第十二讲 满秩分解与奇异值分解
矩阵秩的证明方法及技巧

矩阵秩的证明方法及技巧矩阵的秩是描述矩阵行(列)向量空间维数的重要指标,广泛应用在线性代数和矩阵理论中。
下面将介绍矩阵秩的定义、性质以及一些证明方法和技巧。
一、矩阵秩的定义和性质:1. 矩阵秩的定义:对于任意一个m×n矩阵A,它的秩(rank)定义为其所有非零行(列)向量的极大无关组的向量个数,即r(A) = r(A^T),其中A^T为A的转置矩阵。
2.矩阵秩的基本性质:a) r(A) ≤ min(m, n),即矩阵秩r(A)不会超过矩阵的行数m和列数n的较小值。
b)如果r(A)=m,即矩阵的秩与行数相等,则称矩阵为满秩矩阵。
c)两个矩阵的行等价(列等价),它们的秩相等。
d)对于一个n阶方阵A,如果A可逆,则r(A)=n,即满秩方阵。
e)若A和B为同型矩阵,则r(A+B)≤r(A)+r(B)。
二、矩阵秩的证明方法和技巧:1.行变换法证明矩阵秩:行变换可以通过初等行变换来实现,包括交换两行、行乘以一个非零常数、行加上另一行的k倍。
行变换不改变矩阵的秩,因此可以通过行变换来找到矩阵的极大无关组,从而确定矩阵的秩。
2.列空间法证明矩阵秩:列空间是由矩阵的所有列向量张成的向量空间,可以通过检查矩阵的列向量组是否线性无关来确定矩阵的秩。
如果列向量组线性无关,则矩阵的秩等于列向量组的向量个数;否则,删除线性相关的列向量,再次检查新的列向量组是否线性无关,直至找到一个线性无关的列向量组为止。
3.奇异值分解法证明矩阵秩:对于任意一个m×n矩阵A,可以进行奇异值分解为A=UΣV^T,其中U和V为正交矩阵,Σ为对角矩阵,其对角元素为矩阵A的奇异值。
矩阵A的秩等于非零奇异值的个数。
4.行列式法证明矩阵秩:矩阵A的秩等于其最高阶非零子式的阶数。
通过计算矩阵A的各个阶数的子式的行列式是否为零,可以确定矩阵的秩。
5.矩阵的分解法证明矩阵秩:常用的矩阵分解方法包括LU分解、QR分解和SVD分解等。
通过对矩阵进行适当的分解,可以得到新的矩阵形式,从而更容易确定矩阵的秩。
矩阵分解——精选推荐

矩阵分解矩阵分解矩阵分解是将矩阵拆解为数个矩阵的乘积,可分为三⾓分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等,常见的有三种.矩阵的三⾓分解、正交三⾓分解、满秩分解将矩阵分解为形式⽐较简单或性质⽐较熟悉的⼀些矩阵的乘积,这些分解式能够明显地反映出原矩阵的许多数值特征,如矩阵的秩、⾏列式、特征值及奇异值等. 另⼀⽅⾯, 构造分解式的⽅法和过程也能够为某些数值计算⽅法的建⽴提供了理论依据. 接下来就讨论⼀下矩阵的三⾓分解.1 矩阵的三⾓分解1.1 矩阵的三⾓分解基本概念与定理定义1.1[]5设m n∈和上三⾓矩L C?A C?∈,如果存在下三⾓矩阵m n阵n m∈, 使得A=LU, 则称A可作三⾓分解或LU分解.U C?定义1.2设A为对称正定矩阵, D为⾏列式不为零的任意对⾓矩阵,则T=成⽴:A A=, U为⼀个单位上三⾓矩阵, 且有A LDU1) 如果L是单位下三⾓矩阵, D是对⾓矩阵, U是单位上三⾓矩阵, 则称分解D=为LD U分解.A L U2) 如果L=LD是下三⾓矩阵, ⽽U是单位上三⾓矩阵, 则称三⾓分解A LUCrout分解;= 为克劳特()3) 如果U DU是单位下三⾓矩阵, U 为上三⾓矩阵, 则称三⾓=分解A LUDoolittle分解;= 为杜利特()U --=== , 称为不带平⽅根的乔累斯基()Cholesky 分解;5) 如果12L D L = , 12D U U= , 则1122A LD U LD D U LU=== , 由于T UL = , 则T A LL= , 称为带平⽅根的乔累斯基()Cholesky 分解. 定理 1.1 n阶⾮奇异矩阵A可作三⾓分解的充要条件是k 0A ≠()1,2,,1k n =- ,这⾥A k为A 的k 阶顺序主⼦阵, 以下同.证明必要性. 设⾮奇异矩阵A 有三⾓分解A L U=, 将其写成分块形式k12k122122212222A L 0U =A A 0U kA U L L这⾥A k ,k L 和k U 分别为A, L和U 的k 阶顺序主⼦阵. ⾸先由0⽽L 0k ≠,U 0k ≠; 因此A =L U0kkk ≠()1,2,,1k n =-.充分性. 对阶数n 作数学归纳法. 当n=1时, 1A =(11a )=(1)(11a ),结论成⽴. 设对n k =结论成⽴, 即k =k k A L U , 其中k L 和k U 分别是下三⾓矩阵和上三⾓矩阵. 若k 0A ≠,则由kA =L k k U 易知L k 和k U 可逆. 现证当1n k =+时结论也成⽴, 事实上-1k k k k1TT 1T 1-1k+1,1k 1,1k k k A c 0c A =10c kkk T kk k k k k L U L r a r U a r U L +--+++??= ? ?-.由归纳法原理知A 可作三⾓分解.定理 1.1 给出了⾮奇异矩阵可作三⾓分解的充要条件, 由于不满⾜定理1.1的条件, 所以它不能作三⾓分解. 但110000110011211011202A ?????????? ?===.上例表明对于奇异矩阵,它还能作三⾓分解未必要满⾜定理1.1的条件.⾸先指出,⼀个⽅阵的三⾓分解不是唯⼀的, 从上⾯定义来看,杜利特分解与克劳特分解就是两种不同的三⾓分解,其实,⽅阵的三⾓分解有⽆穷多, 这是因为如果D 是⾏列式不为零的任意对⾓矩阵, 有1()()A LU C D D U LU-== ,其中,LU 也分别是下、上三⾓矩阵, 从⽽A LU = 也使A 的⼀个三⾓分解. 因D 的任意性, 所以三⾓分解不唯⼀. 这就是A 的分解式不唯⼀性问题, 需规范化三⾓分解.定理 1.2 (LD U 基本定理)设A 为n 阶⽅阵,则A 可以唯⼀地分解为A =LD U(1.1)的充分必要条件是A 的前1n -个顺序主⼦式k 0A ≠()1,2,,1k n =- .其中L,U分别是单位下、上三⾓矩阵, D是对⾓矩阵D=diag ()12,,,n d d d ,1k k k A d A -=()1,2,,kn = , 01A =.证明充分性. 若k 0A ≠()1,2,,1k n =- , 则由定理1.1, 即实现⼀个杜利特分解A LU= , 其中L 为单位下三⾓矩阵, U 为上三⾓矩阵,记1112122==()()()()()()1111112122222n n n nn a a a a a a ??=()n A , 因为()u 0i ii ii a ≡≠()1,2,,1i n =- .下⾯分两种情况讨论:1) 若A ⾮奇异,由式(1)有n ?=()()() 121122n nn a a a =A ≠, 所以()n nn nna u =≠,这时令()()()()121122diag n nn D a a a = , 则() ()()1121122111,,,n nn D diag a a a -??= ?.LD D U LDU -=== (1.2)是A 的⼀个LD U 分解.2)若A 奇异,则()u 0i iiii a ≡=,此时令()()()12111221,1(,,,,0)n n n D diag a a a ---= ,()()()()121n-111221,1,,,n n n D diag a a a ---= , α=()1n1u,,,Tn u n - ,则10n T UU α-??≡ =1111110=DU 0001n n n n T T U D U D α------,因此不论哪种情况, 只要k0A ≠()1,2,,1k n =- , 总存在⼀个LD U分解式(1.1),1a kk k kk k A d A -==()1,2,,1kn =- ,01A =.均⾮奇异.若还存在另⼀个LD U 分解111A L D U =, 这⾥1L ,1D , 1U 也⾮奇异,于是有111L D U L D U =(1.3)上式两端左乘以11L -以及右乘以1U -和1D -, 得111111L L D U U D---=, (1.4)但式(1.4)左端是单位下三⾓矩阵, 右端是单位上三⾓矩阵, 所以都应该是单位阵, 因此1LL I-=,1111D U UDI--=,即1L L =,111--=. 由后⼀个等式类似地可得11U UI-=,11D D I-=,即有1U U=,1D D=.2) 若A 奇异, 则式(1.3)可写成分块形式1111100001000110001T T T T T L D U L D U ααββ= ? ? ? ? ? ???????????, 其中1L, 1L 是1n -阶单位下三⾓阵; U , 1U 是1n -阶上三⾓阵; D,1D 是1n -阶对⾓阵; α, 1α,β, 1β是1n -维列向量. 由此得出111111=D U D DUD ααββαββα???? ? ???, 其中1L, 1D , 1U 和L ,D, U均⾮奇异, 类似于前⾯的推理, 可得1L =L ,1D =D , 1U =U ,1=αα,T T1=ββ.必要性. 假定A 有⼀个唯⼀的LD U 分解, 写成分块的形式便是1111A 00=0101n n n n T T nn n x D L U ya d αβ----,(1.5)其中1n L -,1D n -, 1n U -, 1n A -分别是L,A的1n -阶顺序主⼦矩阵;x , y, α,β为1n -维列向量. 由式(1.5)有下⾯的矩阵⽅程:1111n n n n A L D U ----=, (1.6)11TTn n yD U β--=,(1.7)11n n x L D α--=, (1.8)1Tnn n na D d βα-=+. (1.9)否则, 若10n A -=, 则由式(1.6)有111110n n n n n A L D U D -----===.于是有1110n n n L D D ---==, 即11n n L D --奇异. 那么对于⾮其次线性⽅程组(1.8)有⽆穷多⾮零解, 不妨设有α', 使11n n L D x α--'=, ⽽α'=α.同理, 因11n n D U --奇异, ()1111TTT n n n n L D U D ----=也奇异,故有ββ'≠, 使11TTn n U D yβ--=, 或11TTn n D U yn nn n d a D βα-'''=-, 则有1111000101n n n n T T nn nA x D L U y a d αβ----'= ? ? ? ?'',这与A 的LD U 分解的唯⼀性⽭盾, 因此10n A -≠.考察1n -阶顺序主⼦矩阵1n A -由式(1.6)写成分块形式, 同样有2222n n n n A L D U ----=. 由于10n D -≠, 所以20n D -≠, 可得222220n n n n n A L D U D -----==≠, 从⽽20n A -≠. 依此类推可得0k A ≠()1,2,,1k n =- .综上所述, 定理证明完毕.推论 1[]3 设A 是n 阶⽅阵, 则A 可惟⼀进⾏杜利特分解的充分必要条件是A 的前1n -个顺序主⼦式11110k k k kka a A a a =≠,1,2,,1k n =- , 其中L 为单位上三⾓矩阵, 即有11121212223132121111n nnn n n n n u u u l u u l l A u l l l -=并且若A 为⾮奇异矩阵, 则充要条件可换为: A的各阶顺序主⼦式全不为零, 即:0k A ≠,1,2,,k n = .推论 2[]3 n 阶⽅阵A 可惟⼀地进⾏克劳特分解111212122212111n nn n nnl u u ll u A LUl l l==的充要条件为11110k k k kka a A a a =≠, 1,2,,1k n =- .若A 为奇异矩阵, 则0nn l =, 若A 为⾮奇异矩阵, 则充要条件也可换为0k A ≠, 1,2,,k n = .定理 1.3[]3 设A 为对称正定矩阵, 则A 可惟⼀地分解为T A LDL =, 其中L 为下三⾓矩阵, D 为对⾓矩阵, 且对⾓元素是L 对⾓线元素的倒数. 即2212n n nnl l l L l l l ?? ?=, 1122111nn l l D l ?? ? ? ? ?=. 其中11/j ijij ik jk kkk l a l l l -==-∑,1,2,,ni = , 1,2,,j i = .。
Eigen解线性方程组

Eigen解线性⽅程组⼀. 矩阵分解:矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积,可分为三⾓分解、满秩分解、QR分解、Jordan分解和SVD(奇异值)分解等,常见的有三种:1)三⾓分解法 (Triangular Factorization),2)QR 分解法 (QR Factorization),3)奇异值分解法 (Singular Value Decompostion)。
1. LU三⾓分解:三⾓分解法是将原正⽅ (square) 矩阵分解成⼀个上三⾓形矩阵 或是排列(permuted) 的上三⾓形矩阵和⼀个下三⾓形矩阵,这样的分解法⼜称为LU分解法。
它的⽤途主要在简化⼀个⼤矩阵的⾏列式值的计算过程,求反矩阵,和求解联⽴⽅程组。
不过要注意这种分解法所得到的上下三⾓形矩阵并⾮唯⼀,还可找到数个不同的⼀对上下三⾓形矩阵,此两三⾓形矩阵相乘也会得到原矩阵。
MATLAB以lu函数来执⾏lu分解法,其语法为[L,U]=lu(A)。
2. QR分解:QR分解法是将矩阵分解成⼀个正规正交矩阵与上三⾓形矩阵,所以称为QR分解法,与此正规正交矩阵的通⽤符号Q有关。
MATLAB以qr函数来执⾏QR分解法,其语法为[Q,R]=qr(A)。
3. 奇异值分解:奇异值分解 (singular value decomposition,SVD) 是另⼀种正交矩阵分解法;SVD是最可靠的分解法,但是它⽐QR 分解法要花上近⼗倍的计算时间。
[U,S,V]=svd(A),其中U和V分别代表两个正交矩阵,⽽S代表⼀对⾓矩阵。
和QR分解法相同,原矩阵A不必为正⽅矩阵。
使⽤SVD分解法的⽤途是解最⼩平⽅误差法和数据压缩。
MATLAB以svd函数来执⾏svd分解法,其语法为[S,V,D]=svd(A)。
4. LLT分解:A=LL^TCholesky 分解是把⼀个对称正定的矩阵表⽰成⼀个下三⾓矩阵L和其转置的乘积的分解。
最大奇异值

最大奇异值
奇异值分解法是线性代数和矩阵论中一种重要的矩阵分解法,在信号处理、统计学等领域有重要应用。
矩阵的奇异值分解(Singular Value Decomposition,SVD)是数值计算中的精彩之处,在其它数学领域和机器学习领域得到了广泛的应用,如矩阵的广义逆,主分成分析(PCA),自然语言处理(NLP)中的潜在语义索引(Latent Semantic Indexing),推荐算法等。
1、什么是奇异矩阵?奇异矩阵是线性代数的概念,就是如果一个矩阵对应的行列式等于0,则该矩阵称为奇异矩阵。
2、如何判断一个矩阵是否是奇异阵呢?(1)看这个矩阵是不是方阵(即行数和列数相等的矩阵。
若行数和列数不相等,那就谈不上奇异矩阵和非奇异矩阵)。
(2)看此方阵的行列式|a|是否等于0,若等于0,称矩阵a为奇异矩阵;若不等于0,称矩阵a为非奇异矩阵。
(3)由可知矩a 矩阵不等于0可知矩阵a可逆,可以得出另外一个重要结论:逆矩阵就是非奇异矩阵,非奇异矩阵也是可逆矩阵。
如果a为奇异矩阵,则ax=0有无穷解,ax=b有无穷解或者无解。
如果a为非奇异矩阵,则ax=0有且只有唯一零解,ax=b有唯一解。
(4)如果a(n×n)为奇异矩阵a的秩rank(a)a满秩,rank(a)=n.
3、奇异矩阵的特征:(1)一个方阵非奇异当且仅当它的行列式不为零。
(2)一个方阵非奇异当且仅当它代表的线性变换是个自同构。
(3)一个矩阵半正定当且仅当它的每个特征值大于或等于零。
(4)一个矩阵正定当且仅当它的每个特征值都大于零。
矩阵满秩分解的一些应用

矩阵满秩分解的一些应用第35卷第5期2005年9月中国海洋大学PERIoDICALoFoCEANUNIVERSITY oFCHINA35(5):761~762Sept.,2005矩阵满秩分解的一些应用姚增善,刘新国(中国海洋大学数学系,山东青岛266071)摘要:把矩阵的满秩分解用于分析广义投影矩阵及双曲广义投影矩阵,得到了新的特征刻画.关键词:广义投影矩阵;Moore-Penrose广义逆;Hermite矩阵中图法分类号:O172.1文献标识码:A文章编号:1672—5174(2005)05—761—020引言首先给出有关的定义.定义1设K为7/阶复方阵,记K为矩阵K的共轭转置.(1)如果K2=K=K,则称K为正交投影矩阵;(2)如果存在/./阶方阵K,使KK及KK都是Hermite矩阵,且满足KKK=K及KKK=K,则称K为矩阵K的Moore—Penrose广义逆.Moore-Penrose广义逆和正交投影矩阵都是代数学中的基本概念.前者在最zb--乘法等问题中有许多应用;而后者用来刻画子空间与投影矩阵的一一对应性,从而把有关子空间的定量研究转化为矩阵分析.1997年,Grofl和Trenkler[推广正交投影矩阵而引入了下面的广义投影矩阵及双曲广义投影矩阵.定义2设K为n阶复方阵,K和K分别为矩阵K的共轭转置及Moore—Penrose广义逆.(1)如果K2=K,则称K为广义投影矩阵;(2)如果K2=K,则称K为双曲广义投影矩阵.最近,Baksalary和Xiao—jiLiu等详细地讨论了定义2给出的这两类矩阵[2-3J.本文继续他们的讨论.但使用的方法不同,本文的基本工具是矩阵的满秩分解_4J:任何秩为r的m×7/矩阵A都可分解为A=BC其中,B和c分别为m×r和7/×r的列满秩矩阵.为了叙述方便,文中使用了下述记号:c表示7/阶复方阵所成的线性空间,矩阵A的列向量张成的线性空间记为R(A).上标及+分别表示共轭转置及Moore—Penrose广义逆,I表示适当阶数的单位阵.1主要结果及其证明设K是秩为r的n阶复方阵,本节考虑下述集合:收稿日期:2005.06.01;修订日期:2005.07.07作者简介:姚增善(1963.),男,硕士,副教授.Tel:(0532)85901953 c={KIK∈C,K:K);cP』={KiK∈c,K=K};c={KIK∈C,K:K);c={KIK∈C,KK=KK);c={KIK∈C,K=K);c={KIK∈c,KKKK=KKKK).显见,cGP为广义投影矩阵构成的集合,c为双曲广义投影矩阵构成的集合.易知cGPc,而且c口P还有下述重要的子集c={KIK∈C,K=K).同时,K为正交投影矩阵当且仅当K:K,K=K,还易知,K为正交投影矩阵的充要条件为K=K= K.因此,广义投影矩阵及双曲广义投影矩阵确实是正交投影矩阵的推广.首先给出c的特征.考虑K的满秩分解K=BC,那么K=K甘B(CB)0C=BC错(CB)0=I.命题1K∈c当且仅当K的满秩分解K=BC满足(CB).=I.接下来考虑cP』.记K=BC,则K=C(CC)I1(BB)I1B.从而K=K错CB=C(CC)(BB)B甘(BB)(CC)=I.再作B和C的极分解B=QlHl,C=Q2H2,这里Hl 和H2为Hermite正定矩阵,且QQl=QQ2=I.则BB=H},CC=H;.总结上述,有命题2cP』={QlQIQl,Q2为竹×r阵,QQl=QQ2=I}.再考虑cGP.考虑K的特殊满秩分解K=BC,cC=I,,那么中国海洋大学K2=K甘BCBC=CB,这说明R(B)=R(C).从而存在r阶可逆方阵G,使B=CG.且K2=K甘(CGC)(CGC)=CGC甘G=G.又由Schur分解,G可分解为G=Q0R0Q,Q0为酉阵,R.为上三角阵,而G=G甘R8=R甘R0=diag(dl,dE,…,d).其中,dj(j=1,2,…,r)为三次单位根,即d;=1,d=d.综上所述,有命题3c?e={QDQIQ为×r阵,QQ=J,D=diag(dI'2,…,d),d=1}.注:三次单位根集合为{?,一号一,/5吉+譬}o再讨论c.令K=BC为满秩分解,那么KK=KK甘BB=CC甘C=BG.这里G=BC为r×r可逆方阵.因此有命题4={QGQIQ为×r阵,QQ=I,G为r×r可逆阵}.再分析cW.考虑K的满秩分解变形K=QlGQ,其中,G为r×r可逆方阵,Ql,Q2为×r矩阵,QQl=QQ2=J.那么K=K甘QlGQQlGQ=Q2G-1Q,从而R(Q1)=R(Q2).因此,不妨取Ql=Q2,此时K=QlGQ.又K=K甘QlGQ=QlG一Q甘G=G一甘G.=J,而G.=J甘G=Q0diag(dl,2,…,d)Q,QQ0=J,d;=1.命题5cW={QDQIQ为×r阵,QQ=I,,D=diag(dI'2,…,d),d=1}.最后考虑cUe.令K=BC,记PK=KK,PK=KK,贝0有PK=BB,PK=CC.可见K∈cUe甘BBCC=CCBB.注意到,PK和PK?为正交投影矩阵且为Hermite阵,上式表明PK和PK.可交换,因而存在酉阵Q,使BB=Qdiag(aI'a2,…,a)Q,CC=Qdiag(卢l,卢2,…,卢)Q,这里ai和取0或1.取R(B)nR(C)的标准正交基(为列)构成矩阵Q,Q适当排列后可用分块阵表示为Q=[QI'Q')],这样BB=[QI'QB],CC=[Ql,Qc],而[Ql,QB,Qc]是列规范正交阵.这表明B=[Ql,QBJGB,C=【QI'QcJGc,其中GB,Gc为r阶可逆阵.从而K=[QI'QB]?G[Ql,Qc],G为可逆阵.易知K∈cW,故有下述结论:命题6cUe=I[QI'Q2]G[QI'Q3]_[QI'Q2,Q3]列规范正交,G为可逆阵}.本文得到的结果大部分是新的,使用的基本工具是矩阵的满秩分解.Baksalary等人使用Jordan分解或Schur分解以及奇异值分解,分析了G及G中矩阵的谱特征,得到的结果很有趣.不难看出,本文的结论可以很容易地导出他们得到的大部分结果.而且,作者认为,从应用的角度看这里得到的结论更便于应用.参考文献:Gro口J,TrenklerG.Generalizedandhypergeneralizedproiectors [J].LinAlgAppl,1997,264:463—474.BaksalaryJK.Baksalary0M.LIUXiao—ji.Furtherpropertiesof generalizedandhypergeneralizedprojectors[J].LinAlgAppl, 2004,389:295—303.BaksalaryJK,LIUXiao-Ji.Analternativecharacterizationofgener—alizedprojectors[J].LinAlgAppl.2004,388:61—65.北京大学数学系编.高等代数第二版[M].北京:高等教育出版社.1988.SomeApplicationsoftheFull-RankDecompositionofMatricesY AOZeng—Shan,LIUXin—Guo(DepartmentofMathematics,OceanUniversityofChina,Qingdao266071,China) Abstract:Inthispaper,thefull—rankdecompositionofmatricesisusedtoanalysegeneralizedprojectionma—tricesandhypergeneralizedprojectionmatrices,andsomenewcharacteristicdescriptionsar eobtained.Keywords:Orthogonalprojectionmatrix;Moore—Penrosegeneralizedinverse;HermitematrixAMSSubjectClassifications:15A23。
第3章 矩阵的分解

2,正规矩阵的基本特性 定理3 .78 定理3.10 (P.78 ) : A∈Cn×n正规A酉相似于对角形. 正规 酉相似于对角形.
推论:正规A 推论:正规A∈Cn×nA有n个标准正交的特征 向量构成空间C 的标准正交基. 向量构成空间Cn 的标准正交基.
定理3 11( .80 )(正规矩阵的谱分解 定理3.11(P.80 )(正规矩阵的谱分解) 正规矩阵的谱分解) Hermite A正规A有如下谱分解: 正规 有如下谱分解: 性
已知:欧氏空间中的对称矩阵A 已知:欧氏空间中的对称矩阵A可以正交 相似于对角形. 相似于对角形. 讨论:一般方阵A 讨论:一般方阵A ,在什么条件下可以 酉相似于对角矩阵? 酉相似于对角矩阵? 在内积空间中讨论问题,涉及: 在内积空间中讨论问题,涉及:
空间 Cn, Cn×n, 酉矩阵U 酉矩阵U,UHU=I, U – 1=UH U=I, 酉相似: 酉相似: UHAU=J U–1 AU=J 重点: 重点:理论结果
三角分解 满秩分解 等价标准形 相似标准形
可对角化矩阵的谱分解
一,矩阵的三角分解
方阵的LU和LDV分解 方阵的LU和LDV分解(P.61) 分解( .61
LU分解:A∈Fn×n, 存在下三角形矩阵L , LU分解: 存在下三角形矩阵L 分解 上三角形矩阵U 使得A=LU. 上三角形矩阵U ,使得A=LU. LDV分解 LDV分解:A∈Fn×n, L,V分别是主对角线 分解: 元素为1的下三角形和上三角形矩阵, 元素为1的下三角形和上三角形矩阵,D为 对角矩阵,使得A=LDV. 对角矩阵,使得A=LDV. 已知的方法:Gauss已知的方法:Gauss-消元法 例题1 .61eg1 例题1 (P.61eg1)设 2 2 3
A∈C m×n,AHA∈C n×n,AAH∈C m×m , A 都是Hermite矩阵 矩阵. 都是Hermite矩阵. 定理3 12 定理3.12(P.82)
矩阵分解及其简单应用
矩阵分解及其简单应用x=b,即有如下方程组:Ly=bUx=y 先由Ly=b依次递推求得y1, y2,……,yn,再由方程Ux=y依次递推求得 xn,xn-1,……,x1、必须指出的是,当可逆矩阵A不满足∆k≠0时,应该用置换矩阵P左乘A以便使PA的n个顺序主子式全不为零,此时有:Ly=pbUx=y 这样,应用矩阵的三角分解,线性方程组的解求就可以简单很多了。
2、矩阵的QR分解矩阵的QR分解是指,如果实非奇异矩阵A可以表示为A=QR,其中Q为正交矩阵,R为实非奇异上三角矩阵。
QR分解的实际算法各种各样,有Schmidt正交方法、Givens方法和Householder方法,而且各有优点和不足。
2、1.Schmidt正交方法的QR分解Schmidt正交方法解求QR分解原理很简单,容易理解。
步骤主要有:1)把A写成m个列向量a=(a1,a2,……,am),并进行Schmidt正交化得=(α1,α2,……,αm);2)单位化,并令Q=(β1,β2,……,βm),R=diag(α1,α2,……,αm)K,其中a=K;3)A=QR、这种方法来进行QR分解,过程相对较为复杂,尤其是计算量大,尤其是阶数逐渐变大时,就显得更加不方便。
2、2.Givens方法的QR分解Givens方法求QR分解是利用旋转初等矩阵,即Givens矩阵Tij(c,s)来得到的,Tij(c,s)是正交矩阵,并且det(Tij(c,s))=1。
Tij(c,s)的第i行第i列和第j行第j列为cos,第i行第j列和第j行第i列分别为sin和-sin,其他的都为0、任何n阶实非奇异矩阵A可通过左连乘Tij(c,s)矩阵(乘积为T)化为上三角矩阵R,另Q=T-,就有A=QR。
该方法最主要的是在把矩阵化为列向量的基础上找出c和s,然后由此把矩阵的一步步向上三角矩阵靠近。
Givens方法相对Schmidt正交方法明显的原理要复杂得多,但是却计算量小得多,矩阵Tij(c,s)固有的性质很特别可以使其在很多方面的应用更加灵活。
矩阵分解的研究[开题报告]
毕业论文开题报告数学与应用数学矩阵分解的研究一、选题的背景、意义数学作为一种创造性活动不仅拥有真理,而且拥有至高无上的美.矩阵是数学中的重要组成部分,因此对矩阵的研究具有重大的意义。
在近代数学、工程技术、经济理论管理科学中,大量涉及到矩阵理论的知识。
因此,矩阵理论自然就是学习和研究上述学科必不可少的基础之一。
矩阵理论发展到今天,已经形成了一整套的理论和方法,内容非常丰富。
矩阵分解对矩阵理论及近代计算数学的发展起了关键的作用。
寻求矩阵在各种意义下的分解形式,是对与矩阵有关的数值计算和理论都有着极为重要的意义。
因为这些分解式的特殊形式,一是能明显的反映出原矩阵的某些特征;二是分解的方法与过程提供了某些有效的数值计算方法和理论分析根据。
这些分解在数值代数和最优化问题的解决中都有着十分重要的角色以及在其他领域方面也起着必不可少的作用。
二、研究的基本内容与拟解决的主要问题本文简单的介绍了矩阵的定义,通过矩阵的定义,由m n ⨯个数(1,2,,,1,2,,)ij a K i m j n ∈==K K 排成的m 行、n 列的长方形表111212122212n n m m mn a a a a a a a a a ⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭K K M M O M K (1) 称为数域K 上的一个m n ⨯矩阵。
其中的ij a 称为这个矩阵的元。
两个矩阵相等就是它们对应位置的元全相等[1]。
矩阵通常用一个大写拉丁字母表示。
如(1)的矩阵可以被记为A .如果矩阵的行数m 与列数n 相等,则称它为n 阶方阵。
数域K 上所有m n ⨯矩阵的集合记为(),m n M K ,所有n 阶方阵的集合记为()n M K ,元全为0的矩阵称为零矩阵,记为0.矩阵A 的位于第i 行、第j 列的元简称为A 的(),i j 元,记为(),A i j 。
如果矩阵A 的(),i j 元是(1,2,,,1,2,,)ij a i m j n ==K K ,则可以写成()ij A a =。
第4章-矩阵分解
于是存在 m 阶可逆矩阵 P ,使得 PA B 或者 A P1B . 将 P 1
分块为 P 1 (F , S ) ,其中
F C mr 且 rankF r , S C m(mr) 且 rankS m r ,
则有
A P1B (F, S)G0 FG, 其中 F 是列满秩矩阵, G 是行满秩矩阵.
若 k 0 ,就取 k
1
kH k
k ,( k
2,3,n) .
可以验证 1, 2 , n 为“正交向量组”,且每个向量或为零向量, 或为单位向量.而且每个 j 是1, 2 j 的线性组合.反过来上述作 法也保证了每个 j 是 1 , 2 j 的线性组合.因此存在复数 rij 使得
P (e j1 , e j2 ,, e jn ) 称为置换矩阵,这里 j1 j2 jn 是1,2,, n 的一个全排列.
0 0 1 0
例如,矩阵
P
(e3
,
e4
,
e1
,
e2
)
=
0 1 0
0 0 1
0 0 0
1 0 0
就是一个
4
阶置换
矩阵.
置换矩阵 P (e j1 , e j2 ,, e jn ) 有如下一些性质: (1) P 是正交矩阵; (2)对任意 A C mn , AP 是将 A 的列按 j1 , j2 ,, jn 的次序
1
P
1
A
P
0
r12 2
r n11n 1
r
n2 2n
n
0
b12
2
b1n
b2n
,
n
对给定的 0 ,可选择 r ,使得 bij 成立. 1i jn
奇异值分解求解病态方程组matlab实验报告
奇异值分解求解病态方程组matlab实验报告一、实验目的本实验旨在通过使用奇异值分解(SVD)方法来求解病态方程组,并利用MATLAB软件进行实现,以掌握SVD方法的基本原理和实现过程。
二、实验原理1.奇异值分解奇异值分解是一种矩阵分解的方法,可以将一个任意形状的矩阵分解为三个部分:左奇异向量、右奇异向量和奇异值。
对于一个m×n的矩阵A,它的SVD表示为:A=UΣV^T其中U是一个m×m的正交矩阵,V是一个n×n的正交矩阵,Σ是一个m×n的对角矩阵,且其主对角线上元素为非负实数。
这些非零元素被称为A的奇异值。
2.病态方程组当方程组中某些系数很小或者某些未知数之间存在较大差距时,就会出现病态方程组。
在求解这种方程组时,由于舍入误差等因素会使得计算结果产生较大误差。
3.使用SVD求解病态方程组对于一个形如Ax=b的线性方程组,在A是满秩时可以直接使用高斯消元法求解。
但是在A不满秩的情况下,可以使用SVD方法来求解。
具体方法如下:(1)将A进行奇异值分解,得到U、Σ和V。
(2)对Σ中的每个非零元素取其倒数,并将其余元素设为0,得到Σ+。
(3)计算x=VΣ+U^Tb。
三、实验步骤1.生成病态方程组在MATLAB中利用rand函数生成一个10×10的随机矩阵A和一个10×1的随机向量b。
然后将A的第10列替换为前9列之和,得到一个病态方程组Ax=b。
2.使用SVD求解方程组利用MATLAB中的svd函数对矩阵A进行奇异值分解,并计算出Σ+。
然后按照上述公式计算x,并与真实解进行比较,计算误差。
3.调整参数观察结果可以通过调整生成随机矩阵A时的参数或者改变替换第10列时前9列之和的系数来观察结果变化,并分析误差产生的原因。
四、实验结果与分析经过多次实验发现,在使用SVD方法求解病态方程组时,误差较大且不稳定。
这是因为在矩阵A不满秩时,其奇异值中存在很小的非零元素,而这些元素的倒数很大,会对计算结果产生较大影响。