初一下学期数学阶段考试说明
河北省唐山市滦州市2022-2023学年七年级下学期期中考试数学试题(含答案)

滦州市2022—2023学年度第二学期期中考试七年级数学试卷注意事项:1.本试卷共4页,总分100分。
2.选择题答案用2B 铅笔涂在答题纸上。
3.非选择题须用0.5毫米黑色中性笔书写在答题纸上。
一、选择题:(本大题有16个小题,共42分.1~10小题各3分,11~16小题各2分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列方程是二元一次方程的是( )A .B.C .D .2.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示为( )A .千克B .千克C .千克D .千克3.如图,,,则点C 到AB 的距离是线段( )的长度A .CDB .ADC .BD D .BC4.下列计算正确的是( )A .B .C .D .5.若是关于x 、y 的二元一次方程的解,则a 的值为( )A .-5B .-1C .9D .116.下列命题中,是真命题的是( )A .相等的角是对顶角B .在同一平面内,不相交的两条线段平行C .一个角的余角比它的补角小90°D .过一点有且只有一条直线与已知直线平行7.如图,是由经过平移后得到的,且B ,E ,C ,F 在同一直线上,则平移的距离是()A .线段BC 的长度B .线段BE 的长度C .线段EC 的长度D .线段EF 的长度8.如图,已知垂足为O ,EF 经过点O ,如果,则等于( )23x y z +=45y x +=2102x y +=()182y x =+46.7510⨯667.510⨯76.7510⨯56.7510⨯AC BC ⊥CD AB ⊥842x x x ÷=()22346x y x y -=+()236x x -=-3412x x x ⋅=12x y =⎧⎨=⎩51ax y -=DEF △ABC △AB CD ⊥130∠=︒2∠A .30°B .45°C .60°D .90°9.计算:()A .7000B .4900C .700D .7010.如图,下列能判定的条件有()个.(1);(2);(3);(4).A .1B .2C .3D .411.解方程组时,下列步骤正确的是( )A .代入法消去a ,由①得B .代入法消去b ,由①得C .加减法消去a ,①-②得D .加减法消去b ,①+②得12.已知,,,则m ,n ,p 的大小关系是( )A .B .C .D .13.小红家离学校1500米,其中有一段为上坡路,另一段为下坡路.她去学校共用了18分钟,假设小红上坡路的平均速度是2千米/时,下坡路的平均速度是3千米/时,若设小红上坡用了x 分钟,下坡用了y 分钟,根据题意可列方程组为( )A .B .C .D .14.如果多项式与的乘积展开式中不含x 的一次项,且常数项为6,则的值为( )A .-12B .-6C .6D .1815.如图(1),在三角形ABC 中,,BC 边绕点C按逆时针方向旋转一周回到原来的位置。
初一数学试卷分析(7篇)

初一数学试卷分析(7篇)初一数学试卷分析(精选7篇)初一数学试卷分析篇1一、试卷情况分析本次考试试题注重了对基础知识的考查,同时关注了对学生推理能力、计算能力、读图分析能力和综合运用知识解决问题的能力的考查,试卷以新课程标准的评价理念为指导,以新课标教材为依据,特别在依据教材的基础上,考出学生的素质。
突出的特点有:1.知识点考查全面,让题型为知识点服务,每一个知识点无不被囊括期中,真正做到了覆盖全面。
2.形式灵活多样,并且注重数学知识与现实生活的应用,激发学生独立思考和创新意识。
3.题量和难度都不大,重点考查了学生对基础知识的掌握情况及熟练程度。
二、学生答题情况分析三、总体情况分析学生整体水平参差不齐,好多同学对基础知识掌握的不牢固,在教学中对好坏的兼顾认识重中之重。
主要失分原因:一是对基础知识、基本概念掌握不到位;二是学生审题不清、马虎大意,导致出错;三是对知识的迁移不能正确把握,不能正确使用所学的知识,缺乏应有的应变能力。
初一数学试卷分析篇2本套试题从整体看难度适中,知识覆盖面比较全。
从卷面看,大致可以分为两大类,第一类是基础知识,通过填空、选择、画图、计算以及证明题的检测。
第二类是综合应用,主要是考应用实践题。
无论是试题的类型,还是试题的表达方式,都可以看出出卷老师的别具匠心的独到的眼光。
试卷能从检测学生的学习能力入手,打破了学生的习惯思维,能测试学生思维的多角度性和灵活性。
一、学生的基本检测情况:总体来看,学生都能在检测中发挥出自己的实际水平,合格率都在84%以上,优秀率在58%左右。
1、在基本知识中,选择的情况基本较好。
应该说题目类型非常好,而且学生在先前也已练习过,因此正确率较高。
这也说明学生理解能力有了一定的发展,学生良好思维的培养就在于做像这样的数学题,改变以往的题目类型,让学生的思维很好的调动起来,而个别学生缺少的就是这个,以致失分严重。
2、此次计算题的考试,是一贯有的代数式化简及求值的题,共16分。
山东济南天桥区2023年第二十九中学七年级下学期数学期中考试试题(含答案)

七年级下学期数学期中考试试题满分150分时间:120分钟一.单选题。
(每小题4分,共40分)1.某手机使用5nm芯片,椅子5nm=0.0000005cm,其中0.0000005cm用科学记数法表示为()A.50×10﹣8 cmB.0.5×10﹣7 cmC.5×10﹣7 cmD.5×10﹣8 cm2.下面的四个图形中,∠1和∠2是对顶角的是()A. B. C. D.3.某市春天经常刮风,给人们的出行带来很多不便,小明观测了4月6日连续12个小时风力变化情况,并画出了风力随时间变化的图象如图所示,下列说法正确的是()A.在8时至14时,风力不断增大B.在8时至12时,风力最大的是7级C.在16时至20时,风力不断减小D.8时风力最小(第3题图)(第5题图)(第6题图)4.下列各组线段能组成三角形的是()A.3cm,4cm,5cmB.4cm,6cm,10cmC.3cm,3cm,6cmD.5cm,12cm,18cm5.如图,在平分角的仪器中,AB=AD,BC=DC,将点A放在一个角的顶点,AB和AD分别与这个角的两边重合,能说明AC就是这个角的平分线的数学依据是()A.SSSB.ASAC.SASD.AAS6.如图,在△ABC中,AD是△ABC的中线,若△ABD的面积是5,则△ABC的面积为()A.14B.12C.10D.87.图①是一个长为2m,宽为2n(m>n)的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图②那样拼成一个正方形,则中间空白部分的面积不能表示为()A.(m+n)2-4mnB.(m-n)2C.(m-n)2+2mnD.m2-2mn+n2(第7题图)(第8题图)(第10题图)8.如图,已知a∥b,小宇把三角板的直角顶点放在直线b上,若∠1=25°,则∠2的度数是()A.115°B.120°C.125°D.135°9.小明现已存款500元,为赞助希望工程,他计划今后每月存款20元,则存款总金额y(元)与时间x(月)之间的关系式是()A.y=20xB.y=500xC.y=500+20xD.y=500-20x10.如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE,以下四个结论:①BE=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°,其中结论正确的个数是()A.1B.2C.3D.4二.填空题。
初中学业水平考试数学说明

2019年德州市初中学业水平考试数学说明2019年德州市初中学业水平考试数学说明ﻩ数学学科的考试内容是指《义务教育数学课程标准(2019年版)》中所规定的课程内容。
ﻩ(一)考查目标与要求数学学科考试依照“注重基础,能力立意”的原则,考查初中数学的基础知识、基本技能、基本思想和基本活动经验,考查抽象概括能力、运算能力、推理能力、分析和解决问题的能力、空间观念、几何直观、数据分析能力、模型思想、应用意识和创新意识等、ﻩ1、四项基本要求ﻩ注重对基础知识的考查。
全面考查基础知识,突出对支撑学科体系的重点知识的考查,注重知识的整体性和知识之间的内在联系。
注重对基本技能的考查。
考查技能操作的程序与步骤及其中蕴含的原理。
注重对基本思想的考查、以基础知识为载体,考查对知识本质及规律的理性认识。
ﻩ注重对基本活动经验的考查。
考查在阅读、观察、实验、计算、推理、验证等活动过程中所积累的学习与应用基础知识、基本技能、基本思想方法的经验和思维的经验。
2。
能力要求ﻩ要求对数学能力的考查,以考查思维为核心,包括对数学知识、数学知识形成与发展过程、数学知识灵活应用的考查,注重全面,突出重点,适度综合,体现应用。
将对抽象概括能力、运算能力、推理能力、分析和解决问题的能力的考查贯穿于全卷。
ﻩ对抽象概括能力主要是指在不同问题的情境下,能够通过对具体对象的抽象概括,发现所研究对象的本质特征;从给定信息中概括出结论,将其应用于所研究的问题中、运算能力主要是指理解运算的算理;依照法则和运算律进行正确的运算;依照特定的问题,分析运算条件,探究、设计和选择合理、简洁的运算途径,解决问题;依照需要进行估算、推理能力包括合情推理能力和演绎推理能力。
合情推理能力是指依照问题的已知,结合已有的事实,凭借所积累的经验,利用归纳与类比等方法,推断出问题的某一特定结论;演绎推理能力是指依照问题的已知、已有的事实和确定的规则,进行逻辑考虑,推导出未知命题的正确性。
2023-2024学年全国初一下数学人教版期中考试试卷(含答案解析)

20232024学年全国初一下数学人教版期中考试试卷(含答案解析)一、选择题(每题1分,共5分)1. 下列选项中,不是同类二次根式的是()A. √2 和√3B. √18 和√24C. √a^2 和√b^2D. √(a+b) 和√(ab)2. 已知一组数据的方差是9,那么这组数据每个数据都加5后,方差是()A. 9B. 14C. 18D. 9的平方3. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x4. 在直角坐标系中,点P(2, 3)关于原点对称的点是()A. (2, 3)B. (2, 3)C. (2, 3)D. (3, 2)5. 下列各数中,是无理数的是()A. √9B. √16C. √2D. √1二、判断题(每题1分,共5分)6. 两个无理数相加一定是无理数。
()7. 任何两个实数都可以比较大小。
()8. 两个负数相乘一定得正数。
()9. 平行线的性质是同位角相等。
()10. 任何数乘以0都等于0。
()三、填空题(每题1分,共5分)11. 若a=3,则|a|的值是______。
12. 一次函数y=kx+b的图象与y轴的交点为(0,5),则b的值是______。
13. 已知一组数据2,3,5,7,x,这组数据的平均数是4,则x 的值是______。
14. 两个平行线的距离是指它们的______。
15. 若a≠b,则代数式(ab)^2的值是______。
四、简答题(每题2分,共10分)16. 简述平行线的性质。
17. 什么是二次根式?举例说明。
18. 简述方差的意义。
19. 请写出两个正比例函数的例子。
20. 如何判断一个数是有理数还是无理数?五、应用题(每题2分,共10分)21. 某商店将一件商品提价20%后,又降价20%,问现在的价格是原价的多少?22. 甲、乙两辆汽车同时从A地出发,甲车以60km/h的速度向北行驶,乙车以80km/h的速度向东行驶,2小时后,两车相距多少千米?23. 一个正方形的边长是a,它的面积是多少?24. 一辆汽车行驶了100千米,速度提高了20%,问原速度是多少?25. 小明从家到学校用了30分钟,如果他的速度提高20%,需要多少时间?六、分析题(每题5分,共10分)26. 已知一组数据1,2,3,4,5,x的平均数是3,求x的值,并说明理由。
辽宁省锦州市2023-2024学年七年级下学期期末数学试题(含答案)

辽宁省锦州市2023-2024学年七年级下学期期末数学试题考试时间90分钟试卷满分100分※考生注意:请在答题卡各题目规定的区域内作答,答在本试卷上无效.一、选择题(本大题共10个小羱,每小题2分、共20分、在每小题给出的四个选项中,有且只有一个选项是正确的)1.在这个环保意识日益增强的时代,垃圾分类已经成为我们生活中不可或缺的一部分.下列垃圾分类标识中,其文字上方的图案是轴对称图形的是()2.芯片是信息世界的基础核心,传统晶体管因接近物理极限而制约了芯片的进一步发展.北京大学研究团队成功构筑了超短沟道弹道二维硒化铟晶体管,成为国际上迄今速度最快、能耗最低的二维晶体管.将数据用科学记数法表示为( )A. B. C. D.3.下列事件是必然事件的是( )A.抛出的篮球不会下落B.射击运动员射击一次,命中10环C.早晨太阳从东方升起D.任意掷一枚硬币,落地后正面向上4.一个不透明的袋子中装有10个小球,其中有8个红球和2个黄球,这些小球除颜色外其他都相同,从袋子中随机摸出一个小球,则摸出的小球是红球的概率为( )A.B.C.D.5.下列条式能用平方差公式计算的是( )A. B. C. D.6.计算的结果是( )A.-2B. C.D.27.如图,,下列结论错误的是()0.00000001m 0.00000001m 8110m-⨯9110m-⨯80.110m-⨯90.110m-⨯12451518(2)(2)x y x y -+()()x y y x --()()b a bc +-()()a b a b -++202520241(2)2⎛⎫-⨯ ⎪⎝⎭12-12,90AOB OCD B D ︒≅∠=∠=V VA. B. C. D.8.放学后,小本同学准备在文具店购买同一单价的作业本,下列图象能较好地刻画他所付的费用与购买作业本的数量之间关系的是()A. B. C. D.9.在物理学中,过入射点垂直于镜面的直线叫做法线.光线在镜面上反射时,反射光线与法线的夹角和入射光线与法线的夹角相等.如图,两束光线分别从不同方向射向镜面,入射点为和为法线,的反射光线相交于点.若,则的度数是( )A.60°B.65°C.70°D.75°10.如图,已知,按如下步骤作图:①分别以点和为圆心,以大于的长为半径作弧,两弧相交于点和;②作直线EF ,分别交AB,BC 于点M ,N ;③连接AN .若的周长为12,则的周长为( )A.16B.15C.14D.13二、填空题(本大题共5个小题,每小题3分,共15分)11.计算的结果是________________.12.北普陀山是锦州著名的景点之一,五一期间,某中学组织20名教师和名学生到北普陀山开展活动,已知成人票每张50元,学生票每张25元.若设门票的总费用为元,则与之间的关系式为______________.13.如图,直线,将等边按如图方式放置,点在直线上,边AB 交直线于点.若,则的度数为______________.AOB C ∠=∠90A C ︒∠+∠=AO CO ⊥AO CD=y x 12,l l m A 12,,B n n 12,l l P 125,245︒︒∠=∠=APB ∠ABC V A B 12AB E F 2,AM ACN =V ABC V 13-x y y x //m n ABC V B n m D 120︒∠=2∠14.如图,点E,F 在线段AC 上(不与点A,C 重合),.若,则AE 的长为_____________.15.如图,与均是等腰三角形,且,连接AC,AD,BC,BD ,.在绕点旋转的过程中,四边形ABCD 面积的最大值为_____________.三、解答题(本题共8道题,共65分,解答应写出文字说明、演算步骤或推理过程)16.((1)小题4分,(2)小题6分,共10分)(1)计算:;(2)先化简,再求值:,其中.17.(本小题6分)某商场促销,顾客当日消费即可参与一次转盘抽奖.如图,转盘被等分成12份,分別标有1,2,3,4,5,6,7,8,9,10,11,12这12个数字,转动转盘,当转盘停止时,指针指向的数字即为转出的数字(当指针恰好指在分界线上时无效,需要重转).若指计指向的数字为4的倍数则可以领取一份奖品,请计算顾客获奖的概率.18.(本小题7分)在弹性限度内,弹簧的长度随所挂物体质量的增加而伸长,经过实验发现,弹簧的长度与所挂物体质量之间的对应关系如下表:所挂物体质量01234…弹簧的长度1212.51313.514…(1)在这个变化过程中,自变量和因变量各是什么?ADF CBE ∆≅∆8,2AC EF ==APB V CPD V 90APB CPD ︒∠=∠=3,2AP CP ==CPD V P ()2224124xy xy x y ⋅-÷2(2)()(4)2a b a b a b a ⎡⎤-+-++⎣⎦1,2a b =-=(cm)y (kg)x (kg)x (cm)y(2)请根据表格中的数据,求挂物体后弹簧的长度与所挂物体质量之间的关系式;(3)在弹性限度内,弹簧伸长后的最大长度为,该弹簧最多能挂多重的物体?19.(本小题7分)如图,E,F 分别是长方形ABCD 的边AD,BC 上的点(不与端点重合),连接EF,将四边形EFCD 沿EF 折叠,点C,D 的对应点分别为点,若,求的度数。
四川省甘孜州2019-2020学年七年级下学期期末数学试题(解析版)
(3)根据多项式除以单项式法则计算即可.
【详解】(1)解:原式
.
(2)解:原式
.
(3)解:原式
.
【点睛】本题考查乘方、负整数指数幂、零指数幂的计算及整式的四则混合运算.熟练掌握相应的运算法则是解题的关键.
17.如图,已知 是 的角平分线,过点 作 ,交 于点 , , ,求 的度数.
【答案】9
【解析】
【分析】
根据等底等高的两个三角形面积相等知,三角形的中线把三角形的面积分为相等的两部分,所以△ADC的面积是△ABC的面积的一半,即9cm2.
【详解】解:S△ADC=S△ABC÷2=18÷2=9cm2.
故答案为:9
15.计算:x2•x3=_____;4a2b÷2ab=_____.
【答案】(1).x5(2).2a
6.下列运算正确的是( )
A. B. C. D.
【答案】C
【解析】
A. ,原式计算错误,故本选项错误;
B. ,原式计算错误,故本选项错误;
C. ,计算正确,故本选项正确;
D. ,原式计算错误,故本选项错误.
故选C.
7.若 是完全平方式,则 的值是()
A 或 B. C. D.
【答案】A
【解析】
【分析】
【点睛】此题考查的是一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.
20.超市举行有奖促销活动:凡一次性购物满300元者即可获得一次摇奖机会.摇奖机是一个圆形转盘,被分成16等分,摇中红、黄、蓝色区域,分获一、二、三获奖,奖金依次为60、50、40元.一次性购物满300元者,如果不摇奖可返还现金15元.
AB边上的高应从点C作AB所在直线的垂线段,CD不符合,故B错误;
初一下学期期末考考点总结
初一下学期期末考考点总结一、数学1.1 数的四则运算加减乘除的基本规则和特殊情况的计算方法;带有整数部分的混合运算;数的算式化简;复杂运算的顺序。
1.2 数的整除性能不能整除,整除的商和余数;找最大公因数和最小公倍数;素数和合数。
1.3 分数分数的大小关系,分数的加减乘除。
1.4 算数平方根非负实数、无理数;简化和化简根式;开方和乘方;数的分次运算。
1.5 代数式含有一元一次代数式的计算;带有未知数的线性方程组。
1.6 比例与相似比例、比例的性质和应用;相似性和相似三角形。
1.7 图形的认识角、直角、钝角、锐角;平行四边形、矩形、三角形、正方形、等边三角形;图形的面积、体积。
1.8 实际问题的数学化汽车燃油效率问题、旅行时间问题、商品打折问题等。
二、语文2.1 词语积累词汇量的积累,知识面的扩大,通过阅读文章、背诵诗歌来提高词语积累和对汉字的理解。
2.2 写作学习写作的基本要领,如文章的开头、中间和结尾;学习两种写作文体:记叙文和议论文;学习写作技巧,如运用描绘、夸张、对比等手法来写作。
2.3 理解文章通过阅读短文、小说、故事等文学作品,提高对文章的理解和阅读理解能力;学习主旨思想、作者观点;学习对比、归纳、引用等阅读理解技巧。
2.4 修辞手法学习修辞手法的定义、种类和运用,如比喻、拟人、夸张、对比等。
2.5 古文阅读通过阅读古文,学习古文的基本语法、词语的理解、文意的理解和作品的背景知识。
2.6 写作技巧学习一些写作技巧,如应用修辞、运用描写、运用对比等。
三、英语3.1 词汇词汇量的积累,学习常用词汇和句型;学习单词的拼写和发音规则。
3.2 语法学习基本的语法规则,如时态、语态、被动语态、名词性从句等;学习词法规则,如词形变化、词义辨析等。
3.3 听力通过听录音,提高对英语听力的理解和反应速度;学习听写和听力填空技巧。
3.4 阅读通过阅读英文短文和文章,提高对英文的理解能力;学习阅读的技巧,如扫读、细读、预测等;学习字词的猜测和词义的推测。
2024年济南高新区七年级下学期数学期末考试试题(含答案)
济南高新区2023-2024 学年第二学期七年级学业质量抽测数学试题本试题分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷共2页,满分为48分;第Ⅱ卷共5页,满分为102分.本试题共6页,满分为150分.考试时间为120分钟.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的考点、姓名、准考证号、座号填写在答题卡上和试卷规定的位置上.考试结束后,将本试卷和答题卡一并交回.本考试不允许使用计算器.第I卷(选择题共48分)注意事项:第Ⅰ卷为选择题,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案写在试卷上无效.一.选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是( )A. B. C. D.2.如图,AB∥CD,若∠1=125°,则∠2的度数为( )A.35°B.45°C.55°D.125°3.要画一个面积为30cm2长方形,其长为x cm,宽为y cm,在这一变化过程中,常量与变量分别为( )A.常量为30,变量为x、yB.常量为30、y,变量为xC.常量为30、x,变量为yD.常量为x、y,变量为304.下列诗句所描述的事件中,属于必然事件的是( )A.黄河入海流B.手可摘星辰C.锄禾日当午D.大漠孤烟直5.下列运算正确的是( )A.a2+a3=a5B.a2·a3=a5C.(a2)3=a5D.(2a)3=6a36.具备下列条件的△ABC中,不是直角三角形的是( )A.∠A+∠B=∠CB.∠A-∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C7.在学校科技宣传活动中,某科技活动小组从“北斗”“天眼”“高铁”“人工智能”4个内容中,随机选择一个进行介绍.科技活动小组恰好选中“高铁”的概率为( )A.16B.14C.13D.128.碳酸钠的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法正确的是( )A.当温度为60℃时,碳酸钠的溶解度为49gB.碳酸钠的溶解度随着温度的升高而增大C.当温度为40℃时,碳酸钠的溶解度最大D.要使碳酸钠的溶解度大于43.6g,温度只能控制在40~80℃(第8题图)(第9题图)(第10题图)9.如图,小李用若干长方体小木块,分别垒了两堵与地面垂直的木块墙,其中木块墙AD=24cm,CE=12cm.木块墙之间刚好可以放进一个等腰直角三角板,点B在DE上,点A和C分别与木块墙的顶端重合,则两堵木块墙之间的距离DE为( )A.48cmB.42cmC.38cmD.36cm10.如图,某自动感应门的正上方A处装着一个感应器,离地面的高度AB为2.5米,一名学生站在C处时,感应门自动打开了,此时这名学生离感应门的距离BC为1.2米,头顶离感应器的距离AD为1.5米,则这名学生身高CD为( )米.A.0.9B.1.3C.1.5D.1.611.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( )A.3 cm2B.4 cm2C.6 cm2D.12 cm2(第11题图)(第12题图)12.有两个正方形A、B,将A、B并列放置后构造新的图形,分别得到长方形图甲与正方形图乙.若图甲、图乙中阴影的面积分别为12与30,则正方形B的面积为( )A.3B.4C.5D.6第Ⅱ卷(非选择题共102分)注意事项:1.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二.填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2m(m+n)= .14.如果所示的地板由15块方砖组成,每一块方砖除颜色外完全相同,小球自由滚动,随机停在黑色方砖的概率为.(第14题图) (第15题图) (第16题图) (第18题图)15.有一个英语单词,其四个字母都关于直线l对称,如图是该单词各字母的一部分,请写出补全后的单词所指的物品.16.如图,△ABC的顶点均在正方形网格的格点上,则∠ABC+∠ACB的度数等于.17.我国首辆火星车正式被命名为“祝融”,为应对极限温度环境,火星车使用的是新型隔温材料纳米气凝胶,该材料导热率K(W/m·K)与温度T(℃)的关系如表:根据表格中两者的对应关系,若导热率为0.5W/m·K,则温度为℃.18.如图,△ABC中,∠B=30°,∠C=50°,点D为边BC上一点,将△ABD沿直线AD折叠后,点B落到点B’处,恰有B’D∥AC,则∠ADB的度数为.三.解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)计算:(﹣a)2·a4+(2a3)2.20.(本题4分)计算:(3x﹣1)(x+2).21.(本题4分)根据条件画图,并回答问题:(1)画一个锐角△ABC;(2)画出BC边上的中线AE和AB边上的高CD.22.(本题5分)请完善下列题目的解答过程,并在括号内填写相应的理论依据.已知:如图,AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF.证明:∵AB⊥BC,BC⊥CD∴∠ABC=∠BCD=90°()∴∠1+∠EBC=90°,∠2+()=90°又∵∠1=∠2(已知)∴∠EBC= ()∴BE∥CF()23.(本题5分)如图,在△ABC 中,∠ABC=80°,∠ACB=50°,BP 平分∠ABC ,CP 平分∠ACB ,求∠BPC 的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式).解:∵ (已知),∴∠PBC=12∠=40°∴∠PBC=12∠ABC=12×80°=40°同理可得∠PCB= .∵∠BPC+∠PBC+∠PCB=180( )∴∠BPC=180°﹣∠PBC ﹣∠PCB (等式的性质)∴∠BPC= °24.(本题6分)先化简,再求值:(x ﹣2y)2﹣(2x ﹣y)(2x+y)﹣5y 2,其中x=1,y=﹣12.25.(本题6分)如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF ,求证:∠B=∠E .26.(本题6分)甲袋中有红球8个、白球5个和黑球12个;乙袋中有红球18个、白球9个和黑球23个.(每个球除颜色外都相同)“从乙袋中取出10个红球后,乙袋中的红球个数和甲袋中红球个数一样多,所以此时若从中任意摸出一个球是红球,选甲、乙两袋成功的机会相同”.你认为这种说法正确吗?为什么?27.(本题8分)为了解某种品牌轿车的耗油情况,将油箱加满后进行了耗油试验,得到如下数据:(1)该轿车油箱的容量为L,行驶150km时,油箱剩余油量为L.(2)根据上表中的数据,直接写出油箱剩余油量Q(L)与轿车行驶的路程s(km)之间的关系式.(3)某人将油箱加满后,驾驶该汽车从A地前往B地,到达B地时油箱剩余油量为10L,求A、B两地之间的距离.28.(本题8分)“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节,某校八年级(1)班的小明学习了“勾股定理”之后,为了测得风筝的垂直高度CE(如图1),进行了如下操作:①牵线放风筝的小明手抓线的地方与地面的距离AB为1.5米;②根据手中剩余线的长度计算出风筝线CB的长为17米;③测得小明手抓线的地方与风筝的水平距离BD的长为8米.(1)求风筝的垂直高度CE;(2)如图2,小明想让风筝沿CD方向下降9米到点M处,则他应该往回收线多少米?29.(本题10分)(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,猜想DE、BD、CE之间的数量关系为;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m 上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问(1)中结论是否仍然成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.30.(本题12分)读材料,解答下列问题:若(x﹣1)(5﹣x)=3 ,求(x﹣1)2+(5﹣x)2的值.小亮的解题方法如下:设x﹣1=a,5﹣x=b则(x﹣1)(5﹣x)=ab=3,a+b=x﹣1+5﹣x=4∴(x﹣1)2+(5﹣x)2=a2+b2=(a+b)2﹣2ab=42﹣2×3=10(1)运用材料中的方法解答:若(10﹣x)2+(x﹣8)2=124,求(10﹣x)(x﹣8)的值;(2)如图1,长方形ABCD空地,AB=15米,BC=12米,在中间长方形EFGH上安放雕塑,四周剩余的宽度相同,设该宽度为x米,长方形EFGH中EF= 米,FG= 米.(用含x 代数式表示)(3)在(2)的条件下,如图2,以长方形EFGH四边为直径在形外做半圆,在四个半圆里种花,若长方形EFGH的面积为30平方米,求种花的面积.(结果保留π)答案一.选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.围棋起源于中国,古代称之为“弈”,至今已有四千多年的历史,下列由黑白棋子摆成的图案是轴对称图形的是( D )A. B. C. D.2.如图,AB∥CD,若∠1=125°,则∠2的度数为( C )A.35°B.45°C.55°D.125°3.要画一个面积为30cm2长方形,其长为x cm,宽为y cm,在这一变化过程中,常量与变量分别为( A )A.常量为30,变量为x、yB.常量为30、y,变量为xC.常量为30、x,变量为yD.常量为x、y,变量为304.下列诗句所描述的事件中,属于必然事件的是( A )A.黄河入海流B.手可摘星辰C.锄禾日当午D.大漠孤烟直5.下列运算正确的是( B )A.a2+a3=a5B.a2·a3=a5C.(a2)3=a5D.(2a)3=6a36.具备下列条件的△ABC中,不是直角三角形的是( D )A.∠A+∠B=∠CB.∠A-∠B=∠CC.∠A:∠B:∠C=1:2:3D.∠A=∠B=2∠C7.在学校科技宣传活动中,某科技活动小组从“北斗”“天眼”“高铁”“人工智能”4个内容中,随机选择一个进行介绍.科技活动小组恰好选中“高铁”的概率为( B )A.16B.14C.13D.128.碳酸钠的溶解度y(g)与温度t(℃)之间的对应关系如图所示,则下列说法正确的是( C )A.当温度为60℃时,碳酸钠的溶解度为49gB.碳酸钠的溶解度随着温度的升高而增大C.当温度为40℃时,碳酸钠的溶解度最大D.要使碳酸钠的溶解度大于43.6g,温度只能控制在40~80℃(第8题图)(第9题图)(第10题图)9.如图,小李用若干长方体小木块,分别垒了两堵与地面垂直的木块墙,其中木块墙AD=24cm,CE=12cm.木块墙之间刚好可以放进一个等腰直角三角板,点B在DE上,点A和C分别与木块墙的顶端重合,则两堵木块墙之间的距离DE为( D )A.48cmB.42cmC.38cmD.36cm10.如图,某自动感应门的正上方A处装着一个感应器,离地面的高度AB为2.5米,一名学生站在C处时,感应门自动打开了,此时这名学生离感应门的距离BC为1.2米,头顶离感应器的距离AD为1.5米,则这名学生身高CD为( D )米.A.0.9B.1.3C.1.5D.1.611.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( C )A.3 cm2B.4 cm2C.6 cm2D.12 cm2(第11题图)(第12题图)12.有两个正方形A、B,将A、B并列放置后构造新的图形,分别得到长方形图甲与正方形图乙.若图甲、图乙中阴影的面积分别为12与30,则正方形B的面积为( A )A.3B.4C.5D.6第Ⅱ卷(非选择题共102分)注意事项:1.第II卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.二.填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:2m(m+n)= 2m2+2mn .14.如果所示的地板由15块方砖组成,每一块方砖除颜色外完全相同,小球自由滚动,随机.停在黑色方砖的概率为13(第14题图) (第15题图) (第16题图) (第18题图)15.有一个英语单词,其四个字母都关于直线l对称,如图是该单词各字母的一部分,请写出补全后的单词所指的物品书.16.如图,△ABC的顶点均在正方形网格的格点上,则∠ABC+∠ACB的度数等于45°.17.我国首辆火星车正式被命名为“祝融”,为应对极限温度环境,火星车使用的是新型隔温材料纳米气凝胶,该材料导热率K(W/m·K)与温度T(℃)的关系如表:根据表格中两者的对应关系,若导热率为0.5W/m·K,则温度为450 ℃.18.如图,△ABC中,∠B=30°,∠C=50°,点D为边BC上一点,将△ABD沿直线AD折叠后,点B落到点B’处,恰有B’D∥AC,则∠ADB的度数为115°.三.解答题:(本大题共12个小题,共78分.解答应写出文字说明、证明过程或演算步骤.)19.(本题4分)计算:(﹣a)2·a4+(2a3)2.解:原式=x6+4x6=5x620.(本题4分)计算:(3x﹣1)(x+2).解:原式=3x2﹣x+6x﹣2=3x2+5x﹣221.(本题4分)根据条件画图,并回答问题:(1)画一个锐角△ABC;(2)画出BC边上的中线AE和AB边上的高CD.略22.(本题5分)请完善下列题目的解答过程,并在括号内填写相应的理论依据.已知:如图,AB⊥BC,BC⊥CD且∠1=∠2,求证:BE∥CF.证明:∵AB⊥BC,BC⊥CD∴∠ABC=∠BCD=90°(垂直的定义)∴∠1+∠EBC=90°,∠2+(∠BCF )=90°又∵∠1=∠2(已知)∴∠EBC= ∠BCF (等角的余角相等)∴BE∥CF(内错角相等,两直线平行)23.(本题5分)如图,在△ABC中,∠ABC=80°,∠ACB=50°,BP平分∠ABC,CP平分∠ACB,求∠BPC的度数.对于上述问题,在以下解答过程的空白处填上适当的内容(理由或数学式).解:∵ BP 平分∠ABC (已知),∴∠PBC=12∠ ABC=40°∴∠PBC=12∠ABC=12×80°=40°同理可得∠PCB= 25° .∵∠BPC+∠PBC+∠PCB=180( 三角形内角和是180° )∴∠BPC=180°﹣∠PBC ﹣∠PCB (等式的性质)∴∠BPC= 115° °24.(本题6分)先化简,再求值:(x ﹣2y)2﹣(2x ﹣y)(2x+y)﹣5y 2,其中x=1,y=﹣12.解:原式=x 2﹣4xy+4y 2﹣4x 2+y 2﹣5y 2=﹣3x 2﹣4xy当x=1,y=﹣12时,原式=﹣3×12﹣4×1×(﹣12)=﹣3+2=﹣125.(本题6分)如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF ,求证:∠B=∠E .证明:∵AD=CF∴AD+DC=CF+DC∴AC=DF在△ABC 和△DEF 中{AB =DE AC =DF BC =EF ∴△ABC ≌DEF(SSS)∴∠B=∠E26.(本题6分)甲袋中有红球8个、白球5个和黑球12个;乙袋中有红球18个、白球9个和黑球23个.(每个球除颜色外都相同)“从乙袋中取出10个红球后,乙袋中的红球个数和甲袋中红球个数一样多,所以此时若从中任意摸出一个球是红球,选甲、乙两袋成功的机会相同”.你认为这种说法正确吗?为什么?解:说法不正确从甲袋中摸到红球的可能性为P 甲=85+8+12=825从乙袋中取出10个红球后,从乙袋中摸到红球的可能性为P 乙=89+8+23=840=15∵825≠15所以选甲、乙两袋成功的机会不相同,故说法不正确.27.(本题8分)为了解某种品牌轿车的耗油情况,将油箱加满后进行了耗油试验,得到如下数据:(1)该轿车油箱的容量为 L ,行驶150km 时,油箱剩余油量为 L .(2)根据上表中的数据,直接写出油箱剩余油量Q(L)与轿车行驶的路程s(km)之间的关系式.(3)某人将油箱加满后,驾驶该汽车从A 地前往B 地,到达B 地时油箱剩余油量为10L ,求A 、B 两地之间的距离.解:(1)该轿车油箱的容量为50L 行驶150km ,剩余油量为 38(2)Q=50﹣0.08s(3)(3)令Q=10,即50﹣0.08s=10解得:s=500A 、B 两地之间的距离为500km28.(本题8分)“儿童散学归来早,忙趁东风放纸鸢”.又到了放风筝的最佳时节,某校八年级(1)班的小明学习了“勾股定理”之后,为了测得风筝的垂直高度CE (如图1),进行了如下操作:①牵线放风筝的小明手抓线的地方与地面的距离AB 为1.5米;②根据手中剩余线的长度计算出风筝线CB 的长为17米;③测得小明手抓线的地方与风筝的水平距离BD 的长为8米.(1)求风筝的垂直高度CE ;(2)如图2,小明想让风筝沿CD 方向下降9米到点M 处,则他应该往回收线多少米?解:(1)在Rt △CDB 中,CD=15(米)∵DE=AB=1.5米∴CE=CD+DE=15+1.5=16.5(米)答:风筝的高度CE为16.5米(2)由题意得,CM=9米,∴DM=CD﹣CM=15﹣9=6(米)在Rt△BDM中,由勾股定理得:BM=10(米)∴BC﹣BM=17﹣10=7(米)答:小明应该往回收线7米29.(本题10分)(1)如图①,已知:△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,猜想DE、BD、CE之间的数量关系为;(2)拓展:如图②,将(1)中的条件改为:△ABC中,AB=AC,D、A、E三点都在直线m 上,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问(1)中结论是否仍然成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.(1)DE=BD+CE(2)解:结论仍然成立∵∠BDA=∠AEC=∠BAC=α∴∠DBA+∠BAD=∠BAD+∠CAE=180﹣α∴∠CAE=∠ABD在△ADB和△CEA中{∠ABD=∠CAE∠BDA=∠CEAAB=AC∴△ADB≌△CEA(AAS)∴AE=BD,AD=CE∴DE=AE+AD=BD+CE(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC∴∠CAE=∠ABD在△ABD和△CEA中{∠ABD=∠CAE∠BDA=∠CEAAB=AC∴△ADB≌△CEA(AAS)S△ABD=S△CEA设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为hS △ABC =12BC ·h=12,S △ACF =12CF ·h=12∵BC=2CF∵S △ACF =6∴S △ACF =S △CEF +S △CEA =S △CEF +S △ABD =6∴△ABD 与△CEF 的面积之和为630.(本题12分)读材料,解答下列问题:若(x ﹣1)(5﹣x)=3 ,求(x ﹣1)2+(5﹣x)2的值.小亮的解题方法如下:设x ﹣1=a ,5﹣x=b则(x ﹣1)(5﹣x)=ab=3,a+b=x ﹣1+5﹣x=4∴(x ﹣1)2+(5﹣x)2=a 2+b 2=(a+b )2﹣2ab=42﹣2×3=10(1)运用材料中的方法解答:若(10﹣x)2+(x ﹣8)2=124,求(10﹣x)(x ﹣8)的值;(2)如图1,长方形ABCD 空地,AB=15米,BC=12米,在中间长方形EFGH 上安放雕塑,四周剩余的宽度相同,设该宽度为x 米,长方形EFGH 中EF= 米,FG= 米.(用含x 代数式表示)(3)在(2)的条件下,如图2,以长方形EFGH 四边为直径在形外做半圆,在四个半圆里种花,若长方形EFGH 的面积为30平方米,求种花的面积.(结果保留π)解:(1)设10﹣x=a ,x ﹣8=b则有(10﹣x)2+(x ﹣8)2=a 2+b 2=124∴a+b=2,(10﹣x)(x ﹣8)=ab∴(10﹣x)(x ﹣8)=ab=12(22﹣124)=﹣60即(10﹣x)(x ﹣8)=﹣60(2)由题意得:EF=AB ﹣x ﹣x=(15﹣2x)米,FG=BC ﹣x ﹣x=(12﹣2x)米(3) 长方形EFGH 的面积为30平方米∴(15﹣2x)(12﹣2x)=30(15﹣2x)2+(12﹣2x)2=32+2×30=69∴种花的面积=π(15﹣2x 2)2+π(12﹣2x 2)2=π4×69=69π4m 2。
北京市铁路第二中学2023~2024学年第二学期初一下期中数学试卷
北京市铁路第二中学2023—2024学年度第二学期初一数学期中考试试卷(试卷满分110分考试时长100分钟)第Ⅰ卷(主卷部分,共100分)一、选择题(本题共20分,每小题2分)以下每个小题中,只有一个选项是符合题意的. 1.下列式子正确的是( )A.B.C.D.2.下列选项中,可由如图2023年杭州亚运会会徽“潮涌”平移得到的是( )A. B. C. D.3. 下列实数3.14159260.2,1.212212221…,17,2−π,−2020,中,无理数有().A. 1个B. 2个C. 3个D. 4个4. 已知,则下列不等式一定成立的是().A. B. C. D.5.已知关于x的方程2x+4=m﹣x的解为非负数,则m的取值范围是( )A.m≤B.m≥C.m≤4 D.m≥46.在平面直角坐标系中,将点(m,n)先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是( )A.(m﹣2,n﹣1)B.(m﹣2,n+1)C.(m+2,n﹣1)D.(m+2,n+1)7. 如图,直线与直线相交于点,,且平分,若,则的度数为()39±=283=--416=-()222-=-ba>22a b->-22ba<1212-<-ba22->-baAB C D O OE OF⊥OACOE∠50DOE∠=︒BOF∠A. B. C. D. 8.如图是北京地铁部分线路图.若崇文门站的坐标为(4,﹣1),北海北站的坐标为(﹣2,4),则复兴门站的坐标为( )A .(﹣1,﹣7)B .(﹣7,1)C .(﹣7,﹣1)D .(1,7)9.给出以下四个命题:①如果两个角互补,那么这两个角都是锐角;②如果两条直线被第三条直线所截,同旁内角互补,那么同位角相等;③如果一个角的两边分别与另一个角的两边互相垂直,那么这两个角互补;④平面上3条直线,最多可把平面分成7个部分。
其中正确的命题为()A .①②③④ B .②④ C .④ D .①③10.如图,在一个单位为1的方格纸上,△A 1A 2A 3,△A 3A 4A 5,△A 5A 6A 7,⋯⋯是斜边在x 轴上,斜边长分别为2,4,6的等腰直角三角形.若△A 1A 2A 3的顶点坐标分别为A 1(2,0),A 2(1, ﹣1),A 3(0,0),则依图中所示规律,A 2025的横坐标为( )A .1014B .﹣1014C .1012D .﹣1012二.填空题:(本题共18分,每小题2分,第12、18题3分)11、由,用来表示,得.1213. 若点在y轴上,则P 点坐标为. 14.将“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式为20︒25︒30︒35︒06911=--y x y x _____________=x 31_______-(2,31)P m m -+____________________________________.15、已知为实数,且,则16、如图,17.在平面直角坐标系中,已知点A (2,1),直线AB 与x 轴平行,若AB =4,则点B 的坐标为 .18、如图,直线AB ∥CD ,E 为直线AB 上一点,EH ,EM 分别交直线CD 于点F ,M ,EH 平分∠AEM ,MN ⊥AB ,垂足为点N ,∠CFH =α.(1)MN ME (填“>”或“=”或“<”),理由是 ;(2)∠EMN = (用含α的式子表示). 第16题图 第18题图三.解答题(本题共27分,19题8分,20题12分,21、24题每题5分,22、23、25题每题6分,26、27题每题7分)(2)20. 解方程及方程组(1); (2)(3)21.解不等式,并把解集表示在数轴上.y x,x x y 411431-+-+=_________34的平方根为y x +︒=∠︒=∠⊥___________2,1201,,////则于点P GH PS EF CD AB 234182161119⎪⎪⎭⎫ ⎝⎛--+-+)、计算(2--15722=+x ()092313=-+x ⎩⎨⎧=+=-421532y x y x 323125+<-+x x22.如图,BE平分∠ABC,∠E=∠1,∠3+∠ABC=180°,试说明DF∥AB.请完善解答过程,并在括号内填写相应的理论依据.解:∵BE平分∠ABC,∴∠1=∠2(①___________________________),∵∠E=∠1(已知),∴∠E=∠2(等量代换),∴② (③_____________________________),∴∠A+∠ABC=180°(④ __________),∵∠3+∠ABC=180°(已知),∴⑤ (⑥_____________________________)∴DF∥AB(同位角相等,两直线平行).23.如图,点C,D在直线AB上,∠ACE+∠BDF=180°,EF∥AB.(1)求证:CE∥DF;(2)∠DFE的角平分线FG交AB于点G,过点F作FM⊥FG交CE的延长线于点M.若∠CMF=55°,先补全图形,再求∠CDF的度数.24.如图,某校的饮水机有温水、开水两个按钮,温水和开水共用一个出水口.温水的温度为30℃,流速为20mL /s ;开水的温度为100℃,流速为15mL /s .整个接水的过程不计热量损失.(1)甲同学用空杯先接了6s 温水,再接4s 开水,接完后杯中共有水_____ mL ;(2)乙同学先接了一会儿温水,又接了一会儿开水,得到一杯280mL 温度为40℃的水(不计热损失),求乙同学分别接温水和开水的时间.25.如图,在平面直角坐标系中,已知△ABC 的三个顶点坐标分别为A (﹣2,3),B (﹣3,1),C (0,﹣2).(1)将△ABC 向右平移4个单位后得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)求△ABC 的面积;(3)定义:在平面直角坐标系中,横坐标与纵坐标都是整数的点称为“整点”,请直接写出△A 1B 1C 1内部所有的整点的坐标.26.已知:AB ∥CD ,E 、G 是AB 上的点,F 、H 是CD 上的点,∠1=∠2.(1)如图1,求证:EF ∥GH ;(2)如图2,过F 点作FM ⊥GH 交GH 延长线于点M ,作∠BEF 、∠DFM 的角平分线交于点N ,EN 交GH 于点P ,求证:∠N =45°;(3)如图3,在(2)的条件下,作∠AGH 的角平分线交CD 于点Q ,若物理常识:开水和温水混合时会发生热传递,开水放出的热量等于温水吸收的热量,可以转化为:开水的体积×开水降低的温度=温水的体积×温水升高的温度.3∠FEN =4∠HFM,直接写出的值.27.对平面直角坐标系xOy 中,给出如下定义:对于任意两个点M (x 1,y 1),N (x 2,y 2),M 与N 的“直角距离”记为d MN ,d MN =|x 1﹣x 2|+|y 1﹣y 2|.例如:点M (1,5)与N (7,2)的“直角距离”d MN =|1﹣7|+|5﹣2|=9.(1)已知点A (4,﹣1).①点A 与点B (1,2)的“直角距离”d AB = ;②若点A 与点C (﹣2,m )的“直角距离”d AC =7,则m 的值为 .(2)已知D (﹣1,﹣1)和E (1,2).①在点G (﹣1,1),H (,),K (2,﹣1)中,到D ,E 两个点的“直角距离”之和最小的是 ;②若点F (4,﹣3),若平面直角坐标系中的点P 满足d PD +d PE +d PF 最小,直接写出点P 的坐标: ;③若点Q 在平面直角坐标系中,满足 (d QD +d QE )最小且|d QD ﹣d QE |最小,请在右侧平面直角坐标系中直接画出所有符合条件的点Q 所组成的图形.第MPN GQH∠∠Ⅱ卷(附加卷部分,共10分)一.填空题(本题共10分, 第1题2分,第2题3分,第3题5分)1.如图,在四边形ABCD纸片中AD∥BC,AB∥CD,将纸片折叠,点A、D分别落在E、F 处,折痕为MN,EM与BC交于点P.若∠D+∠CNF=140°,则∠BPM的度数为 °.2.某日小王驾驶一辆小型车到某地办事,上午9:00到达,在路边的电子收费停车区域内停车.收费白天(7:00~19:00)首小时内小型车:1.5元/15分钟大型车:3元/15分钟首小时后小型车:2.25元/15分钟大型车:4.5元/15分钟夜间(19:00(不含)~次日7:00(不含))小型车:1元/2小时大型车:2元/2小时不足一个计时单位按一个计时单位收取费用(1)如果他9:50离开,那么应缴费 元;(2)如果他离开时缴费15元,那么停车的时长t(单位:分钟)的取值范围是 .3.在平面直角坐标系中,对于与原点不重合的两个点和,关于,的方程称为点的“照耀方程”.若是方程的解,则称点“照耀”了点例如,点的“照耀方程”是,且是该方程的解,则点“照耀”了点.(1)下列点中被点“照耀”的点为____________.,,(2)若点同时被点和点“照耀”,则可求出 , 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一下学期数学阶段考试说明
一、考试内容:
《人教版》七下第六章《实数》,第七章《平面直角坐标系》,第八章《二元一次方程组》
第九章《不等式与不等式组》;
二、知识点所占比例:
第六章:"实数"约占20%。
1、了解算术平方根、平方根、立方根的概念,会用根号表示数的平方根、立方根。
2、了解开方与乘方互为逆运算,会用平方运算求某些非负数的平方根,会用立方根运
算求某些数的立方根。
3、了解无理数和实数的概念,知道实数与数轴上的点一一对应;了解数的范围由有理
数扩大为实数后,概念、运算等的一致性及其发展变化。
4、能用有理数估计一个无理数的大致范围。
5、可以进行简单的实数运算(不考实数化简:如318不作为考察内容)
注:二次根式有意义的题目不考,但根号与绝对值的和为0类型的题目可以涉及。
第七章:"平面直角坐标系"约占20%。
1、理解有序数对,会用有序数对来表示相应的位置;
2、掌握平面直角坐标系的概念,理解平面上的点与有序实数对间的一一对应关系;
3、能正确画出直角坐标系,以及根据点的坐标找出它的位置、由点的位置确定它的坐
标;
4、理解坐标轴平面内的点的坐标特征;理解一个点坐标与这个点到横轴、纵轴距离之
间距离的关系.
5、理解象限的概念,掌握各象限内点的坐标特征;会应用数轴上点的坐标特征解决相
关题目。
6、会求平面上特殊点组成的三角形的面积。
7、能建立适当的平面直角坐标系描述物体的位置,体会平面直角坐标系在解决实际问
题中的作用;在平面上,能用方位角和距离刻画两个物体的相对位置.
8、掌握点的坐标变化与点的左右或上下平移间的关系;
9、掌握图形各个点的坐标变化与图形平移的关系并解决与平移有关的问题;
注:坐标系中与图形的对称有关的内容不在考察范围。
第八章:"二元一次方程组"约占30%。
1、理解二元一次方程、二元一次方程组以及它们的解的概念:
2、理解已知一个二元一次方程,能用其中一个未知数表示另一个未知数;掌握使用代
入消元法的一般解题过程.
3、掌握“加减法解二元一次方程组”的一般过程,能够根据方程的特点,选择合适解
方程组的方法
4、在解方程中体会“转化”的思想方法;
5、能够在以二元一次方程组为背景的实际问题中读懂信息,用文字表示数量关系;
6、能够用二元一次方程组的知识解决常见的实际问题,并做出定性判断,
注意:1)常系数的二元一次方程(组)的选择要求:未知数系数是分数的:分子、分母
应是整数.
2)对于含参二元一次方程组,只考察方程的解为整式二元一次方程组,不要求二元一
次方程组的解的情况进行判断。
3)三元一次方程组不在考察范围。
第九章:一元一次不等式组30%
1、了解不等式、不等式的解集的概念,会在数轴上表示不等式的解集。
2、使学生掌握不等式的三条基本性质,并会解一元一次不等式。
3、了解一元一次不等式组的解集的概念,能借助数轴解一元一次不等式组。
4、能够应用不等式(组)解决常见的实际问题,初步理解不等式的边界与实际问题中
最大、最小、至多、至少,不低于、不超过等常用词语的对应关系。通过问题的研究,使学
生进一步领会理论来自于实践、对立统一及事物之间既联系又制约的观点。
注意:(1)对于含参的一元一次不等式(组)及一元一次不等式与二元一次方程的混
合组合,只考察方程或不等式(组)的解为整式。
(2)解不等式过程中系数化1时系数含参的,需给出明确的字母范围,不考察需对系
数进行分类讨论的题目。
(3)不等式应用题只考察到一元一次不等式,需用不等式组解决的应用题不在考察范
围。
(4)不等式含有有限个整数解求待定字母的取值范围问题不在考察范围。
三、试卷说明:
(一)、试卷长度与中考试卷一样。满分120分。
(二)、主卷的组成:
选择题7道小题,每题2分,共计14分;
填空题共10小题,共30分;
解答题9道共计69分
18. 三小题,每题5分共15分
19. 三小题,每题5分共15分
20,21每题5分
22,23,24每题6分
25题两问3分+5分,共8分
26 两问4分+6分,共10分
(三)、难度要求:6:3:1,第25,26两题的第二问作为压轴题。
(四)配答题卷
(五)考试时间4月25日上午,120分钟。