北师大初中数学中考冲刺:图表信息型问题--知识讲解(提高)(推荐)
中考数学复习图表信息题

考点一 图形信息型 例1 ( ·永州)一张桌子上摆放有若干个大小、形
状完全相同的碟子,现从三个方向看,其三种视图如 图所示,则这张桌子上碟子的总个数为( B )
A. 11 B. 12 C. 13 D. 14
第36课时 图表信息题
考点演练
考点一 图形信息型
思路点拨
由主视图可知右上角的盘子有5个,由左视图可知左下角的盘 子有3个,结合主视图和左视图可以知道左上角的盘子有4个, 则可求出总个数.
第36课时 图表信息题
专题解读
5. 统计图信息型 统计图本身就是用来整理数据信息的,所以统计图中一定包
含着大量的数据,能正确根据数据绘制成统计图和从统计图中正 确提取需要的信息是我们必须掌握的.同学们只有理解统计图的 特点及每种统计图分别涉及的一般性计算,才能更好地解决问题.
第36课时 图表信息题
第36课时 图表信息题
(能1)正填确空读:图m与=识__图有_是__的解__决_特,问n题征=的__及关__键_其.__要_性;注质意条来形统表计现图能)显或示数某项量的具关体系数量.解,而答扇形时统通计图常能显借示助各项图所占形的本百分身比的大小,扇
形 第统36计课图时中所图有表扇信的形息性表题示质的百,分结比之合和为推1,理某项、的计具体算数量,除甚以其至所占图的形百分变比即换可的得到方样本法容来量.解决问题.
第36课时 图表信息题
专题解读
4. 函数图象信息型 函数图象信息型问题是通过图象呈现出问题中的两个变量之
间的函数关系,主要考查同学们对函数思想和数形结合思想的理 解与应用,要求同学们具有较强的抽象思维能力和综合分析能力. 解答这类问题,需要在理解题意的基础上,弄清两条坐标轴所代 表的含义,并对图象的形状、位置、发展变化趋势等方面提炼有 效信息,进而找到解决问题的突破口.
北师大版数学[中考冲刺:图表信息型问题--重点题型巩固练习](基础)
](https://img.taocdn.com/s3/m/bdb60457561252d380eb6e99.png)
北师大版数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考冲刺:图表信息型问题—巩固练习(基础)【巩固练习】一、选择题1. (2016春•和平区期末)已知一次函数y=kx+b的图象如图所示,当x<2时,y的取值范围是()A.y<﹣4 B.﹣4<y<0 C.y<2 D.y<02.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如图所示的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其他类同).这个时间段内顾客等待时间不少于6分钟的人数为( )A.5 B.7 C.6 D.333. 如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是()A.轮船的速度为20千米/小时 B.快艇的速度为40千米/小时C.轮船比快艇先出发2小时 D.快艇不能赶上轮船二、填空题4.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款________元.5.某校抽查了50名九年级学生对艾滋病三种主要传播途径的知晓情况,结果如下表:估计该校九年级550学生中,三种传播途径都知道的大概有________人.6.(2015•藤县一模)如图①,在矩形ABCD中,动点P从点C出发,沿C→D→A→B的方向运动至点B处停止.设点P运动的路程为x,△BCP的面积为y,如果y关于x的函数图象如图②所示,则当x=9时,点P应运动到点处.三、解答题7. (2016秋•灵石县期中)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:(1)设从甲仓库运送到A 港口的物资为x 吨,用含x 的式子填写下表:(2)求总费用y (元)与x (箱)之间的函数关系式,并写出x 的取值范围;(3)求出最低费用,并说明费用最低时的调配方案.8.贵阳市是我国西部的一个多民族城市,总人口数为370万(2000年普查统计).图(1)、图(2)是2000年该市各民族人口统计图.请你根据图(1)、图(2)提供的信息回答下列问题:(1)2000年贵阳市少数民族总人口数是多少?(2)2000年贵阳市总人口中苗族占的百分比是多少?(3)2002年贵阳市参加中考的少数民族学生人数?9.某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度哪一个月的产量最高? ________月.(2)该厂一月份产量占第一季度总产量的________%.(图1)85%15%少数民族汉族(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格产品?(写出解答过程)10.某仓库有甲、乙、丙三辆运货车,每辆车只负责进货或出货,丙车每小时的运输量最多,乙车每小时的运输量最少,乙车每小时运6吨,下图是甲、乙、丙三辆运输车开始工作后,仓库的库存量y(吨)与工作时间x(小时)之间的函数图象,其中OA段只有甲、丙两车参与运输,AB段只有乙、丙两车参与运输,BC段只有甲、乙两车参与运输.(1)甲、乙、丙三辆车中,谁是进货车?(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨?【答案与解析】一、选择题1.【答案】D;【解析】将(2,0)、(0,﹣4)代入y=kx+b中,得:,解得:,∴一次函数解析式为y=2x﹣4.∵k=2>0,∴该函数y值随x值增加而增加,∴y<2×2﹣4=0.2.【答案】B;【解析】由频数直方图可以看出:顾客等待时间不少于6分钟的人数即最后两组的人数为5+2=7人.故选B.3.【答案】D;【解析】由图象可以知道快艇用时4个小时路程160千米,速度每小时40千米,同样可以得到轮船速度每小时20千米,快艇比轮船晚出发2小时,早到2小时,中间在4小时的时候追上轮船.二、填空题4.【答案】31.2;【解析】捐5元的人数=50×8%=4人;捐20元的人数=50×44%=22人;捐50元的人数=50×16%=8人;捐100元的人数=50×12%=6人;捐10元的人数=50-4-22-8-6=10人;平均每人捐款数=(5×4+20×22+50×8+100×6+10×10)÷50=31.2元.5.【答案】275;550×=275(名).506.【答案】A.【解析】当P在CD上运动时,△BCP的面积不断增大;当P在AD运动时,BC一定,高为BA不变,此时面积不变;当P在AB上运动时,面积不断减小.故当x=9时,点P应运动到高不变的结束,即点A处.三、解答题7.【答案与解析】解:(1)(2)y=14x+10(80﹣x)+20(100﹣x)+8(x﹣30)=﹣8x+2560,由题意得:,∴不等式的解集为:30≤x≤80,∴总费用y(元)与x(箱)之间的函数关系式为:y=﹣8x+2560(30≤x≤80);(3)∵﹣8<0,∴y随x的增大而减小,∴当x=80时,y有最小值,y=﹣8×80+2560=1920,答:最低费用为1920元,此时的调配方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨到A港口,乙仓库余下的50吨全部分运往B港口.8.【答案与解析】(1)∵15%×370=55.5(万人),∴2000年贵阳市少数民族总人口是55.5万人.(2) 55.5×40%=22.2(万人),又∵22.2÷370=0.06=6%(或15%×40%=6%),∴2000年贵阳市人口中苗族占的百分比是6%.(3) 40000×15%=6000(人),∴2000年贵阳市参加中考的少数民族学生人数为6000人.9.【答案与解析】解:(1)三;(2)30;(3)(1900÷38%)×98%=4900;答:该厂第一季度大约生产了4900件合格的产品.10.【答案与解析】解:(1)由OA段可知,每小时的进库量为4÷2=2吨,因为只有甲丙工作,故甲丙中有一辆进库,有一辆出库,并且每小时进库量-每小时出库量=2吨又由“每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨”可知:丙车运输量>甲车运输量>乙车运输量=6吨故丙车是进货车,甲车是出货车,并且丙车运输量-甲车运输量=2吨又由AB段只有乙丙工作,且进库量大于6吨;BC段只有甲乙工作,(8-3)小时的出库量较小,故乙车是进货车;故进货车是乙车和丙车,甲车是出货车(2)根据(1)丙车运输量-甲车运输量=2吨设甲车运输量为x吨,则丙车运输量为(x+2)吨设B对应的库存量为y吨对于AB段:y-4=(x+2)+6对于BC段:y-10=5(x-6)∴ x=8即:甲车运输量为8吨,则丙车运输量为10吨故如甲乙丙三车一起工作,一天工作8小时,仓库的库存量为(10+6-8)×8=64吨.。
中考数学专题复习精品课件专题3 图表信息问题(65张)

2019/4/15
21
(3)设乙今年3月月应纳税额为y元.
∵3月缴了个人所得税3千多元,现行征税方法中:
20 000×20%-375=3 625>3 000
9 000×20%-375=1 425<3 000 草案征税方法中: 20 000×25%-975=4 025>4 000 9 000×20%-525=1 275<3 000
2019/4/15
36
6.(2010·铁岭中考)小张骑自行车 匀速从甲地到乙地,在途中休息了
一段时间后,仍按原速行驶.他距
乙地的距离与时间的关系如图中折
线所示,小李骑摩托车匀速从乙地
到甲地,比小张晚出发一段时间,他距乙地的距离与时间的 关系如图中线段AB所示.
2019/4/15
37
(1)小李到达甲地后,再经过_____小时小张到达乙地;小张 骑自行车的速度是______千米/小时. (2)小张出发几小时与小李相距15千米? (3)若小李想在小张休息期间与他相遇,则他出发的时间 x应 在什么范围?(直接写出答案)
2019/4/15
32
4.(2010·玉溪中考)王芳同学为参加学校 组织的科技知识竞赛,她周末到新华书店 购买资料.如图,是王芳离家的距离与时 间的函数图象.若黑点表示王芳家的位置, 则王芳走的路线可能是( )
2019/4/15
33
【解析】选B.根据题中所给函数图象可知:开始王芳离家越
来越远,然后离家的距离不变,再离家越来越近,符合图象
量关系,使之变成我们可利用的条件,进行推理计算,从而
使问题获得解决.
2019/4/15
7
【例1】(2011·潍坊中考)2010年秋冬北方严重干旱,凤凰社
【优选】北师大初中数学中考冲刺:图表信息型问题--巩固练习(基础)

中考冲刺:图表信息型问题—巩固练习(基础)【巩固练习】一、选择题1. (2016春•和平区期末)已知一次函数y=kx+b的图象如图所示,当x<2时,y的取值范围是()A.y<﹣4 B.﹣4<y<0 C.y<2 D.y<02.超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,并绘制成如图所示的频数分布直方图(图中等待时间6分钟到7分钟表示大于或等于6分钟而小于7分钟,其他类同).这个时间段内顾客等待时间不少于6分钟的人数为( )A.5 B.7 C.6 D.333. 如图表示一艘轮船和一艘快艇沿相同路线从甲港出发到乙港行驶过程随时间变化的图象,根据图象下列结论错误的是()A.轮船的速度为20千米/小时 B.快艇的速度为40千米/小时C.轮船比快艇先出发2小时 D.快艇不能赶上轮船二、填空题4.在一次捐款活动中,某班50名同学人人拿出自己的零花钱,有捐5元、10元、20元的,还有捐50元和100元的.统计图反映了不同捐款数的人数比例,那么该班同学平均每人捐款________元.5.某校抽查了50名九年级学生对艾滋病三种主要传播途径的知晓情况,结果如下表:估计该校九年级550学生中,三种传播途径都知道的大概有________人.6.(2015•藤县一模)如图①,在矩形ABCD中,动点P从点C出发,沿C→D→A→B的方向运动至点B处停止.设点P运动的路程为x,△BCP的面积为y,如果y关于x的函数图象如图②所示,则当x=9时,点P应运动到点处.三、解答题7. (2016秋•灵石县期中)为保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:港口运费(元/吨)甲库乙库A港14 20B港10 8(1)设从甲仓库运送到A港口的物资为x吨,用含x的式子填写下表:港口运费(元/吨)甲库乙库A港xB港(2)求总费用y(元)与x(箱)之间的函数关系式,并写出x的取值范围;(3)求出最低费用,并说明费用最低时的调配方案.8.贵阳市是我国西部的一个多民族城市,总人口数为370万(2000年普查统计).图(1)、图(2)是2000年该市各民族人口统计图.请你根据图(1)、图(2)提供的信息回答下列问题:(1)2000年贵阳市少数民族总人口数是多少?(2)2000年贵阳市总人口中苗族占的百分比是多少?(3)2002年贵阳市参加中考的少数民族学生人数?9.某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度哪一个月的产量最高? ________月. (2)该厂一月份产量占第一季度总产量的________%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格产品?(写出解答过程)10.某仓库有甲、乙、丙三辆运货车,每辆车只负责进货或出货,丙车每小时的运输量最多,乙车每小时的运输量最少,乙车每小时运6吨,下图是甲、乙、丙三辆运输车开始工作后,仓库的库存量y (吨)与工作时间x (小时)之间的函数图象,其中OA 段只有甲、丙两车参与运输,AB 段只有乙、丙两车参与运输,BC 段只有甲、乙两车参与运输. (1)甲、乙、丙三辆车中,谁是进货车?(图1)85%15%少数民族汉族(图2)少数民族其他布依族侗族苗族百分比(%)51015202530354045500(2)甲车和丙车每小时各运输多少吨?(3)由于仓库接到临时通知,要求三车在8小时后同时开始工作,但丙车在运送10吨货物后出现故障而退出,问:8小时后,甲、乙两车又工作了几小时,使仓库的库存量为6吨?【答案与解析】一、选择题1.【答案】D;【解析】将(2,0)、(0,﹣4)代入y=kx+b中,得:,解得:,∴一次函数解析式为y=2x﹣4.∵k=2>0,∴该函数y值随x值增加而增加,∴y<2×2﹣4=0.2.【答案】B;【解析】由频数直方图可以看出:顾客等待时间不少于6分钟的人数即最后两组的人数为5+2=7人.故选B.3.【答案】D;【解析】由图象可以知道快艇用时4个小时路程160千米,速度每小时40千米,同样可以得到轮船速度每小时20千米,快艇比轮船晚出发2小时,早到2小时,中间在4小时的时候追上轮船.二、填空题4.【答案】31.2;【解析】捐5元的人数=50×8%=4人;捐20元的人数=50×44%=22人;捐50元的人数=50×16%=8人;捐100元的人数=50×12%=6人;捐10元的人数=50-4-22-8-6=10人;平均每人捐款数=(5×4+20×22+50×8+100×6+10×10)÷50=31.2元.5.【答案】275;【解析】由表可知:三种传播途径都知道的人数为25,占样本总人数50人的2550=50%.所以550名学生中三种传播途径都知道的人数即可解答.550×2550=275(名).6.【答案】A.【解析】当P在CD上运动时,△BCP的面积不断增大;当P在AD运动时,BC一定,高为BA不变,此时面积不变;当P在AB上运动时,面积不断减小.故当x=9时,点P应运动到高不变的结束,即点A处.三、解答题7.【答案与解析】解:(1)港口运费(元/吨)甲库乙库A港x 100﹣xB港80﹣x x﹣30(2)y=14x+10(80﹣x)+20(100﹣x)+8(x﹣30)=﹣8x+2560,由题意得:,∴不等式的解集为:30≤x≤80,∴总费用y(元)与x(箱)之间的函数关系式为:y=﹣8x+2560(30≤x≤80);(3)∵﹣8<0,∴y随x的增大而减小,∴当x=80时,y有最小值,y=﹣8×80+2560=1920,答:最低费用为1920元,此时的调配方案为:把甲仓库的全部运往A港口,再从乙仓库运20吨到A港口,乙仓库余下的50吨全部分运往B港口.8.【答案与解析】(1)∵15%×370=55.5(万人),∴2000年贵阳市少数民族总人口是55.5万人.(2) 55.5×40%=22.2(万人),又∵22.2÷370=0.06=6%(或15%×40%=6%),∴2000年贵阳市人口中苗族占的百分比是6%.(3) 40000×15%=6000(人),∴2000年贵阳市参加中考的少数民族学生人数为6000人.9.【答案与解析】解:(1)三;(2)30;(3)(1900÷38%)×98%=4900;答:该厂第一季度大约生产了4900件合格的产品.10.【答案与解析】解:(1)由OA段可知,每小时的进库量为4÷2=2吨,因为只有甲丙工作,故甲丙中有一辆进库,有一辆出库,并且每小时进库量-每小时出库量=2吨又由“每辆车只负责进货或出货,每小时的运输量丙车最多,乙车最少,乙车的运输量为每小时6吨”可知:丙车运输量>甲车运输量>乙车运输量=6吨故丙车是进货车,甲车是出货车,并且丙车运输量-甲车运输量=2吨又由AB段只有乙丙工作,且进库量大于6吨;BC段只有甲乙工作,(8-3)小时的出库量较小,故乙车是进货车;故进货车是乙车和丙车,甲车是出货车(2)根据(1)丙车运输量-甲车运输量=2吨设甲车运输量为x吨,则丙车运输量为(x+2)吨设B对应的库存量为y吨对于AB段:y-4=(x+2)+6对于BC段:y-10=5(x-6)∴ x=8即:甲车运输量为8吨,则丙车运输量为10吨故如甲乙丙三车一起工作,一天工作8小时,仓库的库存量为(10+6-8)×8=64吨.。
[重点推荐]北师大初中数学中考冲刺:观察、归纳型问题--知识讲解(提高)
![[重点推荐]北师大初中数学中考冲刺:观察、归纳型问题--知识讲解(提高)](https://img.taocdn.com/s3/m/f365c15c0740be1e650e9ac6.png)
中考冲刺:观察、归纳型问题—知识讲解(提高)【中考展望】主要通过观察、实验、归纳、类比等活动,探索事物的内在规律,考查学生的逻辑推理能力,一般以解答题为主.归纳猜想型问题在中考中越来越被命题者所注重.这类题要求根据题目中的图形或者数字,分析归纳,直观地发现共同特征,或者发展变化的趋势,据此去预测估计它的规律或者其他相关结论,使带有猜想性质的推断尽可能与现实情况相吻合,必要时可以进行验证或者证明,以此体现出猜想的实际意义.【方法点拨】观察、归纳猜想型问题对考生的观察分析能力要求较高,经常以填空等形式出现,解题时要善于从所提供的数字或图形信息中,寻找其共同之处,这个存在于个例中的共性,就是规律.其中蕴含着“特殊——一般——特殊”的常用模式,体现了总结归纳的数学思想,这也正是人类认识新生事物的一般过程.相对而言,猜想结论型问题的难度较大些,具体题目往往是直观猜想与科学论证、具体应用的结合,解题的方法也更为灵活多样:计算、验证、类比、比较、测量、绘图、移动等等,都能用到.考查知识分为两类:①是数字或字母规律探索型问题;②是几何图形中规律探索型问题.1.数式归纳题型特点:通常给定一些数字、代数式、等式或不等式,然后观察猜想其中蕴含的规律,归纳出用某一字母表示的能揭示其规律的代数式或按某些规律写出后面某一项的数或式子.解题策略:一般是先写出数或式的基本结构,然后通过横比(比较同一等式中不同部分的数量关系)或纵比(比较不同等式间相同位置的数量关系)找出各部分的特征,改写成要求的格式.2.图形变化归纳题型特点:观察给定图形的摆放特点或变化规律,归纳出下一个图形的摆放特点或变化规律,或者能用某一字母的代数式揭示出图形变化的个数、面积、周长等规律特点.解题策略:多方面、多角度进行观察比较得出图形个数、面积、周长等的通项,再分别取n=1,2,3…代入验证,都符合时即为正确结论.由于猜想归纳本身就是一种重要的数学方法,也是人们探索发现新知的重要手段,非常有利于培养创造性思维能力,所以备受命题专家的青睐,逐步成为中考的持续热点.【典型例题】类型一、数式归纳1.“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+98+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+98+99+100 ①S=100+99+98+…+3+2+1 ②①+②:有2S=(1+100)×100 解得:S=5050请类比以上做法,回答下列问题:若n 为正整数,3+5+7+…+(2n+1)=168,则n= . 【思路点拨】根据题目提供的信息,列出方程,然后求解即可.【答案与解析】解:设S=3+5+7+…+(2n+1)=168①,则S=(2n+1)+…+7+5+3=168②,①+②得,2S=n (2n+1+3)=2×168,整理得,n 2+2n-168=0,解得n 1=12,n 2=-14(舍去). 故答案为:12.【总结升华】本题考查了有理数的混合运算,读懂题目提供的信息,表示出这列数据的和并列出方程是解题的关键.举一反三:【变式】如下数表是由从1开始的连续自然数组成,观察规律并完成各题的解答.(1)表中第8行的最后一个数是 ,它是自然数 的平方,第8行共有 个数;(2)用含n 的代数式表示:第n 行的第一个数是 ,最后一个数是 ,第n 行共有 个数;(3)求第n 行各数之和.【答案】(1)64, 8, 15;(2)n 2-2n+2, n 2, 2n-1;(3)322331n n n -+-.类型二、图形变化归纳2.课题:两个重叠的正多边形,其中的一个绕着某一顶点旋转所形成的有关问题.实验与论证设旋转角∠A 1A 0B 1=α(α<∠A 1A 0A 2),3θ,4θ,5θ,6θ所表示的角如图所示.(1)用含α的式子表示角的度数:3θ=________,4θ=________,5θ=________;(2)如上图①~图④中,连结A 0H 时,在不添加其他辅助线的情况下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;归纳与猜想设正n 边形A 0A 1A 2…1n A -与正n 边形A 0B 1B 2…1n B -重合(其中,A 1与B 1重合),现将正n 边形A 0B 1B 2…1n B -绕顶点A 0逆时针旋转1800n αα⎛⎫<< ⎪⎝⎭°. (3)设n θ与上述“3θ,4θ,…”的意义—样,请直接写出n θ的度数;(4)试猜想在正n 边形的情形下,是否存在与直线A 0H 垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.【思路点拨】(1)要求θ的度数,应从旋转中有关角度的变与不变上突破;(2)结合图形比较容易得到被A 0H 垂直平分的线段,在证明时要充分利用背景中正多边形及旋转中的角度;(3)要探究n θ的度数,要注意区分正偶数边形及正奇数边形两种情形去思考与求解度数的表达式;(4)要探究正n 边形中被A 0H 垂直平分的线段,也应注意区分正偶数边形及正奇数边形两种情形去思考与突破.【答案与解析】解:(1)60α-°,α,36α-°.(2)存在.下面就所选图形的不同分别给出证明:选图①.图①中有直线A 0H 垂直平分A 2B 1(如图所示),证明如下:证法一:证明:∵△A 0A 1A 2与△A 0B 1B 2是全等的等边三角形,∴A 0A 2=A 0B 1,∴∠A 0A 2B l =∠A 0B 1A 2.又∠A 0A 2H =∠A 0B 1H =60°,∴∠HA 2B l =∠HB 1A 2,∴A 2H =B 1H ,∴点H 在线段A 2B 1的垂直平分线上.又∵A 0A 2=A 0B 1,∴点A 0在线段A 2B 1的垂直平分线上.∴直线A 0H 垂直平分A 2B 1.证法二:证明:∵△A 0A 1A 2与△A 0B 1B 2是全等的等边三角形,∴A 0A 2=A 0B 1,∴∠A 0A 2B 1=∠A 0B l A 2.又∠A 0A 2H =∠A 0B 1H ,∴∠HA 2B l =∠HB 1A 2.∴HA 2=HB 1.在△A 0A 2H 与△A 0B 1H 中,∵A 0A 2=A 0B ,HA 2=HB 1,∠A 0A 2B =∠A 0B 1H ,∴△A 0A 2H ≌△A 0B 1H ,∴∠A 2A 0H =∠B 1A 0H ,∴A 0H 平分等腰三角形A 0A 2B 1的顶角∠A 2A 0B 1,∴直线A 0H 垂直平分A 2B 1.选图②.图②中有直线A 0H 垂直平分A 2B 2(如图所示),证明如下:∵A 0B 2=A 0A 2,∴∠A 0B 2A 2=∠A 0A 2B 2.又∵∠A 0B 2B 1=∠A 0A 2A 3=45°,∴∠HB 2A 2=∠HA 2B 2,∴HB 2=HA 2,∴点H 在线段A 2B 的垂直平分线上.又∵A 0B 2=A 0A 2,∴点A 0在线段A 2B 2的垂直平分线上.∴直线A 0H 垂直平分A 2B 2.(3)当n 为奇数时,当n 为偶数时,n θα=.(4)存在.当n 为奇数时,直线A 0H 垂直平分1122n n A B +-;当n 为偶数时,直线A 0H 垂直平分22n n A B .【总结升华】 本题考查由特殊到一般推理论证的能力,属较难题.具有较强的逻辑推理能力及演绎推理意识是解决问题的关键.举一反三:【变式】长为20,宽为a 的矩形纸片(10<a <20),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去,若在第n 次操作后,剩下的矩形为正方形,则操作停止.当n=3时,a 的值为 .【答案】解:由题意,可知当10<a <20时,第一次操作后剩下的矩形的长为a ,宽为20-a ,所以第二次操作时正方形的边长为20-a ,第二次操作以后剩下的矩形的两边分别为20-a ,2a-20.此时,分两种情况:①如果20-a>2a-20,即a<40,那么第三次操作时正方形的边长为2a-20.则2a-20=(20-a)-(2a-20),解得a=12;②如果20-a<2a-20,即a>,那么第三次操作时正方形的边长为20-a.则20-a=(2a-20)-(20-a),解得a=15.∴当n=3时,a的值为12或15.故答案为:12或15.3.用4个全等的正八边形进行拼接,使相等的两个正八边形有一条公共边,围成一圈后中间形成一个正方形,如图1,用n个全等的正六边形按这种方式进行拼接,如图2,若围成一圈后中间形成一个正多边形,则n的值为.【思路点拨】根据正六边形的一个内角为120°,可求出正六边形密铺时需要的正多边形的内角,继而可求出这个正多边形的边数.【答案与解析】解:两个正六边形结合,一个公共点处组成的角度为240°,故如果要密铺,则需要一个内角为120°的正多边形,而正六边形的内角为120°,故答案为:6.【总结升华】此题考查了平面密铺的知识,解答本题关键是求出在密铺条件下需要的正多边形的一个内角的度数,有一定难度.举一反三:【变式】(2016•安顺)观察下列砌钢管的横截面图:则第n个图的钢管数是 .【答案】第一个图中钢管数为1+2=3;第二个图中钢管数为2+3+4=9;第三个图中钢管数为3+4+5+6=18;第四个图中钢管数为4+5+6+7+8=30,依此类推,第n个图中钢管数为n+(n+1)+(n+2)+…+2n=+=n2+n,故答案为:n2+n.类型三、数值、数量结果归纳4.(2015•长清区模拟)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上且坐标是(0,2),点C1、E1、E2、C2、E3、E4、C3在x轴上,C1的坐标是(1,0),B1C1∥B2C2∥B3C3,以此继续下去,则点A2015到x轴的距离是.【思路点拨】根据勾股定理可得正方形A1B1C1D1的边长为,根据相似三角形的性质可得后面正方形的边长依次是前面正方形边长的,依次得到第2015个正方形和第2015个正方形的边长,进一步得到点A2015到x轴的距离.【答案与解析】如图,∵点C1、E1、E2、C2、E3、E4、C3在x轴上,B1C1∥B2C2∥B3C3,∴△B1OC1∽△B2E2C2∽B3E4C3…,△B1OC1≌△C1E1D1,…,∴B2E2=1,B3E4=,B4E6=,B5E8=…,∴B2015E4017=,作A1E⊥x轴,延长A1D1交x轴于F,则△C1D1F∽△C1D1E1,∴,在Rt△OB1C1中,OB1=2,OC1=1,正方形A1B1C1D1的边长为,∴D1F=,∴A1F=,∵A1E∥D1E1,∴,∴A1E=3,∴,∴点A2015到x轴的距离是,故答案为【总结升华】此题主要考查了正方形的性质以及解直角三角形的知识,得出正方形各边长是解题关键.类型四、数形归纳5.(秀屿区校级模拟)如图,从原点A开始,以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆;…,按此规律,继续画半圆,则第6个半圆的面积为(结果保留π).【思路点拨】根据已知图形得出第5个半圆的半径,进而得出第5个半圆的面积,得出第n个半圆的半径,进而得出答案.【答案与解析】∵以AB=1为直径画半圆,记为第1个半圆;以BC=2为直径画半圆,记为第2个半圆;以CD=4为直径画半圆,记为第3个半圆;以DE=8为直径画半圆,记为第4个半圆,∴第5个半圆的直径为16,根据已知可得出第n个半圆的直径为:2n﹣1,则第n个半圆的半径为:=2n﹣2,第n个半圆的面积为:=22n﹣5π.所以第6个半圆的面积为:128π.故答案为:128π.【总结升华】此题主要考查了图形的变化规律,注意数字之间变化规律,根据已知得出第n个半圆的直径为:2n﹣1是解题关键.。
北师大初中数学中考冲刺:数形结合问题--知识讲解(提高)-精品

中考冲刺:数形结合问题—知识讲解(提高)【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-(21)2(21)(1)2(1)2222n n s n n s n n s+⨯⨯+⨯+⨯⨯+⨯--,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.【答案】(2n﹣1,2n﹣1)【解析】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).类型二、利用数形结合解决数与式的问题2. 已知实数a在数轴上的位置如图所示,则化简|2-a|+2a的结果为__________.【思路点拨】由数轴可知,0<a<2,由此去绝对值,对二次根式化简.【答案与解析】解:∵0<a<2,∴|2-a|+2a=2-a+a=2.故答案为:2.【总结升华】本题考查了绝对值的化简和二次根式的性质与化简,实数与数轴的对应关系.关键是根据数轴上的点的位置来判断数a的取值范围,根据取值范围去绝对值,化简二次根式.类型三、利用数形结合解决代数式的恒等变形问题3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。
北师大初中数学中考冲刺:代数综合问题--知识讲解(提高).doc
中考冲刺:代数综合问题—知识讲解(提高)【中考展望】初中代数综合题,主要以方程、函数这两部分为重点,因此牢固地掌握方程与不等式的解法、一元二次方程的解法和根的判别式、函数的解析式的确定及函数性质等重要基础知识,是解好代数综合题的关键.在许多问题中,代数和几何问题交织在一起,就要沟通这些知识之间的内在联系,以数形结合的方法找到解决问题的突破口.通过解综合题有利于透彻和熟练地掌握基础知识和基本技能,更深刻地领悟数学思想方法,提高分析问题和解决问题的能力.【方法点拨】(1)对“数学概念”的深刻理解是解综合题的基础;(2)认识综合题的结构是解综合题的前提;(3)灵活运用数学思想方法是解综合题的关键;(4)帮助学生建立思维程序是解综合题的核心.* 审题(读题、断句、找关键);* 先宏观(题型、知识块、方法);后微观(具体条件,具体定理、公式)* 由已知,想可知(联想知识);由未知,想须知(应具备的条件),注意知识的结合;* 观察——挖掘题目结构特征;联想——联系相关知识网络;突破——抓往关键实现突破;寻求——学会寻求解题思路.(5)准确计算,严密推理是解综合题的保证.【典型例题】类型一、函数综合1.已知函数2yx=和y=kx+1(k≠0).(1)若这两个函数的图象都经过点(1,a),求a和k的值;(2)当k取何值时,这两个函数的图象总有公共点?【思路点拨】本题是一次函数,反比例函数的综合题.本题考查了函数解析式的求法和利用判别式判断函数图象交点个数.【答案与解析】解:(1)∵两函数的图象都经过点(1,a),∴2,11.aa k⎧=⎪⎨⎪=+⎩解得2,1.ak=⎧⎨=⎩(2)将2yx=代入y=kx+1,消去y,得220kx x+-=.∵k≠0,∴要使得两函数的图象总有公共点,只要△≥0即可.∵△=1+8k.∴1+8k ≥0,解得k ≥18-. ∴k ≥18-且k ≠0时这两个函数的图象总有公共点. 【总结升华】两图象交点的个数常常通过建立方程组,进而转化为一元二次方程,利用根的判别式来判断.若△>0,两图象有两个公共点;若△=0,两图象有一个公共点;若△<0,两图象没有公共点. 举一反三:【变式】如图,一元二次方程0322=-+x x 的两根1x ,2x (1x <2x )是抛物线)0(2≠++=a c bx ax y 与x 轴的两个交点B ,C 的横坐标,且此抛物线过点A (3,6).(1)求此二次函数的解析式;(2)设此抛物线的顶点为P ,对称轴与线段AC 相交于点Q ,求点P 和点Q 的坐标;(3)在x 轴上有一动点M ,当MQ+MA 取得最小值时,求M 点的坐标.【答案】解:(1)解方程0322=-+x x ,得1x =-3,2x =1.∴抛物线与x 轴的两个交点坐标为:C (-3,0),B (1,0).将 A (3,6),B (1,0),C (-3,0)代入抛物线的解析式,得⎪⎩⎪⎨⎧=+-=++=++.039,0,639c b a c b a c b a 解这个方程组,得 ⎪⎪⎩⎪⎪⎨⎧-===.23,1,21c b a∴抛物线解析式为23212-+=x x y . (2)由2)1(21232122-+=-+=x x x y ,得抛物线顶点P 的坐标为(-1,-2),对称轴为直线x=-1. 设直线AC 的函数关系式为y=kx+b,将A (3,6),C (-3,0)代入,得⎩⎨⎧=+-=+.03,63b k b k 解这个方程组,得 ⎩⎨⎧==.1,3k b ∴直线AC 的函数关系式为y=x+3.由于Q 点是抛物线的对称轴与直线AC 的交点,故解方程组⎩⎨⎧+=-=.3,1x y x 得⎩⎨⎧=-=.2,1y x ∴点Q 坐标为(-1,2).(3)作A 点关于x 轴的对称点)6,3(/-A ,连接Q A /,Q A /与x 轴交点M 即为所求的点.设直线Q A /的函数关系式为y=kx+b.∴⎩⎨⎧=+--=+.2,63b k b k 解这个方程组,得⎩⎨⎧-==.2,0k b ∴直线Q A /的函数关系式为y=-2x.令x=0,则y=0.∴点M 的坐标为(0,0).类型二、函数与方程综合2.已知关于x 的二次函数2212m y x mx +=-+与2222m y x mx +=--,这两个二次函数的图象中的一条与x 轴交于A ,B 两个不同的点.(1)试判断哪个二次函数的图象经过A ,B 两点;(2)若A 点坐标为(-1,0),试求B 点坐标;(3)在(2)的条件下,对于经过A ,B 两点的二次函数,当x 取何值时,y 的值随x 值的增大而减小?【思路点拨】本题是二次函数与一元二次方程的综合题.本题考查了利用一元二次方程根的判别式判断二次函数图象,与x 轴的交点个数及二次函数的性质.【答案与解析】解:(1)对于关于x 的二次函数2212m y x mx +=-+, 由于△=(-m)2-4×1×221202m m ⎛⎫+=--< ⎪⎝⎭,所以此函数的图象与x 轴没有交点.对于关于x 的二次函数2222m y x mx +=--, 由于△=2222()413402m m m ⎛⎫+--⨯⨯-=+> ⎪⎝⎭, 所以此函数的图象与x 轴有两个不同的交点.故图象经过A ,B 两点的二次函数为22202m y x mx +=--=. (2)将A(-1,0)代入2222m y x mx +=--,得22102m m ++-=. 整理,得220m m -=. 解之,得m =0,或m =2.x y O ①当m =0时,21y x =-.令y =0,得210x -=. 解这个方程,得11x =-,21x =.此时,B 点的坐标是B(1,0).②当m =2时,223y x x =--.令y =0,得2230x x --=. 解这个方程,得x 3=-1,x 4=3.此时,B 点的坐标是B(3,0).(3)当m =0时,二次函数为21y x =-,此函数的图象开口向上,对称轴为x =0,所以当x <0时,函数值y 随x 的增大而减小.当m =2时,二次函数为2223(1)4y x x x =--=--,此函数的图象开口向上,对称轴为x =1,所以当x <1时,函数值y 随x 的增大而减小.【总结升华】从题目的结构来看,二次函数与一元二次方程有着密切的联系,函数思想是变量思想,变量也可用常量来求解.举一反三:【变式】(2016·门头沟一模)已知关于x 的一元二次方程mx 2+(3m +1)x +3=0.(1)求证该方程有两个实数根;(2)如果抛物线y =mx 2+(3m +1)x +3与x 轴交于A 、B 两个整数点(点A 在点B 左侧),且m 为正整数,求此抛物线的表达式;(3)在(2)的条件下,抛物线y =mx 2+(3m +1)x +3与y 轴交于点C ,点B 关于y 轴的对称点为D ,设此抛物线在-3≤x ≤12-之间的部分为图象G ,如果图象G 向右平移n (n >0)个单位长度后与直线CD 有公共点,求n 的取值范围.【答案】(1)证明:∵ △= (3m +1)2-4×m ×3 =(3m -1)2.∵ (3m -1)2≥0,∴ △≥0,∴ 原方程有两个实数根.(2)解:令y =0,那么 mx 2+(3m +1)x +3=0.解得 13x =-,21x m=-. ∵抛物线与x 轴交于两个不同的整数点,且m 为正整数,∴m =1.∴抛物线的表达式为243y x x =++.(3)解:∵当x =0时,y =3,∴C (0,3).∵当y =0时,x 1=-3,x 2=-1.又∵点A 在点B 左侧,∴A (-3,0),B (-1,0).∵点D 与点B 关于y 轴对称,∴D (1,0).设直线CD 的表达式为y =kx +b .∴03k b b ⎧+=⎪⎨=⎪⎩, 解得33.k b =-⎧⎨=⎩, ∴直线CD 的表达式为y =-3x +3. 又∵当12x =-时,211543224y ⎛⎫⎛⎫=-+⨯-+= ⎪ ⎪⎝⎭⎝⎭. ∴A (-3,0),E (12-,54), ∴平移后,点A ,E 的对应点分别为A'(-3+n ,0),E'(12n -+,54). 当直线y =-3x +3过点A'(-3+n ,0)时,∴-3(-3+n )+3=0,∴n =4.当直线y =-3x +3过点E'(12n -+,54)时, ∴153324n ⎛⎫--++= ⎪⎝⎭, ∴n =1312. ∴n 的取值范围是1312≤n ≤4. 类型三、以代数为主的综合题3.如图所示,在直角坐标系中,点A 的坐标为(-2,0),将线段OA 绕原点O 顺时针旋转120°得到线段OB .(1)求点B 的坐标;(2)求经过A ,O ,B 三点的抛物线的解析式;(3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由.(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方,那么△PAB 是否有最大面积?若有,求出此时P 点的坐标及△PAB 的最大面积;若没有,请说明理由.【思路点拨】(1)由∠AOB =120°可得OB 与x 轴正半轴的夹角为60°,利用OB =2及三角函数可求得点B 的坐标;(2)利用待定系数法可求出解析式;(3)OB 为定值,即求BC+CO 最小.利用二次函数的对称性可知点C 为直线AB 与对称轴的交点;(4)利用转化的方法列出PAB S △关于点P 的横坐标x 的函数关系式求解.【答案与解析】解:(1)B(1.(2)设抛物线的解析式为(2)y ax x =+,代入点B(1),得3a =.所以233y x x =+. (3)如图所示,抛物线的对称轴是直线x =-1,因为A ,O 关于抛物线的对称轴对称,所以当点C 位于对称轴与线段AB 的交点时,△BOC 的周长最小.设直线AB 的解析式为(0)y kx b k =+≠,则20.k b k b ⎧+=⎪⎨-+=⎪⎩解得3k b ⎧=⎪⎪⎨⎪=⎪⎩因此直线AB的解析式为33y x =+. 当1x =-时,3y =. 因此点C的坐标为1,3⎛- ⎝⎭. (4)如图所示,过P 作y 轴的平行线交AB 于D ,设其交x 轴于E ,交过点B 与x 轴平行的直线于F .设点P 的横坐标为x .则PAB PAD PBD S S S =+△△△1122PD AE PD BF =⨯+⨯ 1()2PD AE BF =⨯⨯+ 1()()2D P B A y y x x =--21323333x x x ⎡⎤⎛⎛⎫=+-+⨯⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦2212x x x ⎫==+⎪⎝⎭当12x =-时,△PAB ,此时1,2⎛- ⎝⎭. 【总结升华】本题为二次函数的综合题,综合程度较高,要掌握利用点的坐标表示坐标轴上线段的方法.因为线段的长度为正数,所以在用点的坐标表示线段长度时,我们用“右边点的横坐标减左边点的横坐标,上边点的纵坐标减下边点的纵坐标”,从而不用加绝对值号,本题中线段PD 的长为D P y y -就是利用了这一规律.4.(2015.北京东城一模)在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y 轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC 为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.【思路点拨】(1)已知点坐标代入函数解析式即可求得解析式;(2)利用轴对称知识求三角形周长最小值;(3)注意分类讨论满足条件的直角三角形,不要漏解.【答案与解析】解:(1)∵抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,∴10,1 1.a b a b -+=⎧⎨++=⎩∴1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的函数关系式为211122y x x =-++. (2)∵122b x a =-=,()0,1C ∴抛物线211122y x x =-++的对称轴为直线12x =. 设点E 为点A 关于直线12x =的对称点,则点E 的坐标为()2,0. 连接EC 交直线12x =于点D ,此时ACD △的周长最小. 设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,则2m 0,1.k m +=⎧⎨=⎩ 解得1,21.k m ⎧=-⎪⎨⎪=⎩所以,直线EC 的函数表达式为112y x =-+. 当12x =时,34y =. ∴ 点D 的坐标为13,24⎛⎫ ⎪⎝⎭. (3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点1P .∵AO OC ⊥,1AC AP ⊥,∴90AOM CAM ∠=∠=︒.∵()0,1C ,()1,0A -,∴1OA OC ==.∴45CAO ∠=︒.∴45OAM OMA ∠=∠=︒.∴1OA OM ==.∴点M 的坐标为()0,1-.设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标,则1110,1.k b b -+=⎧⎨=-⎩ 解得111,1.k b =-⎧⎨=-⎩ 所以,直线AM 的函数表达式为1y x =--. 令12x =,则32y =-. ∴点1P 的坐标为13,22⎛⎫-⎪⎝⎭. ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点N .与①同理可得Rt CON △是等腰直角三角形,∴1OC ON ==.∴点N 的坐标为()1,0.∵2CP AC ⊥,1AP AC ⊥,∴21CP AP ∥.∴直线2CP 的函数表达式为1y x =-+. 令12x =,则12y =. ∴点2P 的坐标为11,22⎛⎫ ⎪⎝⎭. 综上,在对称轴上存在点1P 13,22⎛⎫-⎪⎝⎭,2P 11,22⎛⎫ ⎪⎝⎭,使ACP △成为以AC 为直角边的直角三角形. 【总结升华】求最值问题,在几何和函数类题目中经常考查,通常利用轴对称知识来解答此类题型;点的存在性也是常考点,注意解的多样性,从而分类讨论,不要出现漏解情况.举一反三:【变式】如图所示,抛物线23y ax bx =++与y 轴交于点C ,与x 轴交于A ,B 两点,1tan 3OCA ∠=,6ABC S =△.(1)求点B 的坐标;(2)求抛物线的解析式及顶点坐标;(3)若E 点在x 轴上,F 点在抛物线上,如果A ,C ,E ,F 构成平行四边形,直接写出点E 的坐标.【答案】解:(1)∵23y ax bx =++,∴C(0,3). 又∵1tan 3OCA ∠=,∴A(1,0). 又∵6ABC S =△, ∴1362AB ⨯⨯=, ∴AB =4。
【名师推荐】北师大初中数学中考冲刺:数形结合问题--知识讲解(提高).doc
中考冲刺:数形结合问题—知识讲解(提高)【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-(21)2(21)(1)2(1)2222n n s n n s n n s+⨯⨯+⨯+⨯⨯+⨯--,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.【答案】(2n﹣1,2n﹣1)【解析】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).类型二、利用数形结合解决数与式的问题2. 已知实数a在数轴上的位置如图所示,则化简|2-a|+2a的结果为__________.【思路点拨】由数轴可知,0<a<2,由此去绝对值,对二次根式化简.【答案与解析】解:∵0<a<2,∴|2-a|+2a=2-a+a=2.故答案为:2.【总结升华】本题考查了绝对值的化简和二次根式的性质与化简,实数与数轴的对应关系.关键是根据数轴上的点的位置来判断数a的取值范围,根据取值范围去绝对值,化简二次根式.类型三、利用数形结合解决代数式的恒等变形问题3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。
通用版2019年中考数学冲刺:图表信息型问题--知识讲解(基础)(1)
中考冲刺:图表信息型问题—知识讲解(基础)责编:常春芳【中考展望】图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径.【方法点拨】1.图象信息题题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度.解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题.2.图表信息题图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力.【典型例题】类型一、图象信息题1.容积率t是指在房地产开发中建筑面积与用地面积之比,即MtS建筑面积用地面积,为充用地面积分利用土地资源,更好地解决人们的住房需求,并适当的控制建筑物的高度,一般容积率t不小于1且不大于8.一房地产开发商在开发某小区时,结合往年开发经验知,建筑面积M(m2)与容积率t的关系可近似地用如图(1)中的线段l来表示;1 m2建筑面积上的资金投入Q(万元)与容积率t的关系可近似地用如图(2)中的一段抛物线c来表示.(1)试求图(1)中线段l的函数关系式,并求出开发该小区的用地面积;(2)求出图(2)中抛物线段c的函数关系式.【思路点拨】(1)因为图象过点(2,28000)和(6,80000),所以易求l的表达式,注意t的取值范围,当t=1时,S用地面积=M建筑面积;(2)根据图象经过点(1,0.18)和(4,0.09)且(4,0.09)为顶点可求c的函数关系式.【答案与解析】解:(1)设M=kt+b,由图象上两点的坐标(2,28000)、(6,80000),可求得是k=13000,b=2000.所以线段l的函数关系式为:M=13000t+2000(1≤t≤8).由MtS=建筑面积用地面积知,当t=1时,S M=用地面积建筑面积.把t=1代入M=13000t+2000中,可得M=15000.即开发该小区的用地面积是15 000 m2.(2)根据图象特征可设抛物线段c的函数关系式为Q=a(t-4)2+0.09,把点(1,0.18)的坐标代入,可求得1100a=.所以219(4)100100Q t=-+2121(18)100254t t t=-+≤≤.【总结升华】图象信息题一般需要先由图象提供的条件确定出相应的函数关系式,然后再运用函数的性质解决问题,因而可以有效考查对函数思想和数形结合思想方法的掌握和应用情况.举一反三:【变式】甲、乙两人骑自行车前往A地,他们距A地的路程s(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题:(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距A 地的路程s 与行驶时间t 之间的函数关系式(任写一个). (3)在什么时间段内乙比甲离A 地更近? 【答案】 解:(1)50202.5v ==甲(km/h), 60302v ==乙(km/h). (2)5020s t =-甲或6030s t =-乙(答对一个即可); (3)1<t <2.5.2.(2016•长春模拟)甲、乙两名自行车运动员在同一条直线公路上进行骑自行车训练,他们同时同地同向出发,乙在行驶过程中改变了一次速度,甲、乙两人各自在公路上训练时行驶路程y (千米)与行驶时间x (时)(0≤x ≤4)之间的函数图象如图所示. (1)求甲行驶的速度.(2)求直线AB 所对应的函数表达式. (3)直接写出甲、乙相距5千米时x 的值.【思路点拨】(1)由速度=路程÷时间,可得出甲行驶的速度;(2)设直线AB 所对应的函数表达式为y=kx+b ,将A 、B 点的坐标代入解析式可得出关于k 、b 的二元一次方程组,解出方程组即可得出结论;(3)找出各段线段所对应的函数表达式,根据图象做差可得出关于x 的一元一次方程,解方程即可得出结论. 【答案与解析】解:(1)120÷3=40(千米/时).∴甲行驶的速度为40千米/时.(2)设直线AB 所对应的函数表达式为y=kx+b ,把A (1,50)、B (3,120)代入,得,解得:.故直线AB所对应的函数表达式为y=35x+15(1≤x≤4).(3)设直线OA所对应的函数表达式为y=k1x,把A(1,50)代入,得50=k1,故直线OA所对应的函数表达式为y=50x(0≤x≤1),设直线OB所对应的函数表达式为y=k2x,把B(3,120)代入,得120=3k2,解得:k2=40.故直线OB所对应的函数表达式为y=40x(0≤x≤4).当0≤x≤4时,令50x﹣40x=5,解得x=0.5;当1<x≤3时,令35x+15﹣40x=5,解得x=2;当3<x≤4时,令40x﹣(35x+15)=5,解得x=4.综上可知:甲、乙相距5千米时x的值为0.5,2和4.故还需要0.2小时时间才能再次与小李相遇.【总结升华】本题考查了一次函数的应用、待定系数法求函数解析式以及解一元一次方程.举一反三:【变式】(讷河市校级期末)甲、乙两同学骑自行车从A地沿同一条路到B地,已知如图,甲做匀速运动,乙比甲先出发,他们离出发地距离s(km)和骑车行驶时间t(h)之间的函数关系如图,给出下列说法:(1)他们都骑车行驶了20km;(2)乙在途中停留了0.5h;(3)甲、乙两人同时到达目的地;(4)相遇后,甲的速度小于乙的速度.根据图象信息,以上说法错误的有()A.1个B.2个C.3个D.4个【答案】B;【解析】解:甲乙都是骑自行车从A地沿同一路线到离A地20千米的B地,所以(1)正确;乙出发0.5小时后停留了0.5小时,所以(2)正确;乙出发2.5小时到达目的地,而甲比乙早到0.5小时,所以(3)不正确; 图象相交后甲的图象都在乙的上方,说明甲的速度比乙的要大,所以(4)不正确. 故以上说法错误的有(3)、(4)2个.故选:B .类型二、图表信息题3.某市为了进一步改善居民的生活环境,园林处决定增加公园A 和公园B 的绿化面积.已知公园A 、B 分别有如图(1)(2)所示的阴影部分需铺设草坪,在甲、乙两地分别有同种草皮1608 m 2和1200 m 2出售,且售价一样.若园林处向甲、乙两地购买草皮,其路程和运费单价见下表:公园A公园B路程(千米)运费单价(元)路程(千米)运费单价(元)甲地 30 0.25 32 0.25乙地22 0.3 30 0.3(注:运费单价指将每平方米草皮运送1千米所需的人民币) (1)分别求出公园A 、B 需铺设草坪的面积;(结果精确到1m 2)(2)请设计出总运费最省的草皮运送方案,并说明理由.【思路点拨】(1)公园A 草坪的面积=大矩形的面积-两条小道的面积+两条小道重叠部分的面积.公园B 草坪的面积=大矩形的面积-两个扇形的面积-扇形所夹的两个三角形的面积.(2)本题可根据总运费=公园A 向甲,乙两地购买草坪所需的费用+公园B 向甲乙两地购买草坪所需的费用,如果设总运费为y 元,公园A 向甲地购买草皮xm 2,那么根据上面的等量关系可得出y 与x的关系式,然后根据甲乙两地出售的草坪的面积和公园A ,B 所需的草坪面积得出x 的取值范围,再根据函数的性质得出花钱最少的方案. 【答案与解析】解:(1)公园A 需铺设草坪的面积为S 1=62×32-62×2-32×2+2×2=1800(m 2).设图(4)中圆的半径为R ,易知,圆心到距形长边的距离为252,所以25cos302R =°,253R =.公园B 需铺设草坪的面积为22212025125256525221008(m )3602233S π⎛⎫=⨯-⨯⨯-⨯⨯⨯ ⎪⎝⎭≈. (2)设总运费为y 元,公园A 向甲地购买草皮x m 2,向乙地购买草皮(1800-x)m 2. 由于园林处需要购买的草皮面积总数为 1800+1008=2808(m 2),甲、乙两地出售的草皮面积总数为: 1608+1200=2808(m 2),所以,公园B 向甲地购买草皮(1608-x)m 2,向乙地购买草皮1200-(1800-x)=(x-600)m 2. 则01608,018001200,x x ≤≤⎧⎨≤-≤⎩ 求得600≤x ≤1608.由题意,得y =30×0.25x+22×0.3×(1800-x)+32×0.25×(1608-x)+30×0.3×(x-600)=1.9x+19344.因为k =1.9>0,所以y 随x 的增大而增大, 所以,当x =600时,y =最小值 1.9×600+19344=20484(元). 即公园A 在甲地购买600 m 2, 在乙地购买1800-600=1200(m 2);公园B 在甲地购买1608-600=1008(m 2),运送草皮的总运费最省. 【总结升华】本题是一个图表信息类的实际应用题,将代数知识、几何知识巧妙地融为一体,通过解答,可以有效考查圆的有关计算、一元一次不等组、一次函数等知识的综合运用,难度不大但涉及知识点丰富、技巧性强,是不可多得的一道好题.举一反三:【高清课堂:图表信息型问题 例1】【变式】今年我省干旱灾情严重,甲地急需要抗旱用水15万吨,乙地13万吨.现有A、B两水库各调出14万吨水支援甲、乙两地抗旱.从A地到甲地50千米,到乙地30千米;从B地到甲地60千米,到乙地45千米.⑴设从A水库调往甲地的水量为x万吨,完成下表:⑵请设计一个调运方案,使水的调运量尽可能小.(调运量=调运水的重量×调运的距离,单位:万吨•千米)【答案】⑴(从左至右,从上至下)14-x ;15-x ;x-1 .⑵ y=50x+(14-x)30+60(15-x)+(x-1)45=5x+1275解不等式1≤x≤14所以x=1时y取得最小值y=5+1275=1280∴调运方案为A往甲调1吨,往乙调13吨;B往甲调14吨,不往乙调.4.某商场对今年端午节这天销售A、B、C三种品牌粽子的情况进行了统计,绘制了如图所示的统计图.根据图中信息解答下列问题:(1)哪一种品牌粽子的销售量最大?(2)补全图中的条形统计图.(3)写出A品牌粽子在图(2)中所对应的圆心角的度数.(4)根据上述统计信息,明年端午节期间该商场对A、B、C三种品牌的粽子如何进货?请你提一条合理化的建议.【思路点拨】(1)从扇形统计图中得出C 品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B 品牌的销售量=2400-1200-400=800个,补全图形即可; (3)A 品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°; (4)由于C 品牌的销售量最大,所以建议多进C 种. 【答案与解析】解:(1)从扇形统计图中得出C 品牌的销售量最大,为50%;(2)总销售量=1200÷50%=2400个,B 品牌的销售量=2400-1200-400=800个,(3)A 品牌粽子在图中所对应的圆心角的度数=360°×(400÷2400)=60°; (4)建议:多进一些C 品牌的粽子. 【总结升华】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.类型三、信息综合题5.如图,A ,B ,C ,D 为圆O 的四等分点,动点P 从圆心O 出发,沿O-C-D-O 路线作匀速运动,设运动时间为x (s ),∠APB=y (°),右图函数图象表示y 与x 之间函数关系,则点M 的横坐标应为( )A.2B. 2πC. 12π+ D. 无法确定 【思路点拨】通过图象得到函数是随自变量的增大,知道函数值是增大还是减小. 【答案与解析】解:根据题意,可知点P从圆心O出发,运动到点C时,∠APB的度数由90°减小到45°,C点的横坐标为1,CD弧的长度为12π.点M是∠APB由稳定在45°,保持不变到增大的转折点;另点O的运动有周期性;结合图象,可得答案为C.故选C【总结升华】正确理解函数图象横纵坐标表示的意义,理解问题的过程.。
北师大初中数学中考冲刺:数形结合问题--知识讲解(提高)【推荐】.doc
中考冲刺:数形结合问题—知识讲解(提高)【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-(21)2(21)(1)2(1)2222n n s n n s n n s+⨯⨯+⨯+⨯⨯+⨯--,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.【答案】(2n﹣1,2n﹣1)【解析】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).类型二、利用数形结合解决数与式的问题类型三、利用数形结合解决代数式的恒等变形问题3.(1)示).验证等式a+b=c成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考冲刺:图表信息型问题—知识讲解(提高) 【中考展望】 图表信息题是指通过图形、图象或图表及一定的文字说明来提供问题情景的一类试题,它是近几年全国各省市中考所展示的一种新题型,这类试题形式多样,取材广泛,可增加试题的灵活性和趣味性,其发展前景非常广阔.用好题中提供的信息,有利于提高学生分析、解决简单实际问题的能力,同时也是培养现代公民素质的一条重要途径. 【方法点拨】 1.图象信息题 题型特点:这类题是中考试卷中出现频率较高的题型之一,它是通过图象呈现问题中两个变量之间的数量关系,主要考查学生对函数思想和数形结合思想的掌握程度. 解题策略:解答这类问题,在弄清题意的基础上,弄清两坐标轴所代表的含义,并对图象的形状、位置、发展变化趋势等捕捉提炼有效信息,解决相关问题. 2.图表信息题 图表信息题是指通过图表的形式提供信息,这些信息一般以数据形式居多,其主要考查学生对图表数据的分析、比较、判断和结论的归纳能力,要求学生有较强的定量分析和定性概括能力. 图表信息题是中考常见的一种题型,它是通过图象、图形及表格等形式给出信息的一种新题型,在
解决图表信息题的时候要注意以下几点: 1、细读图表:(1)注重整体阅读.先对材料或图表资料等有一个整体的了解,把握大体方向.要通过整体阅读,搜索有效信息;(2)重视数据变化.数据的变化往往说明了某项问题,而这可能正是这个材料的重要之处;(3)注意图表细节.图表中一些细节不能忽视,它往往起提示作用,如图表下的“注”“数字单位”等. 2、审清要求:图表题往往对答题有一定的要求,根据考题要求进行回答,才能有的放矢.题目要求包往往括字数句数限制、比较对象、变化情况等. 3、准确表达解答图表题需要用简明的语言进行概括.解答前,要正确分析图表中所列内容的相互联系,从中找出规律性的东西,再归纳概括为一个结论.在表述时要有具体的数据比较、分析,要客观地反映图表包含的信息,特别要注意题目中的特殊限制.
【典型例题】 类型一、图象信息题
1.(2016•烟台)如图,⊙O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是( )
A. B. C. D. 【思路点拨】 根据题意分1<x<与≤x<2两种情况,确定出y与x的关系式,即可确定出图象. 【答案】C. 【答案与解析】
解:当P在OC上运动时,根据题意得:sin∠APB=,
∵OA=1,AP=x,sin∠APB=y, ∴xy=1,即y=(1<x≤),
当P在上运动时,∠APB=∠AOB=45°, 此时y=(<x≤2),
图象为: 故选C. 【总结升华】 此题考查了动点问题的函数图象,列出y与x的函数关系式是解本题的关键.
2.(福鼎市期中)甲、乙两人骑车前往A地,他们距A地的路程S(km)与行驶时间t(h)之间的关系如图所示,请根据图象所提供的信息解答下列问题: (1)甲、乙两人的速度各是多少? (2)求甲距A地的路程S与行驶时间t的函数关系式. (3)直接写出在什么时间段内乙比甲距离A地更近?(用不等式表示)
【思路点拨】 (1)分别利用利用总路程除以总时间求出速度即可; (2)利用待定系数法求出函数解析式即可; (3)利用函数图象确定乙比甲距离A地更近时的时间即可. 【答案与解析】 解:(1)v甲==30(km/h),
v乙==20(km/h); (2)设甲的函数关系式为S=kt+b,把(0,50), (2.5,0)代入解得:,
解得:, ∴关系式为:S=﹣20t+50; (3)由图象可得出:当1<t<2.5时,乙比甲距离A地更近.
【总结升华】 此题考查了学生从图象中读取信息的能力.学会利用数形结合来解答问题. 举一反三:
【变式】如图,已知抛物线P:y=ax2+bx+c(a≠0) 与x轴交于A、B两点(点A在x轴的正半轴上),与y轴交于点C,矩形DEFG的一条边DE在线段AB上,顶点F、G分别在线段BC、AC上,抛物线P上部分点的横坐标对应的纵坐标如下:
(1) 求A、B、C三点的坐标; (2) 若点D的坐标为(m,0),矩形DEFG的面积为S,求S与m的函数关系,并指出m的取值范围; (3) 当矩形DEFG的面积S取最大值时,连接DF并延长至点M,使FM=k·DF,若点M不在抛物线P上,求k的取值范围.
【答案】
解:⑴ 解法一:设 2(0)yaxbxca, 任取x,y的三组值代入,求出解析式2142yxx=+-, 令y=0,求出124,2xx=-=;令x=0,得y=-4, ∴ A、B、C三点的坐标分别是A(2,0),B(-4,0),C(0,-4) .
解法二:由抛物线P过点(1,-52),(-3,52-)可知, 抛物线P的对称轴方程为x=-1, 又∵ 抛物线P过(2,0)、(-2,-4),则由抛物线的对称性可知, 点A、B、C的坐标分别为 A(2,0),B(-4,0),C(0,-4) .
⑵ 由题意,ADDGAOOC=,而AO=2,OC=4,AD=2-m,故DG=4-2m,
又 BEEFBOOC=,EF=DG,得BE=4-2m,∴ DE=3m, ∴SDEFG=DG·DE=(4-2m) 3m=12m-6m2 (0<m<2) . 注:也可通过解Rt△BOC及Rt△AOC,或依据△BOC是等腰直角三角形建立关系求解. ⑶ ∵SDEFG=12m-6m2 (0<m<2),∴m=1时,矩形的面积最大,且最大面积是6 . 当矩形面积最大时,其顶点为D(1,0),G(1,-2),F(-2,-2),E(-2,0),
设直线DF的解析式为y=kx+b,易知,k=23,b=-23,∴2233yx=-,
又可求得抛物线P的解析式为:2142yxx=+-, 令2233x=2142xx,可求出x=1613. 设射线DF与抛物线P相交于点N, 则N的横坐标为1613--,过N作x轴的垂线交x轴于H,有
FNHEDFDE==161233=5619,
点M不在抛物线P上,即点M不与N重合时,此时k的取值范围是 k≠5619-+且k>0. 类型二、图表信息题
3.为减少环境污染,自2008年6月1日起,全国的商品零售场所开始实行“塑料购物袋有偿使用制度”(以下简称“限塑令”).某班同学于6月上旬的一天在某超市门口采用问卷调查的方式,随机调查了“限塑令”实施前后,顾客在该超市用购物袋的情况,以下是根据100位顾客的100份有效答卷画出的统计图表的一部分:
请你根据以上信息解答下列问题: (1)补全图,“限塑令”实施前,如果每天约有2000人次到该超市购物.根据这100位顾客平均一次购物使用塑料购物袋的平均数,估计这个超市每天需要为顾客提供多少个塑料购物袋? (2)补全图,并根据统计图和统计表说明,购物时怎样选用购物袋,塑料购物袋使用后怎样处理,能对环境保护带来积极的影响.
【思路点拨】 (1)根据调查的总人数100人,结合其它部分数据即可计算出5个对应的频数是100-90=10;然后首先计算样本平均数,再进一步计算2000人需要的塑料袋; (2)根据总百分比是1即可计算收费塑料购物袋占:1-75%=25%;结合两个统计图中的数据进行合理分析,提出合理化建议即可. 【答案与解析】 解:(1)如图所示. “限塑令”实施前,平均一次购物使用不同数量塑料购物袋的人数统计图
9137226311410546373003100100
这100位顾客平均一次购物使用塑料购物袋的平均数为3个. 2000×3=6000(个). 估计这个超市每天需要为顾客提供6000个塑料购物袋. (2)图中,使用收费塑料购物袋的人数所占百分比为25%. 由上图和统计表可知,购物时应尽量使用自备袋和押金式环保袋,少用塑料购物袋;塑料购物袋应尽量循环使用,以便减少塑料购物袋的使用量,为环保做贡献. 【总结升华】 此题是社会上的热门话题与统计相结合的一道考题,考查了学生对图表绘制过程的理解、阅读图表并提取有用信息的技能,借助数据处理结果做合理推测的能力.
4.在某次人才交流会上,应聘人数和招聘人数分别居前5位的行业列表如下:
如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是( ) A.计算机行业好于其他行业 B.贸易行业好于化工行业 C.机械行业好于营销行业 D.建筑行业好于物流行业
【思路点拨】 本题综合考查统计部分的有关知识,通过统计表可以得到应聘人数与招聘人数,进而通过计算应聘人数与招聘人数的比值大小来衡量该行业的就业情况,比值越小越容易就业,比值越大越不容易就业,通过计算即可求解.
【答案与解析】 解:计算机行业比值为1.83; 机械行业比值为2.29; 营销行业比值为1.50; 建筑行业为0; 化工行业为0; 而物流行业与贸易行业的比值为无穷大, 所以此题应选D.
【总结升华】 本题综合考查统计部分的有关知识,通过统计表可以得到应聘人数与招聘人数,进而通过计算应聘人数与招聘人数的比值大小来衡量该行业的就业情况,比值越小越容易就业,比值越大越不容易就业. 举一反三:
【变式】下表为抄录北京奥运会官方票务网公布的三种球类比赛的部分门票价格,某公司购买的门票种类、数量绘制的条形统计图如下图.
依据上列图、表,回答下列问题: (1)其中观看男篮比赛的门票有 张;观看乒乓球比赛的门票占全部门票的 %; (2)公司决定采用随机抽取的方式把门票分配给100名员工,在看不到门票的条件下,每人抽取一张(假设所有的门票形状、大小、质地等完全相同且充分洗匀),问员工小亮抽到男篮门票的概率是 ;
(3)若购买乒乓球门票的总款数占全部门票总款数的81,试求每张乒乓球门票的价格. 【答案】 (1)30,20;(2)310;
(3)解法一:依题意,有xx205080030100020= 18 . 解得x =500 . 经检验,x =500是原方程的解. 答:每张乒乓球门票的价格为500元. 解法二:依题意,有x2050800301000= x208. 解得x =500 . 答:每张乒乓球门票的价格为500元.
类型三、从表格、数字中寻求规律 5.我市某工艺厂为配合北京奥运,设计了一款成本为20元/件的工艺品投放市场进行试销.经过调查,得到如下数据: