高考数学解题的12种方法
高考数学选择题十大解题法则

2019 年高考数学选择题十大解题法例选择题从难度上讲是比其余种类题目降低了,但知识覆盖面广,要求解题娴熟、正确、灵巧、快速。
选择题的解题思想,渊源于选择题与惯例题的联系和差别。
它在必定程度上还保存着惯例题的某些印迹。
而另一方面,选择题在构造上拥有自己的特色,即起码有一个答案(若一元选择题则只有一个答案 )是正确的或适合的。
所以可充足利用题目供给的信息,清除诱惑支的扰乱,正确、合理、快速地从选择支中选出正确支。
选择题中的错误支拥有双重性,既有扰乱的一面,也有可利用的一面,只有经过仔细的察看、剖析和思虑才能揭穿其潜伏的示意作用,进而从反面供给信息,快速作出判断。
因为我多年从事高考试题的研究,特别对选择题我有自己的一套考试技术,我知道不论是什么科目的选择题,都有它固有的破绽和具体的解决方法,我把它总结为: 6 大破绽、8 大法例。
“6大破绽”是指:有且只有一个正确答案 ;不问过程只问结果 ;题目有示意 ;答案有示意 ;错误答案有严格标准 ;正确答案有严格标准 ; “8大原则”是指:选项独一原则 ;范围最大原则 ;定量转定性原则 ;选项对照原则 ;题目示意原则 ; 选择项示意原则 ;客观接受原则 ;语言的精确度原则。
经过我的培训,好多的学生的选择题甚至 1 分都不丢。
下边是一些实例:1.特值查验法:关于拥有一般性的数学识题,我们在解题过程中,能够将问题特别化,利用问题在某一特别状况下不真,则它在一般状况下不真这一原理,达到披沙拣金的目的。
2.极端性原则:将所要研究的问题向极端状态进行剖析,使因果关系变得更为显然,进而达到快速解决问题的目的。
极端性多半应用在求极值、取值范围、分析几何上边,好多计算步骤繁琐、计算量大的题,一但采纳极端性去剖析,那么就能瞬时解决问题。
3.剔除法:利用已知条件和选择支所供给的信息,从四个选项中剔除去三个错误的答案,进而达到正确选择的目的。
这是一种常用的方法,特别是答案为定值,或许有数值范围时,取特别点代入考证即可清除。
高考数学万能答题模板

高考数学万能答题模板数学是一个让许多同学头痛的学科,那么,怎么应对数学考试呢?下面是我整合的高考数学万能答题模板,一起来看看吧,确定对你有所关心的。
高考数学万能答题模板选择填空题1.易错点归纳九大模块易混淆难记忆考点分析,如概率和频率概念混淆、数列求和公式记忆错误等,强化基础学问点记忆,避开由于学问点失误造成的客观性解题错误。
针对审题、解题思路不严谨如集合题型未考虑空集状况、函数问题未考虑定义域等主观性因素造成的失误进行专项训练。
2.答题(方法):选择题十大速解方法:排解法、增加条件法、以小见大法、极限法、关键点法、对称法、小结论法、归纳法、感觉法、分析选项法;填空题四大速解方法:直接法、特别化法、数形结合法、等价转化法。
解答题专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sin x,y=cos x 的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h 的性质,写出结果。
④(反思):反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题1、解题路线图(1) ①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2) ①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即依据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应留意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。
高考数学(理)二轮复习:巧解客观题的10大妙招(一)选择题的解法

值 49=7,故选 B.
题型概述
解题方法
归纳总结
方法二 特例法
从题干(或选项)出发,通过选取特殊情况代入,将问题 特殊化或构造满足题设条件的特殊函数或图形位置进行判 断.特殊化法是“小题小做”的重要策略,要注意在怎样的 情况下才可使用,特殊情况可能是:特殊值、特殊点、特 殊位置、特殊数列等.适用于题目中含有字母或具有一般性 结论的选择题.
题型概述
解题方法
归纳总结
探究提高 图形化策略是依靠图形的直观性进行研究的, 用这种策略解题比直接计算求解更能简捷地得到结果.运用 图解法解题一定要对有关函数图象、方程曲线、几何图形 较熟悉,否则,错误的图象反而会导致错误的选择.
题型概述
解题方法
归纳总结
【训练 4】 过点( 2,0)引直线 l 与曲线 y= 1-x2相交于 A、B 两点,O 为坐标原点,当△AOB 的面积取最大值时,直线 l 的 斜率等于( )
则 tan θ2 等于(
)
m-3 A.9-m
m-3 B.|9-m|
C.-15
D.5
解析 由于受条件 sin2θ+cos2θ=1 的制约,m 一定为确定
的值进而推知 tan θ2 也是一确定的值,又π2 <θ<π,所以π4
θπ
< 2 < 2 ,故 tan
2θ>1.所以 D 正确.
答案 D
题型概述
解题方法
x=-1,排除 B.
(2)f(x)=14x2+sinπ2 +x=14x2+cos
x,故
f′(x)=14x2+cos
x′
=12x-sin x,记 g(x)=f′(x),其定义域为 R,且 g(-x)=12(-x)-
sin(-x)=-12x-sin
2023高考数学答题技巧(15篇)

2023高考数学答题技巧(15篇)高考数学答题技巧1一、规范书写高考文科数学答题技巧之一就是规范书写,这一点是文理通用的技巧。
卷面评分标准就是规范度,这就要求不但要对、而且要全且规范。
会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。
因为字迹潦草,会使阅卷老师的第一印象不良,“感情分”也就相应低了,所以高考答题书写要工整,保证卷面能得分。
二、讲究策略对于高考文科数学题要力求做的对、全、得满分,高考文科数学有两种常用方法:1。
分步解答:对于疑难问题,考生可以将它划分为一系列的步骤,先解决问题的一部分,能解到几步就写几步,每进行一步就可得到这一步的分数,也可以把条件和目标译成数学表达式,设应用题的未知数,设轨迹题的动点坐标,依题意正确画出图形等,都能得分。
从局部到整体,形成思路,获得解题成功。
在高考文科数学答题过程中尽量多的列举应用到的公式。
2。
跳步解答:当文科数学在解题的某一环节出现问题时,可以跳过这一步,写出后继各步,一直做到底;另外,若题目有两问,第一问做不上,可以第一问为“已知”,完成第二问,这都叫跳步解答。
也许后来由于解题的正迁移对中间步骤想起来了,或在时间允许的情况下,经努力而攻下了中间难点,可在相应题尾补上。
三、合理分配时间1、文科数学就是和时间的斗争。
高考文科数学试卷一发下来后,首先把全部问题看一遍。
找出其中看上去最容易解答的题,然后假定步骤,思考怎么样的顺序解题才最好。
2、切忌不看题目盲目背题,要仔细审题,清楚题目要求你解决什么问题,然后有条不紊迅速解题,提高准确率。
3、解题格式要规范,重点步骤要突出。
4、选择题时间控制在35分中以内。
小题小做、巧做、简单做,选择题和填空题要多用数形结合、特殊值验证法等技巧,节约时间。
5、保持心静,以不变应万变。
切莫因旁人的翻卷或其他行为干扰自己的解决思路。
这些都是高考文科数学应试答题高分技巧。
高考数学必考题型及答题技巧

高考数学必考题型及答题技巧高考数学答题技巧进入考试先审题考试开始后,很多学生喜欢奋笔疾书;但切记:审题一定要仔细,一定要慢。
数学题经常在一个字、一个数据里边暗藏着解题的关键,这个字、这个数据没读懂,要么找不着解题的关键,要么你误读了这个题目。
你在误读的基础上来做的话,你可能感觉做得很轻松,但这个题一分不得。
所以审题一定要仔细,你只有把题意弄明白了,这个题目才有可能做对。
会做的题目是不耽误时间的,真正耽误时间的是在审题的过程中,在找思路的过程中,只要找到思路了,单纯地写那些步骤并不占用时间。
充分利用考前5分钟很多学生或家长不知道,按照大型的考试的要求,考前五分钟是发数学卷时间,考生填写准考证。
这五分钟是不准做题的,但是可以看题。
发现很多考生拿到试卷之后就从第一个题开始看,给大家的建议是,拿过这套卷子来,这五分钟是用来制定整个战略的关键时刻。
之前没看到题目,你只是空想,当你看到题目以后,你得利用这五分钟迅速制定出整个考试的战略来。
节约时间的关键是一次做对有些学生,好不容易遇到一个简单的题目,就一味地求快,争取时间去做不会做的题目,这是严重的误区。
希望学生在考试的时候,一定要培养一次就做对的习惯,不要指望通过最后的检查力挽狂澜。
越是重要的考试,往往越没有时间回来检查,因为题目越往后越难,可能你陷在里面出不来,抬起头来的时候已经开始收卷了。
高考数学答题注意事项越是容易的题要越小心,因为这样的题很可能有陷阱。
出现怪异的答案的题要小心,因为很有可能计算错误。
任何带有数字的题要多问一下自己,有没有遗漏答案,如出现2的答案,就要考虑-2有没有可能也是答案。
最后一道填空题很有可能是难题,如果不能马上解出,应迅速放在一边进行下面答题,毕竟这道题再难也分数也有限,不应恋战。
数学选择题答题技巧数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
高考的数学答题技巧(推荐8篇)

高考的数学答题技巧〔推荐8篇〕篇1:数学高考答题技巧另外,在高考时很多同学往往因为时间不够导致数学试卷不能写完,试卷得分不高,掌握解题思想可以帮助同学们快速找到解题思路,节约考虑时间。
以下总结高考数学五大解题思想,帮助同学们更好地提分。
1.函数与方程思想函数思想是指运用运动变化的观点,分析^p 和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析^p 问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。
同学们在解题时可利用转化思想进展函数与方程间的互相转化。
2.数形结合思想中学数学研究的对象可分为两大局部,一局部是数,一局部是形,但数与形是有联络的,这个联络称之为数形结合或形数结合。
它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。
3.特殊与一般的思想用这种思想解选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。
不仅如此,用这种思想方法去探求主观题的求解策略,也同样有用。
4.极限思想解题步骤极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法那么得出结果或利用图形的极限位置直接计算结果。
5.分类讨论思想同学们在解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进展下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法那么、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。
2023高考数学六大解题方法
2023高考数学六大解题方法高考数学六大解题方法1、剔除法利用题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。
在答案为定值的时候,这方法是比较常用的,或者利用数值范围,取特殊点代入验证答案。
2、特殊值检验法对于具有一般性的选择题,在答题过程中,可以将问题具体特殊化,利用问题在特殊情况下不真,则利用一般情况下不真这一原理,从而达到去伪存真的目的。
3、顺推解法利用数学公式、法则、题意、定理和定义,通过直接演算推理得出答案的方法。
4、极端性原则将所要解答的问题向极端状态进行分析,使因果关系变得更加明朗,以达到迅速解决问题的目的。
极端性多数应用在取值范围、解析几何和求极值上面,很多计算量大、计算步骤繁琐的题,采用极端性去分析,可以瞬间解决问题。
5、直接法直接法就是从题设条件出发,通过正确推理、判断或运算,直接得出结论,从而作出选择的一种方法。
用这种方法的学生往往数学基础比较扎实。
6、估算法就是把复杂的问题转化为简单的问题,估算出答案的近似值,或者把有关数值缩小或扩大,从而对运算结果作出一个估计或确定出一个范围,达到作出判断的效果。
数列题解题方法注意等差、等比数列通项公式、前n项和公式;证明数列是等差或等比直接用定义法(后项减前项为常数/后项比前项为常数),求数列通项公式,如为等差或等比直接代公式即可。
其它的一般注意类型采用不同的方法(已知sn求an、已知sn与an关系求an(前两种都是利用an=sn-sn-1,注意讨论n=1、n;1),累加法、累乘法、构造法(所求数列本身不是等差或等比,需要将所求数列适当变形构造成新数列lamt,通过构造一个新数列使其为等差或等比,便可求其通项,再间接求出所求数列通项)。
数列的求和第一步要注意通项公式的形式,然后选择合适的方法(直接法、分组求和法、裂项相消法、错位相减法、倒序相加法等)进行求解。
第二题是立体几何题,证明题注意各种证明类型的方法(判定定理、性质定理),注意引辅助线,一般都是对角线、中点、成比例的点、等腰等边三角形中点等等,理科其实证明不出来直接用向量法也是可以的。
高考数学答题技巧方法及易错知识点
高考数学答题技巧方法及易错知识点高考即将来临,数学想得高分,要讲究方法技巧,不能盲目,今天小编在这给大家整理了一些高考数学答题的技巧及方法_高考数学易错的知识点,我们一起来看看吧!高考数学答题的技巧及方法1.调整好状态,控制好自我(1)保持清醒。
数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
(2)按时到位。
今年的答题卡不再单独发放,要求答在答题卷上,但发卷时间应在开考前5-10分钟内。
建议同学们提前15-20分钟到达考场。
2.通览试卷,树立自信刚拿到试卷,一般心情比较紧张,此时不易匆忙作答,应从头到尾、通览全卷,哪些是一定会做的题要心中有数,先易后难,稳定情绪。
答题时,见到简单题,要细心,莫忘乎所以。
面对偏难的题,要耐心,不能急。
3.提高解选择题的速度、填空题的准确度数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。
选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。
由于选择题的特殊性,由此提出解选择题要求“快、准、巧”,忌讳“小题大做”。
填空题也是只要结果、不要过程,因此要力求“完整、严密”。
4.审题要慢,做题要快,下手要准题目本身就是破_这道题的信息源,所以审题一定要逐字逐句看清楚,只有细致地审题才能从题目本身获得尽可能多的信息。
找到解题方法后,书写要简明扼要,快速规范,不拖泥带水,牢记高考评分标准是按步给分,关键步骤不能丢,但允许合理省略非关键步骤。
答题时,尽量使用数学语言、符号,这比文字叙述要节省而严谨。
5.保质保量拿下中下等题目中下题目通常占全卷的80%以上,是试题的主要部分,是考生得分的主要来源。
谁能保质保量地拿下这些题目,就已算是打了个胜仗,有了胜利在握的心理,对攻克高难题会更放得开。
6.要牢记分段得分的原则,规范答题会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣点分”。
高考数学六大答题方法
高考数学六大答题方法1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c 属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等,都有非常广泛的应用。
5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
高考数学系列各种题型的解题方法
1 高考数学系列各种题型的解题方法 高考数学系列各种题型的解题方法 数学是一门研究现实世界中空间形式与数量之间关系的科学。下面是大学网整理的高考数学各种题型的解题方法和技巧,希望能解决你遇到的相关问题。加油,大学网一直陪着你。 系列问题纸 数列是高中数学的重要组成部分,也是学习高等数学的基础。这一章的高考是综合性的,每年算术级数和几何级数的考试都不会错过。关于级数的试题往往是综合性试题,往往将级数的知识与指数函数、对数函数、不等式的知识相结合。试题还经常结合算术级数、几何级数、求极限和数学归纳法。探索性问题是高考的热点,经常出现在系列解答中。这一章也包含了丰富的数学思想。主观题中主要考查函数与方程、变换与约简、分类讨论等重要思想,以及分布法、代换法、待定系数法等其他基本数学方法。 近年来,高考数系的命题主要包括以下三个方面: (1)级数本身的相关知识,包括算术级数和几何级数的概念、性质、通式和求和公式。 (2)数列与其他知识的结合,包括数列与函数、方程、不等式、三角形、几何的结合。 (3)级数的应用,其中增长率是主要问题。试题有三个难度等级。小问题多以基础题为主,答案多以基础题和中间题为主。只是在某些地方,把级数与几何的综合和函数与不等式的综合作为x的后一个问题使用起来比较困难。 知识整合 1.在掌握等差数列和几何级数的定义、性质、通式、前n项和公式的基础上,系统掌握解决等差数列和几何级数综合问题的规律,深化数学思维和方法对解题的指导作用,灵活运用数列的知识和方法解决数学和现实生活中的相关问题。 2.在解决综合性、探索性问题的实践中,加深对基础知识、基本技能、基本数学思维方法的理解,沟通各种知识的联系,形成较为完整的知识网络,提高分析问题、解决问题的能力,进一步培养学生的阅读理解和创造xx能力,全面应 2
用数学思维方法分析问题、解决问题。 3.培养学生善于分析问题的意义,充满联想,从而适应xx的背景和xx的提问方式,提高学生用函数和方程的思想研究数列问题的意识,培养学生主动探索的精神和科学理性的思维方法。 排列的文章 1.掌握分类计数和分步计数的原理,用它们来分析和解决一些简单的应用问题。 2.理解排列的含义,掌握排列数的计算公式,并用它解决一些简单的应用问题。 3.理解组合的含义,掌握组合数的公式和组合数的性质,并用它们解决一些简单的应用问题。 4.掌握二项式定理和二项式展开式的性质,并用它们来计算和证明一些简单的问题。 5.理解随机事件的规律性和概率性的意义。 6.为了理解等可能性事件概率的意义,我们将使用排列组合的基本公式来计算一些等可能性事件的概率。 7.为了理解互斥事件和独立事件的意义,我们将使用互斥事件的概率加法公式和概率乘法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学解题的12种方法
1. 找准问题的关键点,归纳问题的要点和条件,分析问题的结构和性质,选择合适的解题方法。
2. 利用同种题目的解题思路、解题技巧,加速解题过程。
3. 运用代数方法,通过建立方程或不等式来解决问题。
4. 运用几何方法,通过画图、利用几何性质等方式解决问题。
5. 运用数列和级数的性质,通过数学归纳法或递推公式来解决问题。
6. 运用函数的性质,通过函数的图像、函数的变换等方式解决问题。
7. 运用概率和统计的方法,通过计算概率、分析统计数据等方式解决问题。
8. 运用数论的方法,通过分解因式、最大公约数、最小公倍数等方式解决问题。
9. 运用组合数学的方法,通过排列组合、选择判断等方式解决问题。
10. 运用解析几何的方法,通过坐标轴、向量等几何工具解决问题。
11. 运用微积分的方法,通过求导、求积分等方式解决问题。
12. 运用图论的方法,通过图的模型、路径分析等方式解决问题。