用非平衡电桥测量电阻

用非平衡电桥测量电阻
用非平衡电桥测量电阻

用非平衡电桥测量电阻

【实验目的】

1. 利用非平衡电桥测量电阻;

2. 研究半导体热敏电阻的阻值和温度的关系。 【实验方案】

电桥按测量方式可分为平衡电桥和非平衡电桥。虽然它们都可以准确地测量电阻,但平衡电桥只能用于测量相对稳定的电阻值,而非平衡电桥能用于测量连续变化的电阻值。

1. 平衡电桥

惠斯登电桥(平衡电桥)的原理如图1所示,调节R 3使检流计G 无电流流过时,C 、D 两点等电位,电桥平衡,从而得到

31

2

R R R R x

(1)

2. 非平衡电桥

非平衡电桥也称不平衡电桥或微差电桥。图2为非平衡电桥的原理图,B 、D 之间为一负载电阻R g 。用非平衡电桥测量电阻时,是使R 1、R 2和R 3保持不变,R x (即R 4)变化时则U 0变化。再根据U 0与R x 的函数关系,通过检测U 0的变化从而测得R x 。由于可以检测连续变化的U 0,所以可以检测连续变化的R x 。

(1)非平衡电桥的桥路形式 1)等臂电桥

电桥的四个桥臂阻值相等,即R 1=R 2=R 3=R 4。 2)输出对称电桥,也称卧式电桥

这时电桥的桥臂电阻对称于输出端,即R 1=R 3=R ,R 2=R 4=R′。且R≠R′。 3)电源对称电桥,也称为立式电桥

这时从电桥的电源端看桥臂电阻对称,即R 1=R 2=R′,R 3=R 4=R ,且R ≠R′。

4)比例电桥

这时桥臂电阻成一定的比例关系,即R 1=KR 2,R 3=K R 4或R 1=K R 3,R 2=K R 4,K 为比例系数。实际上这是一般形式的非平衡电桥。

(2)R g 相对桥臂电阻很大时的非平衡电桥(电压输出形式)

当负载电阻R g →∞,即电桥输出处于开路状态时,I g =0,仅有输出电压,用U 0表示。ABC 半桥的电压降为U s (即电源电压),根据分压原理,通过R 1、R 3两臂的电流为

图1 惠斯登电桥

A

B 图2 平衡电桥原理图

3

131R R U I I s

+==

(2)

则R 3上的电压降为

s BC U R R R U 3

13

+=

(3)

同理R 4上的电压降为

s DC U R R R U 4

24

+=

(4)

输出电压U 0为U BC 与U DC 之差,即

s s s DC BC U R R R R R R R R U R R R U R R R U U U )

)((42314132424

3130++-=+-+=

-=

(5)

当满足条件R 2R 3 = R 1R 4时,电桥输出U 0=0,即电桥处于平衡状态。为了测量的准确性,

在测量的起始点,电桥必须调至平衡,称为预调平衡。预调平衡可使输出只与某一臂的电阻变化有关。若R 1、R 2和R 3固定,R 4为待测电阻,当R 4因外界条件变化(如温度t )而变为R 4+△R 时,此时因电桥不再平衡而产生的输出电压为

s U R R R R R R R R R R R R R U ?+?+++-?+=

)

())((4242314

12320

(6)

各种电桥的输出电压公式如下: 1)等臂电桥(R 1=R 2=R 3=R 4=R )

R

R R R U U R

R R R

R U s s ?+???=?+?=

2111

4242

0 (7)

2)输出对称电桥(R 1=R 3=R ,R 2=R 4=R′,且R≠R′)

R

R R U U s +?

??=

211

40

(8)

3)电源对称电桥(R 1=R 2=R′,R 3=R 4=R ,且R≠R′)

R R R R R R R R R U U s

'

+?+

???'+'=11

)(2

0 (9)

注意:上面(7)~(9)式中的R 和其R′ 均为预调平衡后的电阻。此外,当电阻增量△R 较小时,即满足△R <

一般来说,等臂电桥和输出对称电桥的输出电压比电源对称电桥高,因此灵敏度也高,但电源对称电桥的测量范围大,可以通过选择R 和R′ 来扩大测量范围,R 和R′ 差距愈大,测量范围也愈大。

在用非平衡电桥测电阻时,需将被测电阻R x 作为桥臂R 4接入非平衡电桥,并进行预调平衡,这时电桥输出电压为0。改变外界条件(如温度t ),则被测电阻发生变化,这时电桥输出电压U 0≠0,开始作相应变化。测出这个电压U 0后,可根据(7)~(9)式计算得到

△R ,从而求得R x =R 4+△R 。

(3)R g 相对桥臂电阻可比拟时的非平衡电桥(功率输出形式)

当负载电阻R g 与桥臂电阻可比拟时,则电桥不仅有输出电压U g ,也有输出电流I g ,也就是说有输出功率,此种电桥也称为功率桥。功率桥可以表示为图3(a )。

应用有源端口网络定理,功率桥可以简化为图3(b )所示电路。U BD 为BD 之间的开路

电压,由(5)式表示,R″ 是有源一端网络等值支路中的电阻,其值等于该网络入端电阻R r ,参见图3(c ),即

4

2423131R R R

R R R R R R R r +++=

=''

(10)

由3(b )可知,流经负载电阻R g 的电流为

)

()())(()

(

)

)((3142423142314

1324

242313142314132R R R R R R R R R R R R R R R R R U R R R R

R R R R R U R R R R R R R R R R U I g S g S

g BD

g ++++++-?

=++++?++-=+''=

(11)

当I g =0时,有04132=-R R R R ,这是功率桥的平衡条件,与(5)式一致,也就是说功率输出形式与电压输出形式的非平衡电桥的平衡条件是一致的。

最大功率输出时,电桥的灵敏度最高。当电桥的负载电阻R g 等于输出电阻(电源内阻),

4

2423131R R R

R R R R R R R r g +++=

=

(12)

即阻抗匹配时,电桥的输出功率最大。此时电桥的输出电流由(11)式得

)

()(2314242314

132R R R R R R R R R R R R U I S g +++-?=

(13)

输出电压为

)

)((231424

132R R R R R R R R U R I U S g g g ++-?=

= (14)

当桥臂R 4的电阻有增量△R 时,我们可以得到三种桥路形式的电流、电压和功率变化。测量时都需要预调平衡,平衡时的I g 、V g 和P g 均为0,电流、电压和功率变化都是相对平

图3 非平衡电桥功率输出电路

(b )

R g R''=R r

E'=U BD

(c )

(a )

g

衡状态时讲的。

最大功率输出时,三种桥路形式的电流、电压和功率变化分别为: 1)等臂电桥R 1=R 2=R 3=R 4=R ,则有

?????

?

?

?

???

?????+?+?

??=???=??+???=

??+???=?++?+??=?)21)(431(1

)(64211184311

8)2()(222222

2R R R R R R R U U I P R R R R U U R R R R U R R R R R R R R U I S g g g S g S S g (15)

2)输出对称电桥桥R 1=R 3=R ,R 2=R 4=R′,则有

?????

?

?

?

?

??

????

?+

?

??'+'++???'+=???=??+???=

???'+'++???'+=?'+'+?'+'?'?=?R R R R R R R R R R R R U U I P R R R R U U R R R R R R R R R R U R R R R R R R R R R R U I S g g g S g S S g 211

)(2211)()(3221118)(2211

)(4)()(222222222

(16) 3)电源对称电桥R 1=R 2=R′,R 3=R 4=R ,则有

?????

?

?

??

??

????

'++

?

?'+'+???'+'=???=?'++??'+'?=???'+'++???+=

?R R R R R R R R R R R U U I P R R R R R R R R U U R R R R R R R R R R U I S g g g S g S g 11

)(211)()(811)(2)(2211

)(42322

' (17)

测得△I g 和△U g 后,很方便可求得功率△P g ,通过上述相关公式(注意:上式中的R

和其R′ 均为预调平衡后的电阻)可运算到相应的△R I 和△R U ,然后运用公式

U I R R R ??=?

(18)

可得到△R ,从而求得R x =R 4+△R 。 当电阻增量△R 较小时,即满足△R <<R 时,上面(15)~(17)三组公式的分母含△R 项可略去,公式得以简化,这里从略。

3. 半导体热敏电阻(2.7k Ω MF 51型)

2.7k Ω MF 51型半导体热敏电阻,是由一些过渡金属氧化物(主要用Mn 、Co 、Ni 和Fe

等氧化物)在一定的烧结条件下形成的半导体金属氧化物作为基本材料制成,具有P 型半导体的特性。对于一般半导体材料,电阻率随温度变化主要依赖于载流子浓度,而迁移率随温度的变化相对来说可以忽略。但上述过渡金属氧化物则有所不同,在室温范围内基本上已全部电离,即载流子浓度基本上与温度无关,此时主要考虑迁移率与温度的关系。随着温度升高,迁移率增加,电阻率下降,故这类金属氧化物半导体是一种具有负温度系数的热敏电阻元件,其电阻—温度特性见表1。

根据理论分析,半导体热敏电阻的电阻—温度特性的数学表达式通常可表示为

)298/1/1(25-=T B t n e R R

(19)

其中R 25和R t 分别为25℃和t ℃时热敏电阻的阻值,T = 273 + t ;B n 为材料常数,其值因制作时不同的处理方法而异,对确定的热敏电阻,可以由实验测得的电阻—温度曲线求得。我们也可以把(19)式写成比较简单的表达式

T B t n e R R /0=

(20)

其中298

/250n B e R R -=。可见热敏电阻的阻值R t 与T 为指数关系,是一种典型的非线性电阻。

DHQJ-3型非平衡电桥实验仪,桥臂电阻调节范围为10Ω~11.11KΩ,步进值为lΩ。 实验仪面板示意图如图4所示。 1、为工作电源负端;2、为R 1电阻端; 3、为R 2电阻端;4~5、为双桥电流端; 6、为R ′3电阻端;7、为单桥被测端; 8、为R 3电阻端;9、为工作电源正端; 10、为数字电压表;

11~14、为R 1电阻调节盘,分别为×1000、×100、×10、×1电阻盘;

15~18、为R 2电阻调节盘,分别为×1000、

× 100、×10、× l 电阻盘;

19~22、为R 3和R ′3电阻调节盘,分别为

×1000、×100、× 10、× l 电阻盘;

23、为非平衡电桥和双桥的电压调节旋钮;

24、为电源选择开关,分别可选:电压测量、双桥/非平衡、3V 、6V 、9V 五种方式; 25、为G (电桥输出)选择开关,按向下为内接,按向上为外接;

26~27、为G (电桥输出)外接端; 28、为量程选择开关,按向下为200mV ,按向上为2V ;

29~30、为电桥的B 、G 按钮,即工作电

源和电桥输出通断按钮。

图5为实验仪内部电路示意图。R 1、R 2、R 3、R'3为桥臂电阻,其中R 3、R'3

联动调节;

图4 非平衡电桥实验仪面板示意图

开关K 为电桥输出转换开关,当拨向“内接”时,电桥上的输出电压通过数字电压表DVM 显示,当拨向“外接”时,电桥上的输出电压通过“+”、“-”接线端输出至外接电压表显示;按纽B 为桥路工作电源通断开关,按纽G 为电桥输出通断开关;电阻R P 为电源保护电阻;最下一排为9个接线端。

实验仪内置的数字电压表,量程1:200mV ,量程2:2V ,3位半显示,量程通过开关切换;平衡电桥时作指零仪使用,非平衡电桥时作数字电压表使用。

加热装置(含2.7KΩ热敏电阻)。 仪器使用注意事项:

(1)电桥使用时,应避免将R 1、R 2,R 3同时调到零值附近测量,这样可能会出现较大的工作电流,测量精度也会下降。

(2)仪器使用完毕后,务必关闭电源。

(3)电桥应存放于温度0℃~40℃,相对湿度低于80%的室内空气中,不应含有腐蚀性气体,避免在阳光下暴晒。

仪器使用前的准备:

(1)用随实验仪配备的电源线将电桥连至220V 交流电源,打开电桥后面的电源开关,接通电源。

(2)若选择实验仪内置的数字电压表测量,则将实验仪的G (电桥输出)选择开关置于“内接”;若选择其它外部的电压表测量,则将G (电桥输出)选择开关置于“外接”,这时数显表不点亮。

(3)根据被测对象选择合适的工作电源。若做非平衡电桥和双桥(开尔文电桥)实验,则将电源选择开关打向“双桥/非平衡”;若作单桥和三端电桥实验,则根据被测阻值大小,选择3V 、6V 、9V 为工作电源;“电压测量”档用于测量电源电压U s 。

【实验内容】 1. 用输出对称....非平衡电桥的电压输出形式测量热敏电阻 (1)根据所测热敏电阻的特性(见表1)设计各桥臂电阻(R 1、R 2、R 3和R 4)的阻值,以及电源电压U s 的大小,以确保电桥的电压输出不会溢出(预习时设计计算好)。

(2)根据图5所示的实验仪内部电路示意图,正确搭建输出对称电桥。

(3)预调平衡。按设计要求调节R 1、R 2、R 3。通过“电压调节”旋钮调节非平衡电桥的电源电压U s 为设计值;电源选择开关的“电压测量”档用来测量这时桥路的电源电压U s 。转动“电源选择”开关至“双桥/非平衡”。将待测电阻R x 接入非平衡电桥实验仪,先后按下G 、B 按钮开关,微调桥臂电阻使数字电压表的电压U 0=0。记下预调平衡后的各桥臂电阻(R 1、R 2和R 3),如此可测出初始电阻R x0;记下初始温度t 0。

(4)调节控温仪升高温度,待测电阻R x 的阻值改变,相应的数字电压表的电压U 0亦改变。每升温5℃测一个点,列表记录温度t 和相应的电压U 0。

2. 用电源对称....

非平衡电桥的电压输出形式测量热敏电阻 用电源对称电桥重复以上实验步骤。 【数据分析】

1. 输出对称电桥

(1)根据(8)式,由U 0计算得到ΔR ,进而得到R x = R x0+ΔR 。 (2)作R x — t 图。

(3)根据式(20)式可得

T

B R R n

t +

=0ln ln (21)

由此可知1n R t 与1/T 成线性关系。用最小二乘法拟合该直线,求出R 0和B n ,得出经验方程。

2. 电源对称电桥

数据处理的要求同上。比较两实验内容的结果,得出必要的结论。

【思考题】

1. 非平衡电桥与平衡电桥有何异同?

2. 有人这样进行测量:先将温度设置为70℃,然后持续通电加热,此时电阻的温度必然连续上升,于是他开始观察温度指示值,从室温开始每隔5℃记录一次装置上显示的电压值。请问这样的操作方式正确吗?请说明理由。

3. 你所设计的电桥在测量中途发生电表溢出时,应采取什么措施?

4. 举例说明非平衡电桥可以应用在哪些工程技术中?

【思维扩展】

在非电量测量中,非平衡电桥有着广泛的应用。运用一些特殊的传感器可以将位移、应变、压力、温度和真空度等非电量转变成电阻值,再运用非平衡电桥来测量这些电阻值,进而可以测量出这些非电量的数值。

双臂电桥测量低电阻

双臂电桥测量低电阻 用惠斯顿电桥测量中等电阻时,忽略了导线电阻和接触电阻的影响,但在测量1Ω以下的低电阻时,各引线的电阻和端点的接触电阻相对被测电阻来说不可忽略,一般情况下,附加电阻约为10-5~10-2Ω。为避免附加电阻的影响,本实验引入了四端引线法,组成了双臂电桥(又称为开尔文电桥),是一种常用的测量低电阻的方法,已广泛的应用于科技测量中。 一、实验目的 1.了解四端引线法的意义及双臂电桥的结构; 2.学习使用双臂电桥测量低电阻; 3.学习测量导体的电阻率。 二、实验原理 1.四端引线法 测量中等阻值的电阻,伏安法是比较容易的方法,惠斯顿电桥法是一种精密的测量方法,但在测量低电阻时都有发生了困难。这是因为引线本身的电阻和引线端点接触电阻的存在。图1为伏安法测电阻的线路图,待测电阻R X两侧的接触电阻和导线电阻以等效电阻r1、r2、、、r3 、r4表示,通常电压表内阻较大,r1和r4对测量的影响不大,而r2和r3与R X串联在一起,被测电阻(r2+R X+r3),若r2和r3数值与R X为同一数量级,或超过R X,显然不能用此电路来测量R X。 若在测量电路的设计上改为如图2 所示的电路,将待测低电阻R X两侧的接点分为两个电流接点C-C和两个电压接点P-P,C-C在P-P的外侧。显然电压表测量的是P-P 之间一段低电阻两端的电压,消除了r2、和r3对R X测量的影响。这种测量低电阻或低电阻两端电压的方法叫做四端引线法,广泛应用于科技测量中。例如为了研究高温超导体在发生正常超导转变时的零电阻现象和迈斯纳效应,必须测定临界温度Tc,正是用通常的四端引线法,通过测量超导样品电阻R随温度T的变化而确定的。低值标准电阻正是为了减小接触电阻和接线电阻设有四个端钮。 图1 伏安法测电阻图2 四端引线法测电阻 2.双臂电桥测量低电阻 用惠斯顿电桥测量电阻,测出的R X值中,实际上含有接线电阻和接触电阻(统称为R j)的成分(一般为10-3~10-4Ω数量级),若R j/R X

直流平衡电桥测电阻实验报告材料

大连理工大学 大 学 物 理 实 验 报 告 院(系) 材料学院 专业 材料物理 班级 0705 姓 名 童凌炜 学号 200767025 实验台号 实验时间 2008 年 12 月 10 日,第16周,星期 三 第 5-6 节 实验名称 直流平衡电桥测电阻 教师评语 实验目的与要求: 1) 掌握用单臂电桥测电阻的原理, 学会测量方法。 2) 掌握用双臂电桥测电阻的原理, 学会测量方法。 主要仪器设备: 1) 单臂电桥测电阻:QJ24型直流单臂电桥,自制惠更斯通电桥接线板,检流计,阻尼开关、四位 标准电阻箱、滑线变阻器、电路开关、三个带测电阻、电源; 2) 双臂电桥测电阻:QJ44型直流双臂电桥,待测铜线和铁线接线板、电源、米尺和千分尺。 实验原理和内容: 1 直流单臂电桥(惠斯通电桥) 1.1 电桥原理 单臂电桥结构如右图所示, 由四臂一桥组成; 电桥平衡条件是BD 两点电位相等, 桥上无电流通过, 此时有关系s s x R M R R R R ?== 2 1 成立, 其中M=R1/R2称为倍率, Rs 为四位标准电阻箱(比较臂), Rx 为待测电阻(测量臂)。 1.2 关于附加电阻的问题: 附加电阻指附加在带测电阻两端的导线电阻与接触 电阻, 如上图中的r1, r2, 认为它们与Rx 串联。如果R x 远大于r ,则r 1+r 2可以忽略不计,

但是当R x 较小时,r 1+r 2就不可以忽略不计了,因此单臂电桥不适合测量低值电阻, 在这种情况下应当改用双臂电桥。 2 双臂电桥(开尔文电桥) 2.1 双臂电桥测量低值电阻的原理 双臂电桥相比单臂电桥做了两点改进, 增加R3、R4两个高值电桥臂, 组成六臂电桥;将Rx 和Rs 两个低值电阻改用四端钮接法, 如右图所示。在下面的计算推导中可以看到, 附加电阻通过等效和抵消, 可以消去其对最终测量值的影响。 2.2 双臂电桥的平衡条件 双臂电桥的电路如右图所示。 在电桥达到平衡时,有1234\\R R R R =,由基尔霍夫第二定律及欧姆定律可得并推导得: 31123 3141312242342 431323424 33112424 ()0x S x x x x x x I R I R I R R R R r R I R I R I R R R R R R r R R R R R R R M R I r I r R R R R R R R R R R R R ? =-? ??? ?=-?=+-? ??++?????===?=++?? ??=?-=?? 可见测量式与单臂电桥是相同的, R1/R2=R3/R4=M 称为倍率(此等式即消去了r 的影响), Rs 为比较臂, Rx 为测量臂。 使用该式, 即可测量低值电阻。 步骤与操作方法: 1. 自组惠斯通电桥测量中值电阻 a) 按照电路图连接电路, 并且根据待测电阻的大小来选择合适的M 。 b) 接通电路开关, 接通检流计开关; 调节电阻箱Rs 的阻值(注意先大后小原则), 使检流 计指零, 记下电阻箱的阻值Rs c) 重复以上步骤测量另外两个待测电阻值。 2. 使用成品单臂电桥测量中值电阻 a) 单臂成品电桥的面板如下页右上图所示。

双臂电桥测量低电阻

实验名称:双臂电桥测量低电阻 姓名:*** 学号:********** 专业班级:***** 实验仪器 本实验所使用仪器有双臂电桥、直流稳压电源、电流表、电阻、双刀双掷换向开关、标准电阻、低电阻测试架(待测铜、铝棒各一根)、直流复射式检流计( C15/4或6型)、千分尺(螺旋测微器)、米尺、导线等。 实验原理 我们考察接线电阻 和接触电阻是怎样 对低值电阻测量结 果产生影响的。例如 用安培表和毫伏表 按欧姆定律R=V/I 测量电阻Rx,电路图如图 1 所示, 考虑到电流表、毫伏表与测量电阻的接触电阻后,等效电路图如图 2 所示。 由于毫伏表内阻 Rg远大于接触电 阻R i3 和R i4 , 因此他们对于毫 伏表的测量影响可忽略不计,此时按照欧姆定律R=V/I得到的电阻是(Rx+ R i1 +R i2 )。当待测电阻Rx 小于1 时,就不能忽略接触电阻R i1 和R i2 对测量的影响了。因此,为了消除接触电阻对于测量结果的影响,需要将接线方式改成下图 3方式,将低电阻Rx以四端接法方式连接,

等效电路如图 4 。此时毫伏表上测得电眼为Rx的电压降,由Rx = V/I即可准测计算出Rx。接于电流测量回路中成为电流头的两端(A、D),与接于电压测量回路中称电压接头的两端(B、C)是各自分开的,许多低电阻的标准电阻都做成四端钮方式。根据这个结论,就发展成双臂电桥,线路图和等效电路图 5和图 6所示。标准电阻Rn电流头接触电阻为R in1 、R in2 ,待测电阻Rx的电流头接触电阻为R ix1 、R ix2 ,都连接到双臂电桥测量回路的电路回路内。标准电阻电压头接触电阻为R n1 、R n2 ,待测电阻Rx电压头接触电阻为R x1 、R x2 ,连接到双臂电桥电压测量回路中,因为它们与较大电阻R 1 、R 2 、R 3 、R相串连,故其影响可忽略。 实验内容 用双臂电桥测量金属材料(铜棒、铝棒)的电阻率ρ,先用(3)式测量Rx,再用求r。1.将铜棒安装在测试架上,按实验电路图接线。选择长度为50cm,调节R 1 ,R 2 为1000 ,调节R使得检流计指示为0,读出此时R的电阻值。利用双刀开关换向,正反方向各测量3组数据。 2.选取长度40cm,重复步骤1。 3.在6个不同的未知测量铜棒直径 并求D的平均值。 4.计算2种长度的和r,再求。 5.取40cm长度,计算测量值r的 标准偏差。 6.将铜棒换成铝棒,重复步骤1至5。 数据处理:

用单臂电桥测电阻带实验数据处理

本科实验报告 实验名称: 用单臂电桥测电阻 实验13 用单臂电桥测电阻(略写)【实验目的】 (1)掌握用单臂电桥测量电阻的原理和方法。 (2)学习用交换法减小和消除系统误差。 (3)初步研究电桥的灵敏度。 【实验原理】 单臂电桥,也叫惠斯登电桥,适用于精确测量中值电阻(10~的测量装置。 电桥法测电阻,其实质是把被测电阻与标准电阻相比较,已确定其值。由于电阻的制造可以达到很高的精度,所以用电桥法测电阻也可以达到很高的精度。 电桥分为直流电桥和交流电桥两大类。直流电桥又分为单臂电桥和双臂电桥。惠斯登电桥是直流电桥中的单臂电桥;双臂电桥又称为开尔文电桥,适用于测量低电阻(~10Ω)。 单臂电桥的线路原理 单臂电桥的基本线路如图所示。它是由四个电阻R1,R2,Rs,Rx连成一个四边形ACBD,在对角线AB上接上电源E,在对角线CD上接上检流计P组成。接入检流计(平衡指示)的

对角线称为“桥”,四个电阻称为“桥臂”。在一般情况下,桥路上检流计中有电流通过,因而检流计的指针偏转。若适当调节某一电阻值,例如改变Rs的大小可使C,D两点的电位相等,此时流过检流计P的电流Ip=0,称为电桥平衡。则有 (1) (2) (3) 由欧姆定律知 = 2 (4) =s (5) 由以上两式可得 (6) 此式即为电桥的平衡条件。若R1,R2,Rs已知,Rx即可由上式求出。通常取R1,R2为标准电阻,称为比率臂,将称为桥臂比;Rs为可调电阻,成为比较臂。改变Rs使电桥达到平衡,即检流计P中无电流流过,便可测出被测电阻Rx的值。 用交换法减小和消除系统误差 分析电桥线路和测量公式可知,用单臂电桥测量Rx的误差,除其他因素外,还与标准电阻R1,R2的误差有关。可以用交换法来消除这一系统误差,方法是:先连接好电桥线路,调节Rs使P中无电流,可求出Rs,然后将R1与R2交换位置,再调节Rs使P中无电流, 记下此时的Rs',可得,相乘可得Rx=, 这样就消除了由R1,R2本身的误差引起的对Rx引入的测量误差。Rx的测量误差只与电阻箱Rs的仪器误差有关,而Rs可选用高精度的标准电阻箱,这样系统误差就可减小。 电桥的灵敏度 检流计的灵敏度总是有限的,如实验中所用的检流计,指针偏转一格所对应的电流大约为A。当通过它的电流比A还要小时,指针偏转小于0.1格,就很难察觉出来。假设电桥在R1/R2=1时调到了平衡,则有Rx=Rs。这时,若把Rs改变ΔRs,电桥就失去了平衡,检流计中有电流Ip流过。但是如果Ip小到使检流计觉察不出来,还会认为电桥还是平衡的,因而得出Rx=Rs+ΔRs。这样就会因为检流计的反应不够灵敏而带来一个测量误差ΔRx=ΔRs。为表示此误差对测量结果影响的严重程度,引入电桥灵敏度的概念,定义为 S=(7) 之中,是在电桥平衡后Rx的微小改变量(实际上是改变Rs,可以证明,改变任意臂所得出的电桥灵敏度是一样的)是由于电桥偏离平衡而引起的检流计的偏转格数。S越大,说明电桥越灵敏,带来的误差也越小,举例来说,检流计有五分之一格的偏转时既可以觉察

用直流双臂电桥测低电阻

实验三用直流双臂电桥测低电阻

1实验基本要求 1. 掌握用双臂电桥测低电阻的原理。 2. 了解单臂电桥和双臂电桥的关系与区别。 3.掌握用自组、箱式双臂电桥测金属导体电阻的方法。 4.测量金属导体的电阻率。 2仪器简介 3.实验原理 用单臂电桥测电阻时,未考虑各桥臂之间的连线电阻和各接线端钮的接触电阻,这是因为被测电阻和各臂的电阻都比较大,导线电阻和接触电阻(以下称附加电阻)很小,对测量结果的影响可忽略不计。附加电阻约10-2Ω量级,在测低电阻时就不能忽略了。 考察接线电阻和接触电阻对低值电阻测量结果的影响。图1为测量电阻Rx的电路,考虑到电流表、毫伏表与测量电阻的接触电阻后,等效电路如图2所示。由于毫伏表内阻Rg远大于接触电阻Ri3和Ri4,所以由R=V/I得到的电阻是(Rx+ Ri1+ Ri2)。当待测电阻Rx很小时,不能忽略接触电阻Ri1和Ri2对测量结果的影响。

图1 测量电阻的电路图图2等效电路图 图3 四端接法电路图图4 四端接法等效电路 为消除接触电阻的影响,接线方式改成四端钮方式,如图3所示。A、D为电流端钮,B、C为电压端钮,等效电路如图4。此时毫伏表上测得电压为Rx的电压降,由Rx = V/I即可准确计算出Rx。 把四端接法的低电阻接入原单臂电桥,演变成图5所示的双臂电桥,等效电路如图6所示。标准电阻Rn电流头接触电阻为Rin1、R in2,待测电阻Rx的电流头接触电阻为Rix1、Rix2,这些接触电阻都连接到双臂电桥电流测量回路中,只对总的工作电流I有影响,而对电桥的平衡无影响。将标准电阻电压头接触电阻为Rn1、Rn2和待测电阻Rx电压头接触电阻为Rx1、Rx2分别连接到双臂电桥电压测量回路中,因为它们与较大电阻R1、R2、R3、R4相串联,对测量结果的影响也及其微小,这样就减少了这部分接触电阻和导线电阻对测量结果的影响。 图5双臂电桥电路

平衡电桥的原理

平衡电桥原理 图1 平衡电桥电路原理图 电阻变量的测量电桥,结构简单,具有灵敏度高,测量范围宽,线形度好,精度高和容易实现温度补偿等优点,因此能很好地满足应变测量的要求,是目前最多最广泛的一种测量电路。 上图所示为一直流供电的平衡电桥。A,B,C,D 为电桥顶点,它的四个桥臂由R1、R2、R3、R4的四个电阻组成(其中任一个电阻可以是应变片,即热敏电阻),AC 两端为输入口接直流电源,BD 两端为电桥输出。 当电桥输出端BD 接到一个无穷大负载电阻(实际上只要大到一定数值即可)上时,可以认为输出端开路,这时直流电桥称为电压桥。 从ABC 半个桥看,流经R1的电流 R1两端压降: R3两端压降: AC 112 U I R R = +1 AB 11AC 12 R U I R U R R ==+3 AD AC 34 R U U R R =+

电桥输出电压: 由上式可知,当R1R4=R2R3时,则电桥U0=0,则称电桥处于平衡状态。设处于平衡状态的电桥各桥臂由电阻增量为ΔR 1、ΔR 2、ΔR 3、ΔR 4则电桥的输出电压为: (精确公式) 若将平衡条件R1R4=R2R3代入上式,并考虑ΔR 1 < R1略去高阶微量,则电桥的输出电压为: (近似公式) 在这个平衡电桥中由热敏电阻作为我们温度设计信号的来源,当它受到不同温度时会经过整个平衡电桥来使输出电压发生变化。实现温度的检测与电压转换。 1423 0AB AD AC 1234R R R R U =U U U (R R )(R R ) --= ++114422330AC 11223344 (R R )(R R )(R R )(R R ) U U (R R R R )(R R R R )+?+?-+?+?=+?++?+?++?312124 0AC 2 121234 R R R R R R U U ()(R R )R R R R ????=--++

双臂电桥测低电阻实验报告

《基础物理》实验报告 学院: 国际软件学院专业: 数字媒体技术2011 年 6 月3日 实验名称双臂电桥测低电阻 姓名陈鲁飞年级/班级10级原软工四班学号25 一、实验目的四、实验内容及原始数据 二、实验原理五、实验数据处理及结果(数据表格、现象等) 三、实验设备及工具六、实验结果分析(实验现象分析、实验中存在问题的讨论) 一、实验目的 1、了解测量低电阻的特殊性。 2、掌握双臂电桥的工作原理。 3、用双臂电桥测金属材料(铝、铜)的电阻率。 二、实验原理 我们考察接线电阻与接触电阻就是怎样对低值电阻测量结果产生影响的。例如用安培表与毫伏表按欧姆定律R=V/I测量电阻Rx,电路图如图 1 所示, 考虑到电流表、毫伏表与测量电阻的接触电阻后,等效电路图如图 2所示。 由于毫伏表内阻Rg远大于接触电阻R i3与R i4,因此她们对于毫伏表的测量影响可忽略不计,此时按照欧姆定律R=V/I得到的电阻就是(Rx+ R i1+ R i2)。当待测电阻Rx小于1时,就不 能忽略接触电阻R i1与R i2对测量的影响了。 因此,为了消除接触电阻对于测量结果的影响,需要将接线方式改成下图 3方式,将低电阻Rx以四端接法方式连接,等效电路如图 4 。此时毫伏表上测得电眼为Rx的电压降,由Rx = V/I即可准测计算出Rx。接于电流测量回路中成为电流头的两端(A、D),与接于电压测量回路中称电压接头的两端(B、C)就是各自分开的,许多低电阻的标准电阻都做成四端钮方式。

根据这个结论,就发展成双臂电桥,线路图与等效电路图5与图6所示。标准电阻Rn 电流头接触电阻为R in1、R in2,待测电阻Rx的电流头接触电阻为R ix1、R ix2,都连接到双臂电桥测量回路的电路回路内。标准电阻电压头接触电阻为R n1、R n2,待测电阻Rx电压头接触电阻为R x1、R x2,连接到双臂电桥电压测量回路中,因为它们与较大电阻R1、R 2、R3、R相串连,故其影响可忽略。 由图5与图6,当电桥平衡时,通过检流计G的电流I G= 0, C与D两点电位相等,根据基尔霍夫定律,可得方程组(1)

(整理)双臂电桥测量低电阻.

实验题目:双臂电桥测量低电阻 实验目的:掌握双臂电桥的工作原理,并用双臂电桥测量金属材料的电阻率 实验原理:(见预习报告) 实验仪器: QJ36型双臂电桥(0.02级) JWY型直流稳压电源(5A15V) 电流表(5A)双刀双掷换向开关 标准电阻(0.01级)低电阻测试架(待测铜、铝棒各一根) 直流复射式检流计(C15/4或6型) R P电阻 另外还有导线、千分尺、超低电阻(小于0.001Ω)连接线等仪器。 实验内容:

1、用千分尺测量铜棒和铝棒的直径,测量六次。 2、按实验室所给示意图连接好电路,将铜棒分别选取30cm 和40cm 长度接入电 路,将双刀双掷开关正反各打三次,各得6个电阻数据。 3、将铝棒选取40cm 长度接入电路,将双刀双掷开关正反各打三次,得到6个电 阻数据。 4、根据所得数据算出各自的电阻率,并计算铜棒40cm 接入电路时的数据不确定 度。 实验数据: 1. 导线直径 (千分尺初始值:-0.011mm ) 导线直径 1 2 3 4 5 6 铝(mm ) 4.970 4.972 4.974 4.970 4.969 4.970 2. 电阻的测量 正向开关时测量值(Ω) 反向开关时测量值(Ω) 铜导线 40cm 1587.31 1589.01 1588.41 1586.31 1588.01 1588.01 30cm 1193.01 1191.55 1192.35 1194.05 1194.55 1194.35 铝导线 40cm 712.85 713.25 713.25 717.85 717.45 717.65 数据处理: 一、导线直径 1.铜棒直径平均值 mm mm mm D D i i 994.4)011.0(6 4.982 4.9844.9814.9814.9834.9846 6 1 =--+++++= = ∑= 2.铝棒直径平均值 mm mm mm D D i i 982.4)011.0(6 4.970 4.9694.9704.9744.9724.9706 6 1 =--+++++= = ∑= 二、40cm 的铝导线电阻率 1.测量所得电阻的平均值 Ω=Ω+++++= = ∑=38.7156 717.65 717.45717.85713.25713.25712.856 6 1 i i R R

直流电桥法测电阻(单电阻)实验报告

一实验预习(20分) 学生进入实验室前应预习实验,并书写实验预习报告。预习报告应包括:①实验目的,②实验原理,③实验仪器,④实验步骤⑤实验数据记录表等五部分。以各项表述是否清楚、完整,版面 验前还应预习实验)。 二实验操作过程(20分) 学生在教师的指导下进行实验。操作过程分三步,第一步实验准备,包括①连接线路;②检流计调零;③预置C、R三部分;第二步测量并记录数据,要注意操作的规范性;第三步实验仪器整理,并填写相关登记表格。以各项是否能够按照实验要求独立、正确完成,数据记录是否准确、正确分三档给分。 三实验纪律( 学生进入实验室,按照学生是否按规定进入实验室,是否按照操作要求使用仪器,是否在实验结 以上三项成绩不足30分者,表示实验过程没有完成,应重新预约该实验。实验完成后,学生课后完成一份完整的实验报告。 四、数据记录及处理(35分) 1 2数据记录及处理 学生在数据处理过程中,是否按照要求正确书写中间计算结果、最终实验结果和不确定度的有 二、思考题(10 学生在实验结束后,根据指导教师的布置完成思考题,抄写题目并回答。按照问题回答是否准 三、格式及版面整洁(5分)

学生进入实验室,用15分钟的时间看书,15分钟之后将书收起来,开始进行实验测试。测试期间禁止看书。 测试内容:利用单电桥测量实验室提供的未知中值电阻阻值,并分析测量不确定度。 评分标准如下: 一实验操作部分(70分) 第一步:实验准备。 1.连接线路。正确连接电源、待测电阻。分四档给分。 2.检流计调零,并正确设置各个档位、开关。分四档给分。 第二步:实验测量和数据采集。 1.正确运用点触式按键。分四档给分。 2.合理利用万用表测出待测电阻大致阻值,并根据大致阻值合理设置C档位和电阻盘R值,保证R的千位档不为零。分四档给分。 3.确定C档位后,调整R,使检流计不偏转。分四档给分。 5.记录实验数据。要求数据清晰,单位明确、统一,有效位数保留合理。分四档给分。 6.实验结束后整理实验台。关闭所有电源,开关,并使仪器、设备还原。分四档给分。

2.4电桥平衡法测电阻

2.4电桥平衡法测电阻 【实验目的】 1.掌握单臂电桥(惠更斯电桥)测电阻的基本原理和方法,了解桥式电路的特点; 2.通过实验的方法了解电桥灵敏度与元件各参量的关系 3.学习实验的记录和结果的误差分析。 【预习题】 1.单臂电桥的平衡条件是什么? 2.测量电阻的原理是什么? 【实验仪器】 DHQJ-3型非平衡电桥;待测电阻;导线 DHQJ-3型非平衡电桥是专门为教学实验设计的,面板图和内部结构如图所示。它将平衡电桥和非平衡电桥合为一体,可以组成属于平衡电桥的惠更斯电桥、开尔文电桥,也可以组成多种形式的非平衡电桥,是一种综合性的电桥实验仪器。 图2-4-1 DHQJ-3型非平衡电桥面板图

图2-4-2 DNQJ-3型非平衡电桥面板示意图 1.工作电源负端; 2.R 1电阻端; 3.R 2电阻端; 4、5.双桥电流端; 6.' 3R 电阻端; 7.单桥被测端; 8.R 3电阻端; 9.工作电源正端; 10.数显直流毫伏表; 11、12、13、14为R 1电阻调节盘,分别为:×1000、×100、×10、×1电阻盘; 15、16、17、18为R 2电阻调节盘,分别为:×1000、×100、×10、×1电阻盘; 19、20、21、22为R 3和'3R 电阻调节盘,分别为:×1000、×100、×10、×1电阻盘; 23.电源指示灯; 24.电源选择开关,分别可选:双桥、3V 、6V 、9V 四种工作电源; 25.电桥输出转换开关,扳向下为内接,扳向上为外接;26、27.电桥输出“外接”端; 28.屏蔽端,接仪器外壳;29、30.电桥的B 、G 按钮,即工作电源和电桥输出通断按钮。 【实验原理】 1.单臂电桥是平衡电桥,其原理如图2-4-3所示,从图中可知:R 1、R 2、R 3、R 4构成一电桥,A 、C 两端供一恒定桥压U s ,B 、D 之间为有一电压表,当平衡时,BD 无电流流过,BD 两点为等电位,则:U BC =U DC 下式成立: I 1R 1=I 2R 2 (2-4-1) I 1R 3=I 2R 4 (2-4-2) 由于R 4=R x ,于是有 4321R R R R = ( 2-4-3) R 4为待测电阻R x ,R 3为标准比较电阻,式中K=R 2/R 1,称为比率,一般单臂电桥的K 有0.001、0.01、0.1、1、10、100、1000等。本电桥的比率K 可以任选。根据待测电阻大小,选择K 后,只要调节R 3,使电桥平衡,检流计为0,就可以根据(1)式得到待测电阻R x 之值。 3312KR R R R R x =?= (2-4-4)

直流双臂电桥测量低电阻

组装式直流双臂电桥测量低电阻 用惠斯登电桥测量中等电阻时,忽略了导线电阻和接触电阻的影响,但在测量1Ω以下的低电阻时,各引线的电阻和端点的接触电阻相对被测电阻来说不可忽略,一般情况下,附加电阻约为10-5~10-2Ω。为避免附加电阻的影响,本实验引入了四端引线法,组成了双臂电桥(又称为开尔文电桥),是一种常用的测量低电阻的方法,已广泛的应用于科技测量中。 1.四端引线法 测量中等阻值的电阻,伏安法是比较容易的方法,惠斯顿电桥法是一种精密的测量方法,但在测量低电阻时都发生了困难。这是因为引线本身的电阻和引线端点接触电阻的存在。图18-1为伏安法测电阻的线路图,待测电阻R X 两侧的接触电阻和导线电阻以等效电阻r 1 、r 2、 r 3 、 r 4表示,通常电压表内阻较大,r 1和r 4对测量的影响不大,而r 2和r 3 与R X 串联在一起,被测电阻实际应为r 2+R X +r 3, 若r 2和r 3数值与R X 为同一数量级,或超过R X ,显然不能用此电路来测量R X 。 若在测量电路的设计上改为如图18-2 所示的电路,将待测低电阻R X 两侧的接点分为两个电流接点C-C 和两个电压接点P-P ,C-C 在P-P 的外侧。显然电压表测量的是P-P 之间一段低电阻两端的电压,消除了r 2和r 3对R X 测量的影响。这种测量低电阻或低电阻两端电压的方法叫做四端引线法,广泛应用于各种测量领域中。例如为了研究高温超导体在发生正常超导转变时的零电阻现象和迈斯纳效应,必须测定临界温度Tc ,正是用通常的四端引线法,通过测量超导样品电阻R 随温度T 的变化而确定的。低值标准电阻正是为了减小接触电阻和接线电阻而设有四个端钮。 图18-1 伏安法测电阻 图18-2 双臂电桥测低电阻

电桥法测电阻

实验十 电桥法测电阻 电桥是一种精密的电学测量仪器,可用来测量电阻、电容、电感等电学量,并能通过这些量的测量测出某些非电学量,如温度、真空度和压力等,被广泛应用在工业生产的自动控制方面。 【实验目的】 ⒈ 掌握用惠斯登电桥测电阻的原理和特点。 ⒉ 学会QJ19型两用直流电桥的使用。 ⒊ 了解双臂电桥测低电阻的原理和特点。 【实验原理】 直流电桥主要分单臂电桥和双臂电桥。单臂电桥又称惠斯登电桥,一般用来测量102 ~ 106Ω的电阻。双臂电桥又称开尔文电桥,可用来测量10-5~10-2 Ω范围的电阻。实验所用的 QJ19型电桥是单、双臂两用直流电桥。 ⒈ 惠斯登单臂电桥的工作原理 惠斯登电桥的原理电路如图3-10-1所示,四个电阻1R 、2R 、3R 、和x R 称为电桥的四个臂,组成一个四边形ABCD ,对角D 和B 之间接检流计G 构成“桥”,用以比较“桥”两端的电位,当D 和B 两点的电位相等时,检流计G 指零,电桥达到了平衡状态。此时有 2211R I R I =,33R I R I x x = 由于x I I =1,23I I =因此可得 32 1 R R R R X = (3-10-1) (3-10-1)式为惠斯登电桥的平衡条件,根据1R 、2R 和3R 的大小,可以计算出待测电阻x R 的阻值,一般称1R 、2R 为比率臂,3R 为比较臂。 图 3-10-1 惠斯登电桥的原理电路图

⒉ 开尔文双臂电桥的工作原理 在惠斯登电桥电路中,存在着接触电阻和接线电阻,这对低电阻的测量将带来很大的误差。特别是当待测电阻的阻值与接触电阻同数量级时,测量便无法进行。在此情形下,为了获得准确的测量结果,必须采用开尔文双臂电桥进行测量。开尔文双臂电桥的电路结构如图3-10-2所示,x R 为待测电阻,S R 为低值标准电阻,1R 、2R 、内R 和外R 均为阻值较大的电阻,Y 表示联接x R 和 S R 的接线电阻(其中包括这一接线与x R 和S R 的接触电阻)它与x R ,S R 同数量级,是引 起测量误差的重要因素,必须设法消除它的影响。对图中以7、2、4为顶点的△形电路变换成Y 型电路后,就可把双臂电桥变成一个惠斯登电桥,根据惠斯登电桥的平衡条件,不难得到开尔文电桥的平衡方程。 )(2 1221R R R R r R R r R R R R R S X 内外内外-++?+= (3-10-2) 不难看出,如果在电桥结构上能够做到内R =外R 和1R =2R (3-10-2)式右边的第二项为零,此时平衡方程就变成如下形式: S R R R R 1 2外= (3-10-3) 实际上不可能完全做到内R =外R ,1R =2R ,但只要把r 值做得很小,(3-10-2)式右边的第二项便为二阶无限小量,此时就可以认为(3-10-3)式成立。 ⒊ 电桥的灵敏度 (3-10-1)式和(3-10-3)式是在电桥平衡条件下推导出来的,在实验中测试者是依据检流计G 的指针有无偏转来判断电桥是否平衡的。然而,检流计的灵敏度是有限的。例如,选用电流灵敏度为1格/1微安的检流计做为指零仪,当通过检流计的电流小于10-7 安培时,指针 图3-10-2双臂电桥的电路结构图

实验报告材料(双臂电桥测低电阻)

实验报告(双臂电桥测低电阻) 姓名:齐翔 学号:PB05000815 班级:少年班 实验台号:2(15组2号) 实验目的 1.学习掌握双臂电桥的工作原理、特点及使用方法。 2.掌握测量低电阻的特殊性和采用四端接法的必要性。 3.学习利用双臂电桥测低电阻,并以此计算金属材料的电阻率。 实验原理 测量低电阻(小于1 利用四端接法可以很好地做到这一点。 根据四端接法的原理,可以发展成双臂电桥,线路图和等效电路如图所示。 Rn 电流头接触电阻为R in1、R in2,待测电阻Rx 的电流头接触电阻为 R ix1、R ix2,都连接到双臂电桥测量回路的电路回路内。标准电阻电压头接触电阻为R n1、R n2,待测电阻Rx 电压头接触电阻为R x1、R x2,连接到双臂电桥电压测量回路中,因为它们与较大电阻R 1、R 2、R 3、R 相串连,故其影响可忽略。

G 的电流I G = 0, C 和 D 两点电位相等,根据基尔霍夫定律,可得方程组(1) ()() ? ?? ??+=-+=+=2321232 23123113R R I R I I R I R I I I R I R I n R R X (1) 解方程组得 ??? ? ??-+++= R R R R R R R RR R R R R X 3121231 11 (2)

通过联动转换开关,同时调节R 1、R 2、R 3、R ,使得 R R R R 3 12= 成立,则(2)式中第二项为零,待测电阻R x 和标准电阻R n 的接触电阻R in1、R ix2均包括在低电阻导线R i 内,则有 1 Rx n R R R = (3) 但即使用了联动转换开关,也很难完全做到R R R R //312=。为了减小(2)式中第二项的影响,应使用尽量粗的导线,以减小电阻R i 的阻值(R i <0.001), 使(2)式第二项尽量小,与第一项比较可以忽略,以满足(3)式。 参考: 铜棒:1.694×10-8Ω·m 铝棒:2.7×10-8Ω·m 所用到的器材: 直流复射式检流计、0.02级QJ36型双臂两用电桥、059-A 型电流表、电源、单刀双掷开关,导线若干 实验数据处理: 直流电桥:0.02级 标准电阻:Rn=0.0010.01级 △估(L)=2mm 一、 铝棒的平均值和不确定度的计算 铝棒的直径和A 类不确定度: n=6 x 1 =5.000 x 2=5.002

双臂电桥测电阻

物理实验报告 一、实验项目:单、双臂电桥测电阻 二、实验目的: (1)掌握用惠斯登电桥及开尔文电桥精测电阻的原理和使用方法 (2)掌握线路连接和排除简单故障的技能 (3)理解电桥灵敏度的概念并学会测量 三、实验仪器: 电阻箱(ZX21型,级3只),滑线变阻器,待测电阻(1Ω以下、几十Ω、几kΩ电阻各一只),检流计(AC5/1型),直流稳压电源,单刀开关,双刀换向开关,箱式电桥(QJ45型,级),箱式双臂电桥,导线若干。 三、实验原理 1.惠斯登电桥测电阻 (1)惠斯登电桥的电路如图1所示,被测电阻R x 和标准电阻R 0及电阻R 1、R 2构成电桥的四个臂。在CD 端加上直流电压,AB 间串接检流计G ,用来检测其间有无电流(A 、B 两点有无电位差)。“桥”指AB 这段线路,它的作用是将A 、B 两点电位直接进行比较。当 A 、 B 两点电位相等时,检流计中无电流通过,称电桥达到了平衡。这时,电桥四个臂上电阻的关系为: 02 1210R R R R R R R R x x ?==,或 (1) 上式称为电桥平衡条件。若R 0的阻值和R 1、R 2的阻值(或R 1/ R 2的比值)已知,即可由上式求出R x 。 调节电桥平衡方法有两种:一种是保持R 0不变,调节R 1/ R 2的比值;另一种是保持R 1/ R 2不变,调 节电阻R 0,本实验用后一种方法。 (2).关于电桥灵敏度的概念 因检流计的灵敏度是有限的,在电桥调到认为“平衡”时,检流计中不一定绝对没有电流通过,从 而给测量带来误差。为此我们引入电桥灵敏度S 的概念 C A 图1 惠斯登电桥原理图

x R n S ??= (2) 定义相对灵敏度S 相为: x x R R n S ??= 相 (3) 在计算由灵敏度带来的不确定度时,通常假定检流计的分度为难以分辨的界限,即取Δn =,则由灵敏度带来的不确定度: S u x 2 .0= , 相S R u x x 2.0= (4) 为得到较大的灵敏度,在自组电桥中R 1≈R 2,即R 1/ R 2≈1。 2.开尔文电桥的测量原理 当被测电阻较小(1Ω以下)时,测量电路中用连接导线电阻和各接线端钮的接触电阻的影响不能忽略。开尔文电桥的设计克服了附加电阻对结果的影响,能够测量1Ω~10-5Ω的低值电阻。其原理见图2。 r 1、r 2、r 3、r 4、r 即代表各段线路的附加电阻(10-3~10-5Ω), 因R 3、R 4的引入,形成双桥,故称双臂电桥或称开尔文电桥,调整R 1、R 2、R 3、R 4,使检流计中无电流通过,称电桥平衡,这时A 、B 两点电位相等。当满足 4 3 21R R R R = (5) 时,有 N xl R R R R 2 1 = (6) 四、实验内容 1、用自组惠斯登电桥测两未知电阻值及相应的电桥灵敏度 图 2 开尔文电桥原理图

实验分析报告(双臂电桥测低电阻)

实验报告(双臂电桥测低电阻)

————————————————————————————————作者:————————————————————————————————日期:

实验报告(双臂电桥测低电阻) 姓名:齐翔 学号:PB05000815 班级:少年班 实验台号:2(15组2号) 实验目的 1.学习掌握双臂电桥的工作原理、特点及使用方法。 2.掌握测量低电阻的特殊性和采用四端接法的必要性。 3.学习利用双臂电桥测低电阻,并以此计算金属材料的电阻率。 实验原理 测量低电阻(小于1Ω),关键是消除接触电阻和导线电阻对测量的影响。利用四端接法可以很好地做到这一点。 根据四端接法的原理,可以发展成双臂电桥,线路图和等效电路如图所示。 标准电阻Rn电流头接触电阻为R in1、R in2,待测电阻Rx的电流头接触电阻为 R ix1、R ix2,都连接到双臂电桥测量回路的电路回路内。标准电阻电压头接触电 阻为R n1、R n2,待测电阻Rx电压头接触电阻为R x1、R x2,连接到双臂电桥电压 测量回路中,因为它们与较大电阻R1、R 2、R3、R相串连,故其影响可忽略。

由图 5 和图 6 ,当电桥平衡时,通过检流计G 的电流I G = 0, C 和D 两点电位相等,根据基尔霍夫定律,可得方程组(1) ()() ? ?? ??+=-+=+=2321232 23123113R R I R I I R I R I I I R I R I n R R X (1) 解方程组得 ??? ? ??-+++= R R R R R R R RR R R R R X 3121231 11 (2)

电桥测电阻实验报告

实验目的 1、掌握惠斯通电桥测量电阻的原理及操作方法,理解单臂电桥测电阻的“三端”法接线的意义; 2、掌握开尔文电桥测量电阻的原理及操作方法; 3、熟悉综合性电桥仪的使用方法及电桥比率和比率电阻的选择原则。 实验原理 电阻是电路的基本元件之一,电阻的测量是基本的电学测量。用伏安法测量电阻,虽然原理简单,但有系统误差。在需要精确测量阻值时,必须用惠斯通电桥,惠斯通电桥适 宜于测量中值电阻(1~106 Ω)。 惠斯通电桥的原理如图1所示。标准电阻R 0、R 1、R 2和待测电阻R X 连成四边形,每一条边称为电桥的一个臂。在对角A 和C 之间接电源E ,在对角B 和D 之间接检流计G 。因此电桥由4个臂、电源和检流计三部分组成。当开关K E 和K G 接通后,各条支路中均有电流通过,检流计支路起了 沟通ABC 和ADC 两条支路的作用,好象一座“桥”一样,故称为“电桥”。适当调节R 0、R 1和R 2的大小,可以使桥上没有电流通过,即通过检流计的电流I G = 0,这时,B 、D 两点的电势相等。电桥的这种状态称为平衡状。 图6-l 惠斯通电桥原理图 态。这时A 、B 之间的电 势差等于A 、D 之间的电势差,B 、C 之间的电势差等于D 、C 之间的电势差。设ABC 支路和ADC 支路中的电流分别为I 1和I 2,由欧姆定律得 I 1 R X = I 2 R 1 I 1 R 0 = I 2 R 2 两式相除,得 102 X R R R R = (1) (1)式称为电桥的平衡条件。由(1)式得 1 02 X R R R R = (2) 即待测电阻R X 等于R 1 / R 2与R 0的乘积。通常将R 1 / R 2称为比率臂,将R 0称为比较臂。 2.双电桥测低电阻的原理 图1

双臂电桥测低电阻

实验简介 电阻按照阻值大小可分为高电阻(100KΩ以上)、中电阻(1Ω ~100KΩ)和低电阻(1Ω 以下)三种。一般说导线本身以及和接点处引起的电路中附加电阻约为>0.1Ω,这样在测低电阻时就不能把它忽略掉。对惠斯通电桥加以改进而成的双臂电桥(又称开尔文电桥)消除了附加电阻的影响,适用于10-5~102 Ω电阻的测量。本实验要求在掌握双臂电桥工作原理的基础上,用双臂电桥测金属材料的电阻率。 实验原理 我们考察接线电阻和接触电阻是怎样对低值电阻测量结果产生影响的。例如用安培表和毫伏表按欧姆定律R=V/I测量电阻Rx,电路图如图1 所示, 考虑到电流表、毫伏表与测量电阻的接触电阻后,等效电路图如图 2 所示。 由于毫伏表内阻Rg远大于接触电阻R i3和R i4,因此他们对于毫伏表的测量影响可忽略不计,此时按照欧姆定律R=V/I得到的电阻是(Rx+ R i1+ R i2)。当待测电阻Rx小于1Ω时,就不能忽略接触电阻R i1和R i2对测量的影响了。 因此,为了消除接触电阻对于测量结果的影响,需要将接线方式改成下图3方式,将低电阻Rx以四端接法方式连接,等效电路如图 4 。此时毫伏表上测得电眼为Rx的电压降,由Rx = V/I即可准测计算出Rx。接于电流测量回路中成为电流头的两端(A、D),与接于电压测量回路中称电压接头的两端(B、

C)是各自分开的,许多低电阻的标准电阻都做成四端钮方式。 根据这个结论,就发展成双臂电桥,线路图和等效电路图 5和图 6所示。 标准电阻Rn电流头接触电阻为R in1、R in2,待测电阻Rx的电流头接触电阻为R ix1、R ix2,都连接到双臂电桥测量回路的电路回路内。标准电阻电压头接触电阻为R n1、R n2,待测电阻Rx电压头接触电阻为R x1、R x2,连接到双臂电桥电压测量回路中,因为它们与较大电阻R1、R 2、R3、R相串连,故其影响可忽略。 由图 5 和图 6 ,当电桥平衡时,通过检流计G的电流I G = 0, C和D两点电

电桥法测电阻 (3)

实验名称 惠斯登电桥测电阻 (所属实验室:大学物理实验中心217分室) 一、实验基本介绍 电桥是一种比较式仪器,是很重要的电磁学基本测量仪器之一。电桥按其结构特点可分为交流电桥和直流电桥,也可分为单臂电桥和双臂电桥;按工作状态可分为平衡电桥和非平衡电桥。惠斯登电桥称为单臂电桥,是最常用的直流电桥,主要用于低电阻的测量。 二、实验仪器介绍 实验仪器:QJ23型直流电阻电桥,万用电表,电阻若干只。 图 1 QJ23型直流电阻电桥、指针万用表、待测电阻 【QJ23型箱式惠斯登电桥】 如图1所示。箱式直流电桥具有便于携带、准确度高和使用方便等特点。其电路原理图如图2所示。R 1、R 2为比例臂,R s 为比较臂,改变b 点的位置就可以改变R 1/R 2(即比例系数 K )的比值。例如将倍率开关 b 置于“102”时,便有 120.9998.90281.009409.09409.0981.009 1008.9020.999 R R +++++==+ 实验中R x 的误差主要取决于R s ,而不是R 1/R 2的比值。从图2可知,比较臂R s 由四只可变的标准电阻相互串联,其总阻值可达9999Ω。所以该电桥可测量1~9999000Ω范围内的电阻,基本量程为100~99990Ω。 调零旋钮 倍率选择 灵敏度旋钮

图3为QJ23型箱式电桥面板示意图。面板中下部有四个标有“1000 ?”、“100 ?”、“10 ?”和“1 ?”的旋钮,是用来调节比较臂R s的,调节范围为0~9999Ω。使用与读取方法同电阻箱。 面板右下角的“R x”接线柱是用来联接被测电阻 的;左侧上方的“+E-”用于联接外部电源;“内、G、 外”为检流计选择端钮,当“G”和“内”用短路片联 接时,则在“G”和“外”之间需外接检流计;在“G” 和“外”短路时,则箱式电桥内附的检流计接入了电路。 面板右上角为倍率“K”选择开关。 面板左下角的“B”“G”按钮,从图2可以看出, 前者用于接通电源,后者用于接通检流计支路。在使用 时,“B”、“G”两个电健要同时使用,但需先按下“B”, 再按下“G”;断开时则先松开“G”,再松开“B”, 以保护检流计。 所以使用箱式电桥时,先将倍率K(R1/R2)确定, 然后调节R S使电桥平衡,由公式(3)便可计算出测 量结果。 三、实验内容预习 3.1 实验目的 1. 理解直流电桥的构成和工作原理; 2. 掌握万用电表的使用和电桥的调节方法; 3. 用直流电桥测定电阻的阻值。 3.2 实验原理 3.2.1 惠斯登电桥测量电阻的原理 惠斯登电桥的原理如图4所示。图中R1、R2、R s是已知其阻值的标准电阻,它们与待测电阻R x构成一个四边形,每一边都称为电桥的臂。R1、R2称为比例臂,R s称为比较臂,R x称为待测臂。在A、B两端接直流电源E;在C、D 两点间接检流计G,结构像桥一样,故称为电桥。当C、D 图3 图2

相关文档
最新文档