结构化学基础习题问题详解分子的对称性

合集下载

结构化学__南开大学(5)--第六章分子对称性课堂测验

结构化学__南开大学(5)--第六章分子对称性课堂测验

Chap6 测验
1. 写出下面分子所属点群,判断其有无极性和旋光性
1) 三乙二胺合钴离子 2) 氯仿CHCl 3 3) 六氟化硫SF 6
4) 环辛四烯 5) 1,2-二氯丙二烯 6) 氯乙烯
7) 四氟乙烯 8) 乙炔
9) 1,2-二氯丙烷 CH 3CHCH 2Cl Cl 10) 2,6-二氯萘 Cl
Cl
2. 下面几个分子中,有偶极矩的分子是?
A. 间三氯苯
B. 对二氯苯
C. 环己烷(船式)
D. 1,3,5,7-四甲基环辛四烯
3. 下面那个分子有对称中心?
A. 间三氯苯
B. 乙醛
C. 环己烷(椅式)
D. 氯乙烯 4. 环己烷(椅式)、乙烯、三乙二胺合钴离子和六氟化硫共同具有的对称元素是 A. C 2
B. C. i D. 以上都不对 5. 下面哪个分子有旋光性?
A. 间三氯苯
B. 氯乙烯
C.三乙二胺合钴离子
D. 1,3,5,7-四甲基环辛四烯。

结构化学基础第四章

结构化学基础第四章

2010-4-24
10
第四章 分子的对称性
结构化学
为什么我们要研究分子对称性?

能简明地表达分子的构型 可简化分子构型的测定工作 帮助正确地了解分子的性质 指导化学合成工作 简化计算工作量
11
2010-4-24
第四章 分子的对称性
结构化学
4 1 对称元素与对称操作 4.1 4 2 对称操作群 4.2 4.3 分子的点群 4.4 分子的偶极矩和极化率 4.5 分子的手性和旋光性 4.6 群的表示
y i x
E i i
n
(n为偶数 ) (n为奇数 )
2010-4-24
30
第四章 分子的对称性
结构化学
如果每一个原子都沿直线通过分子中心移动,达到这 如果每 个原子都沿直线通过分子中 移动 达到这 个中心的另一边的相等距离时能遇到一个相同的原子,那 么这个分子就具有对称中心 i。 显然,有些分子有对称中心,有些分子则没有对称中 心,称为非中心对称分子。比如:正方形的PtCl42-离子有 对称中心,但四面体的SiF4分子就没有对称中心。
结构化学
微观对象也具有多种 多样的对称性。原子轨道, 分子轨道及分子几何构型 都具有某种对称性,这些 对称性是电子运动状态和 分子结构特点的内在反映。 分子的振动模式、某些化 学反应的机理等都涉及对 称性的知识。
2010-4-24
8
第四章 分子的对称性
结构化学
分子振动模 式的对称性
MO对称性 与反应机理
平面正方形的PtCl42- 具有对称中心
2010-4-24
四面体SiF4不 具对称中心
31
第四章 分子的对称性
思考题 考题:判断下列分子是否具有对称中心 判断 列分 有 称中 i? (1)反式二氯乙烯

结构化学分子的对称性

结构化学分子的对称性

ˆ ˆ2 ˆ3 ˆn ˆ 2n ˆ 2n C 2n , C 2n , C 2n , , C 2n , , C 2n 1 , C 2n E

ˆ n n 2π 2π C ˆ C 2n 2 2n 2
ˆ C 2 z
x, y, z
2
x, y, z
1
ˆ i
ˆ σ xy
x, y, z
3
并延长到反方向等距离处而使分子复原,这一点就是对
称中心 i ,这种操作就是反演.
(4) 象转轴和旋转反映操作 反轴和旋转反演操作 旋转反映或旋转反演都是复合操作,相应的对 称元素分别称为象转轴Sn和反轴In . 旋转反映(或旋 转反演)的两步操作顺序可以反过来.
对于Sn,若n等于奇数,则Cn和与之垂直的σ都
而唯一地被定义了——至少在抽象地意义上是如此。上述概念 可以方便地呈现在群的乘法表的形式中。 一个h阶有限群的乘法表由h行和h列组成,共h2 个乘积; 设行坐标为x,列坐标为y,则交叉点yx,先操作x,再操作y;对 称操作的乘法一般是不可交换的,故应注意次序。 在群的乘法表中,每个元素在每一行和每一列中被列入一 次而且只被列入一次,不可能有两行或两列是全同的。每一行 或每一列都是群元素的重新排列,这就是群的重排定理。
四阶群只有两种,其乘法表如下
G4 E A B C E E A B C A A B C E B B C E A C C E A B G4 E A B C E E A B C A A E C B B B C E A C C B A E
H2O分子的所有对称操作形成的C2v点群的乘法表如下:
G4
E E
ˆ C2 ˆ C2
ˆ 2 C 1C 1 , Cn ˆ n ˆ n

结构化学第四章分子对称性

结构化学第四章分子对称性
X射线晶体学需要制备晶体样品,通过X射线照射晶 体并记录衍射数据,再通过计算机软件分析衍射数 据,最终得到分子的晶体结构。
X射线晶体学对于理解分子结构和性质具有重要意义 ,尤其在化学、生物学和材料科学等领域中广泛应 用。
分子光谱方法
分子光谱方法是研究分子对称 性的另一种实验方法。通过分 析光谱数据,可以确定分子的 振动、转动和电子等运动状态 ,从而推断出分子的对称性。
04
分子的点群
点群的分类
80%
按照对称元素类型分类
分子点群可按照对称元素类型进 行分类,如旋转轴、对称面、对 称中心等。
100%
按照对称元素组合分类
分子点群可按照对称元素的组合 进行分类,如Cn、Dn、Sn等。
80%
按照分子形状分类
分子点群可按照分子的形状进行 分类,如线性、平面、立体等。
点群的判断方法
分子没有对称元素,如 NH3。
分子有一个对称元素, 如H2O。
分子有两个对称元素, 如CO2。
分子有多个对称元素, 如立方烷。
02
分子的对称性
对称面和对称轴
对称面
将分子分成左右两部分的面。
对称轴
将分子旋转一定角度后与原分子重合的轴。
对称中心
• 对称中心:通过分子中心点,将分子分成互为镜像的两部分。
具有高对称性的分子往往表现出较弱的磁性,因为它们具有较低的轨道和自旋分 裂能。相反,对称性较低的分子可能表现出较强的磁性,因为它们的轨道和自旋 分裂能较高。
对称性与化学反应活性
总结词
分子对称性对化学反应活性也有重要影响,可以通过对称性 分析来预测和解释分子的化学反应行为。
详细描述
具有高对称性的分子往往具有较低的反应活性,因为它们的 电子云分布较为均匀,难以发生化学反应。相反,对称性较 低的分子可能具有较高的反应活性,因为它们的电子云分布 较为不均匀,容易发生化学反应。

结构化学练习题带答案

结构化学练习题带答案

结构化学复习题一、选择填空题第一章量子力学基础知识1.实物微粒和光一样,既有性,又有性,这种性质称为性。

2.光的微粒性由实验证实,电子波动性由实验证实。

3。

电子具有波动性,其波长与下列哪种电磁波同数量级?(A)X射线 (B)紫外线(C)可见光(D)红外线4。

电子自旋的假设是被下列何人的实验证明的?(A)Zeeman (B)Gouy (C)Stark (D)Stern-Gerlach5。

如果f和g是算符,则(f+g)(f—g)等于下列的哪一个?(A)f2-g2;(B)f2—g2-fg+gf; (C)f2+g2; (D)(f—g)(f+g)6.在能量的本征态下,下列哪种说法是正确的?(A)只有能量有确定值;(B)所有力学量都有确定值;(C)动量一定有确定值; (D)几个力学量可同时有确定值;7.试将指数函数e±ix表示成三角函数的形式——--——8.微观粒子的任何一个状态都可以用来描述; 表示粒子出现的概率密度。

9。

Planck常数h的值为下列的哪一个?(A)1.38×10-30J/s (B)1.38×10—16J/s (C)6。

02×10—27J·s (D)6.62×10—34J·s 10。

一维势箱中粒子的零点能是答案: 1.略。

2。

略. 3。

A 4。

D 5.B 6。

D 7.略 8.略 9。

D 10。

略第二章原子的结构性质1。

用来表示核外某电子的运动状态的下列各组量子数(n, 1, m, m s)中,哪一组是合理的?(A)2,1,—1,—1/2;(B)0,0,0,1/2; (C)3,1,2,1/2; (D)2,1,0,0。

2。

若氢原子中的电子处于主量子数n=100的能级上,其能量是下列的哪一个: (A)13。

6Ev;(B)13。

6/10000eV; (C)-13。

6/100eV;(D)—13.6/10000eV;3.氢原子的p x状态,其磁量子数为下列的哪一个?(A)m=+1;(B)m=—1;(C)|m|=1; (D)m=0;4.若将N原子的基电子组态写成1s22s22p x22p y1违背了下列哪一条?(A)Pauli原理;(B)Hund规则;(C)对称性一致的原则;(D)Bohr理论5。

结构化学:分子的对称性

结构化学:分子的对称性

对称元素:对称操作所依据的几何元素(点、线、面) 分子中的对称元素有:
1. 恒等元素E 和恒等操作
ˆ E
恒等元素E是所有分子几何图形都有的,其相应的操作是恒等操 作 E。对分子施行这种操作后,分子保持完全不动,即分子中各原子 的位置及其轨道方位完全不变。
恒等操作对向量(x, y, z)不产生任何影响。
6. 映轴 Sn 和旋转反映
ˆ S n
对应的操作为
ˆ ˆ ˆ hC S n n
当对分子施行 轴的 S k次操作
n
时 Sn
k
k ˆk ˆk ˆ S n n Cn
k k ˆ ˆ ˆ S C n n k ˆ C ˆk S n n
当k为奇数时
当k为偶数时 当n为奇数时 当n为偶数时
4. 对称中心 i 和反演(倒反)操作

5. 反轴 In 和旋转反演
ˆ I n
若将分子绕某轴旋转2/n角度后,再经对称中心反演产生分 子的等价图形,该对称操作称为反演,表示为 ,相应的 对称元素称反轴,用In表示。
ˆ I n
旋转反演是一种复合操作,且先反演后旋转( 转后反演(
),和先旋
ˆi ˆ C n
4.1.1 分子的对称性
对称性是物质内部分子结构对称性的反映。在
分子中,原子可以看做是固定在其平衡位置上的, 分子的结构参数,如键长、键角等决定了分子的几 何构型和分子的对称性。许多分子的几何构型具有 一定的对称性。
分子的对称性
对称操作和相应的对称元素
4.1.2 对称操作和相应的对称元素
对称操作:指不改变物体内部任何 两点间的距离而使物体复原的操作。
例: CH4 (放在正方体中)
ˆ I n

分子的对称性.

⎡ k =⎢ Cn ⎢ sin(2kπ / n) ⎢ 0 ⎣ cos(2kπ / n) 0 ⎤ 0⎥ ⎥ 1⎥ ⎦
4.1.2 反演操作和对称中心
当分子有对称中心i时,从分子中任一原子至对称中心连 一直线,将此线延长,必可在和对称中心等距离的另一侧找到 加一相同原子。和对称中心相应的对称操作叫反演或倒反。两 个由对称中心联系的分子是对映体,它们不一定完全相同,如 左右手关系。 若对称中心位置在原点(0,0,0)处,反演操作i的表示矩阵 为。连续进行两次反演操作等于主操作,反 演操作和它的逆操作相等。
4.1.4
旋转反演操作和反轴
反轴In的基本操作为绕轴转360o/n,接着按轴上的中心点进 行反演,In1 = iCn1。这个操作是Cn1和i相继进行的联合操作。Ii 对称元素等于i;I2等于σh; I3包括下列6个对称操作。
I31 = iC31 , I32 = C32 , I33 = i , I34 = C31 , I35 = iC32 , I36 = E ,
式中右上角的负号表示逆操作。 由上可见,反轴和映轴两者是相通的,对它们只要选择一种 即可。通常对分子的对称性用Sn较多,对晶体对称性则采用In , 因为按特征对称元素划分晶系时,按反轴轴次规定进行。为了将 分子对称性和晶体对称性统一起来,我们主要用反轴。
C31 c
C31 b c
C31 b
C31 和C32操作的表示矩阵
⎡ −1/ 2 − 3 / 2 0 ⎤ ⎡ −1/ 2 ⎢ ⎥ 2 ⎢ 1 c3 = ⎢ 3 / 2 −1/ 2 0 ⎥ c3 = ⎢ − 3 / 2 ⎢ 0 ⎥ ⎢ 0 0 1 ⎢ ⎥ ⎢ ⎣ ⎦ ⎣
3 / 2 0⎤ ⎥ −1/ 2 0 ⎥ 0 1⎥ ⎥ ⎦
当原子由位置1(x,y,z)转至位置2 (x`,y`,z)时,坐标关系为

结构化学基础课件 第四章 分子的对称性


②第二步,进行右上角的乘法, 分子进行 反映,N和H1保持不变,H2与H3互换位置,
再绕 轴旋转120度,则N还是不变,H2到H1 位置,H1到H2位置,H3回到原位置,两个操 作的净结果,相当于一个 镜面反映……可
写出右上角的九个结果。
③同理也可写出左下角的九个结果。旋转操 作和反映操作相乘,得到的是反映操作;两 个旋转操作相乘和两个反映操作相乘得到的 是旋转操作。
学时安排 学时----- 4学时
第四章.分子的对称性
对称 是一种很常见的现象。在自然界
我们可观察到五瓣对称的梅花、桃花,六瓣 的水仙花、雪花、松树叶沿枝干两侧对称, 槐树叶、榕树叶又是另一种对称……在人工 建筑中,北京的古皇城是中轴线对称。在化 学中,我们研究的分子、晶体等也有各种对 称性,有时会感觉这个分子对称性比那个分 子高,如何表达、衡量各种对称?数学中定 义了对称元素来描述这些对称。
I1 S2 i
S1
I
2
I2 S1
S2 I1 i
I3
S
6
C3
i
S3
I
6
C3
I4 S4
S4
I
4
I5 S10 C5 i
S5 I10 C5
I6 S3 C3 S6 I3 C3 i
负号代表逆操作,即沿原来的操作退回去的操作。
S4 S6
对称元 素符号
E Cn
I1n=iC1n 4.1.5.映轴和旋转反映操作
映轴S1n的基本操作为绕轴转3600/n, 接着按垂直于轴的平面进行反映,是C1n和 σ相继进行的联合操作:
S1n=σC1n
如果绕一根轴旋转2/n角度后立即对垂直于这根轴的一 平面进行反映,产生一个不可分辨的构型,那么这个轴就

结构化学习题解答解析

习题选解第一章1.1 E = 1.988⨯10-18Jp = 6.626⨯10-27kg ⋅m ⋅s -1 1.2 h = 6.442⨯10-34J ⋅s w = 5.869⨯10-19J ν0 = 9.11⨯1014s -1 1.4 光子能量21.24eV ;电子动能 5.481eV 1.5 70.8pm1.9 (1)1/4;(2)2.63⨯10-5;(3)2/l ;(4)01.10 3个,E 1 = h 2/(8ml 2);E 2 = 4h 2/(8ml 2);E 3 = 9h 2/(8ml 2) 1.13 301.5 nm 1.16 0.14 nm 1.17 86.2nm1.20 (1)无,l /2;(2)无,0;(3)有,2224n h l ;(4)有,2228n h ml 1.21 (1)是,能量无确定值,22513h E mL =;(2) 是,能量无确定值,2297104h E mL = 1.22 (1) 2222k E mr =,i k φψ, k =0, ±1, ±2, …;(2) 136pm 1.23 (1) h 2/(8ml 2);(2) l /2,2/l ;(3)01.24 n x =3, n y =1, n z =2;n x =3, n y =2, n z =1;n x =2, n y =1, n z =3;n x =2, n y =3, n z =1;n x =1, n y =2, n z =3;n x =1, n y =3, n z =2 1.25 (1)不是,x →∞时,ψ→∞不满足平方可积;(2)不是,x →-∞时,ψ→∞不满足平方可积;(3)不是,在x =0处一阶微商不连续;(4)不是,ψ不满足平方可积;(5) 不是,ψ不满足平方可积,在x =0处一阶微商不连续;(6) 是 1.27 11πsin 42π2n n -;n =3;1/4;说明当n →∞时,一维势箱中运动的粒子,其概率分布与经典力学相同 1.28 (1)1ψ=;(2) ψ=(3) i m φψ=;(4) 0/r a ψ-=1.29 (1)是;(2) 是;(3) 不是;(4) 是;(5) 不是1.31 (1) 是d/d x 和d 2/d x 2的本征函数,本征值分别为a 、a 2(2) 不是d/d x 和d 2/d x 2的本征函数(3) 不是d/d x 的本征函数,是d 2/d x 2的本征函数,本征值为-a 2 (4) 不是d/d x 的本征函数,是d 2/d x 2的本征函数,本征值为-a 2 (5) 不是d/d x 和d 2/d x 2的本征函数 (6) 不是d/d x 和d 2/d x 2的本征函数1.34 无确定值,2258h E ml =1.351.36 (a /2, a /4, a /2),(a /2, 3a /4, a /2);y = a /2 1.37 (1) 是;(2) 是;(3) 不是;(1) 不是 1.38 |p |=nh /2l第二章 2.1 3a 0/2 2.5 22.6 (1) ()22212349R C C C ⎡⎤-++⎣⎦;(2)21C ;;(4)1;(5) 2223()C C - ;(6)0 2.14 (1) -3.4eV ;(2) ;(3)0;(4)r /a 0(5)(6)2.15 (1);(2) n =2, l =1, m =0;(3) E =-3.4eV ,|M | =0,M z = 02.16 (1) 1111(1)(1)(1)(1)(2)(2)(1)(2)s s s s αψβΦαψβ=;(2) E = -78.6eV2.17 (1) 112112112(1)(1)(1)(1)(3)(3)(2)(2)(2)(2)(3)(3)(3)(3)(3)(3)(3)(3)s s s s s s s s s αψβψαΦαψβψααψβψα=或112112112(1)(1)(1)(1)(3)(3)(2)(2)(2)(2)(3)(3)(3)(3)(3)(3)(3)(3)s s s s s s s s sαψβψβΦαψβψβαψβψβ=; (2) E = -204.03eV2.18 (1) 3P 0;(2) 3P 2;(3) 4S 3/2;(4) 6S 5/2;(5) 3F 2;(6) 3F 4;(7) 4F 3/2;(8) 4F 9/2;(9) 5D 4 2.19 (1) 1S(1S 0);(2) 2P(2P 3/2 2P 1/2);(3) 1S(1S 0), 3P(3P 2, 3P 1, 3P 0), 1D(1D 2);(4) 1S(1S 0), 3P(3P 2, 3P 1, 3P 0), 1D(1D 2), 3F(3F 4, 3F 3, 3F 2), 1G(1G 4); (5) 1P(1P 1),3P(3P 2, 3P 1, 3P 0);(6)1S(1S 0), 3S(3S 1), 1P(1P 1),3P(3P 2, 3P 1, 3P 0), 1D(1D 2), 3D(3D 3, 3D 2, 3D 1) 2.21 第一种2.22 未成对电子数:2l +1 基支项:2212l l S ++2.24 (1) 4S 、2D 、2P(2) 4D 、4P 、4S 、2D(2)、2P(2)、2S(2) (3) 4P 、2D 、2P 、2S(4) 4P 、4D 、4F 、2S 、2P(2)、2D(3)、2F(2)、2G (5)1S 3P 1D 1S 1S 3P 1D 3P 3P 5D, 5P,5S, 3D, 3P, 3S, 1D, 1P, 1S3F, 3D,3P1D 1D 3F, 3D, 3P 1G,1F, 1D, 1P,1S3 F 3F 5G, 5F , 5D, 3G, 3F , 3D, 1G, 1F , 1D 3H, 3G, 3F, 3D,3P1G 1G 3H, 3G, 3F 1I, 1H, 1G,1F,1D2.25 I 1= 11.46eV2.26 (1)5;(2)15;(3)4;(4)45;(5)675;(6)1350 ;;(4) 2, 1, 0, -1, -2;(5)5 2.29 (1)A, C ;(2)A, B ;(3)B, C 2.31 2个节面2.32 (1))122z s s p ψψψψ=++;(2) 无,<E>=-6.8eV ,1/3; (3) 3 ,2/3; (4) 有,0,0第三章3.7 (1)OF :(1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π)3,一个σ键,一个三电子π键,键级3/2,顺磁性(2)NO :(1σ)2(2σ)2(3σ)2(4σ)2(1π)4 (5σ)2(2π)1,1σ,1π,一个三电子π键,键级5/2,顺磁性 (3)CO :(1σ)2(2σ)2(3σ)2(4σ)2(1π)4 (5σ)2,一个σ键,二个π键,键级3,反磁性(4)CN :(1σ)2(2σ)2(3σ)2(4σ)2(1π)4 (5σ)1,一个单电子σ键,二个π键,键级5/2,顺磁性 (5)HF :(1σ)2(2σ)2(3σ)2(1π)4,一个σ键,键级1,反磁性3.8 (1) O 2:2*22*2222*1*1112222222s s s s pz px py px py σσσσσππππ;O 2+:2*22*2222*111222222s s s s pz px py px σσσσσπππ;O 2-:2*22*2222*2*1112222222s s s s pz px py px py σσσσσππππ;键级:O 2+ > O 2 > O 2-;键长:O 2+ < O 2 < O 2- (2) OF :(1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π)3;OF +:(1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π)2;OF -:(1σ)2(2σ)2(3σ)2(4σ)2(5σ)2(1π)4(2π)4;键级:OF + > OF > OF -;键长:OF + < OF < OF -3.10 (1)得电子变为AB -型负离子后比原来中性分子键能大的分子:C 2,CN(2)失电子变为AB +型正离子后比原来中性分子键能大的分子:O 2,F 2,NO 3.12 p x -d xy (否);p y -d yz (π);d x 2-y 2-d x 2-y 2(δ);d z 2-d z 2(σ);p x -p x (π) 3.13原子轨道3s 3p z 3p x 3p y 3d z 23d zx 3d yz 3d xy 3d x 2-y 2沿z 轴对称类型(节面数) 0 0 1 10 1 1 2 2 有14对轨道对符合对称性匹配:原子轨道对 3s -3s 3s -3p z 3s -3d z 2 3p z -3p z 3p z -3d z 23d z 2-3d z 2 3p x -3p x 分子轨道类型 σ σ σ σσσπ原子轨道对 3p x -3d xz 3p y -3p y 3p y -3d yz 3d xz -3d xz 3d yz -3d yz 3d xy -3d xy 3d x 2-y 2-3d x 2-y 2分子轨道类型 π π π ππδδ3.14 (1) E I <E 1<E 2<E II ;(2) 222112/()a a a +;(3) 222112/()b b b +;(4) ψI 含φ1(A)原子轨道的成份多一些,ψII 含φ2(B)原子轨道的成份多一些;(5) 这个化学键的电子云会偏向A 原子3.15 1122x s p ψψ=+;21263x y s p p ψψψψ=-+;312662x y z s p p p ψψψψψ=--+;412662x y z s p p p ψψψψψ=---3.17 (1)0.73;(2)0.71;(3)0.683.23 NF :1σ22σ23σ24σ25σ21π42π2,键级:2,顺磁性;NF +:1σ22σ23σ24σ25σ21π42π1,键级:2.5,顺磁性;NF -:1σ22σ23σ24σ25σ21π42π3,键级:1.5,顺磁性第四章4.1 (1)π34,(2)π78,(3) π78,(4) π88,(5) π910,(6) π78,(7) π34,(8) π34,(9)无,(10) π1414,(11) π44,(12) π34(2个),(13) π34(2个),(14) π34(2个),(15)无,(16) π34(2个),(17) π34,(18) π46,(19) π46,(20)π46,(21) π344.6 (1) 1E α=,E 2 = α,3E α=;(2) ()112312φψψ=++)213φψψ-()312312φψψ=-+; (3) -0.828β;(4) C C C0.51.00.7074.8 (1) E 1=α+2β,E 2=E 3=α-β(2) 环丙烯正离子、自由基和负离子的离域能分别为-2β、-β和0(3) )1123φψψψ++,)21232φψψψ=--,)323φψψ=-(4) 4.11 (1) 2个π34,(2) E 1=α+2β, E 2=α+β,E 3=α-β(3) α+2βα+βα-β(4) 离域能为-1.528β 4.14 6α+5.656β第六章6.2 存在对称中心i : C 2h C 4h C 6h D 2h D 4h D 6h D 3d D 5d S 2 S 6存在垂直于主轴的镜面σh :C 2h C 3h C 4h C 5h C 6h D 2h D 3h D 4h D 5h D 6h S 3 S 5 6.3(1) CO —C ∞v ,CO 2—D ∞h ,NO 2+—D ∞h ,乙炔—D ∞h ,H 2S —C 2v ,NH 3—C 3v ,CH 3Cl —C 3v ,HOCl —C s ,H 2O 2—C 2,NO 2—C 2v ,CH 4—T d ,SF 6—O h(2) 重叠式乙烷—D 3h ,交叉式乙烷—D 3d ,椅式环己烷—D 3d ,船式环己烷—C 2v ,丙二烯—D 2d ,CHCl 2Br —C s ,CH 2=C=CCl 2—C 2v ,CHCl=C=CHCl —C 2,CH 3-CCl 3(交叉式)—C 3v , CH 3-CCl 3(重叠式)—C 3v(3) 顺式(重叠式)二茂铁—D 5h ,反式(交叉式)二茂铁—D 5d ,[Co(NH 2–CH 2–CH 2–NH 2)3]3+—D 3,1,3,5,7四甲基–环辛四烯—S 4(4) [PtCl 4]2-—D 4h ,HCHO —C 2v ,顺式二氯乙烯—C 2v ,反式二氯乙烯—C 2h ,CH 2=CCl 2—C 2v ,苯分子—D 6h ,萘分子—D 2h ,对二氯苯—D 2h ,邻二氯苯—C 2v ,间二氯苯—C 2v , BCl 3—D 3h ,[CO 3]2-—D 3h6.4B N B N B N H H H H H HD 3h ,B B BNH 2NH 2H 2ND 3hFH HFHHC 2h , H FF HHH C 2h, HHHHFFC2h ,CC FC 2h ,6.5 (1)D 2h (2)D 2d (3)D 26.6 (1) 去掉2个球有以下3种情况:2vvd (2) 去掉3个球有以下3种情况:s s 3v6.7⑴正三角形D 3h ⑵正方形 D 4h ⑶正六边形D 6h ⑷长方形 D 2h ⑸中国国旗上的一个五角星 D 5h ⑹正三棱锥 C 3v ⑺正三棱柱D 3h ⑻正四棱锥C 4v ⑼正四棱柱 D 4h ⑽双正四棱锥D 4h ⑾正六棱柱D 6h ⑿正四面体T d ⒀正八面体 O h⒁正六面体(即立方体)O h⒂圆锥体C ∞v ⒃园柱体D ∞h6.8 XX XXXXXXXX XXX XXX X XXXXXXX XXXXXX XXX XX Y XXY XYXYYXX YC s C 2D 2dC 2vC i C 1C 2hC s C sC 2vD 2hC 2hC 2hC 4v C 2C 2v第七章 7.1点阵点数目1 1 1 1每个点阵点代表的内容 白1、黑2白1、黑1白1、黑1白3 黑球和白球的数目 白1、黑2白1、黑1白1、黑1白37.7(1)0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2; 1/4,1/4,1/4; 1/4,3/4,3/4; 3/4,1/4,3/4; 3/4,3/4,1/4;(2)154.5pm 7.8 (右图)7.9 d 110=233.8pm ;d 220=143.2pm7.10 201pm7.11 (100)与(010):90°;(100)与(001):90°;(100)与(210):26.56°7.14 (1)C 2v ,正交;(2) C 2h ,单斜;(3)D 2h ,正交;(4) D 4h ,四方; (5)D 6h ,六方;(6)C 3v ,三方;(7)C 3i ,三方(8)C 3h ,六方;(9)D 3h ,六方; (10)S 4,四方;(11)C s ,单斜;(12) O h ,立方;(13)T d ,立方; (14) D 2d ,四方;(15)O ,立方;(16) C 6h ,六方;(17) D 3,三方; (18) T ,立方;(19) D 3d 三方;(20)T h ,立方 7.157.17(100)(010)(120)(230)第八章8.1 28.0748.2 21.453gcm-3r=138.7pm8.3 a=b=328pm,c=536pm;3.187gcm-38.4 r =185.8pm,0.967gcm-3,d=303pm8.8 a=352.4pm,8.908gcm-3,r=124.6pm8.14 r=146pm8.17 CaS:正负离子配位数皆为6,正八面体,A1,晶体结构型式为cF;CsBr:正负离子配位数皆为8,立方体,立方简单,晶体结构型式为cP8.18 (2) 154pm;(3) 1.53gcm-3;(4) 274pm8.20 cF;分数坐标:0,0,0; 1/2,1/2,0; 1/2,0,1/2; 0,1/2,1/2;80.99%8.22 (1)Ti4+:000;Ba2+:1/2,1/2,1/2;O2-:0,0,1/2; 0,1/2,0; 1/2,0,0(2) BaTiO3 (3)cP(4)与Ba2+离子配位的O2-负离子数为12;与Ti4+离子配位的O2-负离子数为6(6) A1第九章9.2 cF,a=359pm9.5 (1) a=415.8pm;(2) x = 0.92,(NiO)76(Ni2O3)8;(3) A1,正八面体空隙,92%;(4) 294pm9.8 (1) 21.45gcm-3,r = 186.7pm;(2)有两个,分别来自200和4009.9 (1)19.356gcm-3;(2) 共有7对粉末线,衍射指标依次为(110), (200), (211), (220), (310), (222) (321) 9.10 (1) r = 128pm;(2) 仅有(200)和(400)的衍射峰;(3) (200)与(400)衍射峰对应的2L值分别为50.4mm和116.8mm9.11 (1) a=565.9pm;(2)cF;(3)n = 49.12 (1) r=137.0pm;(2)2级9.16 106.6pm9.17 141.9pm9.18 k1/k2=1.7149.19 11MHz9.26 λ1,λ3,λ5由HCl产生,HCl核间距129pm;λ2,λ4,λ6由HBr产生,HBr核间距143pm9.28 131pm;477.7Nm−19.30 64.32⨯1012s−1;1.5547⨯10−14s;1859.7 Nm−1;12.83kJ;3.859cm−1附录III 模型实习实习一、分子的对称性目的:1. 掌握寻找分子中独立对称元素、判断分子点群的方法;2. 根据分子所属点群判断分子有无偶极矩3. 根据分子所属点群判断分子有无旋光性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

04分子的对称性【】HCN 和2CS 都是直线型分子,写出该分子的对称元素。

解:H :(),C υσ∞∞; CS 2:()()2,,,,h C C i υσσ∞∞∞【】写出3H CCl 分子中的对称元素。

解:()3,3C υσ【】写出三重映轴3S 和三重反轴3I 的全部对称操作。

解:依据三重映轴S 3所进展的全部对称操作为:1133h S C σ=,2233S C =,33h S σ= 4133S C =,5233h S C σ=,63S E = 依据三重反轴3I 进展的全部对称操作为:1133I iC =,2233I C =,33I i = 4133I C =,5233I iC =,63I E =【】写出四重映轴4S 和四重反轴4I 的全部对称操作。

解:依据S 4进展的全部对称操作为:11213344442444,,,h h S C S C S C S E σσ====依据4I 进展的全部对称操作为:11213344442444,,,I iC I C I iC I E ====【】写出xz σ和通过原点并与χ轴重合的2C 轴的对称操作12C 的表示矩阵。

解:100010001xz σ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,()12100010001x C ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦【】用对称操作的表示矩阵证明: 〔a 〕()2xy C z i σ=〔b 〕()()()222C x C y C z =〔c 〕()2yz xz C z σσ=解:〔a 〕()()1122xy z z x x x C y C y y z z z σ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,x x i y y z z -⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦()12xy z C iσ=推广之,有,()()1122xy xy n z n z C C i σσ==即:一个偶次旋转轴与一个垂直于它的镜面组合,必定在垂足上出现对称中心。

〔b 〕()12z x x C y y z z -⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ 这说明,假如分子中存在两个互相垂直的C 2轴,如此其交点上必定出现垂直于这两个C 2轴的第三个C 2轴。

推广之,交角为2/2n π的两个轴组合,在其交点上必定出现一个垂直于这两个C 2轴n C 轴,在垂直于n C 轴且过交点的平面必有n 个C 2 轴。

进而可推得,一个n C 轴与垂直于它的C 2 轴组合,在垂直于n C 的平面有n 个C 2 轴,相邻两轴的夹角为2/2n π。

〔c 〕yz xz yz x x x y y y z z z σσσ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦()12z x x C y y z z -⎡⎤⎡⎤⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦ ()12yz xz x C σσ=这说明,两个互相垂直的镜面组合,可得一个2C 轴,此2C 轴正是两镜面的交线。

推而广之,假如两个镜面相交且交角为2/2n π,如此其交线必为一个n 次旋转轴。

同理,n C 轴和通过该轴的镜面组合,可得n 个镜面,相邻镜面之交角为2/2n π。

【】写出ClHC CHCl =〔反式〕分子全部对称操作与其乘法表。

解:反式C 2H 2C l2分子的全部对称操作为:12,,,h E C i σ【】写出如下分子所归属的点群:HCN ,3SO ,氯苯()65C H Cl ,苯()66C H ,萘()108C H 。

【】判断如下结论是否正确,说明理由。

(a ) 凡直线型分子一定有C ∞轴;(b ) 甲烷分子有对称中心; (c ) 分子中最高轴次()n 与点群记号中的n 一样〔例如3h C 中最高轴次为3C 轴〕;(d ) 分子本身有镜面,它的镜像和它本身一样。

解:(a ) 正确。

直线形分子可能具有对称中心〔h D ∞点群〕,也可能不具有对称中心〔v C ∞点群〕。

但无论是否具有对称中心,当将它们绕着连接个原子的直线转动任意角度时,都能复原。

因此,所有直线形分子都有C ∞轴,该轴与连接个原子的直线重合。

(b ) 不正确。

因为,假如分子有对称中心,如此必可在从任一原子至对称中心连线的延长线上等距离处找到另一相当原子。

甲烷分子〔d T 点群〕呈正四面体构型,显然不符合此条件。

因此,它无对称中心。

按分子中的四重反轴进展旋转-反演操作时,反演所依据的“反轴上的一个点〞是分子的中心,但不是对称中心。

事实上,属于d T 点群的分子皆无对称中心。

(c ) 就具体情况而言,应该说〔c 〕不全错,但作为一个命题,它就错了。

这里的对称轴包括旋转轴和反轴〔或映轴〕。

在某些情况中,分子最高对称轴的轴次〔n 〕与点群记号中的n 一样,而在另一些情况中,两者不同。

这两种情况可以在属于nh C ,nh D 和nd D 等点群的分子中找到。

在nh C 点群的分子中,当n 为偶数时,最高对称轴是n C 轴或n I 轴。

其轴次与点群记号中的n 一样。

例如,反式C 2H 2Cl 2分子属2h C 点群,其最高对称轴为2C 轴,轴次与点群记号的n 一样。

当n 为基数时,最高对称轴为2h I ,即最高对称轴的轴次是分子点群记号中的n 的2倍。

例如,H 3BO 3分子属2h C 点群,而最高对称轴为6I 。

在nh D 点群的分子中,当n 为基数时,最高对称轴为n C 轴或n I 轴,其轴次〔n 〕与点群记号中的n 一样。

例如,C 6H 6分子属6h D 点群,在最高对称轴为6C 或6I ,轴次与点群记号中的n 一样。

而当n 为奇数时,最高对称轴为2n I ,轴次为点群记号中的n 的2倍。

例如,CO 3-属3h D 点群,最高对称轴为6I ,轴次是点群记号中的n 的2倍。

在nd D 点群的分子中,当n 为奇数时,最高对称轴为n C 轴或n I 轴,其轴次与分子点群记号中的n 一样。

例如,椅式环己烷分子属3d D 点群,其最高对称轴为3C 或3I ,轴次与点群记号中的n 一样。

当n 为偶数时,最高对称轴为2n I ,其轴次是点群记号中n 的2倍。

例如,丙二烯分子属2d D 点群,最高对称轴为4I 。

轴次是点群记号中的n 的2倍。

〔d 〕正确。

可以证明,假如一个分子具有反轴对称性,即拥有对称中心,镜面或4m 〔m 为正整数〕次反轴,如此它就能被任何第二类对称操作〔反演,反映,旋转-反演或旋转-反映〕复原。

假如一个分子能被任何第二类对称操作复原,如此它就一定和它的镜像叠合,即全同。

因此,分子本身有镜面时,其镜像与它本身全同。

【】联苯6565C H C H -有三种不同构象,两苯环的二面角()α分别为:〔a 〕0α=,〔b 〕090α=,〔c 〕0090α<<,试判断这三种构象的点群。

解:【】5SF Cl 分子的形状和6SF 相似,试指出它的点群。

解:SF 6分子呈正八面体构型,属h O 点群。

当其中一个F 原子被Cl 原子取代后,所得分子SF 5Cl 的形状与SF 6 分子的形状相似〔见图〕,但对称性降低了。

SF 5Cl 分子的点群为4v C 。

图4.11 SF 5Cl 的结构【】画一立方体,在8个顶角上放8个一样的球,写明编号。

假如:〔a 〕去掉2个球,〔b 〕去掉3个球。

分别列表指出所去掉的球的号数,指出剩余的球的构成的图形属于什么点群? 解:图示出8个一样求的位置与其编号。

(a ) 去掉2个球:去掉的球的号数所剩球构成的图形所属的点群 图形记号1和2,或任意两个共棱的球2C υA 1和3,或任意两个面对角线上的球 2C υB 1和7,或任意两个体对角线上的球 3d D C去掉的球的号数所剩球构成的图形所属的点群 图形记号1,2,4或任意两条相交的棱上的三个球 5C D 1,3,7或任意两条平行的棱上的三个球5CE 1,3,8或任意由3C 轴联系起来的三个球 3C υF123456781234567812345678ABC123456781234567812345678DEF【】判断一个分子有无永久偶极矩和有无旋光性的标准分别是什么?解:但凡属于n C 和n C υ点群的分子都具有永久偶极距,而其他点群的分子无永久的偶极距。

由于11h s C C C υ≡≡,因而s C 点群也包括在n C υ点群之中。

但凡具有反轴对称性的分子一定无旋光性,而不具有反轴对称性的分子如此可能出现旋光性。

“可能〞二字的含义是:在理论上,单个分子肯定具有旋光性,但有时由于某种原因〔如消旋或仪器灵敏度太低等〕在实验上测不出来。

反轴的对称操作是一联合的对称操作。

一重反轴等于对称中心,二重反轴等于镜面,只有4m 次反轴是独立的。

因此,判断分子是否有旋光性,可归结为分子中是否有对称中心,镜面和4m 次反轴的对称性。

具有这三种对称性的分子〔只要存在三种对称元素中的一种〕皆无旋光性,而不具有这三种对称性的分子都可能有旋光性。

【】作图给出()()322Ni en NH Cl 可能的异构体与其旋光性。

解:见图图【】由如下分子的偶极矩数据,推测分子立体构型与其点群。

〔a 〕32C O ()0μ=〔b 〕2SO ()305.4010C m μ-=⨯⋅〔c 〕N C C N ≡-≡()0μ=〔d 〕H O O H---()306.910C m μ-=⨯⋅〔e 〕22O N NO -()0μ=〔f 〕22H N NH -()306.1410C m μ-=⨯⋅〔g 〕NH 2NH 2()305.3410C m μ-=⨯⋅解:注:由于N 原子中有孤对电子存在,使它和相邻3个原子形成的化学键呈三角锥形分布。

【】指出如下分子的点群、旋光性和偶极矩情况: 〔a 〕33H C O CH --〔b 〕32H C CH CH -=〔c 〕5IF 〔d 〕8S 〔环形〕〔e 〕22ClH C CH Cl -〔交叉式〕〔f 〕BrN 〔g 〕33【】请说明表中4对化学式相似的化合物,偶极矩不同,分子构型主要差异是什么? 解:在C 2H 2分子中,C 原子以sp 杂化轨道分别与另一C 原子的sp 杂化轨道和H 原子的1s 轨道重叠形成的两个σ键;两个C 原子的x p 轨道相互重叠形成x π键,y p 轨道相互重叠形成y π键,分子呈直线形,属h D ∞点群,因而偶极距为0。

而在H 2O 2分子中,O 原子以3sp 杂化轨道〔也有人认为以纯p 轨道〕分别与另一个O 原子的3sp 杂化轨道和H 原子的1s 轨道重叠形成的两个夹角为9652'的σ键;两O H -键分布在以过氧键O O ---为交线、交角为9351'的两个平面,分子呈弯曲形〔见题答案附图〕,属2C 点群,因而有偶极距。

相关文档
最新文档