(完整版)人教版七年级下册数学各章知识点及练习题

合集下载

人教版初1数学7年级下册 第7章(平面直角坐标系)章末知识点分类训练(含答案)

人教版初1数学7年级下册 第7章(平面直角坐标系)章末知识点分类训练(含答案)

人教版七年级数学下册《第7章平面直角坐标系》章末知识点分类训练(附答案)一.点的坐标1.已知点Q的坐标为(﹣2+a,2a﹣7),且点Q到两坐标轴的距离相等,则点Q的坐标是( )A.(3,3)B.(3,﹣3)C.(1,﹣1)D.(3,3)或(1,﹣1)2.点P在第二象限,P到x轴的距离为2,P到y轴距离为5,则点P的坐标为( )A.(﹣2,5)B.(﹣5,2)C.(2,5)D.(5,﹣2)3.已知点P的坐标为P(﹣5,3),则点P在第( )象限.A.一B.二C.三D.四4.如图,小手盖住的点的坐标可能为( )A.(5,2)B.(﹣6,3)C.(3,﹣3)D.(﹣3,﹣2)5.点M到x轴的距离为3,到y轴的距离为2,且在第一象限内,则点M的坐标为( )A.(﹣2,3)B.(2,3)C.(3,2)D.不能确定6.在平面直角坐标系中,点A(x,y)位于y轴正半轴,距离原点3个单位长度,则点A 的坐标为( )A.(3,0)B.(0,3)C.(﹣3,0)D.(0,﹣3)7.如图,点Q(m,n)是第二象限内一点,则点Q到y轴的距离是( )A.m B.n C.﹣m D.﹣n8.点P坐标为(m+1,m﹣2),则点P不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限9.若m是任意实数,则点M(5+m2,1)在第( )象限.A.一B.二C.三D.四10.如果点A(3,m)在x轴上,那么点B(m+2,m﹣3)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限二.规律型:点的坐标11.如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,按这样的运动规律,第2021次运动后,动点P2021的纵坐标是( )A.1B.2C.﹣2D.012.如图,点A(0,1),点A1(2,0),点A2(3,2),点A3(5,1)…,按照这样的规律下去,点A100的坐标为( )A.(101,100)B.(150,51)C.(150,50)D.(100,55)13.如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),(4,0).根据这个规律探索可得,第2021个点的坐标为( )A.(2021,8)B.(2020,0)C.(63,4)D.(64,4)14.在平面直角坐标系中,一只电子狗从原点O出发,按向上→向右→向下→向右的方向依次不断移动,每次移动1个单位长度,其行走路线如图所示,则A2022的坐标为( )A.(1011,1)B.(1011,0)C.(2022,1)D.(2022,0)三.坐标确定位置15.如图,雷达探测器发现了A,B,C,D,E,F六个目标.目标C,F的位置分别表示为C(6,120°),F(5,210°),按照此方法表示目标A,B,D,E的位置时,其中表示正确的是( )A.(4,30°)B.(1,90°)C.(4,240°)D.(3,60°)16.如图,若在象棋盘上建立平面直角坐标系,使“将”位于点(﹣1,﹣2),“炮”位于(﹣4,1),则“象”位于点( )A.(1,2)B.(﹣2,1)C.(1,﹣2)D.(﹣1,﹣2)17.下列数据能确定物体具体位置的是( )A.朝阳大道右侧B.好运花园2号楼C.东经103°,北纬30°D.南偏西55°18.如图是某市市内简图(图中每个小正方形的边长为1个单位长度),如果文化馆的位置是(﹣2,1),超市的位置是(3,﹣3),则市场的位置是( )A.(﹣3,3)B.(3,2)C.(﹣1,﹣2)D.(5,3)19.根据下列表述,能确定位置的是( )A.北偏东30°B.某电影院2排C.市二环东路D.东经120°,北纬35°四.坐标与图形性质20.对于平面直角坐标系xOy中的点P(a,b),若点P′的坐标为(a+kb,ka+b)(其中k 为常数,且k≠0),则称点P'为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+2×4,2×1+4).即P′(9,6).则点P(﹣2,3)的“4属派生点”P′的坐标为 ;若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且线段PP′的长度为线段OP长度的3倍,则k的值为 .21.已知线段AB∥y轴,若点A的坐标为(5,n﹣1),B(n2+1,1),则n为 .22.已知点A(a﹣1,﹣2),B(﹣3,b+1),根据以下要求确定a,b的值.(1)当直线AB∥x轴时,a ,b ;(2)当直线AB∥y轴时,a ,b ;(3)当点A和点B在二四象限的角平分线上时,求a,b的值.五.坐标与图形变化-平移23.在平面直角坐标系中,将点P(3,2)向上平移2个单位长度,得到的点的坐标是( )A.(3,4)B.(1,2)C.(5,2)D.(3,0)24.在平面直角坐标系内,将M(5,2)先向下平移2个单位,再向左平移3个单位,则移动后的点的坐标是( )A.(2,0)B.(3,5)C.(8,4)D.(2,3)25.将点A(2,﹣3)沿x轴向左平移3个单位长度后得到的点A′的坐标为( )A.(﹣1,﹣6)B.(2,﹣6)C.(﹣1,﹣3)D.(5,﹣3)26.在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标减去2,所得图形的位置与原图形相比( )A.向左平移3个单位,向上平移2个单位B.向上平移3个单位,向左平移2个单位C.向下平移3个单位,向右平移2个单位D.向上平移3个单位,向右平移2个单位27.以A(﹣2,7),B(﹣2,﹣2)为端点的线段上任意一点的坐标可表示为(﹣2,y)(﹣2≤y≤7).现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为 .28.一只蚂蚁由点(2,3)先向上爬2个单位长度,再向右爬4个单位长度,再向下爬1个单位长度后,它所在位置的坐标是 .29.平面直角坐标系中,已知点A的坐标为(m,3).若将点A先向下平移2个单位,再向左平移1个单位后得到点B(1,n),则m+n= .参考答案一.点的坐标1.解:∵点Q(﹣2+a,2a﹣7)到两坐标轴的距离相等,∴|﹣2+a|=|2a﹣7|,∴﹣2+a=2a﹣7或﹣2+a=﹣(2a﹣7),解得a=5或a=3,所以,点Q的坐标为(3,3)或(1,﹣1).故选:D.2.解:∵x轴的距离为2,到y轴的距离为5,∴点的纵坐标是±2,横坐标是±5,又∵第二象限内的点横坐标小于0,纵坐标大于0,∴点的横坐标是﹣5,纵坐标是2.故此点的坐标为(﹣5,2).故选:B.3.解:∵点P的坐标为(﹣5,3),∴点P的横坐标为负数,纵坐标为正数,∴点P在第二象限,故选:B.4.解:由题可知:该点位于第四象限,故选:C.5.解:M到x轴的距离为3,到y轴距离为2,且在第一象限内,则点M的坐标为(2,3),故选:B.6.解:∵点A(x,y)位于y轴正半轴,距离原点3个单位长度,∴点A的坐标为(0,3),故选:B.7.解:因为Q(m,n)是第二象限内一点,所以m<0,所以点Q到y轴的距离是|m|=﹣m.8.解:当m>2时,m﹣2>0,故点P可能在第一象限,故选项A不合题意;当﹣1<m<2时,m+1>0,m﹣2<0,故点P可能在第四象限,故选项D不合题意;当m<﹣1时,m+1<0,m﹣2<0,故点P可能在第三象限,故选项C不合题意;因为m+1>m﹣2,所以无论m取何值,点P不可能在第二象限,故选项B符合题意;故选:B.9.解:∵m2≥0,∴5+m2≥5,∴点M(5+m2,1)在第一象限.故选:A.10.解:∵A(3,m)在x轴上,∴m=0,∴m+2=2,m﹣3=﹣3,∴B(m+2,m﹣3)所在的象限是第四象限.故选:D.二.规律型:点的坐标11.解:观察图象,结合第一次从原点O运动到点P1(1,1),第二次运动到点P2(2,0),第三次运动到P3(3,﹣2),…,运动后的点的坐标特点,由图象可得纵坐标每6运动组成一个循环:P1(1,1),P2(2,0),P3(3,﹣2),P4(4,0),P5(5,2),P6(0,0)…;∵2021÷6=336…5,∴经过第2021次运动后,动点P的坐标与P5坐标相同,为(5,2),故经过第2021次运动后,动点P的纵坐标是2.故选:B.12.解:观察图形可得,A1(2,0),A3(5,1),A5(8,2),…,A2n﹣1(3n﹣1,n﹣1),A2(3,2),A4(6,3),A6(9,4),…,A2n(3n,n+1),∵100是奇数,且100=2n,∴n=50,∴A100(150,51),13.解:把第一个点(1,0)作为第一列,(2,1)和(2,0)作为第二列,依此类推,则第一列有一个数,第二列有2个数,第n列有n个数.则n列共有个数,并且在奇数列点的顺序是由上到下,偶数列点的顺序由下到上.因为1+2+3+…+63=2016,则第2020个数一定在第64列,由下到上是第4个数.因而第2021个点的坐标是(64,4).故选:D.14.解:A1(0,1),A2(1,1),A3(1,0),A4(2,0),A5(2,1),A6(3,1),…,2022÷4=505…2,2022÷2=1011,所以A2022的坐标为(1011,1),故选:A.三.坐标确定位置15.解:由题意可知A、B、D、E的坐标可表示为:A(5,30°),故A选项错误;B(2,90°),故B选项错误;D(4,240°),故C选项正确;E(3,300°),故D选项错误.故选:C.16.解:由“将”和“炮”的坐标可建立如图所示平面直角坐标系:,故“象”位于点(1,﹣2).故选:C.17.解:东经103o,北纬30o能确定物体的具体位置,故选:C.18.解:如图所示:市场的位置是(5,3),故选:D.19.解:A、北偏东30°,不能确定位置;B、某电影院2排,没有明确具体位置;C、市二环东路,没有明确具体位置;D、东经120°,北纬35°,二者相交于一点,位置明确,能确定位置;故选:D.四.坐标与图形性质20.解:由定义可知:a=﹣2,b=3,k=4,∴a+kb=﹣2+4×3=10,ka+b=4×(﹣2)+3=﹣5,∴P′的坐标为(10,﹣5),∵点P在x轴的正半轴上,∴P点的纵坐标为0,设P(b,0),则点P的“k属派生点”P′点为(b,kb),∴PP'=|kb|,PO=|b|,∵线段PP′的长度为线段OP长度的3倍,∴|kb|=3|b|,∴k=±3.故答案为(10,﹣5),±3.21.解:∵线段AB∥y轴,点A的坐标为(5,n﹣1),B(n2+1,1),∴5=n2+1,n﹣1≠1,解得:n=﹣2,故答案为:﹣2.22.解:(1)∵直线AB∥x轴,∴点A与点B的纵坐标相同,∴b+1=﹣2,∴b=﹣3,∵AB是直线,∴A,B不重合,∴a﹣1≠﹣3,解得:a≠﹣2,故答案是:≠﹣2,=﹣3;(2)∵直线AB∥y轴,∴点A与点B的横坐标相同,A,B点纵坐标不相等,∴a﹣1=﹣3,﹣2≠b+1,∴a=﹣2,b≠﹣3;故答案是:=﹣2,≠﹣3;(3)∵A、B两点在第二、四象限的角平分线上,∴a﹣1+(﹣2)=0,b+1+(﹣3)=0,∴a=3,b=2.五.坐标与图形变化-平移23.解:将点P(3,2)向上平移2个单位长度所得到的点坐标为(3,2+2),即(3,4),故选:A.24.解:平移后的坐标为(5﹣3,2﹣2),即坐标为(2,0),故选:A.25.解:点A(2,﹣3)沿x轴向左平移3个单位长度后得到的点A′的坐标为(2﹣3,﹣3),即(﹣1,﹣3),故选:C.26.解:在平面直角坐标系中,将三角形各顶点的纵坐标都加上3,横坐标减去2,所得图形的位置与原图形相比,向上平移3个单位,向左平移2个单位,故选:B.27.解:现将这条线段水平向右平移7个单位,所得图形上任意一点的坐标可表示为(5,y)(﹣2≤y≤7),故答案为:(5,y)(﹣2≤y≤7).28.解:点(2,3)先向上爬2个单位长度,所得点的坐标为(2,5),再向右爬4个单位长度,所得点的坐标为(6,5),再向下爬1个单位长度后,所得点的坐标为(6,4),故答案为:(6,4).29.解:∵点A(m,3)向下平移2个单位,向左平移1个单位后得到点B(1,n),∴m﹣1=1,3﹣2=n,∴m=2,n=1,∴m+n=3,故答案为:3.。

最新版人教版七年级数学下册知识点及典型试题汇总

最新版人教版七年级数学下册知识点及典型试题汇总
7.易混淆的三个数(自行分析它们)
(1) (2) (3)
综合演练
一、填空题
1、(-0.7)2的平方根是2、若 =25, =3,则a+b=
3、已知一个正数的两个平方根分别是2a﹣2和a﹣4,则a的值是
4、 =____________5、若m、n互为相反数,则 =_________
6、若 ,则a______07、若 有意义,则x的取值范围是
5.如果x3=a,则x叫做a的立方根,记作“”
(a称为被开方数)。
6.正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
7.求一个数的平方根(立方根)的运算叫开平方(开立方)。
8.立方根与平方根的区别:
一个数只有一个立方根,并且符号与这个数一致;只有正数和0有平方根,负数没有平方根,正数的平方根有2个,并且互为相反数,0的平方根只有一个且为0.
A.①、②是正确的命题;B.②、③是正确命题;C.①、③是正确命题;D.以上结论皆错
9、下列语句错误的是()
A.连接两点的线段的长度叫做两点间的距离;B.两条直线平行,同旁内角互补
C.若两个角有公共顶点且有一条公共边,和等于平角,则这两个角为邻补角
D.平移变换中,各组对应点连成两线段平行且相等
10、如图7, , 分别在 上, 为两平行线间一点,
二、练习:
1、如图1,直线a,b相交于点O,若∠1等于40°,则∠2等于()
A.50°B.60°C.140°D.160°
2、如图2,已知AB∥CD,∠A=70°,则∠1的度数是()
A.70° B.100° C.110° D.130°
3、已知:如图3, ,垂足为 , 为过点 的一条直线,则 与 的关系一定成立的是()

七八年级数学知识点全总结及七年级重点章节习题及答案

七八年级数学知识点全总结及七年级重点章节习题及答案

暑假补习针对性练习(七八年级知识点+重点章节练习题)第一部分:七八年级知识点人教版数学七、八年级知识点汇总人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容人教版七年级数学下册主要包含了相交线与平行线、平面直角坐标系、三角形、二元一次方程组、不等式与不等式组、数据的收集、整理与描述六章内容人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。

人教版八年级下册主要包括了分式、反比例函数、勾股定理、四边形、数据的分析五章内容。

九年级数学(上)知识点人教版九年级数学上册主要包括了二次根式、二元一次方程、旋转、圆和概率五个章节的内容。

人教版九年级数学下册主要包括了二次函数、相似、锐角三角形、投影与视图四个章节的内容。

七年级上册人教版七年级数学上册主要包含了有理数、整式的加减、一元一次方程、图形的认识初步四个章节的内容第一章 有理数一、知识框架二、知识概念1.有理数:(1)凡能写成)0p q ,p (pq ≠为整数且形式的数,都是有理数. (2)正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.【注意:0即不是正数,也不是负数;-a 不一定是负数,+a 也不一定是正数;π不是有理数】(3)有理数的分类: ① ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 重点② ⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)相反数的和为0 ⇔ a+b=0 ⇔ a 、b 互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;【注意:绝对值的意义是数轴上表示某数的点离开原点的距离】(2) 绝对值可表示为:⎪⎩⎪⎨⎧<-=>=)0a (a )0a (0)0a (a a 或⎩⎨⎧<-≥=)0a (a )0a (a a ;绝对值的问题经常分类讨论; 5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.6.互为倒数:乘积为1的两个数互为倒数;【注意:0没有倒数;若 a ≠0,那么a 的倒数是a1】 若ab=1⇔ a 、b 互为倒数;若ab=-1⇔ a 、b 互为负倒数.7. 有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b )+c=a+(b+c ).9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b ).10、有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11、有理数乘法的运算律:(1)乘法的交换律:ab=ba ;(2)乘法的结合律:(ab )c=a (bc );(3)乘法的分配律:a (b+c )=ab+ac .12.有理数除法法则:除以一个数等于乘以这个数的倒数; 【注意:零不能做除数,无意义即0a 】13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n 为正奇数时: (-a)n =-a n 或(a -b)n =-(b-a)n , 当n 为正偶数时: (-a)n =a n 或 (a-b)n =(b-a)n .14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;如23叫2的3次幂,其中2是底数,3是指数。

人教版七年级数学下册第八章:二元一次方程组的实际应用(各题类 针对练习)(pdf版)

人教版七年级数学下册第八章:二元一次方程组的实际应用(各题类 针对练习)(pdf版)

二元一次方程组的实际应用(各类型题+针对练习)思维导图行程问题知识点1:二元一次方程组行程问题行程问题基本数量关系:路程=时间速度,时间=路程÷速度,速度=路程÷时间船在顺水中的速度船在静水中的速度水流的速度船在逆水中的速度船在静水中的速度水流的速度学生/课程年级学科授课教师日期时段核心内容二元一次方程组的实际应用教学目标 1.进一步熟练掌握二元一次方程组的解法;2.学会运用方程组来解决实际问题;重、难点灵活运用方程组来解决实际问题例1.甲乙两地相距360千米,一轮船往返于甲、乙两地之间,顺水行船用18小时,逆水行船用24小时,若设船在静水中的速度为千米/时,水流速度为千米/时,则下列方程组中正确的是()A.B.C.D.例2.甲、乙两地相距100km,一艘轮船往返两地,顺流用4h,逆流用5h,那么这艘轮船在静水中的航速与水速分别是()A.24km/h,8km/hB.22.5km/h,2.5km/hC.18km/h,24km/hD.12.5km/h,1.5km/h例3:从A地到B地全程290千米,前一路段为国道,其余路段为高速公路.已知汽车在国道上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,一辆客车从A地开往B地一共行驶了3.5h.求A、B两地间国道和高速公路各多少千米?例4.:李强要在规定的时间内由甲地赶往乙地,如果他以60km/h的速度行驶,就会迟到24min;如果他以80km/h的速度行驶,就可以提前24min到达乙地,求甲、乙两地间的距离。

【学有所获】(1)回顾二元一次方程组的实际应用的解题步骤;(2)抓住题目中的关键字眼,转化为数学等量关系式。

例5:一列快车长168m,一列慢车长184m,如果两车相向而行,从相遇到离开需4s,如果同向而行,从快车追及慢车到离开需16s,求两车的速度.【学有所获】1、回忆相遇问题的基本特征:时间、人物、地点、方向,时间是同时;人物是两方;地点:不同地点;方向:相向而行;2、回忆追及问题的基本特征:时间:同时;人物:两方;地点:有路程差;方向:同向。

人教版七年级数学下册第六章《实数》同步练习(含答案)

人教版七年级数学下册第六章《实数》同步练习(含答案)

)
A.B 与 C B.C 与 D C.E 与 F D.A 与 B 18.(2017·广州四校联考期中)已知 a,b 为两个连续整数,且 a< 15<b,则 a+b 的值为 7. 19.(教材 P41 探究变式)如图,将两个边长为 3的正方形分别沿对角线剪开,将所得的 4 个三角形拼成一个大的 正方形,则这个大正方形的边长是 6.
20.(教材 P43 探究变式)观察:已知 5.217≈2.284, 521.7≈22.84,填空: (1) 0.052 17≈0.228__4, 52 170≈228.4; (2)若 x≈0.022 84,则 x≈0.000__521__7. 21.比较下列各组数的大小: (1) 12与 14; (2)- 5与- 7;
3 C.±2
81 D.16 D.0
A.0.7 B.-0.7 C.±0.7 4.下列说法正确的是( A ) A.因为 52=25,所以 5 是 25 的算术平方根 B.因为(-5)2=25,所以-5 是 25 的算术平方根 C.因为(±5)2=25,所以 5 和-5 都是 25 的算术平方根 D.以上说法都不对 5.求下列各数的算术平方根: 9 64 (1)121; (2)1; (3) ; (4)0.01.
Байду номын сангаас
a=.小明按键输入
C.-6 ) C.±2
D. 6 D.2
中档题 14.下列各数,没有算术平方根的是( B ) A.2 B.-4 C.(-1)2 D.0.1 15.若一个数的算术平方根等于它本身,则这个数是( D ) A.1 B.-1 C.0 D.0 或 1 16.(2017·广州期中)已知一个自然数的算术平方根是 a,则该自然数的下一个自然数的算术平方根是( D A.a+1 B. a+1 C.a2+1 D. a2+1 17.(2017·潍坊)用计算器依次按键如下,显示的结果在数轴上对应点的位置介于________之间( A )

人教版七年级下册数学5.1.1相交线与平行线练习题(含答案)

人教版七年级下册数学5.1.1相交线与平行线练习题(含答案)

第五章相交线与平行线5.1.1相交线知识点1认识邻补角和对顶角1.如图,下列各组角中,互为对顶角的是( )A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠5 2.如图所示,∠1和∠2是对顶角的图形是( )3.下面四个图形中,∠1与∠2是邻补角的是( )4.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是,∠1的对顶角是.知识点2邻补角和对顶角的性质5.如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( )A.60° B.90° C.120° D.150°6.如图,已知∠1=120°,则∠2的度数是( )A.120° B.90° C.60°D.30°7.如图,测角器测得工件(圆台)的角度是度,其测量角的原理是.第4题图第5题图第6题图第7题图8.在括号内填写依据:如图,因为直线a,b相交于点O,所以∠1+∠3=180°( ),∠1=∠2( ).AB9.如右图所示,直线AB,CD,EF 相交于点O ,则①∠AOD 的对顶角是___________,∠EOC 的对顶角是___________②∠AOC 的邻补角是_________________,∠BOE 的邻补角是__________________. ③若∠AOC=50°,求∠BOD ,∠COB 的度数. 解:∵∠AOC=50° ∴∠BOD=__________=________( ); ∵∠BOC+∠AOC=180°∴∠COB=180°-∠________( )=180°-________°=________°10.如图,直线AB ,CD 相交于点O ,∠EOC =70°,OA 平分∠EOC ,求∠BOD 的度数.【综合训练】11.下列说法正确的有( )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A .1个B .2个C .3个D .4个 12.如图,三条直线l 1,l 2,l 3相交于一点,则∠1+∠2+∠3=( )A .90°B .120°C .180°D .360°13.如图所示,直线AB 和CD 相交于点O.若∠AOD 与∠BOC 的和为236°,则∠AOC 的度数为( )A .62°B .118°C .72°D .59°第12题图 第13题图14.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x )°,则x = . 15.若∠1的对顶角是∠2,∠2的邻补角是∠3,且∠3=45°,则∠1的度数为 . 16.如图,直线a ,b ,c 两两相交,∠1=80°,∠2=2∠3,则∠4=.17.如图所示, 直线AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE 的度数.解:∵∠AOC=120°∴∠BOD=__________=________( );∵OE 平分∠AOD ∴∠AOE=21___________( ) ∵∠AOD+∠AOC=180°∴∠AOD=180°-∠________( )=_________________________=___________ ∠AOE=____________.18.如图,直线AB ,CD 相交于点O ,∠AOE =∠BOE ,OB 平分∠DOF.若∠DOE =50°,求∠DOF 的度数.19.如图,l 1,l 2,l 3交于点O ,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数.20.探究题:(1)三条直线相交,最少有 个交点,最多有 个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有 个交点,最多有 个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n 条直线相交,最少有 个交点,最多有 个交点,对顶角有 对,邻补角有 对.OE DC BA第五章相交线与平行线5.1.1相交线答案知识点1认识邻补角和对顶角1.如图,下列各组角中,互为对顶角的是( A )A.∠1和∠2 B.∠1和∠3 C.∠2和∠4 D.∠2和∠5 2.如图所示,∠1和∠2是对顶角的图形是( C )3.下面四个图形中,∠1与∠2是邻补角的是( D )4.如图所示,AB与CD相交所成的四个角中,∠1的邻补角是∠2,∠4,∠1的对顶角是∠3.知识点2邻补角和对顶角的性质5.如图,点O在直线AB上,若∠BOC=60°,则∠AOC的大小是( C )A.60° B.90° C.120° D.150°6.如图,已知∠1=120°,则∠2的度数是( A )A.120° B.90° C.60°D.30°AB 7.如图,测角器测得工件(圆台)的角度是40度,其测量角的原理是对顶角相等.8.在括号内填写依据:如图,因为直线a ,b 相交于点O , 所以∠1+∠3=180°(邻补角互补), ∠1=∠2(对顶角相等).9.如右图所示,直线AB,CD,EF 相交于点O ,则①∠AOD 的对顶角是_∠BOC__,∠EOC 的对顶角是__∠DOF___ ②∠AOC 的邻补角是_∠AOD____,∠BOE 的邻补角是___∠AOE__. ③若∠AOC=50°,求∠BOD ,∠COB 的度数.解:∵∠AOC=50°∴∠BOD=_∠AOC_=_50°(对顶角相等); ∵∠BOC+∠AOC=180°∴∠COB=180°-∠AOC (邻补角互补) =180°- 50° = 130°10.如图,直线AB ,CD 相交于点O ,∠EOC =70°,OA 平分∠EOC ,求∠BOD 的度数.解:因为OA 平分∠EOC ,∠EOC =70°, 所以∠AOC =12∠EOC =35°.所以∠BOD =∠AOC =35°. 【综合训练】11.下列说法正确的有( B )①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等.A .1个B .2个C .3个D .4个 12.如图,三条直线l 1,l 2,l 3相交于一点,则∠1+∠2+∠3=( C )A .90°B .120°C .180°D .360°13.如图所示,直线AB 和CD 相交于点O.若∠AOD 与∠BOC 的和为236°,则∠AOC 的度数为( A )A .62°B .118°C .72°D .59° 14.两条直线相交所成的四个角中,有两个角分别是(2x -10)°和(110-x )°,则x=40或80. 15.若∠1的对顶角是∠2,∠2的邻补角是∠3,且∠3=45°,则∠1的度数为135°. 16.如图,直线a ,b ,c 两两相交,∠1=80°,∠2=2∠3,则∠4=140°.17.如图所示, 直线AB,CD 相交于点O,OE 平分∠AOD,∠AOC=120°,求∠BOD,∠AOE 的度数.解:∵∠AOC=120°∴∠BOD= ∠AOC = 120° (对顶角相等); ∵OE 平分∠AOD∴∠AOE=21∠AOD∵∠AOD+∠AOC=180°∴∠AOD=180°-∠AOC (邻补角互补)=180°-120°= 60° ∠AOE= 30°.18.如图,直线AB ,CD 相交于点O ,∠AOE =∠BOE ,OB 平分∠DOF.若∠DOE =50°,求∠DOF 的度数.解:因为∠AOE =∠BOE ,且∠AOE +∠BOE =180°, 所以∠AOE =∠BOE =90°. 因为∠DOE =50°,所以∠DOB =∠BOE -∠DOE =40°.因为OB 平分∠DOF ,所以∠DOF =2∠DOB =80°.OE DCBA19.如图,l 1,l 2,l 3交于点O ,∠1=∠2,∠3∶∠1=8∶1,求∠4的度数. 解:设∠1=∠2=x °,则∠3=8x °. 由∠1+∠2+∠3=180°,得 10x =180.解得x =18. 所以∠1=∠2=18°. 所以∠4=∠1+∠2=36°. 20.探究题:(1)三条直线相交,最少有1个交点,最多有3个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(2)四条直线相交,最少有1个交点,最多有6个交点,分别画出图形,并数出图形中的对顶角和邻补角的对数;(3)依次类推,n 条直线相交,最少有1个交点,最多有n (n -1)2个交点,对顶角有n(n -1)对,邻补角有2n(n -1)对.解:(1)图略,对顶角有6对,邻补角有12对. (2)图略,对顶角有12对,邻补角有24对.。

人教版七年级数学下册《第七章平面直角坐标系》单元练习题含答案

第七章平面直角坐标系一、选择题1.若线段CD 是由线段AB 平移获取的,点A(-1,3)的对应点为C(2,2),则点 B(-3,-1)的对应点 D 的坐标是 ()A . (0,- 2)B . (1,- 2)C. (- 2,0)D . (4,6)2.如图,点A、点B的坐标分别为(2,0),(0,1) ,若将线段AB平移至A1B1,若A1(1,b ),B1(a,- 2),则 3a2()- b 的值为A .-3B . 3C. 1D.-13.以下各点中位于第四象限的点是()A . (3,4)B . (- 3,4)C. (3,- 4)D . (- 3,- 4)4.若是P(m+3,2m+4) 在y轴上,那么点P 的坐标是()A . (- 2,0)B . (0,- 2)C. (1,0)5.如图,一方队正沿箭头所指的方向前进, A 的地址为三列三行,表示为(3,3), (5,4)表示的地址是()A. AB. BC.CD .D6.在平面直角坐标系中,线段BC∥ x 轴,则()A .点B与点C的横坐标相等B .点B与点C的纵坐标相等C.点B与点C的横坐标与纵坐标分别相等D.点 B 与点 C 的横坐标、纵坐标都不相等7.当m为任意实数时,点A(m 2+1,-2)在第几象限()A .第一象限B .第二象限C.第三象限D .第四象限8.如图,一个矩形的两边长分别是 4 和 2,建立直角坐标系,则以下不在矩形上的点为()A . (4,0)B . (2,4)C. (0,2)D . (4,2)9.如图,在国际象棋的棋盘上,左右两边标有数字 1 至 8,上下两边标有字母 a 至 h,若是黑色的国王棋子的地址用 (d,3) 来表示,白色的马棋子的地址用(g, 5)来表示,请你分别写出棋盘中其他三个棋子的地址,分别是________________ .10.已知 AB∥x 轴, A 点的坐标为(-3,2),并且 AB =4,则 B 点的坐标为______________.11.同学们玩过五子棋吗?它的比赛规则是只要同色 5 子先成一条直线就算胜.如图,是两人玩的一盘棋,若白①的地址是 (0,1) ,黑②的地址是 (1,2),现轮到黑棋走,你认为黑棋放在________地址就成功了.12. 若图中的有序数对(4,1) 对应字母 D ,有一个英文单词的字母序次对应图中的有序数对为(1,1) 、 (2,3) 、(2,3) 、 (5,2)、(5,1) ;则这个英文单词是________.(大小写均可 )13.点 M (-1,5)向下平移 4 个单位得N点坐标是 ________.14.点 Q(5,-3)到两坐标轴的距离之和为________.15.点 P(,-)到x轴距离为 ________,到y轴距离为 ________.16.如图,小华用手遮住的点向上平移 3 个单位获取的点的坐标为(2,1) ,则小明用手遮住的那个点的坐标为________ .17.如图,在平面直角系统中,描出下各点: A (-2,1), B(2,3), C(-4,-3), D(1,2), E(0,-3), F(-3,0),G(0,0), H(0,4),J(2,2),K(-3,-3).18.已知:点P(0, a)在 y 轴负半轴上,问点M (- a2-1,- a+1)在第几象限?19.正方形ABCD的边长为4,请你建立合适的平面直角坐标系,写出各个极点的坐标.20.已知 |x- 2|+ (y+ 1)2= 0,求P(x,y)的坐标,并说出它在第几象限内.21.以下列图,是某城市植物园周围街巷的表示图, A 点表示经 1 路与纬 2 路的十字路口,B点表示经 3 路与纬5路的十字路口,若是用(1,2) → (2,2) → (3,2) → (3,3)→ (3,4)→ (3,5)表示由 A 到 B 的一条路径,那么你能用同样的方式写出由 A 到 B 的尽可能近的其他几条路径吗?答案剖析1.【答案】 A(-1,3)(2,2),可知横坐标由-1变为2,向右搬动了3个单位,3变为2【剖析】点 A的对应点为 C,表示向下搬动了1个单位,于是(3,-1)的对应点 D 的横坐标为-3 30D的纵坐标为-112,故B-+=,点-=-D (0,-2).2.【答案】 B【剖析】由题意可得线段AB 向左平移1个单位,向下平移了 3个单位,因为 A、 B 两点的坐标分别为(2,0)、 (0,1),所以点 A1、 B1的坐标分别为(1,-3),(-1,-2),所以3a-2b =3.3.【答案】 C【剖析】第四象限的点的坐标的符号特点为(+,- ),观察各选项只有 C 吻合条件.4.【答案】 B【剖析】因为(3,2m +4)303,24=-2 P m +在 y 轴上,所以 m +=,解得 m =-m +,所以点 P 的坐标是(0,-2).5.【答案】 D【剖析】一方队正沿箭头所指的方向前进, A 的地址为三列三行,表示为(3,3), (5,4) 表示的地址是 D.6.【答案】 B【剖析】依照线段BC∥ x 轴,则点 B 与 C 的纵坐标相等.7.【答案】 D【剖析】因为m 2≥0,所以 m 2+1≥1,所以点 A(m 2+1,-2)在第四象限.8.【答案】 B【剖析】因为矩形的两边长分别是 4 和 2,所以矩形上点的横坐标在0~4 之间,纵坐标在0~ 2 之间,所以 A 、 C、D 正确, B 错误.9. 【答案】 (d, 5), (f,5), (g, 2)【剖析】因为黑色的国王棋子的地址用( d,3) 来表示,白色的马棋子的地址用(g, 5)来表示,所以棋盘中其他三个棋子的地址,分别是(d, 5), (f,5), (g,2) .【剖析】因为AB∥ x 轴,所以点 B 纵坐标与点 A 纵坐标相同,为2,又因为 AB =4,可能右移,横坐标为-3+4=- 1;可能左移横坐标为-3- 4=- 7,所以 B 点坐标为(1,2)或(-7,2),11. 【答案】 (1,6)或 (6,1)【剖析】建立平面直角坐标系如图,黑棋的坐标为(1,6) 或 (6,1).12. 【答案】 APPLE【剖析】有序数对(1,1)、 (2,3) 、 (2,3)、 (5,2) 、 (5,1) 分别对应的字母为: A , P, P, L , E;所以这个英文单词是APPLE.13.【答案】 (- 1,1)【剖析】点M (-1,5)向下平移4个单位得 N 点坐标是(-1,5-4),即为(-1,1).14.【答案】 8【剖析】因为点Q(5,-3),所以点 Q 到 y 轴的距离为|5|=5;到 x 轴的距离为|-3|=3,所以距离之和为3+5= 8.15.【答案】【剖析】点P(,-)到x轴距离为,到y轴距离为.16.【答案】 (2,- 2)【剖析】小华用手遮住的点向上平移 3 个单位获取的点的坐标为(2,1),则小明用手遮住的那个点的坐标为(2 ,- 2).17.【答案】解:以下列图【剖析】注意描点法正确的找到点的地址.18.【答案】解:因为点 P(0, a)在 y 轴负半轴上,所以 a<0,所以- a2-1<0,- a+1>0,所以点 M 在第二象限.【剖析】先判断出 a 是负数,再求出点 M 的横坐标与纵坐标的正负情况,尔后依照各象限内点的坐标特点解答.19. 【答案】解: (这是开放题,答案不唯一)以AB所在的直线为x 轴, AD 所在的直线为y 轴,并以点 A 为坐标原点,建立平面直角坐标系,以下列图,则点 A、 B、C、 D 的坐标分别是(0,0)、(4,0)、(4,4)、(0,4).【剖析】可以以正方形中互相垂直的边所在的直线为坐标轴,建立平面直角坐标系,再依照点的地址和线段长表示坐标.20.【答案】解:由题意得, x-2=0, y +1=0,解得 x=2,y =-1,所以,点 P(2,-1)在第四象限.【剖析】依照非负数的性质列式求出x、y,再依照各象限内点的坐标特点解答.21.【答案】解:还有两条路线,一是:(1,2)→ (1,3)→ (1,4)→ (1,5)→; (2,5)→ (3,5)二是:(1,2)→ (2,2)→ (2,3)→ (2,4),5)→. (2,5)→ (3【剖析】依照已知的路线可以知道由 A 到 B 的一条路径只能向东,向北,所以依照这个方向即可确定其他的路径.。

人教版,初中七年级数学下册,全册各章,单元测试卷汇总,(附详细参考答案)


1
1
2
2
BPE=∠PAC+∠PBD,即∠APB=∠PAC+∠PBD.
若点 P 在 C、D 两点的外侧运动时(P 点与点 C、D 不重合),则有两种情形:
(1)如图 1,有结论:∠APB=∠PBD-∠PAC.理由是:过点 P 作 PE∥l ,则∠APE=∠ 1
PAC,又因为 l ∥l ,所以 PE∥l ,所以∠BPE=∠PBD,所以∠APB=∠BAE+∠APE,即∠APB
1. 下列运算正确的是( )
A. 9 3
B. 3 3 C. 9 3
2. 下列各组数中互为相反数的是(

D. 32 9
A.-2 与 (2)2 B.-2 与 38
C.-2 与 1 2
D.2 与 2
3. 下列实数 371, π,3.14159, 8 , 3 27 ,12 中无理数有(

A. 2 个
9. 81的平方根是

10. 在数轴上离原点距离是 5 的点表示的数是_________。
11. 化简: 2 3 3 =

12. 写出 1 到 2 之间的一个无理数___________。
13. 计算: (1)2009 9 3 8 =____________。
14. 当 x≤ 0 时,化简 1 x x2 的结果是 15. 若 0 x 1,则 x、x2、1x 、 x 中,最小的数是
13.观察图 7 中角的位置关系,∠1 和∠2 是______角,∠3 和∠1 是_____角,∠1•和∠4 是
_______角,∠3 和∠4 是_____角,∠3 和∠5 是______角.
12 3
5
4
李庄
A
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲 相交线与平行线 1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_____________. 2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为------________对顶角的性质:______ ______ 3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_______.垂线的性质:⑴过一点______________一条直线与已知直线垂直. ⑵连接直线外一点与直线上各点的所在线段中,_______________. 4. 直线外一点到这条直线的垂线段的长度,叫做________________________. 5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,⑴如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做___________ ;⑵如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做____________ ;⑶如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_______________. 6. 在同一平面内,不相交的两条直线互相___________.同一平面内的两条直线的位置关系只有________与_________两种. 7. 平行公理:经过直线外一点,有且只有一条直线与这条直线______. 推论:如果两条直线都与第三条直线平行,那么_____________________. 8. 平行线的判定:⑴_____________________________________. ⑵___________________________ ⑶__________________________________. 9. 平行线的性质:⑴ _________________. (2)_______________________________.⑶__________________________________ . 10. 把一个图形整体沿某一方向移动,会得到一个新图形,图形的这种移动,叫做_______. 平移的性质:⑴把一个图形整体平移得到的新图形与原图形的形状与大小完全______. ⑵新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段_________________. 11.判断一件事情的语句,叫做_______.命题由________和_________两部分组成。命题常可以写成“如果……那么……”的形式。 12121221一、对顶角与邻补角的概念及性质 1、如图所示,∠1和∠2是对顶角的图形有( )

2、下列说法正确的有( ) A.1个 B.2个 C.3个 D.4个 ①对顶角相等;②相等的角是对顶角;③若两个角不相等,则这两个角一定不是对顶角;④若两个角不是对顶角,则这两个角不相等。 3、如图1,AB与CD相交所成的四个角中,∠1的邻补角是______,∠1的对顶角 若∠1=25°,则∠2=_______,∠3=______,∠4=_______ 4、如图2,直线AB,CD,EF相交于点O,则∠AOD的对顶角是_____,∠AOC的邻补角是_______; 若∠AOC=50°,则∠BOD=______,∠COB=_______ 5、如图3,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,则∠2的度数 6、如图4,直线AB和CD相交于点O,若∠AOD与∠BOC的和为236°,则∠AOC•的度数为( ) ①若∠AOD-∠DOB=70,则∠BOC=_____,∠DOB=____ ②若∠AOC:∠AOD=2:3,则∠BOD的度数 7、如图5,直线AB,CD相交于点O,已知∠AOC=70°,且∠BOE:∠EOD=2:3, 则∠EOD=________

二、会识别同位角、内错角、同旁内角 1、如图1,∠1和∠4是AB和 被 所截得的 角,∠3和∠5是 、 被 所截得的 角,∠2和∠5是 、 所截得的 角,AC、BC被AB所截得的同旁内角是 2、如图2,AB、DC被BD所截得的内错角是 ,AB、CD被AC所截是的内错角是 ,AD、BC被BD所截得的内错角是 ,AD、BC被AC所截得的内错角是 3、如图3,直线AB、CD被DE所截,则∠1和 是同位角,∠1和 是内错角,∠1和 是同旁内角,如果∠1=∠5.那么∠1 ∠3.

4、下列所示的四个图形中,和是同位角的是……………( ) A. ②③ B. ①②③ C. ①②④ D. ①④

34

DC

B

A12

图1

O

F

ED

CBA

图2 O

F

ED

CBA12

图3 O

DC

B

A

图4 OE

D

CBA

图5

图1 图2 图3 32

1DC

BA

三、垂直 1、如图,,8,6,10,BCACCBcmACcmABcm那么点A到BC的距离是_____,点B到AC的距离是_______,点A、B两点的距离是_____,点C到AB的距离是________. 2、如图,已知AB、CD、EF相交于点O,AB⊥CD,OG平分∠AOE,∠FOD=28°,求∠COE、∠AOE、∠AOG的度数。

3、如图,AOC与BOC是邻补角,OD、OE分别是AOC与BOC的平分线,试判断OD与OE的位置关系,并说明理由。

四、平行线的判定 1、下列图形中,直线a与直线b平行的是( )

2、如图,已知AB∥CD, ∠1=∠3, 试说明AC∥BD. 3、如图,已知AB∥CD,∠1=∠2,试说明EP∥FQ.

证明:∵AB∥CD, ∴∠MEB=∠MFD( ) 又∵∠1=∠2, ∴∠MEB-∠1=∠MFD-∠2, 即 ∠MEP=∠______ ∴EP∥_____.( ) B E D

A

C F

4、如图,已知∠BAF=50°,∠ACE=140°,CD⊥CE,能判断DC∥AB吗?为什么?

5、已知∠B=∠BGD,∠DGF=∠F,求证:AB∥EF。 五、平行线的性质 1、已知AB∥CD,∠A=70°,则∠1的度数是( )

A.70° B.100° C.110° D.130°

2、如图2,ABDE∥,65E,则BC( )

A.135 B.115 C.36 D.65 3、如图,已知AB∥CD,BE平分∠ABC,∠CDE=150°,则∠C=______

4、如图,∠CAB=100°,∠ABF=110°,AC∥PD,BF∥PE,求∠DPE的度数。

5、如图,AB∥CD,AD∥BC,∠A=3∠B.求∠A、∠B、∠C、∠D的度数. 6、如图,已知ABCD//,=____________

FEDCBA

A D

C B

D B A C

1

A B

C D

E 平行线性质与判定的综合应用 1、如图1,∠B=∠C,AB∥EF 求证:∠BGF=∠C

2、如图2,已知∠1=∠3,∠P=∠T。求证:∠M=∠R. 3、如图3,AB∥DE,∠1=∠ACB,AC平分∠BAD, (1) 试说明: AD∥BC. (2) 若∠B=80°,求:∠ADE的度数。

4、已知:如图,DE⊥AO于E,BO⊥AO,FC⊥AB于C,∠1=∠2,求证:DO⊥AB.

5、如图,已知ABC,ADBC于D,E为AB上一点,EFBC于F,//DGBA

交CA于G.求证12

GF

E

DC

BA第二讲 实数

1、如果一个 x的 等于a,那么这个 x叫做a的算术平方根。 正数a的算术平方根,记作 2、如果一个 的 等于a,那么这个 就叫做a的平方根(或二次方根)。 数a(a≥0)的平方根,记作 3、如果一个 的 等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。 一个数a的立方根,记作 4、平方根和算术平方根的区别与联系: 区别:正数的平方根有 个,而它的算术平方根只有 个。

联系:(1)被开方数必须都为 ;(2)0的算术平方根与平方根都为 (3) 既没有..算术平方根,又没有..平方根

说明:求一个正数a的平方根的运算,叫做开平方。平方与开平方互为逆运算。 求一个数的立方根的运算,叫做开立方。开立方和立方互为逆运算。 5、平方表和立方表(独立完成) 12= 62= 112= 162= 212= 22= 72= 122= 172= 222= 32= 82= 132= 182= 232= 42= 92= 142= 192= 242= 52= 102= 152= 202= 252= 13= 23= 33= 43= 53= 63= 73= 83= 93= 103=

6、公式:⑴(a)2=a(a≥0);⑵3a=3a(a取任何数);

(3)

002aaaa

aa

7、题型规律总结: ①平方根是其本身的数是 ;算术平方根是其本身的数是 ;立方根是其本身的数是 。 ②若几个非负数之和等于0,则每一个非负数都为0。 8、无理数: 叫无理数。

(1)开方开不尽的数,如32,7等; (2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等。 9、实数的大小比较:对于一些带根号的无理数,我们可以通过比较它们的平方或者立方的大小。常用有理数来估计无理数的大致范围。 10、实数的加减运算——与合并同类项类似

相关文档
最新文档