电力系统稳态分析大作业——基于高斯赛德尔法潮流计算
电力系统中潮流计算算法研究

电力系统中潮流计算算法研究随着电力系统的不断发展,潮流计算算法成为了电力系统运行中不可或缺的一环。
潮流计算算法主要是用来分析电力系统中电流、电压以及功率等各种参数的变化。
它是电力系统稳态分析中最基本、最重要的一项计算,对于保证电网的安全可靠运行起到了举足轻重的作用。
一、潮流计算算法的基本原理潮流计算算法的基本原理是基于电力系统中的潮流方程,通过求解潮流计算方程来得到电力系统中各支路及各节点的电流、电压和功率等参数。
其主要求解过程包括节点电压的估计、节点功率的平衡以及潮流方程的求解等方面。
潮流计算算法可以通过数学方法实现,也可以利用计算机程序来求解。
二、潮流计算中常用的算法1. 高斯-赛德尔迭代法高斯-赛德尔迭代法是潮流计算中最早也是最经典的算法之一。
该算法是根据潮流计算方程的特点而设计出来的,主要通过迭代的方式求解方程组,并逐步逼近方程的最终解。
该算法虽然存在收敛速度较慢、收敛极限不明确等缺点,但是其稳定性较好,可以准确地计算出电力系统中的各项参数。
2. 牛顿-拉夫逊方法牛顿-拉夫逊方法是一种基于二次对数频率计算的方法,其主要特点是通过求解雅克比矩阵而不是求解逆矩阵来建立方程组。
该算法收敛速度较快、计算精度高,被广泛应用于大规模电力系统的潮流计算中。
3. 变权系数法变权系数法是一种改进的潮流计算算法,其主要特点是通过加大潮流方程中电压较小的节点的权数,从而使迭代效率更高,收敛速度更快。
该方法适用于电力系统中节点数较多、计算强度较大的情况。
三、潮流计算在电力系统中的应用潮流计算通常被广泛应用于电力系统的运行和规划中,主要包括以下几个方面:1. 性能评估潮流计算可以用来评估电力系统的性能,包括电压稳定性、电网负荷能力、电网安全裕度等方面。
通过对潮流计算结果的分析,电力系统工作者可以预测电力系统可能出现的问题,并采取相应的措施来保证电网的安全稳定运行。
2. 计划管理潮流计算可以用来指导电力系统的规划和管理工作。
复杂电力系统的潮流计算

第四章 复杂电力系统的潮流计算复杂电力系统是一个包括大量母线、支路的庞大系统。
对这样的系统进行潮流分析时,采用第三章中人工计算的方法已不适用。
目前,随着计算机技术的发展,计算机算法已逐渐成为分析复杂系统潮流分布的主要方法,其中包括建立数学模型、确定计算方法和编制计算程序三方面的内容。
本章主要讲述前两方面的内容,同时为了方便分析,针对计算机解法作如下规定: ⑴ 所有参数(功率、电压、电流、阻抗或导纳)都以标幺值表示;⑵ 电力系统稳态运行时,可以把负荷作恒定功率处理,也可作恒定阻抗处理;⑶ 所有电源(发电机、调相机、电力电容器等)均向母线注入功率(或电流),取正号;⑷ 作恒定功率处理的负荷,均为从母线“吸取”功率,是向母线注入负的功率(或电流),取负号; ⑸ 母线总的注入功率(或电流)为电源注入功率(或电流)与负荷“吸取”功率(或电流)代数和; ⑹ 输电线路、变压器用П型等值电路表示。
第一节 电力网络的数学模型电力网络的数学模型是指将网络的有关参数和变量及其相互关系归纳起来所组成的、可反映网络性能的数学方程组。
电力网络属于线性网络, 因此,电路理论中关于线性网络的分析方法也适用于分析电力网络。
目前,普遍采用的有两种方法:一是节点电压法;二是回路电流法。
一、节点电压方程和回路电流方程1.节点电压方程是依据基尔霍夫电流定律,通过节点导纳矩阵(或节点阻抗矩阵)反映节点电流与节点电压之间关系的数学模型。
⑴ 用节点导纳矩阵描述的节点电压方程:B B B U Y I =(4-1) 一般地,当网络中的独立节点数(即母线数)为n 时,在式(4-1)中:B I =(1∙I ,2∙I ,… i I ∙,…n I ∙)T为节点注入电流的n 维列向量;B U =(1∙U ,2∙U , … i U ∙ … n U ∙)T 为节点电压列向量;Y 11 Y 12 … Y 1i … Y 1n Y 21 Y 22 … Y 2i … Y 2nB Y = … … … 为n ×n 阶节点导纳矩阵(4-2) Y i1 Y i2 … Y ii … Y in… … … Y n1 Y n2 … Y ni … Y nn由以上分析可知,对n 母线电力系统有n 个独立的节点电压方程式(以大地为参考节点)。
电力系统三种潮流计算方法的比较

电力系统三种潮流计算方法的比较电力系统潮流计算是电力系统分析和运行控制中最重要的问题之一、它通过计算各节点电压和各支路电流的数值来确定电力系统各个节点和支路上的电力变量。
常见的潮流计算方法有直流潮流计算方法、高斯-赛德尔迭代法和牛顿-拉夫逊迭代法。
以下将对这三种方法进行比较。
首先,直流潮流计算方法是最简单和最快速的计算方法之一、它假设整个系统中的负载功率都是直流的,忽略了交流电力系统中的复杂性。
直流潮流计算方法非常适用于传输和配电系统,尤其是对于稳定的系统,其结果比较准确。
然而,该方法忽略了交流电力系统中的变压器的磁耦合和饱和效应,可能会导致对系统状态误判。
因此,直流潮流计算方法的适用范围有限。
其次,高斯-赛德尔迭代法是一种迭代方法,通过反复迭代计算来逼近系统的潮流分布。
该方法首先进行高斯潮流计算,然后根据计算结果更新节点电压,并再次进行计算,直到收敛为止。
高斯-赛德尔迭代法考虑了变压器的复杂性,计算结果比直流潮流计算方法更准确。
然而,该方法可能发生收敛问题,尤其是在系统变压器的串联较多或系统中存在不良条件时。
此外,该方法的计算速度较慢,尤其是对于大型电力系统而言。
最后,牛顿-拉夫逊迭代法是一种基于牛顿法的迭代方法,用于解决非线性潮流计算问题。
该方法通过线性化系统等式并迭代求解来逼近系统的潮流分布。
与高斯-赛德尔迭代法相比,牛顿-拉夫逊迭代法收敛速度更快,所需迭代次数更少。
此外,该方法可以处理系统中的不平衡和非线性元件,计算结果更准确。
然而,牛顿-拉夫逊迭代法需要建立和解算雅可比矩阵,计算量相对较大。
综上所述,电力系统潮流计算方法根据应用需求和系统特点选择合适的方法。
直流潮流计算方法适用于稳定的系统,计算简单、快速,但适用范围有限。
高斯-赛德尔迭代法适用于一般的交流电力系统,考虑了变压器复杂性,但可能存在收敛问题和计算速度较慢的缺点。
牛顿-拉夫逊迭代法适用于复杂的非线性系统,收敛速度快且计算结果准确,但需要较大的计算量。
电力系统潮流计算计算计算法

电力系统潮流计算算法设计及实现潮流计算是电力系统分析中的一种最基本的计算,它的任务是对给定的运行条件确定系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。
建模是用数学的方法建立的数学模型,但它严格依赖于物理系统。
根据电力系统的实际运行条件,按给定的变量不同,一般将节点分为PQ节点,PV节点,平衡节点三种类型。
当这三个节点与潮流计算的约束条件结合起来时,便是潮流计算的数学模型。
PQ节点:有功功率P和无功功率Q是已知的,节点电压(V,δ)是待求量。
通常变电所都是这一类型的节点。
PV节点:有功功率P和电压复制V是已知的,节点的无功功率Q和电压相位δ是待求量。
一般选择有一定无功储备的发电厂和具有可调无功电源设备的变电所作为PV节点。
平衡节点:在潮流分布算出之前,网络中的功率损失是未知的,所以,网络中至少有一个节点的有功功率P不能给定,这个节点承担了系统的有功功率平衡,所以称为平衡节点。
一般选择主调频发电厂为平衡节点。
潮流计算的约束条件是:1、所有的节点电压必须满足:这一约束主要是对PQ节点而言。
2、2、所有电源节点的有功功率和无功功率必须满足:对平衡节点的P和Q以及PV节点的Q按以上条件进行检验。
3、某些节点之间电压的相位差应满足:稳定运行的一个重要条件。
功率方程的非线性雅可比矩阵的特点:●各元素是各节点电压的函数●不是对称矩阵●因为Y =0,所以H =N =J =L =0,另R =S =0,故稀疏两种常见的求解非线性方程的方法:1)高斯-赛德尔迭代法;2)牛顿-拉夫逊迭代法。
高斯-赛德尔迭代法潮流计算1、方程表示:①用高斯-赛德尔计算电力系统潮流首先要将功率方程改写成能收敛的迭代形式;②Q:设系统有n个节点,其中m个PQ节点,n-(m+1)个是PV节点,一个平衡节点,平衡节点不参加迭代;③功率方程改写成:2、求解的步骤:1)上述迭代公式假设n个节点全部为PQ节点。
2)始终等号右边采用第k次迭代结果,当j<i时,采用经(k+1)次迭代后的值,当j>i时,采用第k次迭代结果。
电力系统稳态分析

1.电力线路等效电路的电纳是()的,变压器的电纳是()的。
A. 感性的,容性的B. 感性的,感性的C. 容性的,感性的D. 容性的,容性的2.在高压输电线路中,电压降落的纵向分类主要是因传送()而产生的。
A. 有功功率B. 无功功率C. 与功率无关D. 以上都不对3.电力系统潮流计算时某物理量的单位为Mvar,则该量是A. 有功功率B. 无功功率C. 视在功率D. 有功电量4.输电线路的有功损耗只和线路上流过的有功功率和电阻有关,与无功功率和电抗无关。
A. 对B. 错5.电网中无功功率都是从电压高的节点流向电压低的节点。
A. 对B. 错6.对于任何电压等级的电力网,提高运行电压水平,都有助于降低网损。
A. 对B. 错7.线路首端的电压一定高于末端的电压。
A. 对B. 错8.环网潮流的经济分布是按照线路的()进行分配。
A. 电阻B. 电抗C. 阻抗D. 电纳9.两端电源电网初步潮流分析的目的是求A. 有功分点B. 无功分点C. 电压损耗D. 功率损耗10.线路首末端电压的相量差是A. 电压偏移B. 电压损耗C. 电压降落D. 电压调整1.高斯-赛德尔潮流计算法,由于收敛速度慢,在电力系统潮流计算中很少单独使用。
A. 对B. 错2.电力系统潮流计算中,必须设置,并且只设置一个平衡节点。
A. 对B. 错3.未装设无功补偿装置的变电所母线为PQ节点。
A. 对B. 错4.当变压器采用π型等值电路变压器模型时,改变变压器变比将引起系统节点导纳矩阵中所有元素的变化。
A. 对B. 错5.电力系统节点导纳矩阵中,某行(或某列)非对角元素之和的绝对值一定小于主对角元素的绝对值。
A. 对B. 错6.如果两个节点之间无直接联系,则两个节点互导纳为零,两个节点的互导纳也为零。
A. 对B. 错7.装有无功补偿装置,运行中可以维持电压恒定的变电所母线属于( )。
A. PQ 节点B. PV节点C. 平衡节点D. 不能确定8.电力系统中PQ节点的数量( )。
电力系统潮流计算方法分析

电力系统潮流计算方法分析电力系统潮流计算是电力系统运行中的基础性分析方法之一,它用于求解电力系统中各个节点的电压、相角以及线路的功率、电流等变量。
潮流计算是电力系统规划、运行和控制等方面的重要工具。
本文将对电力系统潮流计算方法进行分析。
电力系统潮流计算方法主要有两种,即直接法和迭代法。
直接法又分为解析法和数值法,迭代法包括高斯赛德尔迭代法、牛顿-拉夫逊迭代法等。
解析法是通过电力系统各个节点之间的网络拓扑关系和节点电压平衡条件的方程式,直接求解节点电压和线路功率等参数。
解析法的优点是计算速度快,但其适用范围较窄,主要适用于小型简单电力系统,对于大型复杂电力系统的潮流计算会出现计算量庞大的问题。
数值法是通过将连续变量离散化,将微分方程转化为差分方程,并利用数值解法求解离散的方程组来得到电力系统潮流计算结果。
数值法的优点是适用范围广,能够处理大型复杂电力系统的潮流计算,但其缺点是计算速度相对较慢。
在迭代法中,高斯赛德尔迭代法是一种经典的迭代法,它通过先假设节点电压的初值,然后利用节点注入功率与节点电压之间的关系不断迭代计算,最终达到收敛条件为止。
高斯赛德尔迭代法的优点是收敛速度快,计算精度高,但其缺点是收敛性有时不易保证,并且计算速度会随着系统规模的增大而变慢。
牛顿-拉夫逊迭代法是一种基于牛顿迭代法的改进方法,它引入雅可比矩阵,通过牛顿迭代法的迭代过程来求解节点电压和线路功率等参数。
牛顿-拉夫逊迭代法的优点是收敛性好,计算速度快,但其缺点是在实际应用中需要预先计算雅可比矩阵,会增加计算的复杂度。
综上所述,电力系统潮流计算方法有直接法和迭代法两种,其中直接法包括解析法和数值法,迭代法包括高斯赛德尔迭代法和牛顿-拉夫逊迭代法。
在实际应用中,根据电力系统的规模和复杂程度选择合适的方法进行潮流计算,以得到准确可靠的计算结果。
此外,随着计算机技术的不断发展,还可以利用并行计算和分布式计算等方法来提高潮流计算的效率。
第二章-电力系统潮流计算
第二章-电力系统潮流计算————————————————————————————————作者:————————————————————————————————日期:第二章电力系统潮流计算2.1 概述电力系统稳态分析是研究电力系统运行和规划方案最重要和最基本的手段,其任务是根据给定的发电运行方式及系统接线方式求解电力系统的稳态运行状况,包括各路线的电压、各元件中通过的功率等等。
在电力系统运行方式和规划方案研究少,都需要进行稳态分析以比较运行方式或规划供电方案的可行性、可靠性和经济性。
电力系统稳态分析得到的是一个系统的平衡运行状态,不涉及系统元件的动态属性和过渡过程。
因此其数学模型不包含微分方程,是一组高阶数的非线性方程。
电力系统的动态分析(见第5章、第6章)的主要目的是研究系统在各种干扰下的稳定性,属于动态安全分析,在其数学模型中包含微分方程,应该指出,电力系统的动态分析不仅在稳定运行方式分析的基础上进行,而且稳态分析的算法也是动态分析算法的基础。
因此,熟悉稳态分析的原理和算法是把握现代电力系统分析方法的关键。
电力系统稳态分析包括潮流汁算(或潮流分析)和静态安全分析。
潮流计算针对电力系统各正常运行方式,而静态安全分析则要研究各种运行方式下个别系统元件退出运行后系统的状况。
其目的是校验系统是否能安全运行,即是否有过负荷的元件或电压过低的母线等。
原则上讲,静态安全分析也可以用潮流计算来代替。
但是—般静态安全分析需要校验的状态数非常多,用严格的潮流计算来分析这些状态往往计算量过大。
因此不得不寻求一些特殊的算法以满足要求。
本章的前半部分介绍潮流计算的模型和算法,后半部分讨论与静态安全分析有关的问题。
利用电子数字计算机进行电力系统潮流计算从20世纪50年代中期就已开始。
此后,潮流计算曾采用了各种不同的方法,这些方法的发展主要是围绕着对潮流计算的一些基本要求进行的。
对潮流计算的要求可以归纳为下面几点:(1)计算方法的可靠性或收敛性。
电力系统潮流计算222(实际讲稿)
f ( x ( 0 ) ) + f ′( x ( 0 ) )∆x ( 0 ) = 0
原理:
∆x
(0)
f (x ) =− ′( x ( 0) ) f
( 0)
修正 x (1) = x ( 0 ) + ∆x ( 0) ∆x
直至
(1)
f ( x (1) ) =− f ′( x (1) )
x
( k+3)
x(k+2) x(k+1) x(k )
PQ节点 节点
N11 H12 L11 J1p N21 H22 L21 J22
N12
H1p
N1p
H1n
L1p J1p L1p J1n N22 H2 p N2 p H2n L22 J2 p L2 p J2n
PV节点 节点
L L L L L L N p1 H p2 N p2 H pp N pp H pn S p1 Rp2 S p2 Rpp S pp Rpn Nn1 Hn2 Nn2 Hnp Sn1 Rn2 Sn2 Rnp Nnp Hnn Snp Rnn
N1n ∆f1 L1n ∆e1 N2n ∆f2 L2n ∆e2 L L N pn ∆f p S pn ∆ep Nnn ∆fn Snn ∆en
( k +1) 3
LL
& Ui
(k+1)
1 Pi −jQ (k+1) (k) (k) i & & & & = ∗ −Yi1U1 −L−Yii−1Ui−1 −Yii+1Ui+1 L−YinUn Yii U (k) i 1 Pn−jQ (k+1) (k+1) n & & = ∗ −Yn1U1 −Yn2U2 −L nn−1Un−1 Y & Ynn U (k) n
电力系统潮流计算的MATLAB辅助程序设计-潮流计算程序
电力系统潮流计算的MATLAB辅助程序设计潮流计算,通常指负荷潮流,是电力系统分析和设计的主要组成部分,对系统规划、安全运行、经济调度和电力公司的功率交换非常重要。
此外,潮流计算还是其它电力系统分析的基础,比如暂态稳定,突发事件处理等。
现代电力系统潮流计算的方法主要:高斯法、牛顿法、快速解耦法和MATLAB的M语言编写的MATPOWER4.1,这里主要介绍高斯法、牛顿法和快速解耦法.高斯法的程序是lfgauss,其与lfybus、busout和lineflow程序联合使用求解潮流功率。
lfybus、busout和lineflow程序也可与牛顿法的lfnewton程序和快速解耦法的decouple程序联合使用。
(读者可以到MATPOWER主页下载MATPOWER4.1,然后将其解压到MATLAB目录下,即可使用该软件进行潮流计算)一、高斯—赛德尔法潮流计算使用的程序:高斯—赛德法的具体使用方法读者可参考后面的实例,这里仅介绍各程序的编写格式:lfgauss:该程序是用高斯法对实际电力系统进行潮流计算,需要用到busdata和linedata两个文件。
程序设计为输入负荷和发电机的有功MW和无功Mvar,以及节点电压标幺值和相角的角度值。
根据所选复功率为基准值将负荷和发电机的功率转换为标幺值。
对于PV节点,如发电机节点,要提供一个无功功率限定值。
当给定电压过高或过低时,无功功率可能超出功率限定值。
在几次迭代之后(高斯—塞德尔迭代为10次),需要检查一次发电机节点的无功出力,如果接近限定值,电压幅值进行上下5%的调整,使得无功保持在限定值内。
lfybus:这个程序需要输入线路参数、变压器参数以及变压器分接头参数。
并将这些参数放在名为linedata的文件中。
这个程序将阻抗转换为导纳,并得到节点导纳矩阵.busout:该程序以表格形式输出结果,节点输出包括电压幅值和相角,发电机和负荷的有功和无功功率,以及并联电容器或电抗器的有功和无功功率。
电力系统三种潮流计算方法的比较
电力系统三种潮流计算方法的比较 一、高斯-赛德尔迭代法:以导纳矩阵为基础,并应用高斯--塞德尔迭代的算法是在电力系统中最早得到应用的潮流计算方法,目前高斯一塞德尔法已很少使用。
将所求方程 改写为 不能直接得出方程的根,给一个猜测值 得 又可取x1为猜测值,进一步得:反复猜测则方程的根优点:1. 原理简单,程序设计十分容易。
2. 导纳矩阵是一个对称且高度稀疏的矩阵,因此占用内存非常节省。
3. 就每次迭代所需的计算量而言,是各种潮流算法中最小的,并且和网络所包含的节点数成正比关系。
缺点:1. 收敛速度很慢。
2. 对病态条件系统,计算往往会发生收敛困难:如节点间相位角差很大的重负荷系统、包含有负电抗支路(如某些三绕组变压器或线路串联电容等)的系统、具有较长的辐射形线路的系统、长线路与短线路接在同一节点上,而且长短线路的长度比值又很大的系统。
3. 平衡节点所在位置的不同选择,也会影响到收敛性能。
二、牛顿-拉夫逊法:求解 设 ,则按牛顿二项式展开:当△x 不大,则取线性化(仅取一次项)则可得修正量对 得: 作变量修正: ,求解修正方程()0f x =()0f x =10()x x ϕ=迭代 0x 21()x x ϕ=1()k k x x ϕ+=()x x ϕ=()0f x =k k x x lim *∞→=0x x x =+∆0()0f x x +∆=23000011()()()()()()02!3!f x f x x f x x f x x ''''''+∆+∆+∆+=00()()0f x f x x '+∆=()100()()x f x f x -'∆=-10x x x =+∆00()()f x x f x '∆=-1k k k x x x +=+∆牛顿法是数学中求解非线性方程式的典型方法,有较好的收敛性。
自从20世纪60年代中期采用了最佳顺序消去法以后,牛顿法在收敛性、内存要求、计算速度方面都超过了其他方法,成为直到目前仍被广泛采用的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 电力系统稳态分析 姓 名: 学 号: 学院(系): 自动化学院 专 业: 电气工程
题 目: 基于Matlab的高斯和高斯—赛德尔法的潮流计算
指导老师:
2014年12月 2
摘要 电力系统潮流计算是电力系统稳态运行分析中最基本和最重要的计算之一, 是电力系统其他分析计算的基础,也是电力网规划、运行研究分析的一种方法,在电力系统中具有举足轻重的作用。经典算法有高斯法,高斯-赛德尔迭代法及牛顿法等,近年来学者们开始应用非线性规划法及智能算法等优化方法求解潮流问题,提高了收敛的可靠性。 高斯-赛德尔迭代法开始于上世纪50年代,是一种直接迭代求解方程的算法,既可以解线性方程组,可以解非线性方程组。高斯法求解节点电压的特点是: 在计算节点 i第k+1次的迭代电压时,前后所用的电压都是第k次迭代的结果,整个一轮潮流迭代完成后,把所有计算出的电压新值用于下一轮电压新值的计算过程中。该计算方法简单,占用计算机内存小,能直接利用迭代求解节点电压方程,对电压初值的选取要求不是很严格。但它的收敛性能较差,系统规模增大时,迭代次数急剧上升。 本文首先对高斯—赛德尔算法进行了综述,然后推导了该算法的计算过程,通过MATLAB软件计算了该算法的实例。 关键字:潮流计算 高斯法 高斯-赛德尔法 迭代 3
Abstract Power flow calculation is the one of the most basic and the most important calculation in the steady state analysis of power system .It is the foundation of other analytical calculation of power system, a method of analysis and planning, operation of power network.So it plays a decisive role in the power system. The classical algorithm is the Gauss method, Gauss - Seidel iterative method and Newton's method, in recent years.Scholars began to applicate nonlinear programming method and intelligent algorithm optimization method for solving power flow problem, enhances the reliability of convergence. Gauss - Seidel iterative method began in the 50's of last century, is a direct iteration equation algorithm, which can solve the linear equation and nonlinear equations. Characteristics of Gauss's method to calculate the node voltage is: in the iterative calculation of node i’s K + 1-times voltage, the voltage is used the results of K-times iterative.After completing the whole round of power flow iteration, all voltage value is used to calculate the next round of new voltage value of . The method is simple and captures small memory.It also can directly use the iterative solution of the node voltage equation .the selection of initial values are not very strict. But it has poor convergence performance. The system scale increases,when the number of iterations rise. This paper gives an overview of the Gauss Seidel algorithm at the first.Then it show the calculation process of this algorithm through the MATLAB software. Keywords: Gauss Gauss - Seidel iterative method the method of power flow calculation 4
目录 1 高斯迭代法和高斯—赛德尔迭代法概述................................ 5 2 节点导纳矩阵...................................................... 6 2.1不定导纳矩阵 .................................................. 6 2.2导纳矩阵 ...................................................... 6 3 高斯迭代法........................................................ 7
4 高斯-赛德尔迭代法................................................. 8 4.1高斯-赛德尔法的原理 ........................................... 8 4.2 关于高斯法和高斯-赛德尔法的讨论............................... 8
5实例验证 .......................................................... 9 5.1 案例描述..................................................... 9 5.2 模型的建立.................................................. 10 5.3 案例程序流程图.............................................. 11 5.4 案例程序.................................................... 13 5.5 程序运行步骤和结果.......................................... 17 6结果分析 ......................................................... 20 7总结 ............................................................. 21 7参考文献 ......................................................... 22 5
一 高斯迭代法和高斯—赛德尔迭代法概述 电力系统潮流计算是研究电力系统稳态运行情况的一种基本电气计算。它的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。电力系统潮流计算的结果是电力系统稳定计算和故障分析的基础。给定电力系统的网络结构,参数和决定系统运行状况的边界条件,电力系统的稳态运行状态便随之确定。潮流计算就是要通过数值仿真的方法把电力系统的详细运行状态呈现给运行和工作人员,以便研究系统在给定条件下的稳定运行特点。潮流计算是电力系统分析中最基本、最重要的计算,是电力系统运行、规划以及安全性、可靠性分析和优化的基础,也是各种电磁暂态和机电暂态分析的基础和出发点。 20世纪50年代中期,随着电子计算机的发展,人们开始在计算机上用数学 模拟的方法进行潮流计算。最初在计算机上实现的潮流计算方法是以导纳矩阵为基础的高斯迭代法( Gauss 法)。这种方法内存需求小,但收敛性差。后来在高斯迭代法上进行改进,这就是高斯——赛德尔迭代法(Gauss一Seidel method),潮流计算高斯—赛德尔迭代法,分为导纳矩阵迭代法和阻抗矩阵迭代法两种。前者是以节点导纳矩阵为基础建立的赛德尔迭代格式,后者是以节点阻扰矩阵为基础建立的赛德尔迭代格式。高斯——赛德尔迭代法这是数学上求解线性或非线性方程组的一种常用的迭代方法。 牛顿-拉夫逊方法是解非线性代数方程组的一种基本方法,在潮流计算中也得到了应用。20世纪60年代中后期,系数矩阵技术和编号优化技术的提出使牛顿-拉夫逊的解题规模和计算效率进一步提高,至今仍是潮流计算中的广泛采用的优秀算法。 20世纪70年代中期,Stott在大量计算实践的基础上提出了潮流计算的快速分解法,是潮流计算的速度大大提高,可以应用于在线,但是直至20世纪80年代末期才对快速分解法潮流的收敛性给出了比较满意的解释。 由于潮流计算在电力系统中的特殊地位和作用,对其计算方法有如下较高的要求: 1. 要有可靠的收敛性,对不同的系统及不同的运行条件都能收敛; 2. 占用内存小、计算速度快;