电磁场与电磁波第四版谢处方版思考题目答案电子教案

电磁场与电磁波第四版谢处方版思考题目答案电子教案
电磁场与电磁波第四版谢处方版思考题目答案电子教案

电磁场与电磁波第四版谢处方版思考题目

答案

一:1.7什么是矢量场的通量?通量的值为正,负或0分别表示什么意义?

矢量场F穿出闭合曲面S的通量为:

当大于0时,表示穿出闭合曲面S的通量多于进入的通量,此时闭合曲面S内必有发出矢量线的源,称为正通量源。

当小于0时,小于

有汇集矢量线的源,称为负通量源。

当等于0时等于、闭合曲面内正通量源和负通量源的代数和为0,或闭合面内无通量源。

1.8什么是散度定理?它的意义是什么?

矢量分析中的一个重要定理:

称为散度定理。意义:矢量场F的散度在体积V上的体积分等于矢量场F在限定该体积的闭合积分,是矢量的散度的体积与该矢量的闭合曲面积分之间的一个变换关系。

1.9什么是矢量场的环流?环流的值为正,负,或0分别表示什么意义?

矢量场F沿场中的一条闭合回路C的曲线积分,称为矢量场F 沿

的环流。

大于0或小于0,表示场中产生该矢量的源,常称为旋涡源。

等于0,表示场中没有产生该矢量场的源。

1.10什么是斯托克斯定理?它的意义是什么?该定理能用于闭合曲面吗?

在矢量场F所在的空间中,对于任一以曲面C为周界的曲面S,存在如下重要关系

这就是是斯托克斯定理矢量场的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲面积分,是矢量旋度的曲面积分与该矢量沿闭合曲面积分之间的一个变换关系。能用于闭合曲面.

1,11 如果矢量场F能够表示为一个矢量函数的旋度,这个矢量场具有什么特性?

=0,即F为无散场。

1.12如果矢量场F能够表示为一个标量函数的旋度,这个矢量场具有什么特性?

=0即为无旋场

1.13 只有直矢量线的矢量场一定是无旋场,这种说法对吗?为什么?

不对。电力线可弯,但无旋。

1.14 无旋场与无散场的区别是什么?

无旋场F的旋度处处为0,即,它是有散度源所产生的,它总可以表示矢量场的梯度,即 =0

无散场的散度处处为0,即,它是有旋涡源所产生的,它总可以表示为某一个旋涡,即。

二章:

2.1点电荷的严格定义是什么?

点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很大的带电小球的极限。当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带电荷看成集中在带电体的中心上。即将带电体抽离为一个几何点模型,称为点电荷。

2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的?

常用的电荷分布模型有体电荷,,面电荷,线电荷和点电荷

常用的电流分布模型有体电流模型,面电流模型和线电流模型他们是根据电荷和电流的密度分布来定义的

2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢?

点电荷的电场强度与距离r的二次方成反比。

2.4 简述和所表征的静电场特性

表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。

表明静电场是无旋场。

2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。

高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以与闭合面外的电荷无关,即

在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。

2.6 简述和所表征的静磁场特性

=0表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线,表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源

2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。

安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和倍即

如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。

2.9极化强度的如何定义的?极化电荷密度与极化强度又什么关系?单位体积的点偶极矩的矢量和称为极化强度,P与极化电荷密度的关系为

极化强度P与极化电荷面的密度:

2.10 电位移矢量定义为:其单位制中它的单位是什么?电位移矢量定义为:其单位是库伦/平方米

2.11 简述磁场与磁介质相互作用的物理现象

在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质中的磁感应强度B可看做真空中传导电流产生的磁感应强度B0 和磁化电流产生的磁感应强度B次的叠加,即

2.12 磁化强度是如何定义的?磁化电流密度与磁化强度什么关系?单位体积内分子磁矩的矢量和称为磁化强度

磁化电流体密度与磁化强度:J M =▽×M

磁化电流面密度与磁化强度:J SM=M×e n

2.13 磁场强度是如何定义的?在国际单位制中它的单位是什么?

磁场强度定义为:

国际单位之中,单位是安培/米

2,14 你理解均匀媒质与非均匀媒质,线性媒质与非线性媒质,各向同性与各向异性媒质的含义么?

均匀媒质是指介电常数或磁介质磁导率处处相等。不是空间坐标的函数

非均匀媒质是指介电常数或磁介质的磁导率是空间坐标的标量函数

线性媒质是与的方向无关是标量和的方向相同

各向异性媒质是指和的方向相同

2.15 什么是时变电磁场?

随时间变化的电荷和电流产生的电场和磁场也随时间变化,而且电场和磁场相互关联,密布可分,时变的电场产生磁场,时变的磁场产生电场,统称为时变电磁场

2.16试从产生的原因,存在的区域以及引起的效应等方面比较传导电流和位移电流

传导电流和位移电流都可以在空间激发磁场但是两者的本质不同(1)传导电流是电荷的定向运动,而位移电流的本质是变化着的电场。

(2)传导的电流只能存在于导体中,而位移电流可以存在于真空,导体,电介质中

(3)传导电流通过导体时会产生焦耳热,而位移电流不会产生焦耳热

2.18 麦克斯韦方程组的4个方程是相互独立的么?试简要解释

不是相互独立的,其中表明时变磁场不仅由传导电流产生,也是有移电流产生,它揭示的是时变电场产生时变磁场

表明时变磁场产生时变电场,电场和磁场是相互关联的,但当场量不随时间变化时,电场和磁场又是各自存在的

2.20 什么是电磁场的边界条件?你能说出理想导体表面的边界条件吗?

把电磁场矢量 E , D ,B , H 在不同媒质分界面上各自满足的关系称为电磁场的边界条件理想导体表面上的边界条件为:

第三章

3.1电位是如何定义的?E= 中的负号的意义是什么?

DA 由静电场基本方程和矢量恒等式可知,电场强度E可表示为标量函数的梯度,即 E= 试中的标量函数称为静电场的电位函数,简称电位。

试中负号表示场强放向与该点电位梯度的方向相反。

3.2 如果空间某一点的电位为零,则该点的电位为零,这种说话正确吗?为什么?

DA 不正确,因为电场强度大小是该点电位的变化率,

3.3

3.4求解电位函数的泊松方程或拉普拉斯方程时,边界条件有何意义?

DA 边界条件起到给方程定解得作用。

3.5电容是如何定义的?写出计算电容的基本步骤。

DA 两导体系统的电容为任一导体上的总电荷与两导体之间的电位差之比,即:

其基本计算步骤:1根据导体的几何形状,选取合适坐标系。2假定两导体上分别带电荷+q和-q。3根据假定电荷求出E.4由求得电位差。5求出比值C=

3.8 什么叫广义坐标和广义力?你了解虚位移的含义吗?

广义坐标是指系统中各带电导体的形状,尺寸和位置的一组独立几何量,而企图改变某一广义坐标的力就,就为对印该坐标的广义力,广义坐标发生的位移,称为虚位移

(完整版)电磁场与电磁波答案(第四版)谢处方

一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ; (4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ ===A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 04 1502x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e

电磁场与电磁波第二章课后答案

第二章 静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: ? = ?S S E 0 d εq ?=?l l E 0d 微分形式: ερ= ??E 0=??E 已知电荷分布求解电场强度: 1, )()(r r E ?-?=; ? ' '-'= V V d ) (41)(| r r |r r ρπε? 2, ? '''-'-'=V V 3 d |4) )(()(|r r r r r r E περ 3, ? = ?S S E 0 d εq 高斯定律

介质中静电场方程: 积分形式: q S =?? d S D ?=?l l E 0d 微分形式: ρ=??D 0=??E 线性均匀各向同性介质中静电场方程: 积分形式: ε q S = ?? d S E ?=?l l E 0d 微分形式: ε ρ= ??E 0=??E 静电场边界条件: 1, t t E E 21=。对于两种各向同性的线性介质,则 2 21 1εεt t D D = 2, s n n D D ρ=-12。在两种介质形成的边界上,则 n n D D 21= 对于两种各向同性的线性介质,则 n n E E 2211εε= 3,介质与导体的边界条件: 0=?E e n ; S n D e ρ=? 若导体周围是各向同性的线性介质,则 ε ρS n E = ; ε ρ? S n -=?? 静电场的能量:

电磁场与电磁波(第四版)习题解答

电磁场与电磁波(第四版)习题解答 第1章习题 习题1.1 给定三个矢量A 、B 和C 如下: 23 x y z =+-A e e e . 4y z =-+B e e , 52x z =-C e e , 解: (1 )22323) 12(3)A x y z e e e A a e e e A +-= = = +-++- (2 )2641x y z A B e e e -=+-==(3)(23)(4)11x y z y z A B e e e e e ?=+-?-+=- (4)arccos 135.5A B AB θ?===? (5)1711 cos -=?=??==B B A A B B A A A A AB B θ (6)1 2341310502 x y z x Y Z e e e A C e e e ?=-=---- (7)0 4185205 02 x y z x Y Z e e e B C e e e ?=-=++- ()(23)(8520)42x Y Z x Y Z A B C e e e e e e ??=+-?++=- 1 23104041 x y z x Y Z e e e A B e e e ?=-=---- ()(104)(52)42x Y Z x Z A B C e e e e e ??=---?-=- (8)()10142405502 x y z x Y Z e e e A B C e e e ??=---=-+-

()1 235544118520 x y z x Y Z e e e A B C e e e ??=-=-- 习题1.4给定两矢量 234x y z =+-A e e e 和 456x y z =-+B e e e ,求它们之间的夹角和 A 在 B上的分量。 解: 29)4(32222=-++=A 776)5(4222=+-+=B 31)654()432(-=+-?-+=?z y x z y x e e e e e e B A 则A 与B 之间的夹角为 131772931cos =???? ???-=???? ? ? ???=ar B A B A arcis AB θ A 在B 上的分量为 532.37731cos -=-=?=???==B B A B A B A A A A AB B θ 习题1.9用球坐标表示的场2 25r r =E e , (1)求在直角坐标中点(3,4,5)--处的E 和x E ; (2)求在直角坐标中点(3,4,5) --处E 与矢量2 2x y z = -+B e e e 构成的夹角。 解: (1)由已知条件得到,在点(-3,4,-5)处, r ===2 2525 0.550 E r = == 2 105 43252532z y x r e e e r r r e E -+-===

电磁场与电磁波第四版谢处方版思考题目答案

一:1.7什么是矢量场的通量?通量的值为正,负或0分别表示什么意义? 矢量场F穿出闭合曲面S的通量为: 当大于0时,表示穿出闭合曲面S的通量多于进入的通量,此时闭合曲面S内必有发出矢量线的源,称为正通量源。 当小于0时,小于 有汇集矢量线的源,称为负通量源。 当等于0时等于、闭合曲面内正通量源和负通量源的代数和为0,或闭合面内无通量源。 1.8什么是散度定理?它的意义是什么? 矢量分析中的一个重要定理: 称为散度定理。意义:矢量场F的散度在体积V上的体积分等于矢量场F在限定该体积的闭合积分,是矢量的散度的体积与该矢量的闭合曲面积分之间的一个变换关系。 1.9什么是矢量场的环流?环流的值为正,负,或0分别表示什么意义? 矢量场F沿场中的一条闭合回路C的曲线积分,称为矢量场F沿 的环流。 大于0或小于0,表示场中产生该矢量的源,常称为旋涡源。

等于0,表示场中没有产生该矢量场的源。 1.10什么是斯托克斯定理?它的意义是什么?该定理能用于闭合曲面吗? 在矢量场F所在的空间中,对于任一以曲面C为周界的曲面S,存在如下重要关系 这就是是斯托克斯定理矢量场的旋度在曲面S上的面积分等于矢量场F在限定曲面的闭合曲面积分,是矢量旋度的曲面积分与该矢量沿闭合曲面积分之间的一个变换关系。能用于闭合曲面. 1,11 如果矢量场F能够表示为一个矢量函数的旋度,这个矢量场具有什么特性? =0,即F为无散场。 1.12如果矢量场F能够表示为一个标量函数的旋度,这个矢量场具有什么特性? =0即为无旋场 1.13 只有直矢量线的矢量场一定是无旋场,这种说法对吗?为什么? 不对。电力线可弯,但无旋。 1.14 无旋场与无散场的区别是什么? 无旋场F的旋度处处为0,即,它是有散度源所产生的,它总可以表示矢量场的梯度,即 =0

电磁场与电磁波课后习题及答案--第四章习题解答

习题解答 如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的 电位为零,上边盖板的电位为 U ,求槽内的电位函数。 解 根据题意,电位(,)x y ?满足的边界条件为 ① (0,)(,)0y a y ??== ② (,0)0x ?= ③ 0(,)x b U ?= 根据条件①和②,电位(,)x y ?的通解应取为 1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑ 由条件③,有 01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑ 两边同乘以 sin( ) n x a π,并从0到a 对x 积分,得到 00 2sin()d sinh()a n U n x A x a n b a a ππ== ? 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =? ? ? = ?, 故得到槽内的电位分布 1,3,5, 41(,)sinh()sin() sinh()n U n y n x x y n n b a a a ππ?π π== ∑ 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。上板和薄片保持电位 U ,下板保持零电位,求板间电位的解。设在薄片平面上,从0=y 到 d y =,电位线性变化,0(0,)y U y d ?=。 ~ a > 题图

解 应用叠加原理,设板间的电位为 (,)x y ?=12(,)(,)x y x y ??+ 其中, 1(,)x y ?为不存在薄片的平行无限大导体平面间(电压为 U )的电位,即 10(,)x y U y b ?=;2(,)x y ?是两个电位为零 的平行导体板间有导体薄片时的电位,其边界条件为: ① 22(,0)(,)0x x b ??== ② 2(,)0() x y x ?=→∞ ③ 002100(0)(0,)(0,)(0,)() U U y y d b y y y U U y y d y b d b ????-≤≤??=-=? ?-≤≤?? # 根据条件①和②,可设2 (,)x y ?的通解为 21(,)sin()e n x b n n n y x y A b π π?∞ -==∑ 由条件③有 00100(0)sin()() n n U U y y d n y b A U U b y y d y b d b π∞ =? -≤≤??=??-≤≤??∑ 两边同乘以 sin( ) n y b π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d b n d U U y n y n y A y y y b b b b d b b ππ=-+-=??022sin() ()U b n d n d b ππ 故得到 (,)x y ?=0022 121sin()sin()e n x b n U bU n d n y y b d n b b π πππ∞-=+∑ 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。并按 2 02U W C e f =定出边缘电容。 解 在导体板(0=y )上,相应于 2(,)x y ?的电荷面密度 题 图

电磁场与电磁波第四版课后思考题答案

2.1点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带电荷看成集中在带电体的中心上。即将带电体抽离为一个几何点模型,称为点电荷。 2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。 2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 点电荷的电场强度与距离r 的平方成反比;电偶极子的电场强度与距离r 的立方成反比。 2.4简述 和 所表征的静电场特性 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。 表明静电场是无旋场。 2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。 高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无关,即 在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。 2.6简述 和 所表征的静电场特性。 表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。 安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和 倍,即 如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。 2.8简述电场与电介质相互作用后发生的现象。 在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场 2.9极化强度的如何定义的?极化电荷密度与极化强度又什么关系? 单位体积的点偶极矩的矢量和称为极化强度,P 与极化电荷密度的关系为 极化强度P 与极化电荷面的密度 2.10电位移矢量是如何定义的?在国际单位制中它的单位是什么 电位移矢量定义为 其单位是库伦/平方米 (C/m 2 ) 2.11 简述磁场与磁介质相互作用的物理现象? ερ/=??E 0=??E ερ/=??E 0= ??E ??=?V S dV S d E ρε01 0=??B J B 0μ=??0 =??B J B 0μ=??0 μI l d B C 0μ?= ? P ??=-p ρn sp e ?=P ρE P E D εε=+=0

电磁场与电磁波第四版谢处方课后答案

电磁场与电磁波(第四版)谢处方 课后答案 第一章习题解答 1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e 4y z =-+B e e 52x z =-C e e 求:(1)A a ;(2)-A B ;(3)A B g ;(4)AB θ;(5)A 在B 上的分量;(6)?A C ; (7)()?A B C g 和()?A B C g ; (8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==+e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B g (23)x y z +-e e e (4)y z -+=e e g -11 (4)由 cos AB θ = ==A B A B g ,得 1cos AB θ- =(135.5=o (5)A 在B 上的分量 B A =A cos AB θ ==A B B g (6)?=A C 1235 02 x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 041502 x y z -=-e e e 8520x y z ++e e e ?=A B 123041 x y z -=-e e e 1014x y z ---e e e 所以 ()?=A B C g (23)x y z +-e e e g (8520)42x y z ++=-e e e ()?=A B C g (1014)x y z ---e e e g (52)42x z -=-e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e ()??=A B C 1 238 5 20 x y z -=e e e 554411x y z --e e e 1.2 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123 PP P ?是否为一直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e

电磁场与电磁波课后习题及答案--第四章习题解答

习题解答 4.1 如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为 U ,求槽内的电位函数。 解 根据题意,电位(,)x y ?满足的边界条件为 ① (0,)(,)0y a y ??== ② (,0)0x ?= ③ 0(,)x b U ?= 根据条件①和②,电位(,)x y ?的通解应取为 1 (,)sinh( )sin()n n n y n x x y A a a ππ?∞ ==∑ 由条件③,有 01 sinh( )sin()n n n b n x U A a a ππ∞ ==∑ 两边同乘以 sin( ) n x a π,并从0到a 对x 积分,得到 00 2sin()d sinh()a n U n x A x a n b a a ππ== ? 02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ? =? ? ? =?L L , 故得到槽内的电位分布 1,3,5,41(,)sinh()sin() sinh()n U n y n x x y n n b a a a ππ?π π== ∑ L 4.2 两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。上板和薄片保持电位 U ,下板保持零电位,求板间电位的解。设在薄片平面上,从0=y 到 d y =,电位线性变化,0(0,)y U y d ?=。 a 题4.1图

解 应用叠加原理,设板间的电位为 (,)x y ?=12(,)(,)x y x y ??+ 其中, 1(,)x y ?为不存在薄片的平行无限大导体平面间(电压为 U )的电位,即 10(,)x y U y b ?=;2(,)x y ?是两个电位为零 的平行导体板间有导体薄片时的电位,其边界条件为: ① 22(,0)(,)0x x b ??== ② 2(,)0() x y x ?=→∞ ③ 002100(0)(0,)(0,)(0,)() U U y y d b y y y U U y y d y b d b ????-≤≤??=-=? ?-≤≤?? 根据条件①和②,可设2(,)x y ?的通解为 21(,)sin()e n x b n n n y x y A b π π?∞ -==∑ 由条件③有 00100(0)sin()() n n U U y y d n y b A U U b y y d y b d b π∞ =? -≤≤??=??-≤≤??∑ 两边同乘以 sin( ) n y b π,并从0到b 对y 积分,得到 0002211(1)sin()d ()sin()d d b n d U U y n y n y A y y y b b b b d b b ππ=-+-=??022sin() ()U b n d n d b ππ 故得到 (,)x y ?=0022 121sin()sin()e n x b n U bU n d n y y b d n b b π πππ∞-=+∑ 4.3 求在上题的解中,除开0U y 一项外,其他所有项对电场总储能的贡献。并按 20 2U W C e f = 定出边缘电容。 解 在导体板(0=y )上,相应于 2(,)x y ?的电荷面密度 题 4.2图

电磁场与电磁波课后答案_郭辉萍版1-6章

第一章 习题解答 1.2给定三个矢量A ,B ,C : A =x a +2y a -3z a B = -4y a +z a C =5x a -2z a 求:错误!未找到引用源。矢量A 的单位矢量A a ; 错误!未找到引用源。矢量A 和B 的夹角AB θ; 错误!未找到引用源。A ·B 和A ?B 错误!未找到引用源。A ·(B ?C )和(A ?B )·C ; 错误!未找到引用源。A ?(B ?C )和(A ?B )?C 解:错误!未找到引用源。A a =A A = 149A ++ =(x a +2y a -3z a )/14 错误!未找到引用源。cos AB θ =A ·B /A B AB θ=135.5o 错误!未找到引用源。A ·B =-11, A ?B =-10x a -y a -4z a 错误!未找到引用源。A ·(B ?C )=-42 (A ?B )·C =-42 错误!未找到引用源。A ?(B ?C )=55x a -44y a -11z a (A ?B )?C =2x a -40y a +5z a 1.3有一个二维矢量场F(r) =x a (-y )+y a (x),求其矢量线方程,并定性画出该矢量场图 形。 解:由dx/(-y)=dy/x,得2 x +2 y =c 1.6求数量场ψ=ln (2 x +2y +2 z )通过点P (1,2,3)的等值面方程。

解:等值面方程为ln (2x +2y +2 z )=c 则c=ln(1+4+9)=ln14 那么2 x +2y +2 z =14 1.9求标量场ψ(x,y,z )=62 x 3y +z e 在点P (2,-1,0)的梯度。 解:由ψ?=x a x ψ??+y a y ψ??+z a z ψ??=12x 3 y x a +182x 2y y a +z e z a 得 ψ?=-24x a +72y a +z a 1.10 在圆柱体2 x +2 y =9和平面x=0,y=0,z=0及z=2所包围的区域,设此区域的表面为S: 错误!未找到引用源。求矢量场A 沿闭合曲面S 的通量,其中矢量场的表达式为 A =x a 32x +y a (3y+z )+z a (3z -x) 错误!未找到引用源。验证散度定理。 解:错误!未找到引用源。??s d A = A d S ?? 曲 + A dS ?? xoz + A d S ?? yoz +A d S ?? 上 +A d S ?? 下 A d S ?? 曲 =232 (3cos 3sin sin )z d d ρθρθθρθ++?曲 =156.4 A dS ?? xoz = (3)y z dxdz +?xoz =-6 A d S ?? yoz =- 23x dydz ? yoz =0 A d S ?? 上+A d S ?? 下=(6cos )d d ρθρθρ-?上+cos d d ρθρθ?下=272π ??s d A =193 错误!未找到引用源。dV A V ???=(66)V x dV +?=6(cos 1)V d d dz ρθρθ+?=193 即:??s s d A =dV A V ??? 1.13 求矢量A =x a x+y a x 2 y 沿圆周2x +2 y =2a 的线积分,再求A ?? 对此圆周所包围的表 面积分,验证斯托克斯定理。 解:??l l d A =2 L xdx xy dy +? =44a π A ?? =z a 2 y

电磁场与电磁波第二章课后答案

第二章静电场 重点与难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式得静电场方程导出微分形式得静电场方程,即散度方程与旋度方程,并强调微分形式得场方程描述得就是静电场得微分特性或称为点特性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间得关系。通过书中列举得4个例子,总结归纳出根据电荷分布计算电场强度得三种方法。 至于媒质得介电特性,应着重说明均匀与非均匀、线性与非线性、各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式得静电场方程,由于边界上场量不连续,因而微分形式得场方程不成立。 关于静电场得能量与力,应总结出计算能量得三种方法,指出电场能量不符合迭加原理。介绍利用虚位移得概念计算电场力,常电荷系统与常电位系统,以及广义力与广义坐标等概念。至于电容与部分电容一节可以从简。 重要公式 真空中静电场方程: 积分形式: 微分形式: 已知电荷分布求解电场强度: 1,; 2, 3, 高斯定律 介质中静电场方程: 积分形式: 微分形式: 线性均匀各向同性介质中静电场方程: 积分形式: 微分形式: 静电场边界条件: 1,。对于两种各向同性得线性介质,则

2,。在两种介质形成得边界上,则 对于两种各向同性得线性介质,则 3,介质与导体得边界条件: ; 若导体周围就是各向同性得线性介质,则 ; 静电场得能量: 孤立带电体得能量: 离散带电体得能量: 分布电荷得能量: 静电场得能量密度: 对于各向同性得线性介质,则 电场力: 库仑定律: 常电荷系统: 常电位系统: 题解 2-1若真空中相距为d得两个电荷q1及q2得电量分别为q及4q,当点电荷位于q1及q2得连线上时,系统处于平衡状态,试求得大小及位置。解要使系统处于平衡状态,点电荷受到点电荷q1及q2得力应该大小相等,方向相反,即。那么,由,同时考虑到,求得 可见点电荷可以任意,但应位于点电荷q 1与q 2 得连线上,且与点电荷相 距。 2-2已知真空中有三个点电荷,其电量及位置分别为: 试求位于点得电场强度。

电磁场与电磁波第四版课后思考题答案第四版全谢处方饶克谨高等教育出版社

电磁场与电磁波第四版思考题答案 2.1 点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。当带电体 的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带 电荷看成集中在带电体的中心上。即将带电体抽离为一个几何点模型,称为点电荷。 2.2 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模 型和线电流模型,他们是根据电荷和电流的密度分布来定义的。 2,3 点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 点电荷的电场强度与距离 r 的平方成反比;电偶极子的电场强度与距离 r 的立方成反比。 2.4 简 述 E / 和 E 0 所表征的静电场特性 E / 表明空间任意一点电场强度的散度与该处的电荷密度有关, 静电荷是静电场的 通量源。 E 表明静电场是无旋场。 2.5 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。 高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以 与闭合面外的电荷无 关,即 E 1 dV 在电场(电荷)分布具有某些对称性时,可应用高斯定 律求解给定电荷分 dS S 0 V 布的电场强度。 2.6 简 述 B 0 和 B 0J 所表征的静电场特 性。 B 表明穿过任意闭合面的磁感应强度的 通量等于 0,磁力线是无关尾的闭合线, B 0 J 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 2.7 表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。 安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和倍,即 0 B dl 0I 如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。 C 2.8 简述电场与电介质相互作用后发生的现象。 在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场

电磁场与电磁波第二章课后答案

第二章静电场 重点和难点 电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分 形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方 程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特 性。 利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。 通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三 种方法。 至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、 各向同性与各向异性等概念。讲解介质中静电场方程时,应强调电通密 度仅与自由电荷有关。介绍边界条件时,应说明仅可依据积分形式的静 电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。 关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量 不符合迭加原理。介绍利用虚位移的概念计算电场力,常电荷系统和常 电位系统,以及广义力和广义坐标等概念。至于电容和部分电容一节可 以从简。 重要公式 真空中静电场方程: q E d SE d l 0积分形式: Sl EE 0微分形式: 已知电荷分布求解电场强度: 1(r ) 1,E (r )(r );(r )d V 4|rr| V 0 2, E (r ) V 4 (r 0 )( | r r r r ) 3 | d V q E d S 3, 高斯定律 S

1

介质中静电场方程: E d l0 积分形式:D d S q S l 微分形式:DE0 线性均匀各向同性介质中静电场方程: q E d SE d l0积分形式: S l 微分形式:EE0 静电场边界条件: 1,E1t E2t。对于两种各向同性的线性介质,则 D 1tD t 2 12 2,D2n D1ns。在两种介质形成的边界上,则 D 1 2n nD 对于两种各向同性的线性介质,则 E 2n 1 12 nE 3,介质与导体的边界条件: e n E0;e n DS 若导体周围是各向同性的线性介质,则 S S E; n n 静电场的能量:

电磁场与电磁波答案第四版谢处方

电磁场与电磁波答案第 四版谢处方 Coca-cola standardization office【ZZ5AB-ZZSYT-ZZ2C-ZZ682T-

一章习题解答 给定三个矢量A 、B 和C 如下: 求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的分量; (6)?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-= ==-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由 cos AB θ = 14==?A B A B ,得 1cos AB θ-=(135.5= (5)A 在B 上的分量 B A =A cos AB θ= 17 =-A B B (6)?=A C 1 235 02x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 041502x y z -=-e e e 8520x y z ++e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e 三角形的三个顶点为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断123 PP P ?是否为一直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 的位置矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e 则 12214x z =-=-R r r e e , 233228x y z =-=++R r r e e e , 由此可见 故123 PP P ?为一直角三角形。

电磁场与电磁波理论(第二版)(徐立勤-曹伟)第2章习题解答

第2章习题解答 2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0V a ρρρρ =, ()0a ρ≤≤。试求总电量Q 。 解:2π20000 2d d d d π3 l a V V Q V z la a ρρ ρρρ?ρ= ==? ? ?? 2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。当球以角速度ω绕某一直径(z 轴)旋转时,试求 其表面上的面电流密度。 解:面电荷密度为 2 04πS Q R ρ= 面电流密度为 002 00 sin sin sin 4π4πS S S Q Q J v R R R R ωθ ρρωθωθ=?== = 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ?=r r 。已知导线的直径为d ,导线中的电流为0I ,试 求0S J 。 解:每根导线的体电流密度为 00 22 4π(/2)πI I J d d = = 由于导线是均匀密绕,则根据定义面电流密度为 04πS I J Jd d == 因此,等效面电流密度为 04πS I J e d ?=r r 2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。为使中间的 点电荷处于平衡状态,试求其位置。当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。由库仑定律,实验电荷受02q 的排斥力为 12 214πq F x ε= 实验电荷受0q 的排斥力为 022 1 4π()q F d x ε= - 要使实验电荷保持平衡,即21F F =,那么由0022 211 4π4π() q q x d x εε=-,可以解得 d d x 585.01 22=+= 如果实验电荷为0q -,那么平衡位置仍然为d d x 585.01 22=+=。只是这时实验电荷与0q 和02q 不 是排斥力,而是吸引力。 2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E v 。 解:设点电荷的位置分别为()00,0,0q ,()0,0,0q a 和()00,,0q a ,由库仑定律可得点(),,0P a a 处的电 场为 ( ) ( 00 2 2 2 0000 1 114π4π4π1x y y x x y q q q E e e e e a a q e e εεε?=+++ ?=+r r r r r r r

电磁场与电磁波(第四版)课后答案--谢处方

3.1 真空中半径为a 的一个球面,球的两极点处分别设置点电荷q 和q -,试计算球赤道平面上电通密度的通量Φ(如题3.1图所示)。 解 由点电荷q 和q -共同产生的电通密度为 33[]4q R R π+- +- =-=R R D 22322232()(){}4[()][()]r z r z r z a r z a q r z a r z a π+-++-+-++e e e e 则球赤道平面上电通密度的通量 0d d z z S S S Φ====??D S D e 223222320()[]2d 4()() a q a a r r r a r a ππ--=++? 2212 01)0.293()a qa q q r a ==-+ 3.2 1911年卢瑟福在实验中使用的是半径为a r 的球体原子模型,其球体内均匀分布有总电荷量为Ze -的电子云,在球心有一正电荷Ze (Z 是原子序数,e 是质子电荷量),通过实验得到球体内的电通量密度表达式为 02314r a Ze r r r π?? =- ??? D e ,试证明之。 解 位于球心的正电荷Ze 球体内产生的电通量密度为 12 4r Ze r π=D e 原子内电子云的电荷体密度为 33 3434a a Ze Ze r r ρππ=-=- 电子云在原子内产生的电通量密度则为 32234344r r a r Ze r r r ρπππ==-D e e 故原子内总的电通量密度为 122314r a Ze r r r π?? =+=- ??? D D D e 3.3 电荷均匀分布于两圆柱面间的区域中,体密度为30 C m ρ, 两圆柱面半 径分别为a 和b ,轴线相距为c )(a b c -<,如题3.3图()a 所示。求空间各部分的 电场。 解 由于两圆柱面间的电荷不是轴对称分布,不能直接用高斯定律求解。但可把半径为a 的小圆柱面内看作同时具有体密度分别为0ρ±的两种电荷分布,这样在半径为b 的整个圆柱体内具有体密度为0ρ的均匀电荷分布,而在半径为a 的整个圆柱体内则具有体密度为0ρ-的均匀电荷分布,如题3.3图()b 所示。空间任一点的电场是这两种电荷所产生的电场的叠加。 题3.1 图 题3. 3图( )a

电磁场与电磁波第四版课后答案谢处方

电磁场 与电磁波(第四版) 课后答案 第一章 习 题 解答 1.1 给定三个矢量A 、B 和C 如下: 求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6) ?A C ; (7)()?A B C 和()?A B C ;(8)()??A B C 和()??A B C 。 解 (1 )23A x y z +-===-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e e e 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由 cos AB θ =14==?A B A B ,得 1cos AB θ-=(135.5= (5)A 在B 上的分 量 B A =A cos AB θ= 17=-A B B (6)?=A C 1 23502 x y z -=-e e e 41310x y z ---e e e (7)由于?=B C 041502 x y z -=-e e e 8520x y z ++e e e 所以 ()?=A B C (23)x y z +-e e e (8520)42x y z ++=-e e e (8)()??=A B C 1014502 x y z ---=-e e e 2405x y z -+e e e 1.2 三角形的三个顶点 为1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 。 (1)判断 123 PP P ?是否为一 直角三角形; (2)求三角形的面积。 解 (1)三个顶点1(0,1,2) P -、2(4,1,3)P -和3(6,2,5)P 的位置 矢量分别为 12y z =-r e e ,243x y z =+-r e e e ,3625x y z =++r e e e 则 12214x z =-=-R r r e e , 233228x y z =-=++R r r e e e , 由此可见 故123PP P ?为一直角三角形。 (2 )三角形的面积 122312231117.1322S =?=?==R R R R 1.3 求(3,1,4)P '-点到(2,2,3)P -点的距离矢量R 及R 的方向。

电磁场与电磁波习题答案2

第二章 2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。 解 要使系统处于平衡状态,点电荷q '受到点电荷q 1及q 2的力应该大小相等,方向相反,即q q q q F F ''=21。那么,由 122 2 022 1 01244r r r q q r q q =?'= 'πεπε,同时考虑到d r r =+21,求得 d r d r 3 2 ,3121== 可见点电荷q '可以任意,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d 3 1 。 2-2 已知真空中有三个点电荷,其电量及位置分别为: ) 0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。 解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。 利用点电荷的场强公式r e E 2 04r q πε= ,其中r e 为点电 荷q 指向场点P 的单位矢量。那么,

1q 在P 点的场强大小为0 2 1 011814πεπε= =r q E ,方向为 ()z y r e e e +- =2 11。 2q 在P 点的场强大小为0 2 2 022121 4πεπε= =r q E ,方向为()z y x r e e e e ++- =3 12。 3q 在P 点的场强大小为0 2 3 033414πεπε= =r q E ,方向为 y r e e -=3 则P 点的合成电场强度为 ?? ???????? ??++???? ??+++-=++=z e e e E E E E y x 312128141312128131211 03 21πε 2-3 直接利用式(2-2-14)计算电偶极子的电场强度。 解 令点电荷q -位于坐标原点,r 为点电荷q -至场点P 的距离。再令点电荷q +位于+z 坐标轴上,1r 为点电荷q +至场点P 的距离。两个点电荷相距为l ,场点P 的坐标为(r,θ,φ)。 根据叠加原理,电偶极子在场点P 产生的电场为 ???? ??-= 311304r r q r r E πε 考虑到r >> l ,1r e = e r ,θcos 1l r r -=,那么上式变为 r r r r r r r r q r r r r q e e E ??? ? ??+-=???? ??-=2121102122210))((44πεπε

相关文档
最新文档