子的直径是35纳米,这一直
径可用科学计数法表示为
米.
13、如图,已知OA=OB,点C在OA上,点D在OB上,OC=OD,
AD与BC相交于点E
,那么图中全等的三角形共有 对.
14、如图,ACBDFEBCEF∠∠,,要使ABCDEF△≌△,则需要
补充一个条件,这个条件可以是 .
15、已知y与x-3成正比例,当x=4时,y=-1;那么当x=-4时,
y= 。
16、已知样本x, 99,100,101,y的平均数为100,方差是2,
则x= ,y= .
17、将直线y=3x向下平移2个单位,得到直线 .
18、如图,在tRABC中,90C,33A,DE是线段
AB的垂直平分线,交AB于D,交AC于E,则EBC
________。
19、已知三角形的3条中位线分别为3cm、4cm、6cm,则这个
三角形的周长是 。
20、甲、乙两个工程队共同完成一项工程,乙队先单独做1天, 再
由两队合作2天就完成全部工程,已知甲队与乙队的工作效率之
A
B
C
D
E
F
比是3:2,求甲、 乙两队单独完成此项工程各需多少天?
若设甲队单独完成此项工程需x天,由题意可列方程为________
____。
三、解答题(共60分)
21、(本题8分)化简并求值:(x-1x+1 +2xx2-1 )÷ 1x2-1 ,其中x=0。
22、(本题10分)已知:锐角△ABC,
求作:点 P,使PA=PB,且点 P 到边
AB的距离和到边AC的距离相等。
(不写作法,保留作图痕迹)
23、(本题10分)如图,在□ABCD中,FE、分别是边BC和AD上
的点.请你补充一个条件,使CDFABE≌,并给予证明.
24、(本题10分) 某老师计算学生的学期总评成绩时按照如下的
标准:平时成绩占20%,期中成绩占30%,期末成绩占50%.小
东和小华的成绩如下表所示:
请你通过计算回答:小东和小华的学期总评成绩谁较高?
25、(本题12分)某商店试销一种成本单价为100元/件的运动
服,规定试销时的销售单价不低于成本单价,又不高于180元/
件,经市场调查,发现销售量y(件)与销售单价x(元)之间
的关系满足一次函数y=kx+b(k≠0),其图象如图。
(1)根据图象,求一次函数的解析式;
(2)当销售单价x在什么范围内取值时,销售量y不低于80件。
学生 平时成绩 期中成绩 期末成绩
小东
70 80 90
小华
90 70 80
x
y
140
0
120
100
120
140
80
160
26、(本题12分)如图,E、F分别是矩形ABCD的对角线AC、
BD
上两点,且AEDF.
求证:(1)BOE≌COF;
(2)四边形BCFE是等腰梯形.
F
E
O
D
C
B
A
参考答案
一、选择题(每小题3分,共30分)
1.A 2. B 3.B 4.D 5.A 6.C 7.A 8.D 9.C
10.D
二、填空题(每小题3分,共30分)
11、2x 12、83.510 13、4
14、答案不唯一 。 15、7 16、98,102
17、32yx 18、24° 19、26cm
20、221xx
三、解答题(共60分)
21、(本题8分)化简并求值。
解:22121111xxxxx
2
22
(1)21(1)(1)11xxxxxx
( 3分)
2
2
2
1(1)1xxx
( 5分)
2
1x
( 6分)
当0x时,原式
=1. ( 8分)
22、(本题8分)
图略,要求保留作图痕迹。
23、(本题10分)
解:若EC=FA
(2分)
∵ABCD是平行四边形,∴AB=CD,∠B=∠D,BC=DA,
(5分)
又∵EC=FA,∴BE=DF,
(8分)
∴CDFABE≌
(10分)
24、(本题10分)
解: 小东:70×20%+80×30%+90×50%
(2分)
= 14+24+45
=83
(4分)
小华:90×20%+70×30%+80×50%
(6分)
= 18+21+40
=79
(8分)
答:所以,小东的成绩较好。
(10分)
25、(本题12分)
解: (1)设一次函数的解析式为bkxy,由已知条件,得
(2分)
120120140100kbkb
(5分)
解之得124kb
(7分)
所以,240yx。
(8分)
(2)若y≥80,即240x≥80,解之得x≥160.
(12分)
26、(本题12分)
证明:(1)矩形ABCD的对角线AC、BD
相交于O, OBOC,OAOD,OADOCB.
又AEDF,OEOF.
(3分)
在BOE和COF中;
OEOF,BOECOF,OBOC
,
BOE≌COF
;
(6 分)
(2)在等腰EOF中,1802EOFOEF,
在等腰AOD中,1802EOFOAD,
OEFOAD,又OCBOAD,OEFOCB
,
//EFBC
(9分)
由(1)BOE≌COF,BECF,
四边形BC是等腰梯形。
(12分)