高三数学(文科)试题及答案

合集下载

2022年12月高三全国大联考(全国乙卷)文科数学试卷及答案

2022年12月高三全国大联考(全国乙卷)文科数学试卷及答案
(2)建立 关于 的回归方程,并预测在19℃的温度下,种子发芽的颗数.
参考数据: , , , .
参考公式:相关系数 ,回归直线方程 中斜率和截距的最小二乘估计公式分别为
, .
19.如图,正三棱柱 的底面边长为2,高为3, 在棱 上, , 为 的中点.
(1)求证: 平面 ;
(2)求三棱锥 的体积.
20.已知函数 , , 为常数, 的图象在点 处的切线方程为 .
故选:D
8.C
【分析】先判断函数 的奇偶性与单调性,再解不等式,求不等式成立的一个充分不必要条件是求其一个真子集.
【详解】函数 定义域为R,
因为 ,所以 是一个奇函数.
因为 ,所以 在R上单调递增.
因为 ,又 是一个奇函数,
所以 ,
又 在R上单调递增,
所以 ,解得 .
不等式 成立的一个充分不必要条件是集合 的真子集,所以选项C正确.
【详解】由抛物线 : ,可知 ,焦点 ,
因为 过焦点 ,所以 ,
设 ,
联立 ,消元得 ,
则 ,
由抛物线定义知 .
故选:A
7.D
【分析】根据图像变换求得 的解析式,再求得 的对称中心.
【详解】函数 的图像向右平移 个单位长度,得到函数 ,所以 ,
令 ,即 的对称中心为 ,
令 ,求得 的一个对称中心为 .
A. B. C. D.3
12.已知各项不等于0的数列 满足 , , .设函数 , 为函数 的导函数.令 ,则 ()
A. B.36C. D.54
二、填空题
13.已知平面向量 , ,则平面向量 与 的夹角为______.
14.已知圆 : ,且圆外有一点 ,过点 作圆 的两条切线,且切点分别为 , ,则 ______.

甘肃省兰州市2023届高三下学期诊断考试文科数学试题(含答案解析)

甘肃省兰州市2023届高三下学期诊断考试文科数学试题(含答案解析)

甘肃省兰州市2023届高三下学期诊断考试文科数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.{}5A x x =∈N 是不大于的奇数,{}3,2,3B =-,则集合A B ⋃=()A .{}3,1,3,5-B .{}3,1,2,3-C .{}3,1,2,3,5-D .{}32.已知复数z 满足()13i 24i z -=+,则z =()A .1i--B .1i+C .1i-+D .2i -+3.2022年8—12月某市场上草莓价格(单位:元/千克)x 的取值为:12,16,20,24,28,市场需求量(单位:百千克)0.520y x =-+,则市场需求量的方差为()A .8B .4C .D .24.18世纪数学家欧拉研究调和级数得到了以下的结果:当n 很大时,1111ln 23n n γ+++⋅⋅⋅+=+(常数0.557γ=⋅⋅⋅).利用以上公式,可以估计111100011000220000++⋅⋅⋅+的值为()A .()4ln 210⨯B .4ln 2+C .4ln 2-D .ln 25.已知点P 在圆22:40C x x y -+=上,其横坐标为1,抛物线()220x py p =->经过点P ,则抛物线的准线方程是()A .6y =B .12x =C .6x =D .12y =6.已知0a >,0b >2a 与2b 的等比中项,则11a b+的最小值是()A .8B .4C .3D .27.已知命题p :“若直线//a 平面α,平面//α平面β,则直线//a 平面β”,命题q :“棱长为a 的正四面体的外接球表面积是23π2a”,则以下命题为真命题的是()A .p q ∨B .p q∧C .()p q ∨⌝D .()()p q ⌝∧⌝8.如图是某算法的程序框图,若执行此算法程序,输入区间[]1,5内的任意一个实数x ,则输出的[]8,20x ∈的概率为()A .14B .34C .12D .139.攒尖是中国古建筑中屋顶的一种结构形式,常见的有圆形攒尖、三角攒尖、四角攒尖、六角攒尖等,多见于亭阁式建筑,兰州市著名景点三台阁的屋顶部分也是典型的攒尖结构.如图所示是某研究性学习小组制作的三台阁仿真模型的屋顶部分,它可以看作是不含下底面的正四棱台和正三棱柱的组合体,已知正四棱台上底、下底、侧棱的长度(单位:dm )分别为2,6,4,正三棱柱各棱长均相等,则该结构表面积为()A .28dmB .244dmC .248dm +D .28dm +10.若将函数()πcos 2cos 23f x x x ⎛⎫=++ ⎪⎝⎭的图象向左平移π6个单位,再向上平移1个单位,得到函数()y g x =的图象,则关于函数()y g x =的四个结论不正确...的是()A .()g x 的最小正周期为πB .()g x 在区间ππ,62⎡⎤⎢⎥⎣⎦上的最小值为12-C .()g x 在区间ππ,46⎡⎤-⎢⎥⎣⎦上单调递减D .()g x 的图象对称中心为π,12k ⎛⎫⎪⎝⎭11.已知双曲线()2222:10,0x y C a b a b-=>>的一条渐近线上存在关于原点O 对称的两点M 和N ,若双曲线的左、右焦点12,F F 与,M N 组成的四边形为矩形,若该矩形的面积为2,则双曲线的离心率为()AB CD 12.已知函数()()()()()()()f x x a x b x b x c x c x a =--+--+--,其中sin6a π=,33sin cos44b =,c =,则以下判断正确的是()A .函数()f x 有两个零点()1212,x x x x <,且()()110x b x c --<,()()220x b x c -->B .函数()f x 有两个零点()1212,x x x x <,且()()110x a x b --<,()()220x a x b -->C .函数()f x 有两个零点()1212,x x x x <,且()()110x b x c --<,()()220x a x b --<D .函数()f x 只有一个零点0x ,且()()000x a x b -->,()()000x b x c --<二、填空题13.在梯形ABCD 中,//AB CD ,0AD AB ⋅= ,112AD CD AB === ,则BC CD ⋅= ______.14.如图,圆锥的轴截面SAB 是边长为a 的正三角形,点,C D 是底面弧AB 的两个三等分点,则SC 与BD 所成角的正切值为______.15.用长度为1,4,8,9的4根细木棒围成一个三角形(允许连接,不允许折断),则其中某个三角形外接圆的直径可以是______(写出一个答案即可).16.定义:如果任取一个正常数T ,使得定义在R 上的函数()y f x =对于任意实数x ,存在非零常数m ,使()()f x T m f x +=,则称函数()y f x =是“ξ函数”.在①21y x =+,②3212x y -⎛⎫= ⎪⎝⎭,③3y x =,④()ln 1y x =-这四个函数中,为“ξ函数”的是______(只填写序号).三、解答题17.已知数列{}n a ,11a =,对任意的i *∈N 都有n i n a a i +-=.(1)求{}n a 的通项公式;(2)数列{}n b 满足:12n nn n b ab a ++=,且11b =,求数列{}n b 的前n 项和n S .18.如图所示的五边形SBADC 中ABCD 是矩形,2BC AB =,SB SC =,沿BC 折叠成四棱锥S ABCD -,点M 是BC 的中点,2SM =.(1)在四棱锥S ABCD -中,可以满足条件①SA =cos5SBM ∠=;③sin SAM ∠=,请从中任选两个作为补充条件,证明:侧面SBC ⊥底面ABCD ;(注:若选择不同的组合分别解答,则按第一个解答计分.)(2)在(1)的条件下求点M 到平面SAD 的距离.19.2022年第22届世界杯足球赛在卡塔尔举行,这是继韩日世界杯之后时隔20年第二次在亚洲举行的世界杯足球赛,本届世界杯还是首次在北半球冬季举行的世界杯足球赛.每届世界杯共32支球队参加,进行64场比赛,其中小组赛阶段共分为8个小组,每个小组的4支队伍进行单循环比赛共计48场,以积分的方式产生16强,之后的比赛均为淘汰赛,1/8决赛8场产生8强,1/4决赛4场产生4强,半决赛两场产生2强,三四名决赛一场,冠亚军决赛一场.下表是某五届世界杯32进16的情况统计:欧洲球队美洲球队非洲球队亚洲球队32强16强32强16强32强16强32强16强1131094515121310105514031361085240414108550515138835263合计66444525256245(1)根据上述表格完成列联表:16强非16强合计欧洲地区其他地区合计并判断是否有95%的把握认为球队进入世界杯16强与来自欧洲地区有关?(2)已知某届世界杯比赛过程中已有2支欧洲球队进入8强并相遇,胜者进入4强,此时球迷预测还将有3支欧洲球队,2支美洲球队,1支亚洲球队进入8强,并在这6支球队中两两对决进行3场比赛,产生剩下的三个4强席位,求欧洲球队不碰面的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++,()2P K k ≥0.0500.0100.001k3.8416.63510.82820.已知12,F F 是椭圆()2222:10x y E a b a b +=>>的左、右焦点,12B B 是椭圆的短轴,菱形1122F B F B 的周长为8,面积为E 的焦距大于短轴长.(1)求椭圆E 的方程;(2)若P 是椭圆E 内的一点(不在E 的轴上),过点P 作直线交E 于,A B 两点,且点P 为AB的中点,椭圆()22122:10x y E m n m n +=>>的离心率为2,点P 也在1E 上,求证:直线AB与1E 相切.21.已知函数()()ln ln N n f x x x n x n *=-∈.(1)当1n =时,求函数()y f x =的单调区间;(2)当1n >时,函数()y f x =的图象与x 轴交于P ,Q 两点,且点Q 在右侧.若函数()y f x =在点Q 处的切线为()y g x =,求证:当1x >时,()()f x g x ≥.22.在平面直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x y θθ=⎧⎨=+⎩(θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为22cos a ρρθ=+,其中1a >-.(1)当0a =时曲线1C 与曲线2C 交于M 、N 两点,求线段MN 的长度;(2)过点()3,1P -的直线l的参数方程为3,12x y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数)与曲线2C 交于A 、B 两点,若1PA PB ⋅=,求实数a .23.已知()212f x x x =++-.(1)解不等式()4f x ≥;(2)若对于任意正实数x ,不等式()10f x ax +->恒成立,求实数a 的取值范围.参考答案:1.C【分析】列举法表示集合A ,根据并集定义可得结果.【详解】{}13,5A = ,,{}3,2,3B =-,{}3,1,2,3,5A B ∴=- .故选:C.2.C【分析】根据复数除法规则计算即可.【详解】()()()()()24i 13i 24i 13i 24i 1i13i 13i 13i z z +++-=+⇒===-+--+故选:C.3.A【分析】由草莓价格x 的方差结合方差的性质得出市场需求量的方差.【详解】1(1216202428)205x =⨯++++=,则草莓价格x 的方差为222221(1220)(1620)(2020)(2420)(2820)325⎡⎤⨯-+-+-+-+-=⎣⎦.因为0.520y x =-+,所以市场需求量的方差为2(0.5)328-⨯=.故选:A 4.D【分析】所求式子为1111111123200002310000⎛⎫⎛⎫+++⋅⋅⋅+-+++⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭,根据已知中的公式直接计算即可.【详解】1111111111110001100022000023200002310000⎛⎫⎛⎫++⋅⋅⋅+=+++⋅⋅⋅+-+++⋅⋅⋅+ ⎪ ⎪⎝⎭⎝⎭()20000ln 20000ln10000ln 20000ln10000ln ln 210000γγ=+-+=-==.故选:D.5.D【分析】结合圆的方程可求得P 点坐标,代入抛物线方程可确定p 的值,进而确定准线方程.【详解】将1x =代入圆C 方程得:23y =,解得:y =(P ∴或(1,P ,P 在抛物线()220x py p =->上,1∴=-或1=,解得:p =p =,∴抛物线方程为2x y =,∴抛物线的准线方程为:y =.故选:D.6.B【分析】利用等比中项的性质得到1a b +=,再利用基本不等式“1”的妙用即可得解.是2a 与2b 的等比中项,所以222a b =⋅,即22a b +=,所以1a b +=,又0a >,0b >,所以()111111224b a a b a b a b a b ⎛⎫+=++=+++≥+ ⎪⎝⎭,当且仅当ba ab=且1a b +=,即12a b ==时取等号.所以11a b+的最小值为4.故选:B .7.A【分析】根据线面的关系判断命题p 的真假,根据正四面体外接球的表面积公式计算判断命题q 的真假,结合复合命题真假的判断方法即可求解.【详解】命题p :若//a α,α//β,则//a β或a ⊂β,故命题p 为假命题;命题q :将正四面体补成一个正方体,则正方体的棱长为2,对角线长为2,所以外接球的表面积为223π4π42a ⎛⎫= ⎪ ⎪⎝⎭,故命题q 为真命题.所以命题p q ∨为真命题,命题()()()p q p q p q ∧∨⌝⌝∧⌝、、为假命题.故选:A.8.B【详解】由程序框图可知:输入[]01,5x ∈,当1n =时,满足循环体,执行循环体,0x =∈,2n =,当2n =时,满足循环体,执行循环体,此时02[2,10]x x =∈,3n =,当3n =时,满足循环体,执行循环体,此时0x =∈,4n =,当4n =时,满足循环体,执行循环体,此时04[4,20]x x =∈,5n =,当5n =时,不满足循环体,退出循环,由几何概型,得输出[8,20]x ∈的概率为20832044-=-.故选:B.9.A【分析】根据三棱柱和棱台表面积公式计算即可.【详解】由题可得正三棱柱的底面积为:2122sin 602⨯⨯⨯︒=,正三棱柱的外露表面积为:222228⨯⨯=+,=,四棱台外露表面积为:()214262⨯⨯+⨯=,该结构表面积为:288dm +.故选:A 10.B【分析】根据三角恒等变换公式,可得()π26f x x ⎛⎫=+ ⎪⎝⎭,再由函数图象的平移法则得()g x ,然后根据正弦函数的图象与性质,逐项分析选项,即可.【详解】因为()π13πcos 2cos 2cos 2cos 22cos 2223226f x x x x x x x x x ⎛⎫⎛⎫=++=+==+ ⎪ ⎪⎝⎭⎝⎭,所以()πππ212121662g x x x x ⎡⎤⎛⎫⎛⎫=+++=++=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦.对于A :2ππ2T ==,故A 正确;对于B :由ππ,62⎡⎤⎢⎥⎣⎦知,π2,π3x ⎡⎤∈⎢⎥⎣⎦,所以sin 2[0,1]x ∈,所以()g x 在区间ππ,62⎡⎤⎢⎥⎣⎦上的最小值为1B 错误;对于C :令ππππ2,,,2244x x ⎡⎤⎡⎤∈-∈-⎢⎥⎢⎥⎣⎦⎣⎦,因为ππππ,,4644⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,所以()g x 在区间ππ,46⎡⎤-⎢⎥⎣⎦上单调递减,故C 正确;对于D :令2π,Z x k k =∈,π,Z 2k x k =∈,所以()g x 的图象对称中心为π,12k ⎛⎫⎪⎝⎭,故D 正确.故选:B 11.C【分析】设()(),,0M m n m n >,根据矩形对角线长相等和矩形面积可构造方程组,化简得到关于,a c 的齐次方程,解方程可求得离心率.【详解】由双曲线方程知其渐近线方程为:by x a=±,不妨设,M N 在by x a =上,设()(),,0M m n m n >,则(),N m n --,b n m a∴=, 四边形12F MF N 为矩形,122MN F F c ∴==,222m n c ∴+=,矩形12F MF N的面积221442MOF S S ==⨯= ,∴由22222b n m a m n c cn ⎧=⎪⎪+=⎨⎪=⎪⎩得:422460c a c a --=,即4260e e --=,解得:23e =,e ∴=故选:C.12.B【分析】由已知可得12a =,12b <,12c >,进而利用零点存在性定理可得结论.【详解】解:因为π1sin62a ==,331311sin cos sin sin 4422222πb ==<=,又3πcos cos 044>>,所以1113ln e 222c =>=,即c a b >>,又()()()()()()()()()0f a a a a b a b a c a c a a a b a c =--+--+--=--<,()()()()()()()()()0f b b a b b b b b c b c b a b c b a =--+--+--=-->,()()()()()()()()()0f c c a c b c b c c c c c a c a c b =--+--+--=-->,则()()0f a f b <,()()0f a f c <,又()()()()()()()f x x a x b x b x c x c x a =--+--+--为定义域R 上的连续函数,所以函数()f x 必有两个不相同的零点,∴存在1(,)x b a ∈,使得1()0f x =,且11()()0x a x b --<,存在2(,)x a c ∈,使得2()0f x =,22()()0x a x c --<,22()()0x a x b -->,∴函数()f x 有两个零点1x ,212()x x x <,且11()()0x a x b --<,22()()0x a x b -->.故选:B .13.1【分析】以A 为坐标原点建立平面直角坐标系,利用数量积的坐标运算可求得结果.【详解】0AD AB ⋅=,AD AB ∴⊥,则以A 为坐标原点,,AB AD正方向为,x y 轴,可建立如图所示平面直角坐标系,则()2,0B ,()1,1C ,()0,1D ,()1,1BC ∴=- ,()1,0CD =-,()()11101BC CD ∴⋅=-⨯-+⨯=.故答案为:1.14【分析】易证得//OC BD ,由异面直线所成角定义可知所求角为SCO ∠,由长度关系可求得结果.【详解】设圆锥底面圆心为O ,连接,,OC OD OS ,,C D 为弧AB 的两个三等分点,π3COD BOD ∴∠=∠=,又OB OD =,OBD ∴△为等边三角形,π3ODB COD ∴∠=∠=,//OC BD ∴,SCO ∴∠即为异面直线SC 与BD 所成角,SO ⊥ 平面ABCD ,OC ⊂平面ABCD ,SO OC ∴⊥,2SO == ,122a OC AB ==,2tan 2a SO SCO a OC ∴∠===即SC 与BD15【分析】根据三角形性质确定三边边长,利用余弦定理和正弦定理计算出对应三角形外接圆的直径.【详解】4根细木棒围成一个三角形的三边长可以为5,8,9,设边长为9的边所对的角为θ,由余弦定理可知:2564811cos 25810θ+-==⨯⨯,因为()0,πθ∈,所以sin θ=由正弦定理知,92sin 11R θ==,所以其中某个三角形外接圆的直径可以是11..16.②【分析】根据“ξ函数”,依次判断各选项中的()()f x T f x +是否为常数即可.【详解】对于①,令()21f x x =+,则()()221212121f x T x T Tf x x x +++==+++,不是常数,21y x ∴=+不是“ξ函数”;对于②,令()3212x f x -⎛⎫= ⎪⎝⎭,则()()332332112212x T T x f x T f x +--⎛⎫⎪+⎛⎫⎝⎭== ⎪⎝⎭⎛⎫ ⎪⎝⎭为常数,3212x y -⎛⎫∴= ⎪⎝⎭是“ξ函数”;对于③,令()3f x x =,则()()()3322322333333331f x T x T x T x T x T T x T x T f x x x x +++⋅++⋅++===+,不是常数,3y x ∴=不是“ξ函数”;对于④,令()()ln 1f x x =-,则()()()()ln 1ln 1f x T x T f x x ++-=-,不是常数,()ln 1y x ∴=-不是“ξ函数”.故答案为:②.【点睛】关键点点睛:本题考查函数中的新定义问题的求解,解题关键是能够充分理解“ξ函数”的定义,即()()f x T f x +为常数的函数,从而根据运算法则来求解即可.17.(1)n a n =(2)21n n S n =+【分析】(1)取1i =,即可证得数列{}n a 为等差数列,由等差数列通项公式可求得n a ;(2)利用累乘法可求得n b ,采用裂项相消法可求得n S .【详解】(1) 对任意的i *∈N ,都有n i n a a i +-=,∴当1i =时,11n n a a +-=,又11a =,∴数列{}n a 是以1为首项,1为公差的等差数列,n a n ∴=.(2)由(1)得:12n n b nb n +=+,∴当2n ≥时,()1232112321123212111431n n n n n n n b b b b b n n n b b b b b b b n n n n n --------=⋅⋅⋅⋅⋅⋅⋅⋅⋅=⋅⋅⨯⋅⋅⋅⨯⨯⨯=+-+,又11b =满足()21n b n n =+,()211211nb n n n n ⎛⎫∴==- ++⎝⎭,111111111122121223341111n n S n n n n n n ⎛⎫⎛⎫∴=-+++⋅⋅⋅+-+-=-=⎪ ⎪-+++⎝⎭⎝⎭.18.(1)条件选择见解析,证明见解析【分析】(1)选条件①②,利用勾股定理逆定理证得SM AM ⊥,由等腰三角形的几何性质可得出SM BC ⊥,利用线面和面面垂直的判定定理可证得结论成立;选条件①③,利用正弦定理推导出SM AM ⊥,,由等腰三角形的几何性质可得出SM BC ⊥,利用线面和面面垂直的判定定理可证得结论成立;选条件②③,利用余弦定理求出SA 的长,利用勾股定理逆定理证得SM AM ⊥,由等腰三角形的几何性质可得出SM BC ⊥,利用线面和面面垂直的判定定理可证得结论成立;(2)计算出三棱锥S ADM -的体积,计算出ASD 的面积,利用等体积法可求得点M 到平面SAD 的距离.【详解】(1)证明:方案一:选条件①②.因为在四棱锥S ABCD -中,SB SC =,点M 为BC 的中点,则SM BC ⊥,因为2SM =,在Rt SBM 中,cos BMSBM SB∠==,1BM ∴=,又因为四边形ABCD 为矩形,2BC AB =,则1BM AB ==,AM ===因为SA =AM =2SM =,所以,222SA AM SM =+,则SM AM ⊥,因为AM BC M = ,AM 、BC ⊂平面ABCD ,所以,SM ⊥平面ABCD ,因为SM ⊂平面SBC ,所以,侧面SBC ⊥平面ABCD ;方案二:选条件①③.因为在四棱锥S ABCD -中,SB SC =,点M 为BC 的中点,则SM BC ⊥,在SAM △中,SA =sin 3SAM ∠=,2SM =,由正弦定理可得sin sin SA SM SMA SAM=∠∠=,所以,sin 1SMA ∠=,所以,π2SMA ∠=,即SM AM ⊥,因为AM BC M = ,AM 、BC ⊂平面ABCD ,所以,SM ⊥平面ABCD ,因为SM ⊂平面SBC ,所以,侧面SBC ⊥平面ABCD ;方案三:选条件②③.因为在四棱锥S ABCD -中,SB SC =,点M 为BC 的中点,则SM BC ⊥,且2SM =,在Rt SBM 中,cos BMSBM SB∠==,1BM ∴=,又因为四边形ABCD 为矩形,2BC AB =,则1BM AB ==,所以,AM ===在SAM △中,sin 3SAM ∠=,则cos 3SAM ∠===,设SA x =,由余弦定理可得2222cos SM SA AM SA AM SAM =+-⋅∠,整理可得2360x --=,解得x =x =,所以,SA =,因为SA =AM =2SM =,所以,222SA AM SM =+,则SM AM ⊥,因为AM BC M = ,AM 、BC ⊂平面ABCD ,所以,SM ⊥平面ABCD ,因为SM ⊂平面SBC ,所以,侧面SBC ⊥平面ABCD .(2)解:在(1)的条件下,SM ⊥平面ABCD ,因为M 为BC 的中点,2SM =,1BM AB ==,在ADM △中,AM DM ==2AD =,则222AM DM AD +=,所以,AM DM ⊥,则211122ADM S AM DM =⋅=⨯=△,11212333S ADM ADM V S SM -=⋅=⨯⨯=△,在SAD 中,SA SD ==,2AD =,则2226642cos 2123SA SD AD ASD SA SD +-+-∠==⋅,所以,sin 3ASD ∠,所以,11sin 622ASD S SA SD ASD =⋅∠=⨯⨯△,设点M 到平面SAD 的距离为h ,由S ADM M ASD V V --=可得1233SAD S h ⋅=△,所以,2SADhS=△因此,点M到平面SAD19.(1)见解析(2)25【分析】(1)根据题意完成列联表,利用列联表求出2K,即可求解;(2)利用平均分组的方法求所有比赛的方法数,再由排列问题的应用求出欧洲球队不碰面的比赛方法数,再由古典概型概率公式.【详解】(1)解:根据上述表格完成列联表:16强非16强合计欧洲地区442266其他地区365894合计8080160所以22160(44582236)12.482 3.84180806694K⨯⨯-⨯==>⨯⨯⨯,所以有95%的把握认为球队进入世界杯16强与来自欧洲地区有关;(2)由题意,3支欧洲球队,2支美洲球队,1支亚洲球队这6支球队中两两对决进行3场比赛,一场比赛对应着将6个球队平均分成3组,每组2支球队的一种分组方法,共有22264233C C C15A=(种)比赛方法;若欧洲球队不碰面,可将3支欧洲球队看成三个空格,将2支美洲球队,1支亚洲球队在3个空格进行排列,一种排列方法对应着一种满足条件的比赛方法,共有336A=(种)排列,所以欧洲球队不碰面的比赛方法共有6种.故欧洲球队不碰面的概率为62.155P==20.(1)2214x y+=(2)证明见解析【分析】(1)根据菱形1122F B F B 的周长和面积可构造方程组求得,b c ,进而得到椭圆方程;(2)设:AB y kx t =+,与椭圆E 方程联立可得韦达定理的结论,结合中点坐标公式可求得P 点坐标;将AB 与椭圆1E 联立,可得1∆,由P 在椭圆1E 上可得等量关系,化简1∆可得10∆=,由此可得结论.【详解】(1) 菱形1122F B F B 的周长为8,面积为122248b c a ⎧⋅⋅=⎪∴⎨⎪=⎩222a b c =+,1b c ⎧=⎪∴⎨=⎪⎩或1b c =⎧⎪⎨=⎪⎩E 的焦距大于短轴长,即22c b >,1b c =⎧⎪∴⎨=⎪⎩24a ∴=,则椭圆E 的方程为:2214x y +=.(2)由题意知:直线AB 的斜率必然存在,可设其方程为:y kx t =+,由2214x y y kx t ⎧+=⎪⎨⎪=+⎩得:()222148440k x ktx t +++-=,设()()1122,,,A x y B x y ,则()2216140k t ∆=+->,即2214<+t k ,122814kt x x k ∴+=-+,21224414t x x k -=+,21212228221414k t ty y kx t kx t t k k ∴+=+++=-+=++,224,1414kt t P k k ⎛⎫∴- ⎪++⎝⎭;椭圆1Ee ∴=224=m n ,2221:44E x y n ∴+=,由22244x y n y kx t ⎧+=⎨=+⎩得:()2222148440k x ktx t n +++-=,()()()22222222216441444164k t k tn k n n t ∴∆=-+-=+-,P 在椭圆1E 上,()()2222222216441414k t t n k k ∴+=++,整理可得:()22241t n k =+,()222222116440k n n k n n ∴∆=+--=,∴直线AB 与1E 相切.【点睛】关键点点睛:本题考查直线与椭圆位置关系的证明问题,解题关键是能够利用点在椭圆上得到变量之间所满足的等量关系,将等量关系代入判别式中进行化简整理即可得到直线与椭圆的位置关系.21.(1)递减区间是(0,1),递增区间是(1,)+∞;(2)证明见解析.【分析】(1)把1n =代入,利用导数求出函数的单调区间作答.(2)求出点Q 的坐标及切线()y g x =,再构造函数,利用导数探讨最小值作答.【详解】(1)当1n =时,函数()ln ln f x x x x =-的定义域为(0,)+∞,求导得1()ln 1f x x x=+-',显然()f x '在(0,)+∞上单调递增,而()01f '=,则当01x <<时()0f x '<,当1x >时,()0f x '>,所以函数()f x 的递减区间是(0,1),递增区间是(1,)+∞.(2),N 1n n *>∈,()0ln ln 0n f x x x n x =⇔-=,解得1x =或1n x n =,则1(,0)n Q n ,11()ln n n n f x nx x x x--'=+-,111111()ln ln n n n nnn nnnn f n n nn nnn n---'=⋅+-=,函数()y f x =的图象在点Q 处的切线11(ln )()n nny nn x n -=-,于是1()(ln )ln n ng x nn x n n -=-,当1x >时,令()()()h x f x g x =-,求导得111()()(n )l ln n n n nn nxx xn n h x f x g x x---'''=+--=-,当11nx n <<时,1110ln ,1n n n x n x n n--<<<<,则11ln ln n n n nx x n n --<,即11ln ln 0n n n nx x n n ---<,显然n x n <,即1n n x x -<,10n n x x --<,因此()0h x '<,函数()h x 在1(1,)n n 上单调递减,当1nx n >时,111ln ln ,n n n x n x n n-->>,则11ln ln n n n nx x n n -->,即11ln ln 0n n n nx x n n --->,显然n x n >,即1n n x x ->,10n n x x-->,因此()0h x '>,函数()h x 在1(,)n n +∞上单调递增,于是当1x >时,111()()()()0n n n h x h n f n g n ≥=-=,所以当1x >时,()()f x g x ≥.【点睛】思路点睛:函数不等式证明问题,将所证不等式等价转化,构造新函数,再借助函数的单调性、极(最)值问题处理.22.(2)3a =或5a =【分析】(1)求出曲线1C 和曲线2C 的直角坐标方程,根据几何关系和点到直线距离公式计算即可;(2)将参数方程代入曲线2C 的直角坐标方程中,根据韦达定理和直线参数t 的几何含义求解.【详解】(1)曲线1C 的直角坐标方程为:()2211x y +-=,圆心为()0,1,半径为1,当0a =时,曲线2C 的极坐标方程为22cos ρρθ=,转换为直角坐标方程为222x y x +=,相交弦所在的直线方程为:0x y -=,圆心()0,1到直线0x y -==,曲线1C 与曲线2C 交于M 、N 两点,线段MN的长度为:2(2)把直线l:3,212x t y t ⎧=+⎪⎪⎨⎪=-+⎪⎩(t 为参数)代入曲线2C :222x y x a +=+,得到:240t a +-=,所以124t t a =-,1PA PB ⋅=即41a -=,解得3a =或5a =.23.(1)[)4,0,3⎛⎤-∞-+∞ ⎥⎝⎦ (2)5,2⎛⎫-+∞ ⎪⎝⎭【分析】(1)分别在1x ≤-、12x -<<和2x ≥的情况下,去除绝对值符号解不等式即可;(2)将问题转化为()()1f x a g x x->=恒成立问题,通过分类讨论可得()max g x ,进而得到a的取值范围.【详解】(1)当1x ≤-时,()()21234f x x x x =-++-=-≥,解得:43x ≤-;当12x -<<时,()()21244f x x x x =++-=+≥,解得:02x ≤<;当2x ≥时,()()21234f x x x x =++-=≥,解得:2x ≥;()4f x ∴≥的解集为[)4,0,3⎛⎤-∞-+∞ ⎥⎝⎦ .(2)由0x >时,()10f x ax +->得:()1f x a x->,令()()1f x g x x -=,则()31,0213,2x xg x x x ⎧--<≤⎪⎪=⎨⎪-+>⎪⎩,当02x <≤时,()g x 单调递增,()()352122g x g ∴≤=--=-;当2x >时,()g x 单调递减,()()152322g x g ∴<=-+=-;()max 52g x ∴=-,52a ∴>-,即实数a 的取值范围为5,2⎛⎫-+∞ ⎪⎝⎭.。

高三数学试题(文科)参考答案

高三数学试题(文科)参考答案

2010年高考考前仿真模拟高三数学试题(文科)参考答案 2010.5一、选择题:本大题共12小题,每小题5分,共60分. AADCB DABDC AB二、填空题:本大题共4个小题,每小题4分,共16分.13. 8 14.A=10S 15. 2 16. ①②④三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分) 解:(Ⅰ)(1cos 2)()622x f x x +=-)36x π=++, ………………3分故f (x )的最小正周期π=T . …………………………………………………………4分由ππππk x k 2622≤+≤+-得f (x )的单调递增区间为()Z k k k ∈--]12,127[ππππ.……6分 (II)由()3f α=-)336πα++=-,故cos(2)16πα+=-. ……………………………………………………8分又由02πα<<得2666πππαπ<+<+,因此26παπ+=,∴512πα=. …………………………………………………………10分则15tan tantan(3)212643πππα+==+==+. ………………………………12分18.(本小题满分12分)解:(Ⅰ)在直角梯形ABCD 中,AC=22,取AB 中点E,连接CE,则四边形AECD为正方形, ………2分∴AE=CE=2,又BE=221=AB ,则ABC ∆为等腰直角三角形,∴BC AC ⊥, …………………………4分 又 ⊥PA 平面ABCD,⊂BC 平面ABCD , ∴BC PA ⊥,由A PA AC =⋂得⊥BC 平面PAC, ⊂PC 平面PAC,所以PC BC ⊥. ………6分(Ⅱ)取P A 的中点G ,连结FG 、DG , 则1////2G F A B D C ,∴//G F D C . ……8分∴四边形DCFG 为平行四边形,DG//CF. ……10分 又D G ⊂平面PAD ,C F ⊄平面PAD ,∴CF//平面PAD. ………………………………12分19.(本小题满分12分) 解:(Ⅰ)由表知,4500.08t ==, ………………………………2分10.040.380.320.080.18y =----=,500.042x =⨯=,500.3819z =⨯=. ………………………………6分 (Ⅱ)由题知,第一组有2名同学,设为,a b ,第五组有4名同学,设为,,,A B C D . 则,m n 可能的结果为:(,),(,),(,),(,),(,),a b a A a B a C a D (,),(,),(,),(,),b A b B b C b D(,),(,),(,),(,),(,)A B A C A D B D C D 共15种, ………………………………8分其中使1m n ->成立的有:(,),(,),(,),(,),(,),(,),(,),(,)a A a B a C a D b A b B b C b D 共8种,……………………10分所以,所求事件的概率为815. ………………………………12分20.(本小题满分12分)解:(Ⅰ)()113,213n n n n a S n n a S n +-=-+≥=--+ 时, , …………2分 ,12,111-=-=-∴++n n n n n a a a a a 即112(1),(2,),n n a an n +∴-=-≥∈N * ……………………………4分2221(1)232n n n a a --∴-=-=∙=n a ⎩⎨⎧≥+∙=-2,1231,22n n n ……………………………6分 (Ⅱ)113322n n n S a n n -+=+-=∙+- ,123-∙=∴n n n b ………………………………………………8分⎪⎭⎫⎝⎛++++=∴-1222322131n n n T⎪⎭⎫⎝⎛++++=nn n T 2232221312132 相减得,⎪⎭⎫⎝⎛-++++=-n n n n T 22121211312112 ,……………………………10分 n n n nT 23221134∙-⎪⎭⎫ ⎝⎛-=∴﹤34. ……………………………12分∴结论成立. 21.(本小题满分12分) 解:(Ⅰ)设与22142xy+=相似的椭圆的方程22221x y ab+=则有222461a b ab⎧=⎪⎪⎨⎪+=⎪⎩ ………………3分 解得2216,8a b ==.所求方程是221168xy+=. ………………6分(Ⅱ) 当射线l的斜率不存在时(0,(0,A B ±.设点P 坐标P(0,0)y ,则204y =,02y =±.即P(0,2±). ………………8分当射线l 的斜率存在时,设其方程y kx =,P(,)x y 由11(,)A x y ,22(,)B x y 则112211142y kx x y =⎧⎪⎨+=⎪⎩ 得2122212412412x k k y k ⎧=⎪⎪+⎨⎪=⎪+⎩||O A ∴=同理||O B =………………10分当l 的斜率不存在时,||||4O A O B == ,当l 的斜率存在时,2228(1)4||||41212b OA OB kk+==+++ ,4||||8OA OB ∴<≤ ,综上,||||OA OB 的最大值是8,最小值是4. ………………12分 22.(本小题满分14分)解:(I)函数()f x 的定义域为(0,)+∞. …………………………1分 当0a =时,1()2ln f x x x=+,∴222121()x f x xxx-'=-=.…………………2分由()0f x '=得12x =.()f x ,()f x '随x 变化如下表:故,m in 1()()22ln 22f x f ==-,没有极大值. …………………………4分(II )由题意,222(2)1()ax a x f x x+--'=.令()0f x '=得11x a=-,212x =. ………………………6分若0a >,由()0f x '≤得1(0,]2x ∈;由()0f x '≥得1[,)2x ∈+∞. …………7分若0a <,①当2a <-时,112a-<,1(0,]x a∈-或1[,)2x ∈+∞,()0f x '≤;11[,]2x a ∈-,()0f x '≥.②当2a =-时,()0f x '≤. ③当20a -<<时,112a ->,1(0,]2x ∈或1[,)x a∈-+∞,()0f x '≤;11[,]2x a∈--,()0f x '≥.综上,当0a >时,函数的单调递减区间为1(0,]2,单调递增区间为1[,)2+∞;当2a <-时,函数的单调递减区间为1(0,]a -,1[,)2+∞,单调递增区间为11[,]2a -;当20a -<<时,函数的单调递减区间为1(0,]2,1[,)a -+∞,单调递增区间为11[,]2a--.…………………………10分(Ⅲ) 当2a =时,1()4f x x x=+,2241()x f x x-'=.∵11[,6]2x n n∈++,∴()0f x '≥.∴m in 1()()42f x f ==,m ax 1()(6)f x f n n=++. …………………………12分由题意,11()4(6)2m f f n n<++恒成立.令168k n n=++≥,且()f k 在1[6,)n n+++∞上单调递增,m in 1()328f k =,因此1328m <,而m 是正整数,故32m ≤,所以,32m =时,存在123212a a a ==== ,12348m m m m a a a a ++++====时,对所有n 满足题意.∴32m ax m =. …………………………………14分。

四川省遂宁市2023届高三零诊考试数学(文科)试题(解析版)

四川省遂宁市2023届高三零诊考试数学(文科)试题(解析版)

遂宁市高中2023届零诊考试数学(文科)试题本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.总分150分.考试时间120分钟.第Ⅰ卷(选择题,满分60分)注意事项:1.答题前,考生务必将自己的姓名、班级、考号用0.5毫米的黑色墨水签字笔填写在答题卡上.并检查条形码粘贴是否正确.2.选择题使用2B 铅笔填涂在答题卡对应题目标号的位置上,非选择题用0.5毫米黑色墨水签字笔书写在答题卡对应框内,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效.3.考试结束后,将答题卡收回.一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一个是符合题目要求的.1.已知集合}{1,2A =-,()}{20B x x x =->,那么A B ⋃等于()A.{0x x <或}2x >B.{0x x <或}2x ≥C.{1x x <-或}2x ≥ D.{10x x -<<或}2x ≥【答案】B 【解析】【分析】解一元二次不等式求得集合B ,由此求得A B ⋃.【详解】()20x x ->,解得0x <或2x >,所以{|0B x x =<或}2x >,所以A B ⋃={0x x <或}2x ≥.故选:B2.已知复数(2i)(1i)z =+-(i 是虚数单位),则z 的虚部为()A.i -B.3i- C.1- D.3-【答案】C 【解析】【分析】根据复数乘法运算求解得3i z =-,再求虚部即可.【详解】解:因为2(2i)(1i)22i i i 3i z =+-=-+-=-,所以,z 的虚部为1-.故选:C3.设m ,n 为实数,则“2211log log m n>”是“0.20.2m n >”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据指数函数和对数函数单调性分别化简0.20.2m n >和2211log log m n>,根据充分条件和必要条件的定义判断两者关系.【详解】因为函数2log y x =为()0+∞,上的单调递增函数,又2211log log m n >,所以110m n>>,所以0m n <<,又函数0.2x y =在()-∞+∞,上单调递减,所以0.20.2m n >,所以“2211log log m n>”是“0.20.2m n >”的充分条件,因为函数0.2x y =在()-∞+∞,上单调递减,又0.20.2m n >,所以m n <,当m 为负数时,1m没有对数值,所以“2211log log m n >”不是“0.20.2m n >”的必要条件,所以“2211log log m n>”是“0.2m n >”的充分不必要条件,A 正确,故选:A .4.若{}n a 为等差数列,n S 是数列{}n a 的前n 项和,4614a a +=,735S =,则31a a -等于()A.7B.6C.5D.4【答案】D 【解析】【分析】根据题意,设等差数列{}n a 的公差为d ,进而建立方程组求解得2d =,再计算31a a -即可.【详解】解:根据题意,设等差数列{}n a 的公差为d ,因为4614a a +=,735S =所以46171281472135a a a d S a d +=+=⎧⎨=+=⎩,解得121d a =⎧⎨=-⎩,所以3124a a d -==.故选:D5.已知tan()3,tan()5αβαβ+=-=,则tan 2β等于()A.18B.17C.47-D.18-【答案】D 【解析】【分析】由2()()βαβαβ=+--,然后根据正切的和差公式求解即可.【详解】解:tan()3αβ+= ,tan()5αβ-=,tan 2tan[()()]βαβαβ∴=+--tan()tan()1tan()tan()αβαβαβαβ+--=++-3511358-==-+⨯.故选:D .6.若实数x ,y 满足32122x x y x y ≤⎧⎪+≥⎨⎪-≥⎩,则z x y =+的最大值为()A.8B.7C.2D.1【答案】B 【解析】【分析】由约束条件作出可行域,再结合图象求出目标函数的最值.【详解】由约束条件作出可行域,如图:联立322x y x =⎧⎨=-⎩,解得()3,4A由z x y =+,得y x z =-+,z 为直线y x z =-+的纵截距.由图可知,当直线y x z =-+过点()3,4A 时,直线的纵截距z 最大,且max 347z =+=.故选:B.7.{}n a 为公比大于1的正项等比数列,且3a 和26a a 是方程2540x x -+=的两根,若正实数x ,y 满足4x y a +=,则12x y+的最小值为()A.1B.32+C.2D.3+【答案】B 【解析】【分析】先利用等比数列的性质得到2635a a a a =,结合韦达定理2365a a a +=,2364a a a =,得到233540a a -+=,求出31a =或4,结合公比1q >,求出2q =,得到432a a q ==,利用基本不等式“1”的妙用求出12x y+的最小值.【详解】由题意得:2365a a a +=,2364a a a =,因为{}n a 为公比大于1的正项等比数列,所以2635a a a a =,故3355a a a +=,2354a a =,由2354a a =得5234a a =,将其代入3355a a a +=得:233540a a -+=,解得:31a =或4,设公比为q ,则1q >,当31a =时,52344a a ==,所以2534a q a ==,因为1q >,解得:2q =当34a =时,523414a a ==,所以253116a q a ==,因为1q >,不合题意,舍去;所以432a a q ==,即2x y +=,()1211212131232222xx y x y x y y x y ⎛⎛⎫⎛⎫+=+=+++≥+=+ ⎪ ⎪ ⎝⎝+⎭⎭⎝,当且仅当2y x xy=,即2,4x y ==-时,等号成立,故选:B8.已知()f x 满足()()0f x f x +-=,且当0x <时,21()f x x x=+,则曲线()y f x =在点()1,(1)f 处的切线方程为()A.10x y +-=B.320x y --=C.330x y --=D.20x y --=【答案】C 【解析】【分析】根据()()0f x f x +-=判断函数的奇偶性,再根据奇偶性和x <0时的解析式,求出f (x )在x >0时的解析式,再根据导数的几何意义即可求解.【详解】已知()f x 满足()()0f x f x +-=,∴()f x 为奇函数,当0x >时,0x -<,因此()()()2211f x x f x f x x x x -=-+=-⇒=-,则x >0时,()()332121f x xx-'=--=+,曲线()y f x =在点()1,(1)f 处的切线斜率()321131k f '==+=,又()211101f =-=,∴曲线()y f x =在点()1,(1)f ,即(1,0)处的切线方程为()031y x -=-,整理得330x y --=﹒故选:C .9.已知()f x 是定义在R 上的奇函数,且()cos 2()g x x xf x =-,对于[)0,∞+上任意两个不相等实数1x 和2x ,()g x 都满足1212()()0g x g x x x ->-,若12log 7.1a g ⎛⎫= ⎪⎝⎭,0.9(2)b g =, 1.1(3)c g =,则,,a b c 的大小关系为()A.b a c <<B.c b a<< C.a b c<< D.b<c<a【答案】A 【解析】【分析】由题知函数()g x 为偶函数,在[)0,∞+上单调递增,进而根据0.91.1222log 7.133<<<<结合函数的性质比较大小即可.【详解】解:因为()f x 是定义在R 上的奇函数,所以()()f x f x -=-,所以()()()()()cos 2()cos 2g x x x f x x xf x g x -=----=-=,即函数()g x 为偶函数,因为对于[)0,∞+上任意两个不相等实数1x 和2x ,()g x 都满足1212()()0g x g x x x ->-,所以函数()g x 在[)0,∞+上单调递增,因为()()1222log 7.1log 7.1log 7.1a g g g ⎛⎫==-= ⎪⎝⎭,因为0.91.1222log 7.133<<<<,所以,()()()0.91.122log7.13g g g <<,即b a c <<.故选:A10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,则下列结论错误的是()A.若sin sin A B >,则A B>B.若ABC 为锐角三角形,则sin cos A B>C.若cos cos a B b A c -=,则ABC 一定为直角三角形D.若tan tan tan 0A B C ++>,则ABC 可以是钝角三角形【答案】D 【解析】【分析】A.由正弦定理及三角形中大角对大边即可判断.B.通过内角和为π化简,再借助角C 为锐角得到角,A B 满足的关系,在再取角的正弦值化简即可.C.边化角,运用两角差的正弦公式化简,得到角,,A B C 的关系,再借助内角和为π计算即可得到.D.通过内角和为π化简角C ,再利用两角和的正切公式化简即可得到tan tan tan tan tan tan 0A B C A B C ++=>,然后判断即可.【详解】A.因为sin sin A B >,所以由正弦定理知a b >,又因为在三角形中大角对大边,所以A B >.故选项A 正确.B.因为ABC 为锐角三角形,所以2A B C ππ+=->,即2A B π>-,所以sin sin cos 2A B B π⎛⎫>-= ⎪⎝⎭.故选项B 正确.C .由正弦定理边化角得()sin sin cos sin cos sin C A B B A A B =-=-,则C A B =-或C A B π+-=(舍),则A B C A π=+=-,即2A π=,则ABC 一定为直角三角形.故选项C 正确.D .()()tan tan tan tan tan 1tan tan A BC A B A B A Bπ+=-+=-+=-⎡⎤⎣⎦- ()tan tan tan tan tan 1A B C A B ∴+=-()tan tan tan tan tan tan 1tan tan tan tan 0A B C C A B C A B C ∴++=-+=>又因为最多只有一个角为钝角,所以tan 0,tan 0,tan 0A B C >>>,即三个角都为锐角,所以ABC 为锐角三角形.故选项D 错误.故选:D.11.在ABC 中,3AC =,5BC =,D 为线段BC 的中点,12AD BC =,E 为线段BC 垂直平分线l 上任一异于D 的点,则2AE CB ⋅=()A.73B.4C.7D.6-【答案】C 【解析】【分析】先根据题意得ABC 为直角三角形,2A π=,进而得216AB =,再根据AE AD DE =+ ,CB AB AC =- ,DE CB ⊥得22722AE CB C D B A AB AC =-⋅==⋅ .【详解】解:因为在ABC 中,D 为线段BC 的中点,所以()12AD AB AC =+ ,即2AD AB AC =+ ,因为3AC =,5BC =,12AD BC =,所以22242cos AD AB AC AC AB A =++ ,即2166cos AB AB A =+,因为BC AC AB=-,所以2222cos BC AC AB AC AB A =+- ,即2166cos AB AB A =-,所以,22166cos 6cos AB AB A AB AB A =+=-,即12cos 0AB A = ,所以cos 0A =,因为()0,A π∈,所以2A π=,即ABC 为直角三角形,所以22216AB BC AC=-=因为E 为线段BC 垂直平分线l 上任一异于D 的点,所以AE AD DE =+ ,CB AB AC =- ,DE CB ⊥,所以()()22222AE CB CB C A AD DE AD A B B ACD ⋅⋅=⋅=⋅-=+ ()()221697AB AC AB AC AB AC =+-=-=-= 故选:C12.已知向量,a b的夹角为60°,22a b == ,若对任意的1x 、2x (,)m ∈+∞,且12x x <,122112112x nx x nx a b x x ->--,则m 的取值范围是()A.)3e ,∞⎡+⎣ B.[)e,+∞ C.1,e ∞⎡⎫+⎪⎢⎣⎭D.1,e e ⎡⎫⎪⎢⎣⎭【答案】A 【解析】【分析】根据向量数量积的定义求得1a b ⋅=,于是由数量积的应用可得22a b -= ,对任意的1x 、2x (,)m ∈+∞,且12x x <,则将1221121n 1n 2x x x x a b x x ->-- 转化为1221121n 1n 2x x x x x x ->-,即21211n 2ln 2x x x x --<,则构造函数()ln 2x f x x-=得函数在(),m +∞上单调递减,求导判断()f x 单调性,即可得m 的取值范围.【详解】解:已知向量,a b 的夹角为60°,22a b == ,则1cos 602112a b a b ⋅=⋅⋅︒=⨯⨯=所以22a b -== 所以对任意的1x 、2x (,)m ∈+∞,且12x x <,1221121n 1n 2x x x x x x ->-,则1221121n 1n 22x x x x x x -<-所以2121211n 1n 22x x x x x x -<-,即21211n 2ln 2x x x x --<,设()ln 2x f x x-=,即()f x 在(),m +∞上单调递减又()0,x ∈+∞时,()23ln 0xf x x'-==,解得3e x =,所以()30,ex ∈,()0f x ¢>,()f x 在()30,e x ∈上单调递增;()3e ,x ∞∈+,()0f x '<,()f x 在()3e ,x ∞∈+上单调递减,所以3e m ≥.故选:A .第Ⅱ卷(非选择题,满分90分)注意事项:1.请用蓝黑钢笔或圆珠笔在第Ⅱ卷答题卡上作答,不能答在此试卷上.2.试卷中横线的地方,是需要你在第Ⅱ卷答题卡上作答.本卷包括必考题和选考题两部分.第13题至第21题为必考题,每个试题考生都作答;第22、23题为选考题,考生根据要求作答.二、填空题:本大题共4个小题,每小题5分,共20分.13.已知向量(0,4)a m =- ,()21,b m m =+ ,若a 与b 垂直,则实数m 等于____.【答案】0或4【解析】【分析】根据向量坐标运算的垂直关系计算即可.【详解】向量(0,4)a m =- ,()21,b m m =+ ,若a 与b垂直,则22(0,4)(1,)40a b m m m m m ⋅=-⋅+=-=,解得0m =或4m =,故答案为:0或4.14.2353π8lg +2lg 2sin 22+-=__【答案】6【解析】【分析】根据指数、对数、三角函数等知识确定正确答案.【详解】原式()()232352lg lg 212=++--252lg 415lg105162⎛⎫=+⨯+=+=+= ⎪⎝⎭.故答案为:615.若命题“2000,10∃∈-+≤x R ax ax ”是假命题,则实数a 的取值范围是___________.【答案】[0,4)【解析】【分析】由题意,命题的否定为真命题,分别讨论0a =和0a ≠两种情况,根据二次函数的性质,即可得答案.【详解】因为命题“2000,10∃∈-+≤x R ax ax ”是假命题,所以命题的否定:2,10x R ax ax ∀∈-+>为真命题,当0a =时,10>恒成立,符合题意,当0a ≠时,由题意得:240a a a >⎧⎨∆=-<⎩,解得04a <<.综上实数a 的取值范围是[0,4).故答案为:[0,4)16.正割(Secant ,sec )是三角函数的一种,正割的数学符号为sec ,出自英文secant .该符号最早由数学家吉拉德在他的著作《三角学》中所用,正割与余弦互为倒数,即1sec cos x x=.若函数()sec sin f x x x x =⋅-,则下列结论正确的有__①函数()f x 的图像关于直线x π=②函数()f x 图像在(),()f ππ处的切线与x 轴平行,且与x 轴的距离为π;③函数()f x 在区间95,168ππ⎡⎤⎢⎥⎣⎦上单调递增;④()f x 为奇函数,且()f x 有最大值,无最小值.【答案】②③【解析】【分析】根据(0)(2)f f π≠判断①;根据导数的几何意义求切线方程判断②;根据导数求解函数的单调性判断③;结合函数的单调性判断④.【详解】解:对于①,由题知(0)0f =,1(2)2sin 22cos 2f πππππ=⋅-=,显然(0)(2)f f π≠,故函数()f x 的图像不关于直线x π=对称,故①错误;对于②,1()sin cos f x x x x =⋅-,2cos sin ()cos cos x x x f x x x+'=-,所以2cos sin ()cos 0cos f ππππππ+'=-=,1()sin cos f πππππ=⋅-=-,所以,函数()f x 图像在(),()f ππ处的切线方程为y π=-,所以,函数()f x 图像在(),()f ππ处的切线与x 轴平行,且与x 轴的距离为π,故正确;对于③,因为()2322cos 1cos sin cos sin cos ()cos cos x x x xx x x x f x x x-++-'==2221sin 2sin cos sin sin 2cos cos x x x x x x x x x⎛⎫+ ⎪+⎝⎭==,令()1sin 22g x x x =+,则()cos 210g x x =+≥'恒成立,所以,()1sin 22g x x x =+在R 上单调递增,因为()00g =,所以,(),0x ∈-∞时,()0g x <;()0,x ∈+∞时,()0g x >,因为函数()f x 的定义域为,Z 2x x k k ππ⎧⎫≠+∈⎨⎬⎩⎭所以,当95,,1682x ππππ⎡⎤⎛∈⊆ ⎪⎢⎥⎣⎦⎝⎭时,()0g x >,()0f x '>,所以,函数()f x 在区间95,168ππ⎡⎤⎢⎥⎣⎦上单调递增,故正确;对于④,函数的定义域为,Z 2x x k k ππ⎧⎫≠+∈⎨⎬⎩⎭,()()()()1sin cos f x x x f x x -=-⋅--=--,故函数()f x 为奇函数;由③知,当02x π⎡⎫∈⎪⎢⎣⎭,和,2ππ⎛⎫⎪⎝⎭时,函数()f x 为增函数,所以,当x 从0趋近于2π时,函数值()f x 趋近于+∞,故函数()f x 无最大值,当x 从π趋近于2π时,函数值()f x 趋近于-∞,故函数()f x 无最小值,故④错误.所以,正确的结论有:②③故答案为:②③三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.17.已知集合}{32A x x =-<≤,函数()g x =的定义域为集合B .(1)当1a =时,求A B ⋂;(2)设命题p :x A ∈,命题q :x B ∈,若p 是q 的充分不必要条件,求实数a 的取值范围.【答案】(1)(){}3,12A B =- (2)(](),42,-∞-+∞ 【解析】【分析】(1)根据题意得{|1B x x =<或2}x ≥,再求交集运算即可;(2)由题知|1{B x x a =≥+或}x a <,A B Ü,再根据集合关系求解即可.【小问1详解】解:当1a =时,()g x ==由题意201x x -≥-,解得1x <或2x ≥,所以{|1B x x =<或2}x ≥,又{}|32A x x =-<≤,所以(){}3,12A B =- .【小问2详解】解:由题意(1)0x a x a -+≥-,即()[(1)]00x a x a x a --+≥⎧⎨-≠⎩,解得:1x a ≥+或x a <,所以|1{B x x a =≥+或}x a <,因为p 是q 的充分不必要条件,所以,集合A 是集合B 的真子集,所以2a >或13a +≤-,解得2a >或4a ≤-故实数a 的取值范围(](),42,-∞-+∞ .18.已知公比大于1的等比数列{}n a 满足3520a a +=,48a =,数列{}n b 的通项公式为212n n b +=(1)求{}n a 的通项公式;(2)若n n p q a b =,求数列12(1)n n p q n n ⎧⎫+-⎨⎬+⎩⎭的前n 项和T n .【答案】(1)12n n a -=(2)21nn n ++【解析】【分析】(1)利用等比数列的通项公式化简条件,求出等比数列的公比,由此可得数列{}n a 的通项公式;(2)由(1)可得22n n p q -=,利用裂项相消法和组合求和法求数列21(1)n n ++的前n 项和T n .【小问1详解】设等比数列{}n a 的公比为q ,则1q >,由3520a a +=,48a =,可得2333208a a q a q ⎧+=⎨=⎩,即得22520q q -+=,解得2q =或12q =(舍去),故4414822n n n n a a q ---==⨯=,所以{}n a 的通项公式为12n n a -=;【小问2详解】若n n p q a b =,则12122n n p q -+=,故121n n p q -=+,即22n n p q -=,即1111222(1)(1)1n n p q n n n n n n +-=+=-++++所以1111112222231n T n n =-++-+++-++11111(12222311n nT n n n n n =-+-++-+=+++ .19.已知函数323()2a f x x x axb +=-++(1)讨论()f x 的单调性;(2)若1a =时,函数()y f x =的图象与抛物线25532y x x =-+恰有三个不同交点,求实数b 的取值范围.【答案】(1)答案不唯一,具体见解析;(2)1(,1)2.【解析】【分析】(1)求出函数()f x 的导数,再分类讨论求解不等式即可作答.(2)根据给定条件,构造函数,求出三次函数的极值,列出不等式求解作答.【小问1详解】函数323()2a f x x x ax b +=-++定义域R ,求导得()()()233313a f x x a x a x x ⎛⎫=-++=-- ⎪⎝⎭',若3a >,当13a x <<时,()0f x '<,当1x <或3a x >时,()0f x ¢>,即()f x 在(1,)3a上单调递减,在(,1)-∞和(,)3a+∞上单调递增;若3a =,恒有()0f x '≥.即()f x 在R 上单调递增;若3a <,当13ax <<时,()0f x '<;当3a x <或1x >时,()0f x '>,即()f x 在(,1)3a 上单调递减,在(,3a-∞和(1,)+∞上单调递增,所以当3a <时,函数()f x 的递减区间是(,1)3a,递增区间是(,)3a -∞和(1,)+∞;当3a =时,函数()f x 在R 上单调递增;当3a >时,函数()f x 的递减区间是(1,)3a ,递增区间是(,1)-∞和(,)3a +∞.【小问2详解】当1a =时,32()2f x x x x b =-++,令23259()()(53)6322g x f x x x x x x b =--+=-++-,因函数()y f x =的图象与抛物线25532y x x =-+恰有三个不同交点,则函数()y g x =图象与x 轴有三个交点,而2()3963(1)(2)g x x x x x '=-+=--,由()0g x '>,解得1x <或2x >,由()0g x '<,解得12x <<,因此函数()y g x =在(,1),(2)-∞+∞上单调递增,在(1,2)上单调递减,于是得()g x 在1x =时取得极大值1(1)2g b =-,()g x 在2x =时取得极小值(2)1g b =-,依题意,1210b b ⎧->⎪⎨⎪-<⎩,解得112b <<,所以实数b 的取值范围为1(,1)2.20.已知函数21()cos sin sin()32f x x x x π=+⋅+-(1)求函数()f x 的对称中心及()f x 在[]0,π上的单调递增区间;(2)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c ,1()2f C =,22225b c a =-,求sin A 的值.【答案】(1)对称中心为1(,Z 2124k k -∈ππ;单调递增区间为0,6π⎡⎤⎢⎥⎣⎦,2π,π3(2)2114【解析】【分析】(1)由三角恒等变换得()11sin 2264f x x π⎛⎫=++ ⎪⎝⎭,再根据整体代换求解即可;(2)结合(1)得1sin(262C π+=,进而得3C π=,再根据余弦定理和已知条件得3b a =,c =,进而结合正弦定理求解即可.【小问1详解】解:函数2311()sin (cos sin )cos 222f x x x x x =++-()22211cos sin 1cos cos cos 22x x x x x x x =+-+=+111112cos2)sin 2224264x x x π⎛⎫=++=++ ⎪⎝⎭.由26x k ππ+=,Z k ∈,解得212k x ππ=-,Z k ∈故所求对称中心为1,,Z 2124k ππ⎛⎫-∈ ⎪⎝⎭.由222262k x k πππππ-≤+≤+,Z k ∈,解得36k x k ππππ-≤≤+,Z k ∈令0k =,有36x ππ-≤≤,令1k =,有2736x ππ≤≤又[]0,x π∈,所以所求的单调递增区间为0,6π⎡⎤⎢⎥⎣⎦,2π,π3【小问2详解】解:因为1()2f C =,所以111sin(2)2642C ++=π,即1sin(262C π+=又在ABC 中(0,)C π∈,132,666C πππ⎛⎫+∈ ⎪⎝⎭所以5266C ππ+=,即3C π=,由余弦定理知,2222cos a b c ab C ab +-==,又22225b c a =-所以22230b ab a --=,解得3b a =,c =,由正弦定理知,sin sin a c A C=,所以sin sin 14a C A c ===21.已知函数()ln f x x x =+,()e x g x x =,其中e 为自然对数的底数.(1)求曲线()y f x =在点()1,(1)f 处的切线方程;(2)令42e ()4e 11x x x τ=+---,求证:对[)2,x ∀∈+∞,有()()g x x τ>成立;(3)若不等式()()()0R g x af x a +≥∈在(1,)+∞上恒成立,求实数a 的取值范围.【答案】(1)210x y --=;(2)证明见解析;(3)[)e -+∞.【解析】【分析】(1)利用导数的几何意义求曲线()y f x =在点()1,(1)f 处的切线的斜率,利用点斜式求切线方程;(2)利用导数求函数()g x 的最小值,利用基本不等式求()x τ的最大值,由此证明()()g x x τ>;(3)由已知可得e ln(e )0x x x a x +≥在()1,+∞上恒成立,设e x x μ=,则ln a μμ-≥在(e,)+∞上恒成立,利用导数求函数ln y μμ-=的最大值,可求a 的取值范围.【小问1详解】因为()ln f x x x =+,所以1()1f x x'=+,所以(1)1f =,(1)2f '=,所以曲线()y f x =在点()1,(1)f 处的切线的斜率为2,故切线方程为()121y x -=-,即210x y --=;【小问2详解】因为()e x g x x =,当2x ≥时,()(1)e 0x g x x '=+>,故()g x 在[)2,+∞上单调递增,所以2min ()(2)2e g x g ==,又4422e e ()4e 14e (1)11x x x x x τ⎡⎤=+--=--+⎢⎥--⎣⎦,因为[)2,x ∞∈+,所以11x -≥,4e 01x >-,所以()224e 2e x τ≤-,当且仅当4e 11x x -=-,即[)2e 12,x =+∈+∞时取等号,即当2e 1x =+时,[]2max ()2e x τ=,由于()g x 的最小值等于()x τ的最大值,且不是在同一点取得,故有()()g x x τ>成立【小问3详解】由不等式()()0g x af x +≥在()1,+∞上恒成立,即不等式e (ln )0x x a x x ++≥在()1,+∞上恒成立,得e ln(e )0x x x a x +≥在()1,+∞上恒成立,令e x x μ=,由(2)e x x μ=在()1,+∞上单调递增,所以e μ>,则ln 0a μμ+≥在(e,)+∞上恒成立,ln a μμ-≥在(e,)+∞上恒成立,令()(e)ln μϕμμμ-=>,则21ln (0(ln )μϕμμ-'=<()ϕμ∴在(e,)+∞递减,()(e)eϕμϕ<=-所以实数a 的取值范围是[),e -+∞【点睛】结论点睛:对于恒成立问题,常用到以下两个结论:(1)()a f x ≥恒成立⇔()max a f x ≥;(2)()a f x ≤恒成立⇔()min a f x ≤.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分.[选修4—4:坐标系与参数方程]22.平面直角坐标系xOy 中,曲线1C 的参数方程为cos sin x y αα=⎧⎨=⎩(α为参数).以坐标原点O 为极点,以x轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为2sin 6πρθ⎛⎫=+⎪⎝⎭(1)写出曲线1C 的普通方程和曲线2C 的直角坐标方程;(2)曲线1C 与2C 交于M ,N 两点,求与直线MN 平行且过原点的直线l 的极坐标方程及MN 的值.【答案】(1)221x y +=;220x y x +-=(2)5()6R πθρ=∈【解析】【分析】(1)求曲线1C 的普通方程只需把,x y 平方即可,求曲线2C 的方程只需极坐标与直角坐标的转化公式cos sin x y ρθρθ=⎧⎨=⎩化简即可.(2)两圆方程联立即可求相交弦方程,即直线MN 的方程,再根据平行求出直线l 的方程,进而可求直线l 的极坐标方程,再利用圆的弦长与圆心到直线的距离,半径之间的关系即可求出MN 的值.【小问1详解】由曲线1C 的参数方程为cos sin x y αα=⎧⎨=⎩(α为参数),可得2222cos sin 1x y αα+=+=,即曲线1C 的普通方程为221x y +=;曲线2C 的极坐标方程为2sin 6πρθ⎛⎫=+⎪⎝⎭⇒2sin cos ρθρθ+⇒22x y x +=+.故曲线2C的直角坐标方程为220x y x +--=.【小问2详解】由(1)得22221100x y x x y x ⎧+=⎪⇒+-=⎨+--=⎪⎩即直线MN的方程为10x +-=,则与直线MN 平行且过原点的直线l 的方程为33y x =-,其倾斜角为56π所以直线l 的极坐标方程为()56R πθρ=∈;设曲线221:1C x y +=的圆心(0,0)到直线MN 的距离为d ,则12d =,故MN ==.故:MN =.[选修4—5:不等式选讲]23.已知函数()()2R f x x x a x a =-+∈(1)当1a =时,解不等式()1f x >;(2)若()2f x x <+对于任意的13,42x Î恒成立,求实数a 的取值范围.【答案】(1)1{12xx <<∣或1}x >(2)5,26⎛⎫⎪⎝⎭【解析】【分析】(1)根据题意,分类讨论求解即可;(2)根据题意1x a x -<且1a x x<+对任意的13,42x Î恒成立,再求对应的最值即可得答案.【小问1详解】解:当1a =时,不等式()1f x >,即2|1|1x x x -+>,所以12(1)1x x x x ≥⎧⎨-+>⎩或12(1)1x x x x <⎧⎨-+>⎩,即得21210x x x ≥⎧⎨-->⎩或212310x x x <⎧⎨-+<⎩,解得112x <<或1x >,所以不等式()1f x >的解集为1{|12x x <<或1}x >【小问2详解】解:因为()2f x x <+对任意的13,42x Î恒成立,所以,||1x x a -<对任意的13,42x Î恒成立,即1||x a x -<,即11x a x x x-<<+,故只要1x a x -<且1a x x<+对任意的13,42x Î恒成立即可,因为12x x +≥=,13,42x Î,当且仅当1x x =时,即1x =时等号成立,所以min 1()2x x+=,令1()g x x x=-,13,42x Î,因为函数1,y x y x==-在13,42x Î上单调递增,所以()g x 在13,42⎡⎤⎢⎥⎣⎦上的单调递增,从而max 35()()26g x g ==,所以,526a <<,即实数a 的取值范围是5,26⎛⎫⎪⎝⎭第21页/共21页。

四川省绵阳南山中学2024届高三上学期零诊考试(9月)文科数学试题及参考答案

四川省绵阳南山中学2024届高三上学期零诊考试(9月)文科数学试题及参考答案

一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.绵阳南山中学2021级高三上期零诊考试试题数学(文科)第Ⅰ卷 (选择题,共60分))1.集合A =-2,-1,0,1,2 ,∁A B =-1,0,2 ,则B =( )A .-2 B .1C .-2,1D .-2,0,22.设z =1-i1+i+2i ,则z 的虚部为( )A .iB .3iC .1D .33.“m >2”是“关于x 的方程2x 2-m x +1=0有两个不等实根”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.已知sin α+π6 =-13,则cos π3-α =( )A .223B .-13C .-223D .135.已知向量a =3,0 ,b =-1,1 ,c =1,k ,若a +b ⎳c ,则实数k 的值为( )A .-2B .-1C .2D .126.折扇在我国已有三千多年的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1),图2为其结构简化图,设扇面A ,B 间的圆弧长为l ,A ,B 间的弦长为d ,圆弧所对的圆心角为θ(θ为弧度角),则l 、d 和θ所满足的恒等关系为( )A .2sin θ2θ=d l B .sin θ2θ=d l C .2cos θ2θ=d l D .cos θ2θ=d l7.将f (x )=cos ωx -π4 (ω>0)的图象向左平移π3个单位长度后与函数g (x )=cos ωx 的图象重合,则ω的最小值为( )A .34B .12C .14D .328.已知函数f (x )在区间[-2,2]上的大致图象如图所示,则f (x )的解析式可以是( )A .f (x )=e x -e -x xB .f (x )=e x -e -x sin xC .f (x )=e x -e -x cos xD .f (x )=e x -e -x x 29.若点P 是曲线y =ln x -x 2上任意一点,则点P 到直线l :x +y -4=0距离的最小值为( )A .22B .2C .2D .2210.一架飞机从保山云瑞机场出发飞往昆明长水机场,两地相距350km ,因雷雨天气影响,飞机起飞后沿与原来飞行方向成15°角的方向飞行,飞行一段时间后,再沿与原来飞行方向成30°角的方向继续飞行至终点,则本架飞机的飞行路程比原来的350km 大约多飞了( )(参考数据:2≈1.41,3≈1.73)A .15kmB .25kmC .30kmD .40km11.下列结论正确的个数为( )①在△ABC 中,若a >b ,则cos A <cos B ;②在△ABC 中,不等式b 2+c 2-a 2>0恒成立,则△ABC 为锐角三角形;③在△ABC 中,若C =π4,a 2-c 2=bc ,则△ABC 为等腰直角三角形;④若△ABC 为锐角三角形,则sin A <B cos .A .1B .2C .3D .412.对于函数y =f x ,若存在非零实数x 0,使得f x 0 =-f -x 0 ,则称点x 0,f x 0 与点-x 0,f -x 0 是函数的一对“隐对称点”.若m >0时,函数f x =ln x ,x >0-mx 2-mx ,x ≤0的图象上恰有2对“隐对称点”,则实数m 的取值范围为( )A .0,1e B .1,+∞C .0,1e ∪1e,+∞ D .0,1 ∪1,+∞第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每题5分,共20分.)13.命题“∃x ∈-1,1 ,x 2-x +3<0”的否定是.14.曲线y =1x在x =3处切线的斜率为.15.函数y =2-sin x -cos 2x 的值域为.16.已知f (x )为奇函数,当x ∈(0,1],f (x )=ln x ,且f (x )关于直线x =1对称.设方程f (x )=x +1的正数解为x 1,x 2,⋯,x n ,⋯,且任意的n ∈N ,总存在实数M ,使得x n +1-x n <M 成立,则实数M 的最小值为.三、解答题(共70分.解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分12分)已知向量a ,b 满足a +b ⋅a -2b =-6,且a =1,b =2.(1)求a ⋅b ;(2)若a 与b 的夹角为θ,求θ的值.18.(本小题满分12分)函数f x =cos ωx +φ ω>0,φ <π2的相邻两条对称轴之间的距离为π2,且f π6=1.(1)求f x 的单调递减区间;(2)当x ∈-π6,π3时,方程f x -a =0恰有两个不同解,求实数a 的取值范围.19.(本小题满分12分)已知二次函数f x =x 2-2mx -1,m ∈R .(1)若函数f x +1 是偶函数,求m 的值;(2)是否存在m ,使得函数f x 有两个零点x 1和x 2x 1<x 2 ,且在区间x 1,x 2 内至少存在两个整数点?若存在,求出m 的取值范围;若不存在,请说明理由.20.(本小题满分12分)如图所示:(1)证明余弦定理:a2=b2+c2-2bc⋅cos A;(2)在△ABC边AC上侧有一点D,若A,B,C,D四点共圆,且∠ABC=π3,AB=2,AC= 3,求△ACD周长的取值范围.21.(本小题满分12分)已知函数f x =ln x+a a∈R.(1)若函数g x =f x +12x2+ax,讨论函数g x 的单调性;(2)证明:当a≤12时,f x <e x-sinθ.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.22. [选修4-4:坐标系与参数方程](本小题满分10分)在平面直角坐标系xOy中,曲线C的参数方程为x=3cosαy=sinα(α为参数),以原点O为极点,x轴正半轴为极轴,建立极坐标系,直线l的极坐标方程为ρsinθ+π4=22.(1)求直线l的直角坐标方程和曲线C的普通方程;(2)点P为曲线C上一点,求点P到直线l距离的最小值.23.[选修4-5:不等式选讲](本小题满分10分)已知f x =2x+1+2x-1(1)解不等式f x ≤7;(2)若a+b+c=3,求证:∃x0∈R,使得f x0≤a+12+b2+c-12成立.数学(文科)参考答案一、选择题1.C2.C3.B4.B5.D6.A7.A8.C9.D10.B11.B12.D12.【详解】由题意可得,函数f(x)=-mx2-mx(x≤0)关于原点对称的图象g(x)= mx2-mx与函数f(x)=ln x(x>0)的图象有两个交点,即方程mx2-mx=ln x(x>0)有两个根,即m(x-1)=ln xx,令h(x)=ln xx(x>0),则h (x)=1-ln xx2,当0<x<e时,h (x)>0,当x>e时,h (x)<0,所以h(x)在0,e上递增,在e,+∞上递减,y=m(x-1)的图象恒过点(1,0),h(x)=ln xx(x>0)的图象也过点(1,0),因为h (1)=1,所以h(x)=ln x x(x>0)在x=1处的切线方程为y=x-1,由图可知当0<m<1或m>1时,h(x)=ln x x(x>0)与y=m(x-1)的图象有2个交点,即mx2-mx=ln x(x>0)有两个根,所以实数m的取值范围为0,1∪1,+∞,故选:D二、填空题13.∀x∈-1,1,x2-x+3≥014.-1915.32,316.2【详解】因为f(x)为奇函数,所以f x =-f-x,且f0 =0,又f(x)关于直线x=1对称,所以f1+x=f1-x,所以f2+x=f-x=-f x ,则f4+x=-f2+x=f x ,所以函数f x 是以4为周期的周期函数,作出函数y=f x 和y=x+1的图像如图所示:由f (x )=x +1的正数解依次为x 1、x 2、x 3、⋅⋅⋅、x n 、⋅⋅⋅,则lim n →∞(x n +1-x n )的几何意义为函数f x 两条渐近线之间的距离为2,所以lim n →∞(x n +1-x n )=2.所以得任意的n ∈N ,x n +1-x n <2,已知任意的n ∈N ,总存在实数M ,使得x n +1-x n <M 成立,可得M ≥2,即M 的最小值为2.故答案为:2.三、解答题17.(1)-1;(2)2π3.【详解】(1)解:a +b ⋅a -2b=a 2-a ⋅b -2b 2=-6,又因为a=1,b =2,∴a ⋅b =a2-2b 2+6=1-8+6=-1;(2)解:由题意可得cos θ=a ⋅b |a |⋅|b |=-12=-12,又因为θ∈[0,π],所以θ=2π3.18.(1)k π+π6,k π+2π3,k ∈Z ;(2)12,1 .【详解】(1)由题意可知,函数的周期T =2πω=2×π2,得ω=2,所以f π6 =cos 2×π6+φ =1,φ <π2,得φ=-π3,所以f x =cos 2x -π3,令2k π≤2x -π3≤2k π+π,解得:k π+π6≤x ≤k π+2π3,k ∈Z ;所以函数的单调递减区间是k π+π6,k π+2π3,k ∈Z ,(2)方程f x -a =0有两解,即a =f x ,x ∈-π6,π3,2x -π3∈-2π3,π3 ,所以f x ∈-12,1,又因为有两个不同解,所以由函数图象(略)可知,实数a 的取值范围是12,1 .19.(1)m =1;(2)-∞,0 ∪0,+∞ 【详解】(1)∵函数f x +1 是偶函数,∴f x +1 =f -x +1 对任意的x 恒成立.∴(x +1)2-2m x +1 -1=(-x +1)2-2m -x +1 -1,即4x -4mx =0.∴m =1.(2)∵二次函数f x 的图像开口向上且过点0,-1 ,对称轴为x =m ,∴对任意的实数m ,函数f x 都有两个零点x 1和x 2,且0∈x 1,x 2 .∴①当m =0时,函数f x =x 2-1的两个零点分别为-1,1,在区间-1,1 内只有一个整数点,不满足题目要求;②当m >0时,只需f 1 =-2m <0,即m >0,此时至少有两个整数0和1在区间x 1,x 2 内;③当m <0时,只需f -1 =2m <0,即m <0,此时至少有两个整数0和-1在区间x 1,x 2 内.∴m 的取值范围是-∞,0 ∪0,+∞ .20.(1)证明见解析;(2)(23,2+3].【详解】(1)向量法:因为BC =AC -AB,则BC 2=AC -AB 2=AC 2+AB 2 -2AC ⋅AB =b 2+c 2-2bc cos A ,即a 2=b 2+c 2-2bc cos A .(2)因为A ,B ,C ,D 四点共圆,所以D +B =π,D =π-B =2π3.在△ACD 中,由正弦定理得AD sin ∠ACD =CD sin ∠CAD =ACsin ∠ADC=2,即AD =2sin ∠ACD ,CD =2sin ∠CAD ,所以周长=AD +CD +AC =2(sin ∠ACD +sin ∠CAD )+3=2(sin ∠ACD +sin (π3-∠ACD )+3=sin ∠ACD +3cos ∠ACD +3=2sin (∠ACD +π3)+3,又因为∠ACD ∈(0,π3),所以(∠ACD +π3)∈(π3,2π3),所以sin (∠ACD +π3)∈(32,1],所以周长的取值范围为(23,2+3]21.(1)答案见解析;(2)证明见解析【详解】(1)g x =f x +12x 2+ax =ln x +a +12x 2+ax x >0 ,g x =1x +x +a =x 2+ax +1x,当a ≥0时,在区间0,+∞ 上,g x >0,g x 单调递增,当a <0时,若Δ=a 2-4≤0,即-2≤a <0时,在区间0,+∞ 上,g x >0,g x 单调递增,若Δ=a 2-4>0,即当a <-2时,函数y =x 2+ax +1的开口向上,对称轴x =-a2>1,令gx =0,即x 2+ax +1=0,解得x 1=-a -a 2-42,x 2=-a +a 2-42,而x 1+x 2=-a >0,x 1x 2=1>0,所以x 1,x 2是两个正根,所以在区间0,x 1 ,x 2,+∞ 上,g x >0,g x 单调递增,在区间x 1,x 2 上,g x <0,g x 单调递减.综上所述,当a ≥-2时,g x 在区间0,+∞ 上单调递增;当a <-2时,g x 在区间0,-a -a 2-42 ,-a +a 2-42,+∞上单调递增,在区间-a -a 2-42,-a +a 2-42上单调递减.(2)要证明:当a ≤12时,f x <e x -sin θ,即证明:当a ≤12时,ln x +a <e x -sin θ,即证明:当a ≤12时,ln x +a -e x +sin θ<0,构造函数h x =ln x +a -e x +sin θx >0,a ≤12,h x =1x -e x ,函数h x =1x-e x 在0,+∞ 上为减函数,h 1 =1-e <0,h 12 =2-e >0,所以存在x 0∈12,1 ,使h x =1x 0-e x=0,1x 0=e x,所以h x 在区间0,x 0 上h x >0,h x 单调递增,在区间x 0,+∞ 上,h x <0,h x 单调递减,h x ≤h x 0 =ln x 0-e x 0+a +sin θ=ln e -x 0-1x 0+a +sin θ=-x 0+1x 0+a +sin θ<-2x 0⋅1x 0+a +sin θ=-2+a +sin θ<0,即h x <0,所以当a ≤12时,ln x +a -e x +sin θ<0,所以当a ≤12时,f x <e x -sin θ.22.(1)直线l 的直角坐标方程为x +y -4=0,曲线C 的普通方程为x 23+y 2=1(2)2【详解】(1)由ρsin θ+π4 =22,得ρsin θcos π4+ρcos θsin π4=22,22ρsin θ+22ρcos θ=22,所以ρsin θ+ρcos θ=4,所以直线l 的直角坐标方程为x +y -4=0,由x =3cos αy =sin α (α为参数),得x23+y 2=1,即曲线C 的普通方程为x 23+y 2=1,(2)设点P (3cos α,sin α)(α∈[0,2π)),则点P 到直线l 距离为d =3cos α+sin α-412+12=2sin α+π3 -4 2,所以当sin α+π3 =1时,d 取得最小值22= 2.23.(1)-2,32;(2)证明见解析.【详解】(1)f x ≤7可化为x ≤-1-2x +1 -2x +1≤7 或-1<x <122x +1 -2x +1≤7或x ≥122x +1 +2x -1≤7,解得-2≤x ≤-1或-1<x <12或12≤x ≤32,∴f x ≤7解集为-2,32(2)f x =2x +1 +2x -1 ≥2x +1 -2x -1 =3当x =-1时取“=”,∴f x min =3∵a +b +c =3,∴a +1 +b +c -1 =3,∴12+12+12 a +1 2+b 2+c -1 2 ≥a +1 +b +c -1 2 =32,∴a +1 2+b 2+c -1 2≥3,故∃x 0∈R ,使得f x 0 ≤a +1 2+b 2+c -1 2.。

河北省保定市2025届高三数学上学期期末考试试卷文含解析

河北省保定市2025届高三数学上学期期末考试试卷文含解析

2024-2025学年度第一学期高三期末调研考试数学试题(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数满意,则()A. 或B. 或C. 或D.【答案】A【解析】【分析】设z=a+bi(a,b∈R),利用复数代数形式的乘除运算化简,再由复数相等的条件列式求得a,b,则答案可求.【详解】设z=a+bi(a,b∈R),由z2=5+12i,得a2﹣b2+2abi=5+12i,∴,解得或.∴z=3+2i或z=﹣3﹣2i.故选:A.【点睛】本题考查复数代数形式的乘除运算,考查复数相等的条件,是基础题.2.函数的零点所在的区间是()A. B. C. D.【答案】B【解析】【分析】由于连续函数f(x)满意f(1)<0,f(2)>0,从而得到函数y=x﹣4•()x的零点所在区间.【详解】∵y=x﹣4•()x为R上的连续函数,且f(1)=1﹣2<0,f(2)=2﹣1>0,∴f(1)•f(2)<0,故函数y=x﹣4•()x的零点所在区间为:(1,2),故选:B.【点睛】本题主要考查函数的零点的定义,推断函数的零点所在的区间的方法,属于基础题.3.已知是两条不同的直线,是两个不同的平面,则的一个充分条件是()A. ,B. ,,C. ,,D. ,,【答案】C【解析】【分析】在A中,a与b相交、平行或异面;在C中,由线面垂直的性质可得a∥b;在B、D中,均可得a与b相交、平行或异面;【详解】由a,b是两条不同的直线,α,β是两个不同的平面,在A中,,,则a与b相交、平行或异面,故A错误;在B中,,,,则a与b相交、平行或异面,故B错误;在C中,由a,,则,又,由线面垂直的性质可知,故C正确;在D中,,,,则a与b相交、平行或异面,故D错误.故选:C.【点睛】本题考查线线平行的充分条件的推断,考查空间中线线、线面、面面间的位置关系等基础学问,考查运算求解实力,考查数形结合思想,是中档题.4.定义运算,则函数的图像是()A. B.C. D.【答案】C【解析】【分析】依据新定义可得函数1⊕log2x就是取1与log2x中较大的一个即可推断.【详解】从定义运算a⊕b上看,对于随意的a、b,a⊕b实质上是求a与b中最大的,∴1⊕log2x就是取1与log2x中较大的一个,∴对于对数函数y=log2x,当x≥2,log2x≥1,∴当0<x<2时,f(x)=1.故选:C.【点睛】本题主要考查新定义,求函数的最大值,属于基础题.5.若连续抛掷两次骰子得到的点数分别为,则的概率是()A. B. C. D.【答案】B【解析】【分析】基本领件总数n=6×6=36,利用列举法能求出m+n=5包含的基本领件有4个,由此利用对立事务概率计算公式能求出m+n≠5的概率.【详解】连续抛掷两次骰子得到的点数分别为m,n,基本领件总数n=6×6=36,m+n=5包含的基本领件有:(1,4),(4,1),(2,3),(3,2),共4个,∴m+n≠5的概率是p=1.故选:B.【点睛】本题考查概率的求法,考查对立事务概率计算公式、列举法等基础学问,考查运算求解实力,是基础题.6.某几何体的三视图如图所示,则该几何体的体积是()A. 36B. 32C. 30D. 27【答案】A【解析】【分析】由已知中的三视图,推断该几何体是一个四棱锥,四棱锥的底面是一个以3为边长的长方形,高为4,分别求出棱锥各个面的面积,进而可得答案.【详解】由已知中的该几何体是一个四棱锥的几何体,四棱锥的底面为边长为3和3的正方形,高为4,故S四棱锥4×3+5×35×34×3+3×3=36.故选:A.【点睛】本题考查的学问点是由三视图求表面积,其中依据三视图推断出几何体的形态,并找出各个面的棱长、高等关键的数据是解答本题的关键.7.若双曲线的一个焦点与抛物线的焦点重合,则双曲线的离心率为()A. 4B. 3C. 2D.【答案】C【解析】【分析】先求出抛物线y2=8x的焦点坐标,由此得到双曲线C:1的一个焦点,从而求出a的值,进而得到该双曲线的离心率.【详解】∵抛物线y2=8x的焦点是(2,0),双曲线C:1的一个焦点与抛物线y2=8x的焦点重合,∴c=2,b2=3,m=1,∴e2.故选:C.【点睛】本题考查双曲线的性质和应用,解题时要抛物线的性质进行求解.8.在中,若,(),则当最小时,()A. B. C. D.【答案】A【解析】【分析】由已知可求的坐标,然后结合向量数量积的坐标表示及二次函数的性质可求BC最小时的x,结合向量数量积的性质即可求解.【详解】∵(1,2),(﹣x,2x)(x>0),∴(﹣x﹣1,2x﹣2),∴||令y=5x2﹣6x+5,x>0依据二次函数的性质可知,当x,y min,此时BC最小,∴,(,),0,∴,即C=90°,故选:A.【点睛】本题考查向量数量积的坐标表示,考查了二次函数的性质的简洁应用,考查运算求解实力,是基础题.9.已知函数,且图像在点处的切线的倾斜角为,则的值为()A. B. C. D.【答案】D【解析】【分析】先对函数进行求导,求出f′(1),然后依据导数的几何意义求出切线斜率k=f′(2)=tanα,然后依据诱导公式及同角基本关系可得sin(α)cos(α)=﹣cosαsinα,代入可求.【详解】∵f(x)=x3+2x2f′(1)+2,∴f′(x)=3x2+4xf′(1),∴f′(1)=3+4f′(1),即f′(1)=﹣1,f′(x)=3x2﹣4x,∴图象在点x=2处的切线的斜率k=f′(2)=4=tanα,则sin(α)cos(α)=﹣cosαsinα,故选:D.【点睛】本题综合考查了导数的几何意义的应用,诱导公式及同角基本关系的综合应用,属于基础学问的综合应用.10.在数列中,若,,,则该数列的前100项之和是()A. 18B. 8C. 5D. 2【答案】C【解析】【分析】先分别求出{a n}的前9项,视察这9项知a n是周期为6的周期函数,由此能求出{a n}前100项之和.【详解】∵a1=1,a2=3,a n+2=a n+1﹣a n(n∈N*),∴a3=3﹣1=2,a4=2﹣3=﹣1,a5=﹣1﹣2=﹣3,a6=﹣3+1=﹣2,a7=﹣2+3=1,a8=1+2=3,a9=3﹣1=2,…∴a n是周期为6的周期函数,∵100=16×6+4,∴S100=16×(1+3+2﹣1﹣3﹣2)+(1+3+2﹣1)=5.故选:C.【点睛】本题考查数列的性质和应用,解题时要留意周期性和递推式的合理运用.11.已知是所在平面内一点,,现将一粒红豆随机撒在内,记红豆落在内的概率为,落在内的概率为,,则()A. B. C. D.【答案】D【解析】【分析】依据23,计算出△PAB,△PAC,△PBC面积的关系,求出概率,作积得答案.【详解】如图,令,,.则P为△A1B1C1的重心,∴,而,,.∴2S△PAB=3S△PAC=6S△PBC,∴,,.则P△PBC P△PBA P△PAC.故选:D.【点睛】本题考查的学问点是几何概型概率计算公式,计算出满意条件和全部基本领件对应的几何量,是解答的关键,难度中档.12.已知且,则下列结论正确的是()A. B. C. D.【答案】A【解析】【分析】由已知得αcosα>βcosβ,令f(x)=x cos x(0),利用导数结合奇偶性可得f(x)=x cos x在[,]上为增函数,则答案可求.【详解】∵α,β∈[,],∴cosα>0,cosβ>0,由0,得αcosα﹣βcosβ>0,则αcosα>βcosβ,令f(x)=x cos x(0),则f′(x)=cos x﹣x sin x≥cos x﹣sin x≥0.∴f(x)=x cos x在[0,]上为增函数,而f(x)=x cos x为奇函数,可得f(x)=x cos x在[,]上为增函数.又αcosα>βcosβ,∴α>β.故选:A.【点睛】本题考查利用导数探讨函数的单调性,构造函数是关键,是中档题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知集合,,则__________.(用区间表示)【答案】(-1,0)【解析】【分析】化简集合N,依据补集与交集的定义写出.【详解】M={x|﹣1<x<1}=(﹣1,1),N={x|0}=[0,1),则∁M N=(﹣1,0),故答案为:(﹣1,0).【点睛】本题考查了集合的化简与运算问题,是基础题.14.元朝闻名数学家朱世杰在《四元玉鉴》中有一首诗:“我有一壶酒,携着游春走,遇店添一倍,逢友饮一斗,店友经三处,没了壶中酒,借问此壶中,当原多少酒?”用程序框图表达如图所示,若最终输出的x=0,则起先时输入的x的值为____________【答案】【解析】【分析】求出对应的函数关系,由题输出的结果的值为0,由此关系建立方程求出自变量的值即可.【详解】第一次输入x=x,i=1执行循环体,x=2x﹣1,i=2,执行循环体,x=2(2x﹣1)﹣1=4x﹣3,i=3,执行循环体,x=2(4x﹣3)﹣1=8x﹣7,i=4>3,输出8x﹣7的值为0,解得:x,故答案为:.【点睛】解答本题,关键是依据所给的框图,得出函数关系,然后通过解方程求得输入的值.本题是算法框图考试常见的题型,其作题步骤是识图得出函数关系,由此函数关系解题,得出答案.15.设实数满意,若的最大值为16,则实数__________.【答案】3【解析】【分析】先画出可行域,得到角点坐标.再对k进行分类探讨,通过平移直线z=kx+y得到最大值点A,即可得到答案.【详解】实数x,y满意的可行域如图:得:A(4,4),同样地,得B(0,2),z=kx+y,即y=﹣kx+z,分k>0,k<0两种状况.当k>0时,目标函数z=kx+y在A点取最大值,即直线z=kx+y在y轴上的截距z最大,即16=4k+4,得k=3;当k<0时,①当k时,目标函数z=kx+y在A点(4,4)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,16=4k+4,故k=3.②当k时,目标函数z=kx+y在B点(0,2)时取最大值,即直线z=kx+y在y轴上的截距z最大,此时,16=0×k+2,故k不存在.综上,k=3.故答案为:3.【点睛】本题主要考查简洁线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数给予几何意义.16.已知过椭圆上一点的切线方程为,若分别交轴于两点,则当最小时,__________.(为坐标原点)【答案】【解析】【分析】利用切线求得A、B两点坐标,表示出,再利用,结合基本不等式求得,再利用最小时的条件求得,,即可求解.【详解】因为点的切线方程为,若分别交轴于两点,所以A(,0),B(0,),==,又点P在椭圆上,有,=+),当且仅当=时等号成立,,解得,,==,=.故答案为.【点睛】本题以过椭圆上点的切线为载体,考查了利用基本不等式求最值及等号成立的条件,考查了逻辑推理及运算实力,属于难题.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在中,分别是内角的对边,且.(1)求;(2)若,,求的面积.【答案】(1)(2)【解析】【分析】(1)由已知利用正弦定理可得:a2=b2+c2+bc.由余弦定理可得:cos A,结合范围A∈(0,π),可求A.(2)由已知利用余弦定理c2+2c﹣5=0,解得c的值,利用三角形面积公式即可计算得解.【详解】(1)因为,由正弦定理得.再由余弦定理得,又因为,所以.(2)因为a=3,,代入得,解得.故△ABC的面积.【点睛】本题主要考查了正弦定理,余弦定理,三角形面积公式在解三角形中的综合应用,考查了计算实力和转化思想,属于基础题.18.设,,,数列的前项和,点()均在函数的图像上.(1)求数列的通项公式;(2)设,是数列的前项和,求满意()的最大正整数.【答案】(1)a n=6n-5 ()(2)8【解析】【分析】(1)依据f(x)=3x2﹣2x,由(n,S n)在y=3x2﹣2x上,知S n=3n2﹣2n.由此能求出数列{a n}的通项公式.(2)由,知T n(1-),依据()对恒成立,当且仅当,由此能求出全部n∈N*都成立的m的范围.【详解】(1)因为=3x2-2x.又因为点均在函数的图像上,所以=3n2-2n.当n≥2时,a n=S n-S n-1=(3n2-2n)-=6n-5.当n=1时,a1=S1=3×12-2=1,所以,a n=6n-5 ().(2)由(1)得知=,故T n===(1-),且T n随着n的增大而增大因此,要使(1-)()对恒成立,当且仅当n=1时T1=,即m<9,所以满意要求的最大正整数m为8.【点睛】本题考查数列与不等式的综合,综合性强,难度较大.易错点是基础学问不坚固,不会运用数列学问进行等价转化转化.解题时要仔细审题,留意挖掘题设中的隐含条件.19.如图,正三棱柱中,(底面为正三角形,侧棱垂直于底面),侧棱长,底面边长,是的中点.(1)求证:平面平面;(2)求三棱锥的高.【答案】(1)见解析(2)【解析】【分析】(1)取AB中点O,A1B1中点M,连结OC、OM,以O为原点,OC为x轴,OM为y轴,OC为z 轴,建立空间直角坐标系,利用向量法能证明平面ANB1⊥平面AA1B1B.(2)求出平面ABN的法向量,利用向量法能求出三棱锥B1﹣ANB的高.【详解】(1)取AB中点O,A1B1中点M,连结OC、OM,∵正三棱柱ABC﹣A1B1C1中(底面为正三角形,侧棱垂直于底面),侧棱长AA1=2,底面边长AB=1,N是CC1的中点.∴以O为原点,OC为x轴,OM为y轴,OC为z轴,建立空间直角坐标系,A(,0,0),N(0,1,),B1(,2,0),(),(﹣1,2,0),设平面ANB1的法向量(x,y,z),则,取y=1,得(2,1,0),平面AA1B1B的法向量(0,0,1),∵0,∴平面ANB1⊥平面AA1B1B.(2)B(,0,0),(﹣1,0,0),设平面ABN的法向量(x,y,z),则,取z=2,得(0,,2),∴点B1到平面ANB的距离d.∴三棱锥B1﹣ANB的高为.【点睛】本题考查了利用空间向量解决面面垂直的证明及三棱锥的高的求法,考查空间中线线、线面、面面间的位置关系等基础学问,考查运算求解实力,是中档题.20.为了主动支持雄安新区建设,激励更多优秀高校生毕业后能到新区去,某985高校组织了一次模拟聘请活动,现从考试成果中随机抽取100名学生的笔试成果,并按成果分成五组:第1组,第2组,第3组,第4组,第5组,得到的频率分布直方图如图所示,(由于某种缘由,部分直方图不够清楚),同时规定成果不低于90分为“优秀”,成果低于90分为“良好”,且只有成果“优秀”的学生才能获得专题测试资格.(1)若已知分数段与的人数比为2:1,请补全损坏的直方图;(2)假如用分层抽样的方法从成果为“优秀”和“良好”中选出10人,设甲是选出的成果“优秀”中的一个,若从选出的成果“优秀”的学生中再任选2人参与两项不同的专题测试(每人参与一种,二者互不相同),求甲被选中的概率.【答案】(1)见解析(2)【解析】【分析】(1)由频率分布直方图得[90,100]的频率为0.3,由分数段[90,95)与[95,100]的人数比为2:1,求出分数段[90,95)与[95,100]对应的小矩形有高分别为0.02,0.01,由此能求出补齐损坏的直方图.(2)由频率分布直方图得[90,100]的频率为0.3,用分层抽样的方法从成果为“优秀”和“良好”中选出10人,其中选中“优秀”的学生有3人,选中“良好”的学生有7人,由此能求出甲被选中的概率.【详解】(1)依据题意得良好学生的人数为100×(0.01+0.07+0.06)×5=70人,所以优秀学生的人数为100-70=30人又因为分数段与的人数比为2:1,所以两分数段的分数分别为20人和10人.故补齐后的直方图如图所示(2)由频率分布直方图得:[90,100]的频率为:1﹣(0.01+0.07+0.06)×5=0.3,∴用分层抽样的方法从成果为“优秀”和“良好”中选出10人,其中选中“优秀”的学生有3人,选中“良好”的学生有7人,设甲是选出的成果“优秀”中的一个,从选出的成果“优秀”的学生中再任选2人参与两项不同的专题测试,基本领件总数n,甲被选中包含的基本领件个数m2.∴甲被选中的概率p.【点睛】本题考查频率分布直方图的作法,考查概率的求法,考查频率分布直方图、分层抽样、古典概型等基础学问,考查运算求解实力,考查数形结合思想,是基础题.21.设点在以,为焦点的椭圆上.(1)求椭圆的方程;(2)经过作直线交于两点,交轴于,若,,且,求.【答案】(1)(2)【解析】【分析】(1)由PF1+PF2=2,即可求得a和b的值,即可求得椭圆方程;(2)由向量的坐标运算,表示出λ1和λ2,即可求得λ1+λ2为定值.【详解】(1)因为点P在以为焦点的椭圆C上,所以所以.又因为c=2,所以所以椭圆C的方程为(2)设A、B、M点的坐标分别为A(,),B(,)明显直线m存在斜率,设直线 m 的斜率为,则直线m的方程是.将直线m的方程代入到椭圆的方程中,消去并整理得,∴ ,又∵ 2,2,将各点坐标代入得,.又,所以,解得又点M在直线上,所以=-2k.【点睛】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式及向量的坐标运算,考查计算实力,属于中档题.22.已知函数,且函数的图像在点处的切线与轴垂直.(1)求函数的单调区间;(2)设函数在区间上的最小值为,试求的最小值.【答案】(1)的减区间为,增区间为.(2)7【解析】【分析】(1)由已知求得a,对f(x)求导,令和求得单调区间.(2)依据区间的定义得到,又由(1)中的单调性,分和探讨,分别求得,再求的最小值即可.【详解】(1)由已知因为,所以故.,令得(舍去)令得的减区间为,增区间为.(2)因为所以由得解得(舍去)或由(1)知的减区间为,增区间为,所以,若即时, .若即1<t<3时,,,则,1<t<3时,<0即单调递减,所以>故所求的最小值为7.【点睛】本题考查了函数的单调性、最值问题,考查导数的应用以及转化思想,是一道中档题.。

高三数学专项训练:立体几何解答题(三)(文科)

中,CA CB =,1AB AA =,160BAA Ð=。

(Ⅰ)证明:1AB A C ^;(Ⅱ)若2AB CB ==,16A C =高三数学专项训练:立体几何解答题(三)(文科)1.如图,在.如图,在四棱锥四棱锥A-BCDE 中,侧面∆ADE 是等边三角形,底面BCDE 是等腰是等腰梯形梯形,且CD ∥BE,DE=2BE,DE=2,,CD=4,60CDE Ð=° ,M 是DE 的中点,F 是AC 的中点,且AC=4AC=4,,求证:(1)平面ADE ADE⊥平面⊥平面BCD;BCD;(2)FB (2)FB∥平面∥平面ADE. ADE.2.(本小题满分12分)如图,分)如图,三棱柱三棱柱111ABC A B C -,求三棱柱111ABC A B C -的体积。

45..如图,三棱锥P ABC -中,90ABC °Ð=,PA ABC ^底面(Ⅰ)求证:PAC PBC ^平面平面;(Ⅱ)若AC BC PA ==,M 是PB 的中点,求AM 3.如图,在.如图,在四棱锥四棱锥P -ABCD 中,中,PD PD PD⊥⊥平面ABCD ABCD,,AB AB∥∥DC DC,已知,已知BD BD==2AD 2AD==2PD 2PD==8,AB =2DC 2DC==(Ⅰ)设M 是PC 上一点,证明:平面MBD MBD⊥平面⊥平面PAD PAD;;(Ⅱ)若M 是PC 的中点,求棱锥P -DMB 的体积.4与平面PBC 所成角的所成角的正切正切值5中,CB DA 、是梯形的高,2AE BF ==,22AB =,现将梯形沿CB DA 、折起,使//EF AB ,且2E F A B =如图所示,已知M N P 、、(1)求证://MN6^PA 底面ABCD ,F E ,分别是PB AC ,的中点的中点. . .PFEDC B A(1)求证://EF 平面PCD ;(2)求证:平面^PBD 平面PAC ;(3)若AB PA =,求PD 与平面PAC 所成的角的大小所成的角的大小. . ..如图,在等腰.如图,在等腰梯形梯形CDEF ,得一简单,得一简单组合组合体ABCDEF 分别为,,AF BD EF 的中点平面BCF ;(2)求证:AP ^平面DAE ..如图,.如图,四棱锥四棱锥ABCD P -的底面ABCD 为正方形,7中,2AB BC =,点M 在边CD 上,点F 在边AB 上,且DF AM^,垂足为E ,若将ADM D 沿AM 折起,使点ABCM D -¢.(Ⅰ)求证:F D AM p ,求直线D8.如图,在四棱锥-P .如图,在.如图,在矩形矩形ABCD D 位于D ¢位置,连接B D ¢,C D ¢得四棱锥¢^;(Ⅱ)若3p =¢ÐEF D ,直线F D ¢与平面ABCM 所成角的大小为3A ¢与平面ABCM 所成角的所成角的正弦正弦值.值.ABCD 中,四边形ABCD 是菱形,PA PC =,E 为PB 的中点.(Ⅰ)求证:PD ∥平面AEC ;(Ⅱ)求证:平面AEC ^平面PBD .-的中点,E 为PA 的中点.的中点.ADO C PBEMNC C 1B 1A 1BA9.如图,在直.如图,在直三棱柱三棱柱ABC ABC--A 1B 1C 1中,点M 是A 1B 的中点,点N 是B 1C 的中点,连接MN MN(Ⅰ)证明:(Ⅰ)证明:MN//MN//MN//平面平面ABC ABC;; (Ⅱ)若AB=1AB=1,,AC=AA 1=3,BC=2BC=2,求二面角,求二面角A —A 1C —B 的余弦值的大小值的大小1010..如图,四棱锥P ABCD 的底面是直角的底面是直角梯形梯形,//AB CD ,AB AD ^,PAB D 和PADD 是两个边长为2的正三角形,4DC =,O 为BD (Ⅰ)求证:PO ^平面ABCD ;(Ⅱ)求证://OE 平面PDC ;(Ⅲ)求(Ⅲ)求直线直线CB 与平面PDC 所成角的所成角的正弦正弦值.11中,底面ABED 、090ADC Ð=,12BC CD AD ==,PA PD =,,EF .A B C -中,点D 是BC 的中点的中点..(Ⅰ)求证(Ⅰ)求证: : AD ^平面11BCC B ;(Ⅱ)求证(Ⅱ)求证: : 1A C 平面1AB D .A BCDA 1B 1C 1.在.在四棱锥四棱锥P ABCD -为直角为直角梯形梯形,//BC AD 为,AD PC 的中点.(1)求证://PA 平面BEF ;(2)求证:AD PB ^1212.如图,正.如图,正.如图,正三棱柱三棱柱111ABC13.如图,在多面体ABCDFE 中,四边形ABCD 是矩形,AB ∥EF , 902=Ð=EAB EF AB,(1)若G 点是DC )求证:BAF DAF 面面^.(3)若,2,1===AB AD AE ,平面ABCD ABFE 平面^.中点,求证:AED FG 面//.(2求的体积三棱锥AFC D -.∴,3AM DE AM ^=,∵在∆DMC 中,中,DM=1DM=1DM=1,,60CDE Ð=°,CD=4,CD=4,,∴22241241cos6013MC =+-´´×°= ,即MC=13.在∆AMC 中,222222(3)(13)4AM MC AC +=+==∴AM AM⊥⊥MC,MC,又∵,AM DE ^MC DE M = , , ∴∴AM ^平面BCD,BCD,∵AM Í平面ADE, ADE, ∴平面∴平面ADE ADE⊥平面⊥平面BCD.BCD.(2)取DC 的中点N ,连结FN,NB,FN,NB,∵F,N 分别是AC AC,,DC 的中点,∴的中点,∴FN FN FN∥∥AD,AD,由因为由因为FN Ë平面ADE,AD Í平面ADE, ADE, ∴∴FN FN∥平面∥平面ADE,ADE,∵N 是DC 的中点,∴的中点,∴BC=NC=2BC=NC=2BC=NC=2,又,又60CDE Ð=°,∴∆BCN 是等边三角形,∴是等边三角形,∴BN BN BN∥∥DE,DE, 由BN Ë平面ADE,ED Í平面ADE, ADE, ∴∴BN BN∥平面∥平面ADE,ADE,∵FN BN N = , , ∴平面∴平面ADE ADE∥平面∥平面FNB,FNB,∵FB Í平面FNB, FNB, ∴∴FB FB∥平面∥平面ADE.ADE.考点:考点:1.1. 1.直线与平面垂直的判定;直线与平面垂直的判定;直线与平面垂直的判定;2.2.2.平面一平面垂直的判定;平面一平面垂直的判定;平面一平面垂直的判定;3.3.3.直线与平面平行的判定直线与平面平行的判定直线与平面平行的判定..2.(1)取AB 的中点O ,连接1OC O 、1OA O 、1A B ,因为CA=CB CA=CB,所以,所以OC AB ^,由于AB=AA 1,∠,∠BA A BA A 1=600,所以1OA AB ^,所以AB ^平面1OAC ,因为1A C Ì平面1OAC ,所以AB AB⊥⊥A 1C ;(2)因为221A C OC =因为ABC D 为等边三角形,所以3CO =,底面积1232232S =´´=高三数学专项训练:立体几何解答题(三)(文科)参考答案1.(1)证明详见解析;(2)证明详见解析 【解析】【解析】试题分析:(1)首先根据直线与平民啊垂直的)首先根据直线与平民啊垂直的判定定理判定定理证明AM ^平面BCD,BCD,然后再根据平面垂直的判定定理证明平面ADE ADE⊥平面⊥平面BCD BCD;;(2),取DC 的中点N ,首先证FN ∥平面ADE,ADE,然后再证∴然后再证∴然后再证∴BN BN BN∥平面∥平面ADE,ADE,再根据平面与平民啊平行的判定定理证明∴平面再根据平面与平民啊平行的判定定理证明∴平面ADE ∥平面FNB,FNB,最后由面面平行的性质即可最后由面面平行的性质即可最后由面面平行的性质即可..试题解析:(1)∵∆ADE 是等边三角形,,M 是DE 的中点,的中点,,所以,所以体积体积123323V =´´=(Ⅱ)163P DMB V -=. 【解析】【解析】试题分析:试题解析:(I )证明:在ABD D 中,由于4,8,45A D B D A B ===,所以222AD BD AB +=.故AD BD ^。

河南省安阳市2023届高三三模文科数学试题(含答案)

河南省安阳市2023届高三三模文科数学试题学校:___________姓名:___________班级:___________考号:___________A .83B .8.已知0,0a b >>,则下列命题错误的是(A .若1ab ≤,则112a b +≥B .若4a b +=,则19a b+的最小值为C .若224a b +=,则ab 的最大值为三、解答题(1)求直方图中t 的值;(2)根据频率分布直方图估计该市60%的居民年用水量不超过(3)已知该市有100万户居民,规定:每户居民年用水量不超过过50吨,则超出的部分每吨收1元水资源改善基金,请估计该市居民每年缴纳的水资源改善基金总数约为多少.(每组数据以所在区间的中点值为代表)18.已知数列{}n a 满足111,12nn n a a a a +==+.(1)证明:BC ME ⊥;(2)求点M 到平面PBE 的距离.20.已知函数()()()ln 1f x x x a a =-+∈R .(1)证明:曲线()y f x =在点()()1,1f 处的切线经过坐标原点;参考答案:故选:C.5.D【分析】根据一组数据同乘以一个数后的平均数以及方差的性质计算,即可得答案【详解】由题意知这些商品的价格如果按人民币计算,价格是按美元计算的价格的故按人民币计,则平均数和方差分别为易知该正方体的棱长为50故选:D. 11.B【分析】由椭圆离心率为6 3可得22233bm n+=,由AF⊥【详解】由椭圆离心率为612.A【分析】由12T f A ⎛⎫= ⎪⎝⎭求出ϕ,再根据ππ42f f ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭ 的几何意义求出ω【详解】因为0ω>,【详解】2y +,得322z y x =-+,作出不等式组对应的可行域(阴影部分)322z y x =-+,由平移可知当直线y =时,直线322z y x =-+的截距最大,此时,解得(1,1)A ,)ABC 中,因为//,DE BC -DBCE 中,,DE PD DE ⊥平面PDB ,从而BC ⊥平面上取一点F ,使得2CF =(2)设00(,)P x y ,因为PF 又点P 在抛物线上,所以根据对称性,不妨设点P 设直线AB 的方程为x my =。

四川省达州市2023届高三联合测试 一模试题-文科数学试卷(后附参考答案)

一诊数学(文)试卷第1页(共4页)达州市普通高中2023届第一次诊断性测试数学试题(文科)注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|}A x =≤1,{|1}B x x =<,则A B =A .[0 1),B .(0 1),C .( 1)-∞,D .( 1]-∞,2.复数z 满足1=2i z,则z =A .12-B .12C .1i2-D .1i23.已知向量a ,b ,满足⊥a b ,(12),a = ,则()-⋅=a b a A .0B .2CD .54.四川省将从2022年秋季入学的高一年级学生开始实行高考综合改革,高考采用“3+1+2”模式,其中“1”为首选科目,即物理与历史二选一.某校为了解学生的首选意愿,对部分高一学生进行了抽样调查,制作出如下两个等高条形图,根据条形图信息,下列结论正确的是A .样本中选择物理意愿的男生人数少于选择历史意愿的女生人数B .样本中女生选择历史意愿的人数多于男生选择历史意愿的人数C .样本中选择物理学科的人数较多D .样本中男生人数少于女生人数5.“0a b >>”是“e 1a b->”的A .充分不必要条件B .必要不充分条件C .充分必要条件D.既不充分也不必要条件一诊数学(文)试卷第2页(共4页)6.《将夜》中宁缺参加书院的数科考试,碰到了这样一道题目:那年春,夫子游桃山,一路摘花饮酒而行,始切一斤桃花,饮一壶酒,复切一斤桃花,又饮一壶酒,后夫子惜酒,故再切一斤桃花,只饮半壶酒,再切一斤桃花,饮半半壶酒,如是而行,终夫子切六斤桃花而醉卧桃山.问:夫子切了五斤桃花一共饮了几壶酒?A .18B .4716C .238D .31167.三棱锥P ABC -的底面ABC 为直角三角形,ABC △的外接圆为圆O ,PQ ⊥底面ABC ,Q 在圆O 上或内部,现将三棱锥的底面ABC 放置在水平面上,则三棱锥P ABC -的俯视图不可能是A.B .C .D .8.将函数1π()sin()23f x x ω=+(0)ω>图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到函数()g x 的图象,直线l 与曲线()y g x =仅交于11()A x y ,,22()B x y ,,ππ(())66P g ,三点,π6为1x ,2x 的等差中项,则ω的最小值为A .8B .6C .4D .29.曲线()()e xf x x m =+()m ∈R 在点(0(0))f ,处的切线平分圆22(2)(2)5x y -+-=,则函数()y f x =的增区间为A .(,1)-∞-B .(0 )+∞,C .(1 )-+∞,D .(0e),10.点F 为双曲线22221x y a b-=(0 0)a b >>,的一个焦点,过F 作双曲线的一条渐近线的平行线交双曲线于点A ,O 为原点,||OA b =,则双曲线的离心率为A B .C .D 11.在棱长为2的正方体1111ABCD C D 中,E ,分别为AB ,BC 的中点,则A .平面1D EF ∥平面11BA C B .点P 为正方形1111A B C D 内一点,当DP ∥平面1B EF 时,DP 的最小值为2C .过点1D ,E ,F 的平面截正方体1111ABCD A B C D -所得的截面周长为+D .当三棱锥1B BEF -的所有顶点都在球O 的表面上时,球O 的表面积为12π12.已知!(1)(2)321n n n n =⨯-⨯-⨯⨯⨯⨯ ,规定0!1=,如3!3216=⨯⨯=.定义在R上的函数()y f x =图象关于原点对称,对任意的0x <,都有(()1xf xf x x =-.若12()10099!f =,则(1)f =A .0B .1C .2D .199!一诊数学(文)试卷第3页(共4页)二、填空题:本题共4小题,每小题5分,共20分.13.抛物线22(0)y px p =>上的点(4)M a ,到焦点的距离为5,则焦点坐标为.14.从集合{1 2 3 4 5},,,,中随机取两个不同的数a ,b ,则满足||2a b -=的概率为.15.已知正项数列{}n a 前n 项和n S 满足(1)2n n n a a S m +=+,m ∈R ,且3510a a +=,则m =.16.已知正方形ABCD 边长为2,M ,N 两点分别为边BC ,CD 上动点,45=∠MAN ,则CMN △的周长为.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)党的十九大提出实施乡村振兴战略以来,农民收入大幅提升,2022年9月23日某市举办中国农民丰收节庆祝活动,粮食总产量有望连续十年全省第一.据统计该市2017年至2021年农村居民人均可支配收入的数据如下表:年份20172018201920202021年份代码x12345人均可支配收入y (单位:万元)1.301.401.621.681.80(1)根据上表统计数据,计算y 与x 的相关系数r ,并判断y 与x 是否具有较高的线性相关程度(若0.30||0.75r <≤,则线性相关程度一般,若||0.75r ≥则线性相关程度较高,r 精确到0.01);(2)市五届人大二次会议政府工作报告提出,2022年农村居民人均可支配收入力争不低于1.98万元,求该市2022年农村居民人均可支配收入相对2021年增长率最小值(用百分比表示).参考公式和数据:相关系数()()niix x y y r --=∑,51()() 1.28iii x x y y =--=∑,521()0.17ii y y =-≈∑ 1.3≈.18.(12分)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,ABC △的面积tan S A =,BC (1)求a ;(2)求ABC △外接圆面积的最小值.一诊数学(文)试卷第4页(共4页)19.(12分)如图,四棱锥P ABCD -的底面ABCD 是梯形,AD BC ∥,AB BC ⊥.E 为AD 延长线上一点,PE ⊥平面ABCD ,2PE AD =,tan 2PDA ∠=-.F 是PB 中点.(1)证明:EF PA ⊥;(2)若22BC AD ==,三棱锥E PDC -的体积为13,求点C 到平面DEF 的距离.20.(12分)已知F 是椭圆C :22221(0)x y a b a b+=>>的一个焦点,过点( )P t b ,的直线l 交C 于不同两点A ,B .当t a =,且l经过原点时,||AB =,||||AF BF +=.(1)求C 的方程;(2)D 为C 的上顶点,当4t =,且直线AD ,BD 的斜率分别为1k ,2k 时,求1211k k +的值.21.(12分)已知函数()ln ()f x x x a a =+∈R .(1)若()f x 最小值为0,求a 的值;(2)231()1(0)8x g x x x x =--+>,若7ea ≥,()0gb <,证明()f x b >.(二)选考题:共 10分.请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10 分) 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为 ρ2−2 ρcos − θ2 ρsin − θ2 =0 ,直线l 的参数方程为2cos ()2sin x t t y t θθ=+⎧⎨=+⎩,为参数.(1)写出曲线C 的直角坐标方程;(2)设直线l 与曲线C 交于A ,B 两点,定点(2 2)P ,,求PA PB +的最小值.23.[选修4-5:不等式选讲](10分)设函数12)(-=x x f .(1)若()()f x f x m >+的解集为{|0}x x <,求实数m 的值;(2)若0a b <<,且()()f a f b =,求411a b +-的最小值.A BC DEFP达州市普通高中2023届第一次诊断性测试文科数学参考答案一、选择题:1.A 2.C3.D4.C5.A6.C7.D 8.C9.C10.D11.B12.C二、填空题:本题共4小题,每小题5分,共20分.13.(1,0)14.31015.1-16.4三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.解:(1)由表知x 的平均数为1234535x ++++==.522221()(13)(23)(53)10i i x x =∴-=-+-++-=∑.5()()0.98iix x y y r --=∑.75.098.0> ,∴y 与x 具有较高的线性相关程度.(2)设增长率为p ,则1.8(1)p +≥1.98,解得p ≥0.1.∴min 0.110%p ==.该市2022年农村居民人均可支配收入相对2021年增长率最小值为10%.18.解:(1)由A S tan =得AAA bc cos sin sin 21=,∵0πA <<,0sin >A ,∴2cos =A bc .取BC 中点D ,连接AD ,则1()2AD AB AC =+ ,∴22242AD AB AB AC AC =+⋅+ ,即A bc c b cos 21222++=,∴822=+c b .∵448cos 2222=-=-+=A bc c b a ,∴2=a .(2)设ABC △外接圆半径为R ,由正弦定理R A a 2sin =,得AR sin 1=.由(1)知bc A 2cos =22412b c =+≥,当且仅当2==c b 时取“=”.∵0πA <<,∴A <0≤π3,∴0sin 2A <≤,∴A R sin 1=23332=,当sin 2A =,即π3A =时取“=”.∴ABC △外接圆面积最小值为2234π(π33⨯=.19又E AD PE = ,∴AB ⊥平面PAD .∵PA ⊂平面PAD ,∴PA AB ⊥.取P A 的中点M ,连接EM ,FM ,∵F 为PB的中点,∴FM PA ⊥.∵tan 2PDA ∠=-,∴tan 2PDE ∠=,∴2=DEPE ,∴AD DE PE 22==,∴D 为AE 的中点,∴PE AE =,∴EM PA ⊥.又M FM EM = ,∴PA ⊥平面EFM .∵EF ⊂平面EFM ,∴EF PA ⊥.(2)解:∵222BC AD DE ===,∴2PE =.∴ BC AE ∥,且 BC AE =,∵AB BC ⊥,∴四边形ABCE 为矩形,∴CE ⊥平面PAE .1111123323E PDC P DEC DEC V V S PE CE --==⋅=⨯⨯⨯⨯=△,∴1=CE .连接M D ,Rt BCE △中51222=+=BE ,Rt PEB △中35222=+=PB .∵F 为PB 中点,∴点F 到平面ABCD 的距离1211==PE h ,Rt PEB △中,2321==PB EF ,111122ECD S =⨯⨯=△.由(1)知FM PAE ⊥面,11=22FM AB =,在Rt FME △中,52DF ==,∴DEF △中,22235()1)222cos 33212DEF +-∠==⨯⨯,3sin DEF ∠=,124DEF S DE EF sin DEF =⨯⨯⨯∠=△.设点C 到平面DEF 的距离为2h ,则121133F EDC C DFE DEC DFE V V S h S h --==⋅=⋅△△,解得5522=h .所以点C 到平面DEF 的距离为552.20.解:(1)由题意,当t a =,且l 经过原点时,l 的方程为by x a=,且点A ,B 关于原点对称.设00( )A x y ,,将b y x a=代入22221x y a b +=,并化简得222a x =,即2202a x =,∴2202b y =.∵||AB =2222004()2()6x y a b +=+=.设C 的另一个焦点为0F ,根据对称性,0||||||||AF BF AF AF +=+=,根据椭圆定义得2a =,∴22a =.∴21b =.所以C 的方程为2212x y +=.(2)由(1)知,点D 坐标为(0 1),.A B C M E F PD由题意可设l :(1)4x k y =-+,即4x ky k =+-,将该式代入2212x y +=,并化简得222(2)2(4)8140k y k k y k k ++-+-+=,∴16(47)0k ∆=->.设11()A x y ,,22()B x y ,,则1222(4)2k k y y k -+=-+,21228142k k y y k -+=+.∴12122164()822kx x k y y k k -+=++-=+.∴1212211212121212()1111()1x x x y x y x x k k y y y y y y +-++=+==---++2222212121221212222(814)2(4)1642(4)()()2228142(4)()1122k k k k k kky y k y y x x k k k k k k k y y y y k k -+----+-+-++++=-+--++++++1=-.即12111k k +=-.21.解:(1)由()ln f x x x a =+得0x >,且()ln 1f x x '=+当10e x <<时,()0f x '<,()f x 单调递减,当1ex >时,()0f x '>,()f x 单调递增.所以min 11()()()0e ef x f x f a ===-+=极小,∴1e a =.(2)证明:由231()18x g x x x =--+得322231344()144x x g x x x x -+'=-+=(0>x ).设32()344h x x x =-+,则28()989()9h x x x x x '=-=-,当809x <<时,()0h x '<,()h x 单调递减,当89x >时,()0h x '>,()h x 单调递增.∴当0x >时,()min 8()()09h x h x h =>≥,即()0g x '>,()g x 在区间(0 )+∞,单调递增.∵(2)0g =,∴若0x >,则当且仅当02x <<时,()0g x <,∵()0g b <,∴2b <.由(1)知,min 11()()e e f x f a ==-.∵7ea ≥,∴min 16()()e e f x f x a =-≥≥.∴6()2ef x b >>≥,即()f x b >.22.解:(1)将222x y ρ=+,cos x ρθ=,sin y ρθ=代入C 的极坐标方程22cos ρρθ-2sin 20ρθ--=得曲线C 为222220x y x y +---=,即4)1()1(22=-+-y x .(2)易知点P 在直线l 上,将直线l 的参数方程2cos ()2sin x t t y t θθ=+⎧⎨=+⎩,为参数代入曲线C 方程得4)sin 1()cos 1(22=+++θθt t ,整理得02)cos (sin 22=-++t t θθ.设点A ,B 对应该的参数分别为1t ,2t ,则)cos (sin 221θθ+-=+t t ,0221<-=t t ,由参数t 的几何意义不妨令||||1P A t =,||||2PB t =.∴||||||||||2121t t t t PB P A -=+=+122sin 44)(21221+=-+=θt t t t .当12sin -=θ,即ππ()4k k θ=-∈Z 时,22|)||(|=+PB P A .23.(1)解:不等式可化为|1|||22-+>m x x ,∴|1||1|-+>-m x x ,两边同时平方可得222m m mx -<.原不等式解集为{|0}x x <,∴0>m ,即21mx -<.∴021=-m,2=m .(2)解: )()(b f a f =,∴|1||1|22--=b a ,|1||1|-=-b a .)1(2)1(||x f x f x -==+,∴)(x f y =关于直线1=x 对称,∴b a <<<10,∴11-=-b a ,即2=+b a .所以1)1(45)1114(-+-+=-+-+b a a b b a b a ≥9425=+,当且仅当1)1(4-=-b aa b ,即34,32==b a 时取“=”,∴114-+b a 的最小值为9.。

2024届高三10月大联考(全国乙卷)文科数学含答案解析

2024届高三10月大联考(全国乙卷)文科数学一、单选题(共36 分)1已知集合A={x∈Z∣x2+1<5},B={−1,1,3}则A∪B中元素的个数为()A3B4C5D6【答案】B【分析】化简集合A即可求出A∪B中元素的个数【详解】由题意因为A={x∈Z∣x2+1<5}={x∈Z∣x2<4}={−1,0,1},B={−1,1,3}所以A∪B={−1,0,1,3}有4个元素故选:B2已知命题p:∃x0≥0,√x0>x02则命题p的否定为()A∃x0<0,√x0≤x02B∀x≥0,√x<x2C∀x<0,√x>x2D∀x≥0,√x≤x2【答案】D【分析】利用含有一个量词的命题的否定的定义求解【详解】解:因为命题p:∃x0≥0,√x0>x02是特称命题所以其否定为全称命题即“∀x≥0,√x≤x2”故选:D3若不等式x2−5ax+1<0的解集为(1a,a)则a=()A−12B12C−14D14【答案】A 【分析】根据给定的解集结合一元二次方程根与系数的关系求解即得 【详解】由不等式x 2−5ax +1<0的解集为(1a ,a)得1a ,a 是方程x 2−5ax +1=0的两个根且1a <a 于是a +1a =5a 解得a =±12由a >1a 得−1<a <0或a >1因此a =−12且当a =−12时(−5a)2−4>0所以a =−12 故选:A4若函数f (x )={e x −x,x ≤3lnx −2,x >3则f(f (e 2))=( )A −1B −2 C1 D ln2−2【答案】C 【分析】先计算出f (e 2)=0进而求出f(f (e 2))=f (0)=1 【详解】因为e 2>3所以f (e 2)=lne 2−2=0所以f(f (e 2))=f (0)=e 0−0=1 故选:C5已知p:1<a <53,q:log a 43>2(a >0且a ≠1)则p 是q 的( ) A 充分不必要条件 B 必要不充分条件 C 充要条件 D 既不充分也不必要条件【答案】B 【分析】对于q :利用对数函数单调性解得1<a <2√33再根据包含关系结合充分、必要条件分析判断 【详解】对于q :因为log a 43>2=log a a 2(a >0且a ≠1)当0<a <1时y =log a x 在定义域内单调递减则a 2>43无解; 当a >1时y =log a x 在定义域内单调递增则a 2<43可得1<a <2√33;综上所述:不等式log a 43>2的解集为(1,2√33) 又因为(1,2√33)是(1,53)的真子集所以p 是q 的必要不充分条件 故选:B6函数f (x )=x 2log 42+x2−x 的大致图象是( )A B C D【答案】D 【分析】方法一:根据函数的奇偶性及函数值的符号排除即可判断;方法二:根据函数的奇偶性及某个函数值的符号排除即可判断 【详解】方法一:因为2+x2−x >0即(x +2)⋅(x −2)<0所以−2<x <2 所以函数f (x )=x 2log 42+x2−x 的定义域为(−2,2)关于原点对称又f (−x )=(−x)2log 42−x 2+x =−f (x )所以函数f (x )是奇函数其图象关于原点对称 故排除B,C ;当x ∈(0,2)时2+x2−x >1即log 42+x2−x >0因此f (x )>0故排除A 故选D方法二:由方法一知函数f (x )是奇函数其图象关于原点对称故排除B,C ; 又f (1)=12log 23>0所以排除A 故选:D7白色污染是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓经过长期研究一种全生物可降解塑料(简称PBAT )逐渐被应用于超市购物袋、外卖包装盒等产品研究表明在微生物的作用下PBAT 最终可被完全分解为二氧化碳和水进入大自然当其分解率(分解率=已分解质量总质量×100%)超过60%时就会成为对环境无害的物质为研究总质量为100g 的PBAT 的已分解质量y (单位:g )与时间x (单位:月)之间的关系某研究所人员每隔1个月测量1次PBAT 的已分解质量对通过实验获取的数据做计算处理研究得出已分解质量y 与时间x 的函数关系式为y =100−e 4.6−0.1x 据此研究结果可以推测总质量为100g 的PBAT 被分解为对环境无害的物质的时间至少为( )(参考数据:ln40≈3.7) A8个月 B9个月 C10个月 D11个月【答案】C 【分析】根据题意令y =100−e 4.6−0.1x >60求解即可 【详解】令y =100−e 4.6−0.1x >60得0.1x >4.6−ln40≈0.9解得x >9故至少需要10个月总质量为100g 的PBAT 才会被分解为对环境无害的物质 故选:C8已知α,β∈(0,π2),α>β且cosα(cosα−cosβ)+sinα(sinα−sinβ)=15,sinαcosβ=710则sin (α+β)=( ) A 45 B 35C 25D 310【答案】A 【分析】利用两角和与差的正弦公式和余弦公式化简即可 【详解】因为cosα(cosα−cosβ)+sinα(sinα−sinβ)=15cos 2α−cosαcosβ+sin 2α−sinαsinβ=15即1−cos (α−β)=15所以cos (α−β)=45因为α,β∈(0,π2),α>β所以0<α−β<π2所以sin (α−β)=35即sinαcosβ−cosαsinβ=35又sinαcosβ=710所以cosαsinβ=110所以sin (α+β)=sinαcosβ+cosαsinβ=710+110=45 故选:A9已知O 是△ABC 所在平面内一点若OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ ,AM ⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =yAC ⃗⃗⃗⃗⃗ ,MO ⃗⃗⃗⃗⃗⃗ =λON ⃗⃗⃗⃗⃗⃗ ,x,y 均为正数则xy 的最小值为( ) A 12 B 49C1D 43【答案】B 【分析】由题设O 是△ABC 的重心应用向量加法、数乘几何意义可得AO ⃗⃗⃗⃗⃗ =13x AM ⃗⃗⃗⃗⃗⃗ +13y AN ⃗⃗⃗⃗⃗⃗ 根据MO ⃗⃗⃗⃗⃗⃗ =λON ⃗⃗⃗⃗⃗⃗ 得13x +13y =1最后应用基本不等式求xy 最小值注意等号成立条件 【详解】因为OA ⃗⃗⃗⃗⃗ +OB ⃗⃗⃗⃗⃗ +OC ⃗⃗⃗⃗⃗ =0⃗ 所以点O 是△ABC 的重心 所以AO ⃗⃗⃗⃗⃗ =23×12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=13(AB ⃗⃗⃗⃗⃗ +AC⃗⃗⃗⃗⃗ ) 因为AM ⃗⃗⃗⃗⃗⃗ =xAB ⃗⃗⃗⃗⃗ ,AN ⃗⃗⃗⃗⃗⃗ =yAC ⃗⃗⃗⃗⃗ 所以AB ⃗⃗⃗⃗⃗ =1x AM ⃗⃗⃗⃗⃗⃗ ,AC ⃗⃗⃗⃗⃗ =1yAN⃗⃗⃗⃗⃗⃗ 综上AO ⃗⃗⃗⃗⃗ =13x AM ⃗⃗⃗⃗⃗⃗ +13y AN⃗⃗⃗⃗⃗⃗ 因为MO ⃗⃗⃗⃗⃗⃗ =λON⃗⃗⃗⃗⃗⃗ 所以M,O,N 三点共线则13x +13y =1即1x +1y =3 因为x,y 均为正数所以1x +1y ≥2√1xy 则√1xy ≤32所以xy ≥49(当且仅当1x =1y =32即x =y =23时取等号) 所以xy 的最小值为49 故选:B10若函数f (x )=Asin (ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示则下列说法正确的个数为( )①ω=2;②φ=−π6;③f (x )在(π2,5π6)上单调递减;④f (−π2)=√3 A1B2C3D4【答案】C 【分析】由图像经过的特殊点(5π12,2)和(π6,0)逐项判断即可 【详解】由题图得A =2最小正周期T =4×(5π12−π6)=π 又T =2πω=π所以ω=2故①正确;f (x )=2sin (2x +φ)又f (x )的图象过点(5π12,2) 所以2×5π12+φ=2kπ+π2,k ∈Z 所以φ=2kπ−π3,k ∈Z又|φ|<π2所以φ=−π3故②错误; f (x )=2sin (2x −π3)令t =2x −π3当π2<x <5π6时2π3<t <4π3函数y =sint 在(2π3,4π3)上单调递减故③正确;f (−π2)=2sin (−π−π3)=√3故④正确 故选:C11已知函数f (x )是偶函数当x >0时f (x )=|log 2x |−1则不等式x−1f (−x )−2f (x )≥0的解集是( ) A (−12,0)∪(0,12) B (−2,−1]∪[1,2)C (−2,−12)∪(0,12) D (−∞,−2)∪(−12,0)∪(0,12)∪[1,2)【答案】D 【分析】根据已知画出y =f (x )的图象并将不等式化为{f(x)(x −1)≤0f(x)≠0数形结合求不等式解集【详解】根据题意作偶函数y =f (x )的图象如下图示由f(−x)=f(x)不等式可化为x−1−f(x)≥0则{f(x)(x−1)≤0f(x)≠0所以{x−1≥0f(x)<0或{x−1≤0f(x)>0由图知:1≤x<2或0<x<12或−12<x<0或x<−2所以不等式解集为(−∞,−2)∪(−12,0)∪(0,12)∪[1,2)故选:D12已知函数f(x)=a x+a−x+cosx+x2(a>1)则f(√2),f(−e1e),f(π1π)的大小关系为()A f(π1π)<f(−e 1e)<f(√2)B f(√2)<f(π1π)<f(−e1e)C f(π1π)<f(√2)<f(−e1e)D f(−e1e)<f(π1π)<f(√2)【答案】B【分析】根据函数的奇偶性只需要考虑x>0时的情况利用导数求解函数单调性构造函数φ(x)=2x−sinx,g(x)=lnxx即可由导数求解单调性利用函数单调性即可比较大小【详解】易知f(x)=a x+a−x+cosx+x2(a>1)是偶函数f′(x)=(a x−a−x)lna+2x−sinx当x>0时因为a>1所以lna>0,a x−a−x>0令φ(x)=2x−sinx,x>0则φ′(x)=2−cosx>0所以φ(x)单调递增所以φ(x)>φ(0)=0所以f′(x)>0,f(x)在(0,+∞)上单调递增构造函数g(x)=lnxx 则g′(x)=1−lnxx2令g′(x)>0得0<x<e令g′(x)<0得x>e所以g(x)在区间(0,e)上单调递增在区间(e,+∞)上单调递减又ln22=ln44所以g(4)<g(π)<g(e)所以ln22=ln44<lnππ<lnee所以212<π1π<e1e所以f(√2)<f(π1π)<f(e 1e)=f(−e1e)即f(√2)<f(π1π)<f(−e1e)故选:B【点睛】方法点睛:利用导数比较大小的基本步骤:(1)作差或变形;(2)构造新的函数ℎ(x);(3)利用导数研究ℎ(x)的单调性或最值;(4)根据单调性及最值得到所证不等式.二、填空题(共12 分)13已知向量a=(1,−2)b⃗=(2,λ)若a⊥b⃗则实数λ的值为___________【答案】1【分析】根据向量垂直的坐标表示由题中条件列出方程即可求出结果【详解】因为向量a=(1,−2)b⃗=(2,λ)若a⊥b⃗则a⋅b⃗=2−2λ=0解得λ=1故答案为:114请写出一个满足对任意的x1,x2∈(0,+∞);都有f(x1x2)=f(x1)f(x2)的函数__________【答案】f(x)=x−12(答案不唯一)【分析】取幂函数f(x)=x−12验证得到答案【详解】任意定义域为(0,+∞)的幂函数均可例如f(x)=x−12f(x1x2)=(x1x2)−12,f(x1)f(x2)=x1−12⋅x2−12=(x1x2)−12即f(x1x2)=f(x1)f(x2)成立故答案为:f(x)=x−12(答案不唯一)15《海岛算经》是魏晋时期数学家刘徽所著的测量学著作书中有一道测量山上松树高度的题目受此题启发小李同学打算用学到的解三角形知识测量某建筑物上面一座信号塔的高度如图把塔底与塔顶分别看作点CDCD 与地面垂直小李先在地面上选取点AB (点A,B 在建筑物的同一侧且点A,B,C,D 位于同一个平面内)测得AB =20√3m 在点A 处测得点C,D 的仰角分别为30∘,67∘在点B 处测得点D 的仰角为33.5∘则塔高CD 为__________m (参考数据:sin37∘≈35)【答案】24 【分析】在△ACD 中求出AD =20√3∠CAD =37∘,∠ACD =120∘利用正弦定理求解即可 【详解】如图延长DC 与BA 的延长线交于点E 则∠DAE =67∘,∠CAE =30∘,∠DBA =33.5∘所以∠ADB =67∘−33.5∘=33.5∘,∠CAE =90∘−30∘=60∘ 所以AD =AB =20√3在△ACD 中∠CAD =67∘−30∘=37∘,∠ACD =180∘−60∘=120∘ 由正弦定理得CD =ADsin37∘sin120∘≈20√3×35√32=24(m )故答案为:2416已知函数f (x )=(x +a )lnx −2x 在定义域上单调递增则实数a 的取值范围为______ 【答案】[1,+∞) 【分析】把原函数在区间上单调递增问题转化为a ≥x −xlnx 在(0,+∞)上恒成立构造函数g (x )=x −xlnx(x>0)利用导数求解函数的最值即可求解【详解】f(x)=(x+a)lnx−2x的定义域为(0,+∞)由f(x)=(x+a)lnx−2x在定义域上单调递增得f′(x)=lnx+ax−1≥0在(0,+∞)上恒成立即a≥x−xlnx在(0,+∞)上恒成立设g(x)=x−xlnx(x>0)所以只需a≥g(x)max又g′(x)=−lnx当0<x<1时g′(x)>0当x>1时g′(x)<0所以g(x)在(0,1)上单调递增在(1,+∞)上单调递减所以g(x)max=g(1)=1所以a≥1所以实数a的取值范围为[1,+∞)故答案为:[1,+∞)【点睛】方法点睛:已知函数在区间上单调递增(递减)求参数范围解决这类问题的一般方法是:利用导数转化为不等式恒成立问题然后参变分离根据分离后的式子结构构造函数利用导数求解函数最值即可解决三、问答题(共12 分)已知向量a=(sinx+cosx,1),b⃗=(2cosx,−1)函数f(x)=a⋅b⃗将函数f(x)的图象向右平移π6个单位长度得到函数g(x)的图象17 求函数f(x)的最小正周期和单调递增区间;18 解方程g(x)=0【答案】17 T=π单调递增区间为[kπ−3π8,kπ+π8],k∈Z18 {x|x=kπ2+π24,k∈Z}【分析】(1)利用向量数量积求出f(x)利用正弦函数的周期性与单调性即可求得f(x)的最小正周期和单调递增区间(2)先求出g(x)表达式根据正弦函数零点取值得到g(x)=0的解集【17题详解】由已知得f(x)=a⋅b⃗=2cosx(sinx+cosx)−1=sin2x +cos2x=√2sin (2x +π4)所以函数f (x )的最小正周期T =2πω=2π2=π由2kπ−π2≤2x +π4≤2kπ+π2,k ∈Z 解得kπ−3π8≤x ≤kπ+π8,k ∈Z所以函数f (x )的单调递增区间为[kπ−3π8,kπ+π8],k ∈Z【18题详解】将函数f (x )的图象向右平移π6个单位长度得到函数g (x )=√2sin [2(x −π6)+π4]=√2sin (2x −π12)的图象令g (x )=√2sin (2x −π12)=0得2x −π12=kπ,k ∈Z 解得x =kπ2+π24,k ∈Z所以方程g (x )=0的解集为{x |x =kπ2+π24,k ∈Z }如图在平行四边形ABCD 中AM ⃗⃗⃗⃗⃗⃗ =13AD ⃗⃗⃗⃗⃗ 令AB ⃗⃗⃗⃗⃗ =a AC⃗⃗⃗⃗⃗ =b ⃗19用a ,b ⃗ 表示AM ⃗⃗⃗⃗⃗⃗ BM ⃗⃗⃗⃗⃗⃗ CM⃗⃗⃗⃗⃗⃗ ; 20若AB =AM =2且AC ⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =10求cos⟨a ,b⃗ ⟩ 【答案】19 AM ⃗⃗⃗⃗⃗⃗ =13(b ⃗ −a )BM ⃗⃗⃗⃗⃗⃗ =13b ⃗ −43a CM ⃗⃗⃗⃗⃗⃗ =−13a −23b⃗ 20√3468【分析】(1)利用平面向量的四则运算法则求解即可; (2)利用平面向量数量积的公式和运算律求解即可 【19题详解】因为AB ⃗⃗⃗⃗⃗ =a AC ⃗⃗⃗⃗⃗ =b ⃗ 且ABCD 是平行四边形 所以BC ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =b ⃗ −a所以AM ⃗⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ =13(b ⃗ −a ) 所以BM ⃗⃗⃗⃗⃗⃗ =AM ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ =13(b ⃗ −a )−a =13b ⃗ −43a所以CM ⃗⃗⃗⃗⃗⃗ =BM ⃗⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ =13b ⃗ −43a −(b ⃗ −a )=−13a −23b ⃗ 【20题详解】方法一:由(1)知AM ⃗⃗⃗⃗⃗⃗ =13(b ⃗ −a ),BM ⃗⃗⃗⃗⃗⃗ =13b ⃗ −43a又AC ⃗⃗⃗⃗⃗ =b ⃗ ,AC ⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =10,AB =AM =2所以b ⃗ ⋅(13b ⃗ −43a )=10,|13(b ⃗ −a )|=2,|a |=2即b ⃗ 2−4a ⋅b ⃗ =30,b ⃗ 2+a 2−2a ⋅b ⃗ =36 解得a ⋅b⃗ =1,|b ⃗ |=√34 所以cos⟨a ,b ⃗ ⟩=a ⃗ ⋅b ⃗ |a ⃗ ||b ⃗ |=√3468方法二:因为AM ⃗⃗⃗⃗⃗⃗ =13AD ⃗⃗⃗⃗⃗ ,AM =2所以AD =BC =6因为AC ⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =(BC ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )⋅(BA ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ )=−BA ⃗⃗⃗⃗⃗ 2+23BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +13BC ⃗⃗⃗⃗⃗ 2且AC ⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =10所以−22+23×6×2×cos∠ABC +13×62=10 解得cos∠ABC =14所以a ⋅b ⃗ =(−BA ⃗⃗⃗⃗⃗ )⋅(BC ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )=−BA ⃗⃗⃗⃗⃗ ⋅BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ 2=−2×6×14+22=1又|a |=2,|b ⃗ |=√(BC ⃗⃗⃗⃗⃗ −BA ⃗⃗⃗⃗⃗ )2=√BC ⃗⃗⃗⃗⃗ 2−2BC ⃗⃗⃗⃗⃗ ⋅BA ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ 2=√34所以cos⟨a ,b ⃗ ⟩=a ⃗ ⋅b ⃗ |a ⃗ ||b ⃗ |=√3468四、应用题(共 6 分)某公园池塘里浮萍的面积y (单位:m 2)与时间t (单位:月)的关系如下表所示:现有以下三种函数模型可供选择:①y =kt +b ②y =p ⋅a t +q ③y =m ⋅log a t +n 其中k,b,p,q,m,n,a 均为常数a >0且a ≠121 直接选出你认为最符合题意的函数模型并求出y 关于t 的函数解析式;22 若该公园池塘里浮萍的面积蔓延到15m 2,31m 2,211m 2所经过的时间分别为t 1,t 2,t 3写出一种t 1,t 2,t 3满足的等量关系式并说明理由【答案】21 模型②y=2t+122 t1+t2=t3+1理由见解析【分析】(1)根据表格数据选择函数模型然后求解析式;(2)根据指数幂运算公式计算【21题详解】应选择函数模型②y=p⋅a t+q依题意得{p×a1+q=3p×a2+q=5 p×a3+q=9解得{p=1 a=2 q=1所以y关于t的函数解析式为y=2t+1【22题详解】t1+t2=t3+1理由:依题意得2t1+1=152t2+1=312t3+1=211所以2t1=142t2=302t3=210所以2t1⋅2t2=420所以2t1⋅2t2=2t1+t2=420=2×2t3=2t3+1所以t1+t2=t3+1五、问答题(共12 分)在△ABC中内角A,B,C所对的边分别为a,b,c且__________在①√3a =1−cosCsinA;②sinAbc−sinCab=sinA−sinBac两个条件中任选一个填入上面横线处并解决下列问题注:若选择不同的条件分别解答则按第一个解答计分23 求C;24 若△ABC外接圆的半径为2√3,△ABC的面积为√3求△ABC的周长【答案】23 C=π324 4√3+6【分析】(1)选①先利用正弦定理化边为角再利用和差角公式结合角的取值范围即得选②先用正弦定理化边为角再有余弦定理和角的范围即得(2)由正弦定理和外接圆半径求出c再利用余弦定理即可求出答案【23题详解】若选①:由√3a =1−cosCsinA及正弦定理得sinCsinA=√3sinA(1−cosC)∵sinA≠0,∴sinC+√3cosC=√3∴sin(C+π3)=√32又0<C<π,∴π3<C+π3<4π3∴C+π3=2π3,∴C=π3若选②:由sinAbc −sinCab=sinA−sinBac得asinA−csinC=bsinA−bsinB由正弦定理得a2+b2−c2=ab由余弦定理得cosC=a 2+b2−c22ab=ab2ab=12因为C∈(0,π)所以C=π3【24题详解】设△ABC外接圆的半径为R由正弦定理得c=2RsinC=2×2√3×sinπ3=6又S△ABC=12absinC=12ab×√32=√3所以ab=4由c2=a2+b2−2abcosC=(a+b)2−2ab−2ab×12可得36=(a+b)2−12解得a+b=4√3所以△ABC的周长为a+b+c=4√3+6已知函数f(x)=e x−ax2+x−125 当a=1时求曲线y=f(x)在x=1处的切线方程;26 若f(x)=0有两个不等的实根求实数a的取值范围【答案】25 (e−1)x−y=026 (−∞,0)∪{e2+14}【分析】(1)求导得到f(1)=e−1,f′(1)=e−1,进而求出切线方程;(2)f(0)=0故只需当x≠0时f(x)=0有且仅有一个实根参变分离转化为两函数只有1个交点求导得到g(x)=e x+x−1x2(x≠0)的单调性画出其图象数形结合得到参数的取值范围【25题详解】当a=1时f(x)=e x−x2+x−1,f′(x)=e x−2x+1f(1)=e−1,f′(1)=e−1,所以曲线y=f(x)在x=1处的切线方程为y−(e−1)=(e−1)(x−1)即(e−1)x−y=0【26题详解】显然f(0)=0要使方程f(x)=0有两个不等的实根只需当x≠0时f(x)=0有且仅有一个实根当x≠0时由方程f(x)=0得a=e x+x−1 x2令g(x)=e x+x−1x2(x≠0)则直线y=a与g(x)=e x+x−1x2(x≠0)的图象有且仅有一个交点g′(x)=(e x+1)x2−2x(e x+x−1)x4=(x−2)(e x−1)x3又当x<0时g′(x)<0,g(x)单调递减当0<x<2时g′(x)<0,g(x)单调递减当x>2时g′(x)>0,g(x)单调递增所以当x=2时g(x)取得极小值g(2)=e 2+1 4又当x<0时e x<1所以e x+x−1<0即g(x)<0当x>0时e x>1,e x+x−1>0即g(x)>0所以作出g(x)的大致图象如图所示由图象知要使直线y=a与g(x)=e x+x−1x2(x≠0)的图象有且仅有一个交点只需a<0或a=e 2+1 4综上若f(x)=0有两个不等的实根则a的取值范围为(−∞,0)∪{e 2+1 4}六、其它(共6 分)已知函数f(x)=x−alnx−4,a∈R27 讨论函数f(x)的单调性;28 当a=1时令F(x)=(x−2)e x−f(x)若x=x0为F(x)的极大值点证明:0<F(x0)<1【答案】27 答案见解析;28 证明见解析【分析】(1)对参数a分类讨论根据不同情况下导函数函数值的正负即可判断单调性;(2)利用导数判断F(x)的单调性求得x0的范围满足的条件以及F(x0)根据x0的范围夹逼F(x0)的范围即可【27题详解】函数f(x)的定义域为(0,+∞),f′(x)=1−ax =x−ax①当a≤0时f′(x)>0函数f(x)在(0,+∞)上单调递增;②当a>0时由f′(x)>0得x>a由f′(x)<0得0<x<a所以函数f(x)在(a,+∞)上单调递增在(0,a)上单调递减综上当a≤0时函数f(x)在(0,+∞)上单调递增;当a>0时函数f(x)在(a,+∞)上单调递增在(0,a)上单调递减【28题详解】当a=1时F(x)=(x−2)e x−x+lnx+4,F′(x)=(x−1)e x−1+1x =(x−1)(e x−1x)设g(x)=e x−1x 则g′(x)=e x+1x2当x>0时g′(x)>0所以g(x)在(0,+∞)上单调递增又g(12)=√e−2<0,g(1)=e−1>0所以存在x1∈(12,1)使得g(x1)=0且当x∈(0,x1),g(x)<0,x∈(x1,+∞),g(x)>0;又当x∈(0,1),y=x−1<0;x∈(1,+∞),y=x−1>0;故当x∈(0,x1)F′(x)>0;当x∈(x1,1)F′(x)<0;当x∈(1,+∞)F′(x)>0所以F(x)在(0,x1)上单调递增在(x1,1)上单调递减在(1,+∞)上单调递增所以当x=x1时F(x)取得极大值故x0=x1且e x0−1x0=0所以e x0=1x0,lnx0=−x0F(x0)=(x0−2)e x0−x0+lnx0+4=x0−2x0−x0−x0+4=5−2(x0+1x0)又y=x+1x 在(12,1)单调递减所以0<F(x0)<1【点睛】关键点点睛:本题考察含参函数单调性的讨论以及导数中的隐零点问题;处理问题的关键是能够准确分析F(x)的单调性以及求得隐零点的范围以及满足的条件属综合中档题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档