高中物理必修二期末试题有答案 解析
高中物理必修二第七章《万有引力与宇宙航行》测试题(包含答案解析)(13)

一、选择题1.“木卫二”在离木星表面高h 处绕木星近似做匀速圆周运动,其公转周期为T ,把木星看作一质量分布均匀的球体,木星的半径为R ,万有引力常量为G 。
若有另一卫星绕木星表面附近做匀速圆周运动,则木星的质量和另一卫星的线速度大小分别为( ) A .()3222R h GT π+ 32()R h T R π+ B .()3222R h GT π+ 34()3R h T R π+ C .()3224R h GTπ+ 32()R h TRπ+ D .()3224R h GT π+ 34()3R h TRπ+ 2.一宇宙飞船在一个星球表面附近做匀速圆周运动,宇航员要估测星球的密度,只需要测定飞船的( ) A .环绕半径B .环绕速度C .环绕周期D .环绕加速度3.已知地球质量为M ,半径为R ,自转周期为T ,地球同步卫星质量为m ,引力常量为G ,有关同步卫星,下列表述中正确的是( ) A .卫星的运行速度可能等于第一宇宙速度B .卫星距离地面的高度为2324GMT πC .卫星运行的向心加速度小于地球表面的重力加速度D .卫星运行的向心加速度等于地球赤道表面物体的向心加速度 4.如图所示的三个人造地球卫星,则说法正确的是( )A .卫星可能的轨道为a 、b 、cB .卫星可能的轨道为a 、cC .同步卫星可能的轨道为a 、cD .同步卫星可能的轨道为a 、b5.“神舟十一号”飞船于2016年10月17日发射,对接“天宫二号”。
若飞船质量为m ,距地面高度为h ,地球质量为M ,半径为R ,引力常量为G ,则飞船所在处的重力加速度大小为( ) A .0B .()2GMR h + C .()2GMmR h + D .2GMh 6.已知一质量为m 的物体分别静止在北极与赤道时对地面的压力差为ΔN ,假设地球是质量分布均匀的球体,半径为R。
则地球的自转周期为()A.T=2πmRN∆B.T=2πNmR∆C.T=2πm NR∆D.T=2πRm N∆7.2019年12月16日,我国的西昌卫星发射中心又一次完美发射两颗北斗卫星,标志着“北斗三号”全球系统核心星座部署完成。
教科版高中物理必修二复习试题及答案全套

教科版高中物理必修二复习试题及答案全套重点强化卷(一) 平抛运动规律的应用一、选择题1. (多选)如图1所示,在高空匀速飞行的轰炸机,每隔1 s投下一颗炸弹,若不计空气阻力,则()图1A.这些炸弹落地前排列在同一条竖直线上B.这些炸弹都落于地面上同一点C.这些炸弹落地时速度大小方向都相同D.相邻炸弹在空中距离保持不变【解析】这些炸弹是做平抛运动,速度的水平分量都一样,与飞机速度相同.相同时间内,水平方向上位移相同,所以这些炸弹排在同一条竖直线上.这些炸弹抛出时刻不同,落地时刻也不一样,不可能落于地面上的同一点.由于这些炸弹下落的高度相同,初速度也相同,这些炸弹落地时速度大小和方向都相同.两相邻炸弹在空中的距离为Δx=x1-x2=12g(t+1)2-12gt2=gt+12g.由此可知Δx随时间t增大而增大.【答案】AC2.一个物体以速度v0水平抛出,落地时速度的大小为2v0,不计空气的阻力,重力加速度为g,则物体在空中飞行的时间为()A.v0g B.2v0gC.3v 0gD.2v 0g【解析】 如图所示,gt 为物体落地时竖直方向的速度,由(2v 0)2=v 20+(gt )2得:t =3v 0g ,C 正确.【答案】 C3. (多选)某人在竖直墙壁上悬挂一镖靶,他站在离墙壁一定距离的某处,先后将两只飞镖A 、B 由同一位置水平掷出,两只飞镖插在靶上的状态如图2所示(侧视图),若不计空气阻力,下列说法正确的是( )图2A .B 镖的运动时间比A 镖的运动时间长 B .B 镖掷出时的初速度比A 镖掷出时的初速度大C .A 镖掷出时的初速度比B 镖掷出时的初速度大D .A 镖的质量一定比B 镖的质量小【解析】 飞镖A 、B 都做平抛运动,由h =12gt 2得t =2hg ,故B 镖运动时间比A 镖运动时间长,A 正确;由v 0=xt 知A 镖掷出时的初速度比B 镖掷出时的初速度大,B 错误,C 正确;无法比较A 、B 镖的质量大小,D 错误.【答案】 AC4.从O 点抛出A 、B 、C 三个物体,它们做平抛运动的轨迹分别如图3所示,则三个物体做平抛运动的初速度v A 、v B 、v C 的关系和三个物体在空中运动的时间t A 、t B 、t C 的关系分别是( )图3 A.v A>v B>v C,t A>t B>t CB.v A<v B<v C,t A=t B=t CC.v A<v B<v C,t A>t B>t CD.v A>v B>v C,t A<t B<t C【解析】三个物体抛出后均做平抛运动,竖直方向有h=12gt2,水平方向有x=v0t,由于h A>h B>h C,故t A>t B>t C,又因为x A<x B<x C,故v A<v B<v C,C正确.【答案】C5.如图4所示,在一次空地演习中,离地H高处的飞机以水平速度v1发射一颗炮弹欲轰炸地面目标P,反应灵敏的地面拦截系统同时以速度v2竖直向上发射炮弹拦截.设拦截系统与飞机的水平距离为s,不计空气阻力.若拦截成功,则v1、v2的关系应满足()图4A.v1=v2B.v1=Hs v2C.v1=Hs v2D.v1=sH v2【解析】设经t时间拦截成功,则平抛的炮弹下落h=12gt2,水平运动s=v1t;竖直上抛的炮弹上升H-h=v2t-12gt2,由以上各式得v1=s H v2,故D正确.【答案】D6.如图5所示,以9.8 m/s的水平初速度v0抛出的物体,飞行一段时间后,垂直地撞在倾角为30°的斜面上,这段飞行所用的时间为(g取9.8 m/s2)()图5A.23s B.223sC. 3 s D.2 s【解析】把平抛运动分解成水平的匀速直线运动和竖直的自由落体运动,抛出时只有水平方向的速度v0,垂直地撞在斜面上时,既有水平方向分速度v0,又有竖直方向的分速度v y.物体速度的竖直分量确定后,即可求出物体飞行的时间.如图所示,把末速度分解成水平方向分速度v0和竖直方向的分速度v y,则有tan 30°=v0 v yv y=gt,解两式得t=v yg =3v0g= 3 s,故C 正确.【答案】C7.(多选)刀削面是同学们喜欢的面食之一,因其风味独特,驰名中外.刀削面全凭刀削,因此得名.如图6所示,将一锅水烧开,拿一块面团放在锅旁边较高处,用一刀片飞快地削下一片片很薄的面片儿,面片便飞向锅里,若面团到锅的上沿的竖直距离为0.8 m,最近的水平距离为0.5 m,锅的半径为0.5 m.要想使削出的面片落入锅中,则面片的水平速度可以是下列选项中的哪些(g 取10 m/s 2)( )图6A .1 m/sB .2 m/sC .3 m/sD .4 m/s【解析】 由h =12gt 2知,面片在空中的运动时间t =2hg =0.4 s ,而水平位移x =v 0t ,故面片的初速度v 0=xt ,将x 1=0.5 m ,x 2=1.5 m 代入得面片的最小初速度v 01=x 1t =1.25 m/s ,最大初速度v 02=x 2t =3.75 m/s ,即1.25 m/s ≤v 0≤3.75 m/s ,B 、C 选项正确.【答案】 BC8.(多选)从同一点沿水平方向抛出的A 、B 两个小球能落在同一个斜面上,运动轨迹如图7所示,不计空气阻力,则小球初速度v A 、v B 的关系和运动时间t A 、t B 的关系分别是( )图7A .v A >vB B .v A <v BC .t A >t BD .t A <t B【解析】 A 小球下落的高度小于B 小球下落的高度,所以根据h =12gt 2知t =2hg ,故t A <t B ,C 错误,D 正确;根据s =v t 知,B 的水平位移较小,时间较长,则水平初速度较小,故v A >v B ,A 正确,B 错误.【答案】AD9. (多选)如图8所示,x轴在水平地面内,y轴沿竖直方向.图中画出了从y 轴上沿x轴正向抛出的三个小球a、b和c的运动轨迹,其中b和c是从同一点抛出的.不计空气阻力,则()图8A.a的飞行时间比b的长B.b和c的飞行时间相同C.a的水平速度比b的小D.b的初速度比c的大【解析】x=v0t,y=12gt2,所以t=2y g,由y b=y c>y a,得t b=t c>t a,选项A 错,B 对;又根据v0=x g2y,因为y b>y a,x b<x a,y b=y c,x b>x c,故v a>v b,v b>v c,选项C错,D对.【答案】BD10.如图9所示,P是水平面上的圆弧凹槽,从高台边B点以某速度v0水平飞出的小球,恰能从固定在某位置的凹槽的圆弧轨道的左端A点沿圆弧切线方向进入轨道.O是圆弧的圆心,θ1是OA与竖直方向的夹角,θ2是BA与竖直方向的夹角,则()图9A.tan θ2tan θ1=2 B.tan θ1 tan θ2=2C.1tan θ1 tan θ2=2 D.tan θ1tan θ2=2【解析】 OA 方向即小球末速度垂线的方向,θ1是末速度与水平方向的夹角;BA 方向即小球合位移的方向,θ2是位移方向与竖直方向的夹角.由题意知:tan θ1=v y v 0=gtv 0,tan θ2=x y =v 0t 12gt 2=2v 0gt由以上两式得:tan θ1 tan θ2=2.故B 项正确. 【答案】 B 二、计算题11.从离地高 80 m 处水平抛出一个物体,3 s 末物体的速度大小为 50 m/s ,g 取10 m/s 2.求:(1)物体抛出时的初速度大小; (2)物体在空中运动的时间; (3)物体落地时的水平位移.【解析】 (1)由平抛运动的规律知v =v 2x +v 2y3 s 末v =50 m/s ,v y =gt =30 m/s 解得v x =40 m/s ,即v 0=40 m/s. (2)物体在空中运动的时间t =2hg =2×8010 s =4 s.(3)物体落地时的水平位移x =v 0t =40×4 m =160 m. 【答案】 (1)40 m/s (2)4 s (3)160 m12.如图10所示,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0 s 落到斜坡上的A 点.已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m =50 kg.不计空气阻力.(取sin 37°=0.60,cos 37°=0.80,g =10 m/s 2)求:图10(1)A点与O点的距离;(2)运动员离开O点时的速度大小.【解析】(1)设A点与O点的距离为L,运动员在竖直方向做自由落体运动,有L sin 37°=12gt2L=gt22sin 37°=75 m.(2)设运动员离开O点的速度为v0,运动员在水平方向做匀速直线运动,即L cos 37°=v0t解得v0=L cos 37°t=20 m/s.【答案】(1)75 m(2)20 m/s重点强化卷(二) 圆周运动及综合应用一、选择题1.如图1所示为一种早期的自行车,这种带链条传动的自行车前轮的直径很大,这样的设计在当时主要是为了()图1A.提高速度B.提高稳定性C.骑行方便D.减小阻力【解析】 在骑车人脚蹬车轮转速一定的情况下,据公式v =ωr 知,轮子半径越大,车轮边缘的线速度越大,车行驶得也就越快,故A 选项正确.【答案】 A2.两个小球固定在一根长为L 的杆的两端,绕杆的O 点做圆周运动,如图2所示,当小球1的速度为v 1时,小球2的速度为v 2,则转轴O 到小球2的距离是( )图2A.L v 1v 1+v 2B.L v 2v 1+v 2 C.L (v 1+v 2)v 1D.L (v 1+v 2)v 2【解析】 两小球角速度相等,即ω1=ω2.设两球到O 点的距离分别为r 1、r 2,即v 1r 1 =v 2r 2 ;又由于r 1+r 2=L ,所以r 2=L v 2v 1+v 2,故选B.【答案】 B3.汽车在转弯时容易打滑出事故,为了减少事故发生,除了控制车速外,一般会把弯道做成斜面.如图3所示,斜面的倾角为θ,汽车的转弯半径为r ,则汽车安全转弯速度大小为( )图3A.gr sin θB.gr cos θC.gr tan θD.gr cot θ【解析】 高速行驶的汽车转弯时所需的向心力由重力和路面的支持力的合力提供同,完全不依靠摩擦力,如图.根据牛顿第二定律得: mg tan θ=m v 2r 解得:v =gr tan θ 故选C. 【答案】 C4.一质量为m 的物体,沿半径为R 的向下凹的圆形轨道滑行,如图4所示,经过最低点的速度为v ,物体与轨道之间的动摩擦因数为μ,则它在最低点时受到的摩擦力为( )图4A .μmgB .μm v 2R C .μm (g -v 2R )D .μm (g +v 2R )【解析】 小球在最低点时,轨道支持力和重力的合力提供向心力,根据牛顿第二定律得F N -mg =m v 2R ,物体受到的摩擦力为f =μF N =μm (g +v 2R ),选项D 正确.【答案】 D5. (多选)如图5所示,用细绳拴着质量为m 的小球,在竖直平面内做圆周运动,圆周半径为R ,则下列说法正确的是( )图5A.小球过最高点时,绳子张力可能为零B.小球过最高点时的最小速度为零C.小球刚好过最高点时的速度为gRD.小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相反【解析】绳子只能提供拉力作用,其方向不可能与重力相反,D错误;在最高点有mg+F T=m v2R,拉力F T可以等于零,此时速度最小为v min=gR,故B 错误,A、C正确.【答案】AC6.如图6所示,质量为m的小球固定在长为l的细轻杆的一端,绕轻杆的另一端O在竖直平面内做圆周运动.球转到最高点A时,线速度大小为gl 2,此时()图6A.杆受到12mg的拉力B.杆受到12mg的压力C.杆受到32mg的拉力D.杆受到32mg的压力【解析】以小球为研究对象,小球受重力和沿杆方向杆的弹力,设小球所受弹力方向竖直向下,则N+mg=m v2l ,将v=gl2代入上式得N=-12mg,即小球在A点受杆的弹力方向竖直向上,大小为12mg,由牛顿第三定律知杆受到12mg的压力.【答案】B7. “快乐向前冲”节目中有这样一种项目,选手需要借助悬挂在高处的绳飞跃到鸿沟对面的平台上,如果已知选手的质量为m,选手抓住绳由静止开始摆动,此时绳与竖直方向夹角为α,如图7所示,不考虑空气阻力和绳的质量(选手可看为质点),下列说法正确的是()图7A.选手摆动到最低点时所受绳子的拉力等于mgB.选手摆动到最低点时所受绳子的拉力大于mgC.选手摆动到最低点时所受绳子的拉力大于选手对绳子的拉力D.选手摆动到最低点的运动过程为匀变速曲线运动【解析】由于选手摆动到最低点时,绳子拉力和选手自身重力的合力提供选手做圆周运动的向心力,有T-mg=F向,T=mg+F向>mg,B正确,A错误;选手摆到最低点时所受绳子的拉力和选手对绳子的拉力是作用力和反作用力的关系,根据牛顿第三定律,它们大小相等、方向相反且作用在同一条直线上,故C错误;选手摆到最低点的运动过程中,是变速圆周运动,合力是变力,故D 错误.【答案】B8.如图8所示,两个水平摩擦轮A和B传动时不打滑,半径R A=2R B,A 为主动轮.当A匀速转动时,在A轮边缘处放置的小木块恰能与A轮相对静止.若将小木块放在B 轮上,为让其与轮保持相对静止,则木块离B 轮转轴的最大距离为(已知同一物体在两轮上受到的最大静摩擦力相等)( )图8A.R B 4B.R B 2C .R BD .B 轮上无木块相对静止的位置【解析】 摩擦传动不打滑时,两轮边缘上线速度大小相等.根据题意有:R A ωA =R B ωB 所以ωB =R A R BωA 因为同一物体在两轮上受到的最大静摩擦力相等,设在B 轮上的转动半径最大为r ,则根据最大静摩擦力等于向心力有:mR A ω2A =mrω2B得:r =R A ω2A ⎝ ⎛⎭⎪⎫R A R B ωA 2=R 2B R A =R B 2. 【答案】 B9.如图9所示,滑块M 能在水平光滑杆上自由滑动,滑杆固定在转盘上,M 用绳跨过在圆心处的光滑滑轮与另一质量为m 的物体相连.当转盘以角速度ω转动时,M 离轴距离为r ,且恰能保持稳定转动.当转盘转速增到原来的2倍,调整r 使之达到新的稳定转动状态,则滑块M ( )图9A .所受向心力变为原来的4倍B .线速度变为原来的12C .转动半径r 变为原来的12D .角速度变为原来的12【解析】 转速增加,再次稳定时,M 做圆周运动的向心力仍由拉力提供,拉力仍然等于m 的重力,所以向心力不变,故A 错误;转速增到原来的2倍,则角速度变为原来的2倍,根据F =mrω2,向心力不变,则r 变为原来的14.根据v =rω,线速度变为原来的12,故B 正确,C 、D 错误.【答案】 B10.在较大的平直木板上相隔一定距离钉几个钉子,将三合板弯曲成拱桥形卡入钉子内形成拱形桥,三合板上表面事先铺上一层牛仔布以增加摩擦,这样玩具惯性车就可以在桥面上跑起来了.把这套系统放在电子秤上做实验,关于实验中电子秤的示数下列说法正确的是( )图10A .玩具车静止在拱桥顶端时的示数小一些B .玩具车运动通过拱桥顶端时的示数大一些C .玩具车运动通过拱桥顶端时处于超重状态D .玩具车运动通过拱桥顶端时速度越大(未离开拱桥),示数越小【解析】 根据mg -F N =m v 2R ,F N =mg -m v 2R ,可见玩具车通过拱桥顶端时失重,速度越大,电子秤的示数越小.选D.【答案】 D二、计算题11.在用高级沥青铺设的高速公路上,汽车的设计时速是108 km/h.汽车在这种路面上行驶时,它的轮胎与地面的最大静摩擦力等于车重的0.6倍.(1)如果汽车在这种高速路的水平弯道上拐弯,假设弯道的路面是水平的,其弯道的最小半径是多少?(2)如果高速路上设计了圆弧拱桥做立交桥,要使汽车能够以设计时速安全通过圆弧拱桥,这个圆弧拱桥的半径至少是多少?【解析】(1)汽车在水平路面上拐弯,可视为汽车做匀速圆周运动,其向心力由车与路面间的静摩擦力提供,当静摩擦力达到最大值时,由向心力公式可知这时的半径最小,有F m=0.6mg=m v2r,由速度v=30 m/s,得弯道半径r=150 m.(2)汽车过拱桥,看做在竖直平面内做匀速圆周运动,到达最高点时,根据向心力公式有:mg-F N=m v2R,为了保证安全,车对路面间的弹力F N必须大于等于零,有mg≥m v2R,则R≥90 m.【答案】(1)150 m(2)90 m12.如图11所示,一光滑的半径为0.1 m的半圆形轨道放在水平面上,一个质量为m的小球以某一速度冲上轨道,当小球将要从轨道口飞出时,轨道对小球的压力恰好为零,g取10 m/s2,求:图11(1)小球在B点速度是多少?(2)小球落地点离轨道最低点A多远?(3)落地时小球速度为多少?【解析】(1)小球在B点时只受重力作用,竖直向下的重力提供小球做圆周运动的向心力,根据牛顿第二定律可得:mg=m v2Br代入数值解得:v B =gr =1 m/s.(2)小球离开B 点后,做平抛运动.根据平抛运动规律可得:2r =12gt 2s =v B t ,代入数值联立解得:s =0.2 m.(3)根据运动的合成与分解规律可知,小球落地时的速度为v =v 2B +(gt )2=5 m/s.【答案】 (1)1 m/s (2)0.2 m (3) 5 m/s重点强化卷(三) 万有引力定律的应用一、选择题1.两个密度均匀的球体相距r ,它们之间的万有引力为10-8N ,若它们的质量、距离都增加为原来的2倍,则它们间的万有引力为( )A .10-8NB .0.25×10-8 NC .4×10-8ND .10-4N【解析】 原来的万有引力为:F =G Mm r 2后来变为:F ′=G 2M ·2m (2r )2=G Mm r 2 即:F ′=F =10-8N ,故选项A 正确.【答案】 A2.已知引力常量G =6.67×10-11N·m 2/kg 2,重力加速度g =9.8 m/s 2,地球半径R =6.4×106 m ,则可知地球质量的数量级是( )A .1018 kgB .1020 kgC .1022 kgD .1024 kg【解析】 根据mg =G Mm R 2得地球质量为M =gR 2G ≈6.0×1024 kg.故选项D 正确.【答案】 D3.关于“亚洲一号”地球同步通讯卫星,下述说法正确的是( )A .已知它的质量是1.24 t ,若将它的质量增为2.84 t ,其同步轨道半径将变为原来的2倍B .它的运行速度大于7.9 km/sC .它可以绕过北京的正上方,所以我国能利用它进行电视转播D .它距地面的高度约为地球半径的5倍,故它的向心加速度约为其下方地面上物体的重力加速度的136【解析】 同步卫星的轨道半径是固定的,与质量大小无关,A 错误;7.9 km/s 是人造卫星的最小发射速度,同时也是卫星的最大环绕速度,卫星的轨道半径越大,其线速度越小.同步卫星距地面很高,故其运行速度小于7.9 km/s ,B 错误;同步卫星只能在赤道的正上方,C 错误;由G Mm r 2=ma n 可得,同步卫星的加速度a n =G M r 2=G M (6R )2=136G M R 2=136g ,故选项D 正确. 【答案】 D4.如图1所示,在同一轨道平面上的几个人造地球卫星A 、B 、C 绕地球做匀速圆周运动,某一时刻它们恰好在同一直线上,下列说法中正确的是( )图1A .根据v =gr 可知,运行速度满足v A >vB >v CB .运转角速度满足ωA >ωB >ωCC .向心加速度满足a A <a B <a CD .运动一周后,A 最先回到图示位置【解析】 由G Mm r 2=m v 2r 得,v =GMr ,r 大,则v 小,故v A <v B <v C ,A错误;由G Mm r 2=mω2r 得,ω=GMr 3,r 大,则ω小,故ωA <ωB <ωC ,B 错误;由G Mm r 2=ma 得,a =GM r 2,r 大,则a 小,故a A <a B <a C ,C 正确;由G Mm r 2=m 4π2T 2r 得,T =2πr 3GM ,r 大,则T 大,故T A >T B >T C ,因此运动一周后,C 最先回到图示位置,D 错误.【答案】 C5.(多选)据英国《卫报》网站2015年1月6日报道,在太阳系之外,科学家发现了一颗最适宜人类居住的类地行星,绕恒星橙矮星运行,命名为“开普勒438b”.假设该行星与地球绕恒星均做匀速圆周运动,其运行的周期为地球运行周期的p 倍,橙矮星的质量为太阳的q 倍.则该行星与地球的( )A .轨道半径之比为3p 2qB .轨道半径之比为3p 2C .线速度之比为3q pD .线速度之比为1p【解析】 行星公转的向心力由万有引力提供,根据牛顿第二定律,有G Mm R 2=m 4π2T 2R ,解得:R =3GMT 24π2,该行星与地球绕恒星均做匀速圆周运动,其运行的周期为地球运行周期的p 倍,橙矮星的质量为太阳的q 倍,故:R 橙R 太=3(M 橙M 太)(T 行T 地)2=3qp 2,故A 正确,B 错误;根据v =2πR T ,有:v 行v 地=R 行R 地·T 地T 行=3qp 2·1p =3q p ;故C 正确,D 错误.【答案】 AC6.银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观测得其周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知万有引力常量为G .由此可求出S 2的质量为( )A.4π2r 2(r -r 1)GT 2B.4π2r 31GT 2C.4π2r 3GT 2 D.4π2r 2r 1GT 2【解析】 设S 1、S 2两星体的质量分别为m 1、m 2,根据万有引力定律和牛顿定律得,对S 1有G m 1m 2r 2=m 1(2πT )2r 1,解之可得m 2=4π2r 2r 1GT 2,则D 正确,A 、B 、C 错误.【答案】 D7.质量相等的甲、乙两颗卫星分别贴近某星球表面和地球表面围绕其做匀速圆周运动,已知该星球和地球的密度相同,半径分别为R 和r ,则( )A .甲、乙两颗卫星的加速度之比等于R ∶rB .甲、乙两颗卫星所受的向心力之比等于1∶1C .甲、乙两颗卫星的线速度之比等于1∶1D .甲、乙两颗卫星的周期之比等于R ∶r【解析】 由F =G Mm R 2和M =ρ43πR 3可得万有引力F =43G πRmρ,又由牛顿第二定律F =ma 可得,A 正确;卫星绕星球表面做匀速圆周运动时,万有引力等于向心力,因此B 错误;由F =43G πRmρ,F =m v 2R 可得,选项C 错误;由F =43G πRmρ,F =mR 4π2T 2可知,周期之比为1∶1,故D 错误.【答案】 A8.嫦娥三号探测器绕月球表面附近飞行时的速率大约为1.75 km/s(可近似当成匀速圆周运动),若已知地球质量约为月球质量的81倍 ,地球第一宇宙速度约为7.9 km/s ,则地球半径约为月球半径的多少倍( )A .3倍B .4倍C .5倍D .6倍【解析】 根据万有引力提供向心力知,当环绕天体在中心天体表面运动时,运行速度即为中心天体的第一宇宙速度,由G Mm R 2=m v 2R 解得:v =GMR ,故地球的半径与月球的半径之比为R 1R 2=M 1M 2·v 22v 21,约等于4,故B 正确,A 、C 、D 错误. 【答案】 B9.如图2所示,a 、b 、c 、d 是在地球大气层外的圆形轨道上匀速运行的四颗人造卫星.其中a 、c 的轨道相交于P ,b 、d 在同一个圆轨道上.某时刻b 卫星恰好处于c 卫星的正上方.下列说法中正确的是( )图2A .b 、d 存在相撞危险B .a 、c 的加速度大小相等,且大于b 的加速度C .b 、c 的角速度大小相等,且小于a 的角速度D .a 、c 的线速度大小相等,且小于d 的线速度【解析】 b 、d 在同一轨道,线速度大小相等,不可能相撞,A 错;由a 向=GM r 2知a 、c 的加速度大小相等且大于b 的加速度,B 对;由ω= GM r 3知,a 、c 的角速度大小相等,且大于b 的角速度,C 错;由v =GM r 知a 、c 的线速度大小相等,且大于d 的线速度,D 错.【答案】 B10.登上火星是人类的梦想.“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( )A.B .火星做圆周运动的加速度较小 C .火星表面的重力加速度较大 D .火星的第一宇宙速度较大【解析】 火星和地球都绕太阳做圆周运动,万有引力提供向心力,由GMmr 2=m 4π2T 2r =ma 知,因r 火>r 地,而r 3T 2=GM4π2,故T 火>T 地,选项A 错误;向心加速度a =GMr 2,则a 火<a 地,故选项B 正确;地球表面的重力加速度g 地=GM 地R 2地,火星表面的重力加速度g 火=GM 火R 2火,代入数据比较知g 火<g 地,故选项C 错误;地球和火星上的第一宇宙速度:v 地=GM 地R 地,v 火=GM 火R 火,v 地>v 火,故选项D 错误.【答案】 B 二、计算题11.经天文学家观察,太阳在绕着银河系中心(银心)的圆形轨道上运行,这个轨道半径约为3×104光年(约等于2.8×1020m),转动一周的周期约为2亿年(约等于6.3×1015s).太阳做圆周运动的向心力是来自位于它轨道内侧的大量星体的引力,可以把这些星体的全部质量看做集中在银河系中心来处理问题.(G =6.67×10-11N·m 2/kg 2)用给出的数据来计算太阳轨道内侧这些星体的总质量.【解析】 假设太阳轨道内侧这些星体的总质量为M ,太阳的质量为m ,轨道半径为r ,周期为T ,太阳做圆周运动的向心力来自于这些星体的引力,则G Mm r 2=m 4π2T 2r故这些星体的总质量为M=4π2r3GT2=4×(3.14)2×(2.8×1020)36.67×10-11×(6.3×1015)2kg≈3.3×1041kg.【答案】 3.3×1041kg12.质量分别为m和M的两个星球A和B在引力作用下都绕O点做匀速圆周运动,星球A和B两者中心之间距离为L.已知A、B的中心和O三点始终共线,A和B分别在O的两侧.引力常量为G.图3(1)求两星球做圆周运动的周期.(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行的周期记为T1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T2.已知地球和月球的质量分别为5.98×1024 kg和7.35×1022kg.求T2与T1两者平方之比.(结果保留三位小数)【解析】(1)两星球围绕同一点O做匀速圆周运动,其角速度相同,周期也相同,其所需向心力由两者间的万有引力提供,设OB为r1,OA为r2,则对于星球B:G MmL2=M4π2T2r1对于星球A:G MmL2=m4π2T2r2其中r1+r2=L由以上三式可得T=2πL3G(M+m).(2)对于地月系统,若认为地球和月球都围绕中心连线某点O做匀速圆周运动,由(1)可知地球和月球的运行周期T 1=2πL 3G (M +m )若认为月球围绕地心做匀速圆周运动,由万有引力与天体运动的关系:G MmL 2=m 4π2T 22L解得T 2=4π2L 3GM则T 22T 21=M +m M =1.012. 【答案】 (1)2πL 3G (M +m )(2)1.012重点强化卷(四) 动能定理和机械能守恒定律一、选择题1.在同一位置以相同的速率把三个小球分别沿水平、斜向上、斜向下方向抛出,不计空气阻力,则落在同一水平地面时的速度大小( )A .一样大B .水平抛的最大C .斜向上抛的最大D .斜向下抛的最大【解析】 不计空气阻力的抛体运动,机械能守恒.故以相同的速率向不同的方向抛出落至同一水平地面时,物体速度的大小相等.故只有选项A 正确.【答案】 A2.(多选)质量为m 的物体,从静止开始以a =12g 的加速度竖直向下运动h 米,下列说法中正确的是( )A .物体的动能增加了12mgh B .物体的动能减少了12mghC.物体的势能减少了12mghD.物体的势能减少了mgh【解析】物体的合力为ma=12mg,向下运动h米时合力做功12mgh,根据动能定理可知物体的动能增加了12mgh,A对,B错;向下运动h米过程中重力做功mgh,物体的势能减少了mgh,D对.【答案】AD3.如图1所示,AB为14圆弧轨道,BC为水平直轨道,圆弧的半径为R,BC的长度也是R.一质量为m的物体,与两个轨道的动摩擦因数都为μ,当它由轨道顶端A从静止下滑时,恰好运动到C处停止,那么物体在AB段克服摩擦力做功为()图1A.12μmgR B.12mgRC.mgR D.(1-μ)mgR【解析】设物体在AB段克服摩擦力所做的功为W AB,物体从A到C的全过程,根据动能定理有mgR-W AB-μmgR=0,所以有W AB=mgR-μmgR=(1-μ)mgR.【答案】D4.如图2所示,木板长为l,木板的A端放一质量为m的小物体,物体与板间的动摩擦因数为μ.开始时木板水平,在绕O点缓慢转过一个小角度θ的过程中,若物体始终保持与板相对静止.对于这个过程中各力做功的情况,下列说法中正确的是()图2A.摩擦力对物体所做的功为mgl sin θ(1-cos θ)B.弹力对物体所做的功为mgl sin θcos θC.木板对物体所做的功为mgl sin θD.合力对物体所做的功为mgl cos θ【解析】重力是恒力,可直接用功的计算公式,则W G=-mgh;摩擦力虽是变力,但因摩擦力方向上物体没有发生位移,所以W f=0;因木块缓慢运动,所以合力F合=0,则W合=0;因支持力F N为变力,不能直接用公式求它做的功,由动能定理W合=ΔE k知,W G+W N=0,所以W N=-W G=mgh=mgl sin θ.【答案】C5. (多选)如图3所示,一个质量为m的物体以某一速度从A点冲上倾角为30°的光滑斜面,这个物体在斜面上上升的最大高度为h,则在此过程中()图3A.物体的重力势能增加了mghB.物体的机械能减少了mghC.物体的动能减少了mghD.物体的机械能不守恒【解析】物体在斜面上上升的最大高度为h,重力对物体做负功W=-mgh,物体的重力势能增加了mgh,故A正确;物体在上升过程中,只有重力做功,重力势能与动能之间相互转化,机械能守恒,故B、D均错误;由于物体所受的支持力不做功,只有重力做功,所以合力做功为-mgh,由动能定理可知,物体的动能减少了mgh,故C正确.。
人教版高中物理必修二高一期末复习练习卷六(附参考答案)

高一物理(必修二)期末复习练习卷六(附参考答案)1.关于重力做功和物体的重力势能,下列说法正确的是( )A.当重力对物体做正功时,物体的重力势能一定减少;B.物体克服重力做功时,物体的重力势能一定增加;C.地球上每一个物体的重力势能都有一个确定值;D.重力做功的多少与参考平面的选取无关。
2.质量为5千克的铜球,从离地15米高处自由下落1s后,它的重力势能是____J,重力做功________J (以以地面为参考平面。
g=10m/s2)3.将质量m=2kg的一块石头从离地面H=2m高处由静止开始释放,落入泥潭并陷入泥中h=5cm深处,不计空气阻力,求泥对石头的平均阻力。
(g取10m/s2)4.关于速度与动能,下列说法中正确的是( )A.一个物体速度越大时,动能越大B.速度相等的物体,如果质量相等,那么它们的动能也相等C.动能相等的物体,如果质量相等那么它们的速度也相同D.动能越大的物体,速度也越大5.对于做匀速圆周运动的物体,下面说法中正确的是( )A.速度在改变,动能也在改变B.速度改变,动能不变C.速度不变,动能改变D.动能、速度都不变6.一质量为 m的小球,用长为l的轻绳悬挂于O点。
小球在水平拉力F作用下,从平衡位置P 点很缓慢地移动到Q点,如图2-7-3所示,则拉力F所做的功为()A. mgl cosθB. mgl(1-cosθ)C. Fl cosθD. Flsinθ7.一质量为1.0kg的滑块,以4m/s的初速度在光滑水平面上向左滑行,从某一时刻起一向右水平力作用于滑块,经过一段时间,滑块的速度方向变为向右,大小为4m/s,则在这段时间内水平力所做的功为( )A.0B.8JC.16JD.32J8.质量为m的物体从地面上方H高处无初速释放,落在地面后出现一个深度为h的坑,如图所示,在此过程中( )A.重力对物体做功为mgHB.重力对物体做功为mg(H+h)C.外力对物体做的总功为零D.地面对物体的平均阻力为mg(H+h)/h9.木块受水平力F作用在水平面上由静止开始运动,前进s后撤去F,木块又沿原方向前进3s 停止,则摩擦力f=________.木块最大动能为________.10.有一质量为0.2kg的物块,从长为4m,倾角为30°光滑斜面顶端处由静止开始沿斜面滑下,斜面底端和水平面的接触处为很短的圆弧形,如图2-7-17所示.物块和水平面间的滑动摩擦因数为0.2求:(1)物块在水平面能滑行的距离;(2)物块克服摩擦力所做的功.(g取10m/s2)11.如图所示,AB和CD是半径为R=1m的1/4圆弧形光滑轨道,BC为一段长2m的水平轨道质量为2kg的物体从轨道A端由静止释放,若物体与水平轨道BC间的动摩擦因数为0.1.求:(1)物体第1次沿CD弧形轨道可上升的最大高度;(2)物体最终停下来的位置与B点的距离。
(必考题)高中物理必修二第七章《万有引力与宇宙航行》测试题(包含答案解析)

一、选择题1.我国的“神舟”系列航天飞船的成功发射和顺利返回,显示了我国航天事业取得的巨大成就。
已知地球的质量为M,引力常量为G,飞船的质量为m,设飞船绕地球做匀速圆周运动的轨道半径为r,则()ABC.飞船在此圆轨道上运行的周期为2D2.“木卫二”在离木星表面高h处绕木星近似做匀速圆周运动,其公转周期为T,把木星看作一质量分布均匀的球体,木星的半径为R,万有引力常量为G。
若有另一卫星绕木星表面附近做匀速圆周运动,则木星的质量和另一卫星的线速度大小分别为()A.()3222R hGTπ+B.()3222R hGTπ+C.()3224R hGTπ+D.()3224R hGTπ+3.2020年10月22日,俄“联盟MS-16”载人飞船已从国际空间站返回地球,在哈萨克斯坦着陆。
若载人飞船绕地球做圆周运动的周期为090minT=,地球半径为R、表面的重力加速度为g,则下列说法正确的是()A.飞船返回地球时受到的万有引力随飞船到地心的距离反比例增加B.飞船在轨运行速度一定大于7.9km/sC.飞船离地高度大于地球同步卫星离地高度D4.对于绕地球做匀速圆周运动的人造地球卫星,下列说法错误的是()A.卫星做匀速圆周运动的向心力是由地球对卫星的万有引力提供的B.轨道半径越大,卫星线速度越大C.轨道半径越大,卫星线速度越小D.同一轨道上运行的卫星,线速度大小相等5.如图所示的三个人造地球卫星,则说法正确的是()A .卫星可能的轨道为a 、b 、cB .卫星可能的轨道为a 、cC .同步卫星可能的轨道为a 、cD .同步卫星可能的轨道为a 、b6.如图所示,甲、乙为两颗轨道在同一平面内的地球人造卫星,其中甲卫星的轨道为圆形,乙卫星的轨道为椭圆形,M 、N 分别为椭圆轨道的近地点和远地点,P 点为两轨道的一个交点,圆形轨道的直径与椭圆轨道的长轴相等。
以下说法正确的是( )A .卫星乙在M 点的线速度小于在N 点的线速度B .卫星甲在P 点的线速度小于卫星乙在N 点的线速度C .卫星甲的周期等于卫星乙的周期D .卫星甲在P 点的加速度大于卫星乙在P 点的加速度7.“神舟十一号”飞船于2016年10月17日发射,对接“天宫二号”。
高中物理必修二第六章《圆周运动》测试题(有答案解析)(4)

一、选择题1.如图所示,一个水平大圆盘绕过圆心的竖直轴匀速转动,一个小孩坐在距圆心为r处的P点不动(P未画出),关于小孩的受力,以下说法正确的是()A.小孩在P点不动,因此不受摩擦力的作用B.小孩随圆盘做匀速圆周运动,其重力和支持力的合力充当向心力C.小孩随圆盘做匀速圆周运动,圆盘对他的摩擦力充当向心力D.若使圆盘以较小的转速转动,小孩在P点受到的摩擦力不变2.如图所示,一圆筒绕其中心轴匀速转动,圆筒内壁上紧靠着一个物体与圆筒一起运动,相对筒无滑动,物体所受向心力是()A.物体的重力B.筒壁对物体的弹力C.筒壁对物体的静摩擦力D.物体所受重力与弹力的合力3.轻杆长为L,并带着质量为m的小球在竖直平面内以速度v=gL做匀速圆周运动,小球在a、b、c、d四个位置时,不计空气阻力,下列说法正确的是()A.在a点,轻杆对球有作用力B.在b点,杆对球的作用力指向圆心C.在c点,杆对球的作用力大小为mgD.在d2mg4.一固定的水平细杆上套着一个质量为m的圆环A(体积可以忽略)圆环通过一长度为L 的轻绳连有一质量也是m的小球B。
现让小球在水平面内做匀速圆周运动,圆环与细杆之间的动摩擦因数为μ且始终没有相对滑动。
在此条件下,轻绳与竖直方向夹角的最大值是37°。
(当地球重力加速度为g)则()A.环对细杆的压力等于mg B.环对细杆的压力不可能大于2mgC.小球做圆周运动的最大角速度为53g L μD.小球做圆周运动的最大角速度为103gL μ5.如图所示,火车转弯轨道,外高内低。
某同学在车厢内研究列车的运动情况,他在车厢顶部用细线悬挂一个重为G的小球。
当列车以恒定速率通过一段圆弧形弯道时,发现悬挂小球的细线与车厢侧壁平行,已知列车与小球做匀速圆周运动的半径为r,重力加速度大小为g。
则()A.细线对小球的拉力的大小为GB.此列车速率为tangrθC.车轮与外轨道有压力,外侧轨道与轮缘间有侧向挤压作用D.放在桌面上的手机所受静摩擦力沿斜面向上6.2018年2月22日晚7时,平昌冬奥会短道速滑男子500米决赛正式开始,中国选手武大靖以39秒584的成绩打破世界记录强势夺冠,为中国代表团贏得平昌冬奥会首枚金牌,也是中国男子短道速滑队在冬季奥运会上的首枚金牌。
最新人教版高中物理必修二测试题及答案全套

最新⼈教版⾼中物理必修⼆测试题及答案全套最新⼈教版⾼中物理必修⼆测试题及答案全套章末检测试卷(⼀)(时间:90分钟满分:100分)⼀、选择题(1~8为单项选择题,9~12为多项选择题.每⼩题4分,共48分)1.关于平抛运动和圆周运动,下列说法正确的是()A.平抛运动是匀变速曲线运动B.匀速圆周运动是速度不变的运动C.圆周运动是匀变速曲线运动D.做平抛运动的物体落地时的速度⼀定是竖直向下的答案A解析平抛运动的加速度恒定,所以平抛运动是匀变速曲线运动,A正确;平抛运动⽔平⽅向做匀速直线运动,所以落地时速度⼀定有⽔平分量,不可能竖直向下,D错误;匀速圆周运动的速度⽅向时刻变化,B错误;匀速圆周运动的加速度始终指向圆⼼,也就是⽅向时刻变化,所以不是匀变速运动,C错误.【考点】平抛运动和圆周运动的理解【题点】平抛运动和圆周运动的性质2.如图1所⽰为某中国运动员在短道速滑⽐赛中勇夺⾦牌的精彩瞬间.假定此时她正沿圆弧形弯道匀速率滑⾏,则她()图1A.所受的合⼒为零,做匀速运动B.所受的合⼒恒定,做匀加速运动C.所受的合⼒恒定,做变加速运动D.所受的合⼒变化,做变加速运动答案D解析运动员做匀速圆周运动,由于合⼒时刻指向圆⼼,其⽅向变化,所以是变加速运动,D正确.【考点】对匀速圆周运动的理解【题点】对匀速圆周运动的理解3.各种⼤型的货运站中少不了旋臂式起重机,如图2所⽰,该起重机的旋臂保持不动,可沿旋臂“⾏⾛”的天车有两个功能,⼀是吊着货物沿竖直⽅向运动,⼆是吊着货物沿旋臂⽔平⽅向运动.现天车吊着货物正在沿⽔平⽅向向右匀速⾏驶,同时⼜使货物沿竖直⽅向向上做匀减速运动.此时,我们站在地⾯上观察到货物运动的轨迹可能是下图中的()图2答案D解析由于货物在⽔平⽅向做匀速运动,在竖直⽅向做匀减速运动,故货物所受的合外⼒竖直向下,由曲线运动的特点(所受的合外⼒要指向轨迹凹侧)可知,对应的运动轨迹可能为D.【考点】运动的合成和分解【题点】速度的合成和分解4.⼀物体在光滑的⽔平桌⾯上运动,在相互垂直的x⽅向和y⽅向上的分运动速度随时间变化的规律如图3所⽰.关于物体的运动,下列说法正确的是()图3A.物体做速度逐渐增⼤的曲线运动B.物体运动的加速度先减⼩后增⼤C.物体运动的初速度⼤⼩是50 m/sD.物体运动的初速度⼤⼩是10 m/s答案C解析由题图知,x⽅向的初速度沿x轴正⽅向,y⽅向的初速度沿y轴负⽅向,则合运动的初速度⽅向不在y轴⽅向上;x轴⽅向的分运动是匀速直线运动,加速度为零,y轴⽅向的分运动是匀变速直线运动,加速度沿y轴⽅向,所以合运动的加速度沿y轴⽅向,与合初速度⽅向不在同⼀直线上,因此物体做曲线运动.根据速度的合成可知,物体的速度先减⼩后增⼤,故A错误.物体运动的加速度等于y⽅向的加速度,保持不变,故B错误;根据题图可知物体的初速度⼤⼩为:v0=v x02+v y02=302+402 m/s=50 m/s,故C正确,D错误.【考点】运动的合成和分解【题点】速度的合成和分解5.⼀圆盘可以绕其竖直轴在⽔平⾯内转动,圆盘半径为R,甲、⼄物体质量分别为M和m(M>m),它们与圆盘之间的最⼤静摩擦⼒均为正压⼒的µ倍,两物体⽤⼀根长为L(L图4A.µ(M-m)gmL B.µgLC.µ(M+m)gML D.µ(M+m)gmL答案D解析以最⼤⾓速度转动时,以M为研究对象,F=µMg,以m为研究对象F+µmg=mLω2,可得ω=µ(M+m)gmL,选项D正确.【考点】向⼼⼒公式的简单应⽤【题点】⽔平⾯内圆周运动的动⼒学问题6.如图5所⽰,斜⾯上a、b、c三点等距,⼩球从a点正上⽅O点抛出,做初速度为v0的平抛运动,恰落在b点.若⼩球初速度变为v,其落点位于c,则()图5A.v0B.v=2v0C.2v0D.v>3v0答案A解析如图所⽰,M点和b点在同⼀⽔平线上,M点在c点的正上⽅.根据平抛运动的规律,若v=2v0,则⼩球经过M 点.可知以初速度v 0【考点】平抛运动规律的应⽤【题点】平抛运动规律的应⽤7.如图6所⽰,两个相同材料制成的靠摩擦传动的轮A 和轮B ⽔平放置(两轮不打滑),两轮半径r A =2r B ,当主动轮A 匀速转动时,在A 轮边缘上放置的⼩⽊块恰能相对静⽌,若将⼩⽊块放在B 轮上,欲使⽊块相对B 轮能静⽌,则⽊块距B 轮转轴的最⼤距离为( )图6A.r B 4B.r B3 C.r B 2 D.r B答案 C解析当主动轮匀速转动时,A 、B 两轮边缘上的线速度⼤⼩相等,由ω=v R 得ωA ωB =vr A v r B =r B r A =12.因A 、B材料相同,故⽊块与A 、B 间的动摩擦因数相同,由于⼩⽊块恰能在A 边缘上相对静⽌,则由静摩擦⼒提供的向⼼⼒达到最⼤值F fm ,得F fm =mωA 2r A ①设⽊块放在B 轮上恰能相对静⽌时距B 轮转轴的最⼤距离为r ,则向⼼⼒由最⼤静摩擦⼒提供,故F fm =mωB 2r ②由①②式得r =(ωA ωB )2r A =(12)2r A =r A 4=r B2,C 正确.【考点】⽔平⾯内的匀速圆周运动分析【题点】⽔平⾯内的匀速圆周运动分析8.质量分别为M 和m 的两个⼩球,分别⽤长2l 和l 的轻绳拴在同⼀转轴上,当转轴稳定转动时,拴质量为M 和m 的⼩球悬线与竖直⽅向夹⾓分别为α和β,如图7所⽰,则( )图7A.cos α=cos β2B.cos α=2cos βC.tan α=tan β2D.tan α=tan β答案 A解析对于球M ,受重⼒和绳⼦拉⼒作⽤,这两个⼒的合⼒提供向⼼⼒,如图所⽰.设它们转动的⾓速度是ω,由Mg tan α=M ·2l sin α·ω2,可得:cos α=g 2lω2.同理可得cos β=g lω2,则cos α=cos β2,所以选项A 正确.【考点】圆锥摆类模型【题点】类圆锥摆的动⼒学问题分析9.西班⽛某⼩镇举⾏了西红柿狂欢节,其间若⼀名⼉童站在⾃家的平房顶上,向距离他L 处的对⾯的竖直⾼墙上投掷西红柿,第⼀次⽔平抛出的速度是v 0,第⼆次⽔平抛出的速度是2v 0,则⽐较前后两次被抛出的西红柿在碰到墙时,有(不计空⽓阻⼒)( ) A.运动时间之⽐是2∶1 B.下落的⾼度之⽐是2∶1 C.下落的⾼度之⽐是4∶1 D.运动的加速度之⽐是1∶1 答案 ACD解析由平抛运动的规律得t 1∶t 2=L v 0∶L 2v 0=2∶1,故选项A 正确.h 1∶h 2=(12gt 12)∶(12gt 22)=4∶1,选项B 错误,C 正确.由平抛运动的性质知,选项D 正确. 【考点】平抛运动规律的应⽤【题点】平抛运动规律的应⽤10.m 为在⽔平传送带上被传送的⼩物体(可视为质点),A 为终端动⼒轮,如图8所⽰,已知动⼒轮半径为r ,传送带与轮间不会打滑,当m 可被⽔平抛出时( )图8A.传送带的最⼩速度为grB.传送带的最⼩速度为g rC.A 轮每秒的转数最少是12πg rD.A 轮每秒的转数最少是12πgr答案 AC解析物体恰好被⽔平抛出时,在动⼒轮最⾼点满⾜mg =m v 2r ,即速度最⼩为gr ,选项A 正确,B 错误;⼜因为v =2πrn ,可得n =12πgr,选项C 正确,D 错误. 【考点】向⼼⼒公式的简单应⽤【题点】竖直⾯内圆周运动的动⼒学问题11.有⼀种杂技表演叫“飞车⾛壁”,由杂技演员驾驶摩托车沿圆台形表演台的侧壁⾼速⾏驶,做匀速圆周运动.如图9所⽰,图中虚线表⽰摩托车的⾏驶轨迹,轨迹离地⾯的⾼度为h ,下列说法中正确的是( )图9A.h 越⾼,摩托车对侧壁的压⼒将越⼤B.h 越⾼,摩托车做圆周运动的线速度将越⼤C.h 越⾼,摩托车做圆周运动的周期将越⼤D.h 越⾼,摩托车做圆周运动的向⼼⼒将越⼤答案 BC解析摩托车受⼒分析如图所⽰.由于F N =mgcos θ所以摩托车受到侧壁的⽀持⼒与⾼度⽆关,保持不变,摩托车对侧壁的压⼒也不变,A 错误;由F n =mg tan θ=m v 2r =mω2r =m 4π2T 2r 知h 变化时,向⼼⼒F n 不变,但⾼度升⾼,r 变⼤,所以线速度变⼤,⾓速度变⼩,周期变⼤,选项B 、C 正确,D 错误. 【考点】圆锥摆类模型【题点】类圆锥摆的动⼒学问题分析12.如图10所⽰,两个质量均为m的⼩⽊块a和b(均可视为质点)放在⽔平圆盘上,a与转轴OO′的距离为l,b与转轴的距离为2l,⽊块与圆盘的最⼤静摩擦⼒为⽊块所受重⼒的k倍,重⼒加速度⼤⼩为g.若圆盘从静⽌开始绕转轴缓慢地加速转动,⽤ω表⽰圆盘转动的⾓速度,下列说法正确的是(假设最⼤静摩擦⼒等于滑动摩擦⼒)()图10A.b⼀定⽐a先开始滑动B.a、b所受的摩擦⼒始终相等C.ω=kg2l是b开始滑动的临界⾓速度D.当ω=2kg3l时,a所受摩擦⼒的⼤⼩为kmg答案AC解析⼩⽊块a、b做圆周运动时,由静摩擦⼒提供向⼼⼒,即F f=mω2R.当⾓速度增加时,静摩擦⼒增⼤,当增⼤到最⼤静摩擦⼒时,发⽣相对滑动,对⽊块a:F f a=mωa2l,当F f a=kmg时,kmg=mωa2l,ωa=kgl;对⽊块b:F f b=mωb2·2l,当F f b=kmg时,kmg=mωb2·2l,ωb=kg2l,所以b先达到最⼤静摩擦⼒,选项A正确;两⽊块滑动前转动的⾓速度相同,则F f a=mω2l,F f b=mω2·2l,F f aB错误;当ω=kg2l时b刚开始滑动,选项C正确;当ω=2kg3l时,a没有滑动,则F f a=mω2l=23kmg,选项D错误.【考点】⽔平⾯内的匀速圆周运动的动⼒学分析【题点】⽔平⾯内的匀速圆周运动的动⼒学分析⼆、实验题(本题共2⼩题,共12分)13.(4分)航天器绕地球做匀速圆周运动时处于完全失重状态,物体对⽀持⾯⼏乎没有压⼒,所以在这种环境中已经⽆法⽤天平称量物体的质量.假设某同学在这种环境中设计了如图11所⽰的装置(图中O为光滑⼩孔)来间接测量物体的质量:给待测物体⼀个初速度,使它在⽔平桌⾯上做匀速圆周运动.设航天器中具有基本测量⼯具.图11(1)实验时需要测量的物理量是__________________.(2)待测物体质量的表达式为m =________________.答案 (1)弹簧测⼒计⽰数F 、圆周运动的半径R 、圆周运动的周期T (2)FT 24π2R解析需测量物体做圆周运动的周期T 、圆周运动的半径R 以及弹簧测⼒计的⽰数F ,则有F =m 4π2T 2R ,所以待测物体质量的表达式为m =FT 24π2R .【考点】对向⼼⼒的理解【题点】向⼼⼒实验探究14.(8分)未来在⼀个未知星球上⽤如图12甲所⽰装置研究平抛运动的规律.悬点O 正下⽅P 点处有⽔平放置的炽热电热丝,当悬线摆⾄电热丝处时能轻易被烧断,⼩球由于惯性向前飞出做平抛运动.现对⼩球采⽤频闪数码照相机连续拍摄.在有坐标纸的背景屏前,拍下了⼩球在做平抛运动过程中的多张照⽚,经合成后,照⽚如图⼄所⽰.a 、b 、c 、d 为连续四次拍下的⼩球位置,已知照相机连续拍照的时间间隔是0.10 s ,照⽚⼤⼩如图中坐标所⽰,⼜知该照⽚的长度与实际背景屏的长度之⽐为1∶4,则:图12(1)由以上信息,可知a 点________(选填“是”或“不是”)⼩球的抛出点. (2)由以上及图信息,可以推算出该星球表⾯的重⼒加速度为________m/s 2. (3)由以上及图信息可以算出⼩球平抛的初速度是________m/s. (4)由以上及图信息可以算出⼩球在b 点时的速度是________m/s. 答案 (1)是 (2)8 (3)0.8 (4)425解析 (1)由初速度为零的匀加速直线运动连续相等时间内通过的位移之⽐为1∶3∶5可知,a 点为抛出点.(2)由ab 、bc 、cd ⽔平距离相同可知,a 到b 、b 到c 运动时间相同,设为T ,在竖直⽅向有Δh =gT 2,T =0.10 s ,可求出g =8 m/s 2.(3)由两位置间的时间间隔为0.10 s ,⽔平距离为8 cm ,x =v x t ,得⽔平速度v x =0.8 m/s. (4)b 点竖直分速度为a 、c 间的竖直平均速度,则v yb =4×4×10-22×0.10 m/s =0.8 m/s ,所以v b =v x 2+v yb 2=425m/s.【考点】研究平抛运动的创新性实验【题点】研究平抛运动的创新性实验三、计算题(本题共4⼩题,共40分.要有必要的⽂字说明和解题步骤,有数值计算的要注明单位) 15.(8分)如图13所⽰,马戏团正在上演飞车节⽬.在竖直平⾯内有半径为R 的圆轨道,表演者骑着摩托车在圆轨道内做圆周运动.已知⼈和摩托车的总质量为m ,⼈以v 1=2gR 的速度过轨道最⾼点B ,并以v 2=3v 1的速度过最低点A .求在A 、B 两点摩托车对轨道的压⼒⼤⼩相差多少?图13答案 6mg解析在B 点,F B +mg =m v 12R ,解得F B =mg ,根据⽜顿第三定律,摩托车对轨道的压⼒⼤⼩F B ′=F B =mg在A 点,F A -mg =m v 22R解得F A =7mg ,根据⽜顿第三定律,摩托车对轨道的压⼒⼤⼩F A ′=F A =7mg 所以在A 、B 两点车对轨道的压⼒⼤⼩相差F A ′-F B ′=6mg . 【考点】向⼼⼒公式的简单应⽤【题点】竖直⾯内圆周运动的动⼒学问题16.(10分)如图14所⽰,⼩球在外⼒作⽤下,由静⽌开始从A 点出发做匀加速直线运动,到B 点时撤去外⼒.然后,⼩球冲上竖直平⾯内半径为R 的光滑半圆环,恰能维持在圆环上做圆周运动通过最⾼点C ,到达最⾼点C 后抛出,最后落回到原来的出发点A 处.不计空⽓阻⼒,试求:(重⼒加速度为g )图14(1)⼩球运动到C 点时的速度⼤⼩; (2)A 、B 之间的距离. 答案 (1)gR (2)2R解析 (1)⼩球恰能通过最⾼点C ,说明此时半圆环对球⽆作⽤⼒,设此时⼩球的速度为v ,则mg =m v 2R所以v =gR(2)⼩球离开C 点后做平抛运动,设从C 点落到A 点⽤时为t ,则2R =12gt 2⼜因A 、B 之间的距离s =v t 所以s =gR ·4Rg=2R . 【考点】竖直⾯内的圆周运动分析【题点】竖直⾯内的“绳”模型17.(10分)如图15所⽰,在⽔平地⾯上固定⼀倾⾓θ=37°、表⾯光滑的斜⾯体,物体A 以v 1=6 m/s 的初速度沿斜⾯上滑,同时在物体A 的正上⽅,有⼀物体B 以某⼀初速度⽔平抛出.物体A 恰好可以上滑到最⾼点,此时物体A 恰好被物体B 击中.A 、B 均可看成质点(不计空⽓阻⼒,sin 37°=0.6,cos 37°=0.8,g 取10 m/s 2).求:图15(1)物体A 上滑到最⾼点所⽤的时间t ; (2)物体B 抛出时的初速度v 2的⼤⼩; (3)物体A 、B 间初始位置的⾼度差h . 答案 (1)1 s(2)2.4 m/s (3)6.8 m解析 (1)物体A 上滑过程中,由⽜顿第⼆定律得 mg sin θ=ma 代⼊数据得a =6 m/s 2设物体A 滑到最⾼点所⽤时间为t ,由运动学公式知0=v 1-at 解得t =1 s(2)物体B 平抛的⽔平位移x =12v 1t cos 37°=2.4 m物体B 平抛的初速度v 2=xt =2.4 m/s(3)物体A 、B 间初始位置的⾼度差 h =12v 1t sin 37°+12gt 2=6.8 m. 【考点】平抛运动中的两物体相遇问题【题点】平抛运动和竖直(或⽔平)运动的相遇问题18.(12分)如图16所⽰,⽔平放置的正⽅形光滑玻璃板abcd ,边长为L ,距地⾯的⾼度为H ,玻璃板正中间有⼀个光滑的⼩孔O ,⼀根细线穿过⼩孔,两端分别系着⼩球A 和⼩物块B ,当⼩球A 以速度v 在玻璃板上绕O 点做匀速圆周运动时,AO 间的距离为l .已知A 的质量为m A ,重⼒加速度为g ,不计空⽓阻⼒.图16(1)求⼩物块B 的质量m B ;(2)当⼩球速度⽅向平⾏于玻璃板ad 边时,剪断细线,则⼩球落地前瞬间的速度多⼤? (3)在(2)的情况下,若⼩球和⼩物块落地后均不再运动,则两者落地点间的距离为多少?答案 (1)m A v 2gl(2)v 2+2gH (3)L 24+l 2+2H v 2g+v L 2Hg解析 (1)以B 为研究对象,根据平衡条件有 F T =m B g以A 为研究对象,根据⽜顿第⼆定律有 F T =m A v 2l联⽴解得m B =m A v 2gl(2)剪断细线,A 沿轨迹切线⽅向飞出,脱离玻璃板后做平抛运动,竖直⽅向,有v y 2=2gH ,解得v y =2gH ,由平抛运动规律得落地前瞬间的速度v ′=v 2+v y 2=v 2+2gH(3)A 脱离玻璃板后做平抛运动,竖直⽅向:H =12gt 2⽔平⽅向:x =L2+v t两者落地的距离s =x 2+l 2= L 24+l 2+2H v 2g+v L 2Hg. 【考点】平抛运动规律的应⽤【题点】平抛运动规律的应⽤章末检测试卷(⼆)(时间:90分钟满分:100分)⼀、选择题(1~8为单项选择题,9~12为多项选择题.每⼩题5分,共60分)1.在物理学理论建⽴的过程中,有许多伟⼤的科学家做出了贡献.关于科学家和他们的贡献,下列说法正确的是()A.卡⽂迪许通过实验⽐较准确地测出了引⼒常量的数值B.第⾕通过对天体运动的长期观察,发现了⾏星运动三定律C.开普勒发现了万有引⼒定律D.⽜顿提出了“⽇⼼说”答案A【考点】物理学史的理解【题点】物理学史的理解2.如图1所⽰,⽕星和地球都在围绕着太阳旋转,其运⾏轨道是椭圆.根据开普勒⾏星运动定律可知()图1A.⽕星绕太阳运⾏过程中,速率不变B.地球靠近太阳的过程中,运⾏速率减⼩C.⽕星远离太阳过程中,它与太阳的连线在相等时间内扫过的⾯积逐渐增⼤D.⽕星绕太阳运⾏⼀周的时间⽐地球的长答案D解析根据开普勒第⼆定律:对任意⼀个⾏星⽽⾔,它与太阳的连线在相同时间内扫过的⾯积相等,可知⾏星在此椭圆轨道上运动的速度⼤⼩不断变化,地球靠近太阳过程中运⾏速率将增⼤,选项A、B、C错误.根据开普勒第三定律,可知所有⾏星的轨道的半长轴的三次⽅跟公转周期的⼆次⽅的⽐值都相等.由于⽕星轨道的半长轴⽐较⼤,所以⽕星绕太阳运⾏⼀周的时间⽐地球的长,选项D正确.【考点】开普勒定律的理解【题点】开普勒定律的理解3.2015年12⽉29⽇,“⾼分四号”对地观测卫星升空.这是中国“⾼分”专项⾸颗⾼轨道⾼分辨率、设计使⽤寿命最长的光学遥感卫星,也是当时世界上空间分辨率最⾼、幅宽最⼤的地球同步轨道遥感卫星.下列关于“⾼分四号”地球同步卫星的说法中正确的是()A.该卫星定点在北京上空B.该卫星定点在⾚道上空C.它的⾼度和速度是⼀定的,但周期可以是地球⾃转周期的整数倍D.它的周期和地球⾃转周期相同,但⾼度和速度可以选择,⾼度增⼤,速度减⼩答案 B解析地球同步卫星若在除⾚道所在平⾯外的任意点,假设实现了“同步”,那它的运动轨道所在平⾯与受到的地球的引⼒就不在⼀个平⾯上,且稳定做圆周运动,这是不可能的,因此地球同步卫星相对地⾯静⽌不动,必须定点在⾚道的正上⽅,选项A 错误,B 正确;因为同步卫星要和地球⾃转同步,即它们的T 和ω都相同,根据G Mmr 2=m v 2r =mω2r ,因为ω⼀定,所以r 必须固定,且v 也固定,选项C 、D 错误.【考点】同步卫星规律的理解和应⽤【题点】同步卫星规律的理解和应⽤4.2017年11⽉15⽇,我国⼜⼀颗第⼆代极轨⽓象卫星“风云三号D ”成功发射,顺利进⼊预定轨道.极轨⽓象卫星围绕地球南北两极运⾏,其轨道在地球上空650~1 500 km 之间,低于地球静⽌轨道卫星(⾼度约为36 000 km),可以实现全球观测.有关“风云三号D ”,下列说法中正确的是( ) A.“风云三号D ”轨道平⾯为⾚道平⾯ B.“风云三号D ”的发射速度可能⼩于7.9 km/s C.“风云三号D ”的周期⼩于地球静⽌轨道卫星的周期 D.“风云三号D ”的加速度⼩于地球静⽌轨道卫星的加速度答案 C【考点】卫星运动参量与轨道半径的关系【题点】卫星运动参量与轨道半径的关系5.如图2所⽰为北⽃导航系统的部分卫星,每颗卫星的运动可视为匀速圆周运动.下列说法错误的是( )图2A.在轨道运⾏的两颗卫星a 、b 的周期相等B.在轨道运⾏的两颗卫星a 、c 的线速度⼤⼩v aC.在轨道运⾏的两颗卫星b 、c 的⾓速度⼤⼩ωb <ωcD.在轨道运⾏的两颗卫星a 、b 的向⼼加速度⼤⼩a a解析根据万有引⼒提供向⼼⼒,得T =2πr 3GM,因为a 、b 的轨道半径相等,故a 、b 的周期相等,选项A 正确;因v =GMr,c 的轨道半径⼩于a 的轨道半径,故线速度⼤⼩v aGM r 3,c 的轨道半径⼩于b 的轨道半径,故⾓速度⼤⼩ωb <ωc ,选项C 正确.因a n =GMr2,a 的轨道半径等于b 的轨道半径,故向⼼加速度⼤⼩a a =a b ,选项D 错误. 【考点】卫星运动参量与轨道半径的关系【题点】卫星运动参量与轨道半径的关系6.国务院批复,⾃2016年起将4⽉24⽇设⽴为“中国航天⽇”.1970年4⽉24⽇我国⾸次成功发射的⼈造卫星东⽅红⼀号,⽬前仍然在椭圆轨道上运⾏,如图3所⽰,其轨道近地点⾼度约为440 km ,远地点⾼度约为2 060 km ;1984年4⽉8⽇成功发射的东⽅红⼆号卫星运⾏在⾚道上空35 786 km 的地球同步轨道上.设东⽅红⼀号在远地点的加速度为a 1,东⽅红⼆号的加速度为a 2,固定在地球⾚道上的物体随地球⾃转的加速度为a 3,则a 1、a 2、a 3的⼤⼩关系为( )图3A.a 2>a 1>a 3B.a 3>a 2>a 1C.a 3>a 1>a 2D.a 1>a 2>a 3答案 D解析卫星围绕地球运⾏时,万有引⼒提供向⼼⼒,对于东⽅红⼀号,在远地点时有G Mm 1(R +h 1)2=m 1a 1,即a 1=GM (R +h 1)2,对于东⽅红⼆号,有G Mm 2(R +h 2)2=m 2a 2,即a 2=GM(R +h 2)2,由于h 2>h 1,故a 1>a 2,东⽅红⼆号卫星与地球⾃转的⾓速度相等,由于东⽅红⼆号做圆周运动的轨道半径⼤于地球⾚道上物体做圆周运动的半径,根据a n =ω2r ,故a 2>a 3,所以a 1>a 2>a 3,选项D 正确,选项A 、B 、C 错误. 【考点】⾚道物体、同步卫星以及近地卫星运动规律对⽐【题点】⾚道物体、同步卫星以及近地卫星运动规律对⽐7.地球上站着两位相距⾮常远的观察者,都发现⾃⼰的正上⽅有⼀颗⼈造地球卫星相对⾃⼰静⽌不动,则这两位观察者的位置及两颗卫星到地球中⼼的距离是( ) A.⼀⼈在南极,⼀⼈在北极,两颗卫星到地球中⼼的距离⼀定相等 B.⼀⼈在南极,⼀⼈在北极,两颗卫星到地球中⼼的距离可以不等 C.两⼈都在⾚道上,两颗卫星到地球中⼼的距离可以不等 D.两⼈都在⾚道上,两颗卫星到地球中⼼的距离⼀定相等答案 D解析两位相距⾮常远的观察者,都发现⾃⼰正上⽅有⼀颗⼈造地球卫星相对⾃⼰静⽌不动,说明此卫星为地球同步卫星,运⾏轨道为位于地球⾚道平⾯内的圆形轨道,距离地球的⾼度约为36 000 km ,所以两个⼈都在⾚道上,两卫星到地球中⼼的距离⼀定相等,故D 正确.8.2015年9⽉14⽇,美国的LIGO 探测设施接收到⼀个来⾃GW150914的引⼒波信号,此信号是由两个⿊洞的合并过程产⽣的.如果将某个双⿊洞系统简化为如图4所⽰的圆周运动模型,两⿊洞绕O 点做匀速圆周运动.在相互强⼤的引⼒作⽤下,两⿊洞间的距离逐渐减⼩,在此过程中,两⿊洞做圆周运动的( )图4A.周期均逐渐增⼤B.线速度均逐渐减⼩C.⾓速度均逐渐增⼤D.向⼼加速度均逐渐减⼩答案 C解析根据G M 1M 2L 2=M 14π2R 1T 2,解得M 22,同理可得M 1=4π2L 2GT 2R 2,所以M 1+M 2=4π2L 2GT 2(R 1+R 2)=4π2L 3GT 2,当(M 1+M 2)不变时,L 减⼩,则T 减⼩,即双星系统运⾏周期会随间距减⼩⽽减⼩,故A错误;根据G M 1M 2L 2=M 1v 12R 1,解得v 1=GM 2R 1L 2,由于L 平⽅的减⼩⽐R 1和R 2的减⼩量⼤,则线速度增⼤,故B 错误;⾓速度ω=2πT ,结合A 可知,⾓速度增⼤,故C 正确;根据G M 1M 2L 2=M 1a 1=M 2a 2知,L 变⼩,则两星的向⼼加速度增⼤,故D 错误.9.⼀些星球由于某种原因⽽发⽣收缩,假设该星球的直径缩⼩到原来的四分之⼀,若收缩时质量不变,则与收缩前相⽐( )A.同⼀物体在星球表⾯受到的重⼒增⼤到原来的4倍B.同⼀物体在星球表⾯受到的重⼒增⼤到原来的16倍C.星球的第⼀宇宙速度增⼤到原来的4倍D.星球的第⼀宇宙速度增⼤到原来的2倍答案 BD解析在星球表⾯由重⼒等于万有引⼒mg =G MmR 2可知,同⼀物体在星球表⾯受到的重⼒增⼤为原来的16倍,选项A 错误,B 正确.由第⼀宇宙速度计算式v =GMR可知,星球的第⼀宇宙速度增⼤为原来的2倍,选项C 错误,D 正确. 【考点】三个宇宙速度的理解【题点】第⼀宇宙速度的理解10.设地⾯附近重⼒加速度为g 0,地球半径为R 0,⼈造地球卫星的圆形轨道半径为R ,那么以下说法中正确的是( )A.卫星运⾏的向⼼加速度⼤⼩为g 0R 02R 2B.卫星运⾏的速度⼤⼩为R 02g 0R C.卫星运⾏的⾓速度⼤⼩为R 3R 02g 0D.卫星运⾏的周期为2πR 3R 02g 0答案 ABD解析由G Mm R 2=ma 向,得a 向=G M R 2,⼜g 0=GM R 02,故a 向=g 0R 02R 2,A 对.⼜a 向=v 2R ,v =a 向R =g 0R 02R,B 对.ω=a 向R=g 0R 02R 3,C 错.T =2πω=2πR 3g 0R 02,D 对. 【考点】天体运动规律分析【题点】应⽤万有引⼒提供向⼼⼒分析天体运动规律11.⼀宇宙飞船绕地⼼做半径为r 的匀速圆周运动,飞船舱内有⼀质量为m 的⼈站在可称体重的台秤上.⽤R 表⽰地球的半径,g 表⽰地球表⾯处的重⼒加速度,g ′表⽰宇宙飞船所在处的重⼒加速度,F N 表⽰⼈对台秤的压⼒,则下列关系正确的是( ) A.g ′=0 B.g ′=gR 2r 2C.F N =0D.F N =m Rrg答案 BC解析处在地球表⾯处的物体所受重⼒近似等于万有引⼒,所以有mg =G MmR 2,即GM =gR 2,对处在轨道半径为r 的宇宙飞船中的物体,有mg ′=G Mm r 2,即GM =g ′r 2,所以有g ′r 2=gR 2,即g ′=gR 2r 2,B 正确,A 错误;当宇宙飞船绕地⼼做半径为r 的匀速圆周运动时,万有引⼒提供向⼼⼒,飞船及飞船内物体处于完全失重状态,所以对台秤的压⼒为零,C 正确,D 错误. 【考点】卫星运动参量与轨道半径的关系【题点】卫星运动参量与轨道半径的关系12.为了探测X 星球,载着登陆舱的探测飞船在以该星球中⼼为圆⼼、半径为r 1的圆轨道上运动,周期为T 1,总质量为m 1.随后登陆舱脱离飞船,变轨到离星球更近的半径为r 2的圆轨道上运动,此时登陆舱的质量为m 2,则( ) A.X 星球的质量为M =4π2r 13GT 12B.X 星球表⾯的重⼒加速度为g =4π2r 1T 12C.登陆舱在r 1与r 2轨道上运动时的速度⼤⼩之⽐为v 1v 2=m 1r 2m 2r 1 D.登陆舱在半径为r 2轨道上做圆周运动的周期为T 2=T 1r 23r 13答案 AD解析探测飞船做圆周运动时有G Mm 1r 12=m 1(2πT 1)2r 1,解得M =4π2r 13GT 12,选项A 正确;因为星球半径未知,所以选项B 错误;根据G Mmr 2=m v 2r ,得v =GMr ,所以v 1v 2=r 2r 1,选项C 错误;根据开普勒第三定律r 13T 12=r 23T 22,得T 2=T 1r 23r 13,选项D 正确. 【考点】卫星运动参量与轨道半径的关系【题点】卫星运动参量与轨道半径的关系⼆、计算题(本题共4⼩题,共40分.要有必要的⽂字说明和解题步骤,有数值计算的要注明单位) 13.(8分)宇航员在某星球表⾯以初速度v 0竖直向上抛出⼀个物体,物体上升的最⼤⾼度为h .已知该星球的半径为R ,且物体只受该星球的引⼒作⽤.求: (1)该星球表⾯的重⼒加速度;(2)从这个星球上发射卫星的第⼀宇宙速度. 答案 (1)v 022h(2)v 0R 2h解析 (1)设该星球表⾯的重⼒加速度为g ′,物体做竖直上抛运动,由题意知v 02=2g ′h ,得g ′=v 022h.(2)卫星贴近星球表⾯运⾏,则有mg ′=m v 2R ,得v =g ′R =v 0R 2h. 【考点】万有引⼒定律和其他⼒学问题的综合应⽤【题点】万有引⼒与其他⼒学的综合问题14.(10分)⼈们在太阳系外发现了⾸颗“宜居”⾏星,其质量约为地球质量的6.4倍.已知⼀个在地球表⾯质量为50 kg 的⼈在这个⾏星表⾯所受的重⼒约为800 N ,地球表⾯处的重⼒加速度为10 m/s 2.求: (1)该⾏星的半径与地球的半径之⽐;(2)若在该⾏星上距⾏星表⾯2 m ⾼处,以10 m/s 的⽔平初速度抛出⼀只⼩球(不计任何阻⼒),则⼩球的⽔平射程是多⼤?答案(1)2∶1 (2)5 m解析 (1)在该⾏星表⾯处,有G ⾏=mg ⾏,可得g ⾏=16 m/s 2.在忽略⾃转的情况下,物体所受的万有引⼒等于物体所受的重⼒,得GMm R 2=mg ,有R 2=GMg ,故R ⾏2R 地2=M ⾏g 地M 地g ⾏=4,所以R ⾏R 地=2∶1.(2)由平抛运动规律,有h =12g ⾏t 2,x =v t ,故x =v2hg ⾏,代⼊数据解得x =5 m. 15.(10分)“嫦娥⼀号”探⽉卫星在空中的运动可简化为如图5所⽰的过程,卫星由地⾯发射后,经过发射轨道进⼊停泊轨道,在停泊轨道经过调速后进⼊地⽉转移轨道,再次调速后进⼊⼯作轨道.已知卫星在停泊轨道和⼯作轨道运⾏的半径分别为R 和R 1,地球半径为r ,⽉球半径为r 1,地球表⾯重⼒加速度为g ,⽉球表⾯重⼒加速度为g6.求:图5(1)卫星在停泊轨道上运⾏的线速度⼤⼩; (2)卫星在⼯作轨道上运⾏的周期. 答案 (1)rg R (2)2πR 1r 16R 1g解析 (1)设卫星在停泊轨道上运⾏的线速度为v ,卫星做圆周运动的向⼼⼒由地球对它的万有引⼒提供,有G mMR 2=m v 2R ,且有G m ′M r 2=m ′g ,解得v =r g R. (2)设卫星在⼯作轨道上运⾏的周期为T ,则有G mM 1R 12=m 2πT 2R 1,⼜有G m ″M 1r 12=m ″g 6,解得T =2πR 1r 16R 1g. 【考点】天体运动规律分析【题点】应⽤万有引⼒提供向⼼⼒分析天体运动规律。
高中物理必修二期末试题
物理必修模块2参考样卷(人教版)本试卷共4页,考试时间60分钟,满分100分。
一、本题共10小题,在每小题给出的四个选项中,只有一个选项......是符合题意的。
(每小题5分,共50分)1.做匀速圆周运动的物体,在运动过程中保持不变的物理量是A .动能B .速度C .加速度D .合外力 2.如图1所示,在光滑水平面上,一质量为m 的小球在绳的拉力作用下做半径为r 的匀速圆周运动,小球运动的线速度为v ,则绳的拉力F 大小为 A .rvmB . r v m 2C .mvrD .mvr 23.一颗运行中的人造地球卫星,到地心的距离为r 时,所受万有引力为F ;到地心的距离为2r 时,所受万有引力为A .FB .3FC .41F D .31F 4.如图2所示,一物块在与水平方向成θ角的拉力F 的作用下,沿水平面向右运动一段距离s . 则在此过程中,拉力F 对物块所做的功为A .FsB .Fs cos θC .Fs sin θD .Fs tan θ5.图3中虚线是一跳水运动员在跳水过程中其重心运动的轨迹,则从起跳至入水的过程中,该运动员的重力势能A .一直减小B .一直增大C .先增大后减小D .先减小后增大 6.关于弹性势能,下列说法正确的是 A .弹性势能与物体的形变量有关 B .弹性势能与物体的形变量无关C .物体运动的速度越大,弹性势能越大D .物体运动的速度越大,弹性势能越小7.下列所述的实例中(均不计空气阻力),机械能守恒的是A .小石块被水平抛出后在空中运动的过程B .木箱沿粗糙斜面匀速下滑的过程C .人乘电梯加速上升的过程D .子弹射穿木块的过程8.如图4所示,在水平路面上一运动员驾驶摩托车跨越壕沟,壕沟两侧的高度差为0.8m. 取g=10m/s 2,则运动员跨过壕沟所用的时间为A .3.2sB .1.6sC . 0.8sD . 0.4s9.在公路上常会看到凸形和凹形的路面,如图5所示. 一质量为m 的汽车,通过凸形路面的最高处时对路面的压力为N 1,通过凹形路面最低处时对路面的压力为N 2,则A .N 1 > mgB .N 1 < mgC .N 2 = mgD .N 2 < mg10.汽车在水平公路上转弯,沿曲线由M 向N 行驶. 图6中分别画出了汽车转弯时所受合力F 的四种方向,你认为正确的是选择题答题卡12345678910二、实验题(共16分,其余每空2分)11.某同学用打点计时器研究物体自由下落过程中动能和势能的变化,来验证机械能守恒定律。
人教版高一物理必修2 2019- 2020学年第二学期高一期末复习卷(二)(含解析)
A. 2 ℎ
B. 2 ℎ
C. ℎ
D. ℎ 2
5.[来源: 2019-2020 学年青海省西宁十四中高二(上)期末物理试卷]我国的“神舟”系列航天飞船的成功发射和
顺利返回,显示了我国航天事业取得的巨大成就.已知地球的质量为 M,引力常量为 G,飞船的质量为 m,设飞船
绕地球做匀速圆周运动的轨道半径为 r,则( )
A. 可能做圆周运动
B. 一定做匀变速曲线运动
C. 可能处于静止状态
D. 一定做匀变速直线运动
2.[来源: 2019-2020 学年河南省周口市韩郸城一高高一(下)第一次月考物理
试卷]如图,窗子上、下沿间的高度 = 1.6 ,墙的厚度 = 0.4 ,某人在离墙
壁距离 = 1.4 、距窗子上沿高ℎ = 0.2 处的 P 点,将可视为质点的小物体以速
匀加速直线运动,第一次是斜向上拉,第二次是斜向下推,两次力的作用线与水平方向的夹角相同,力的大小也相
同,位移大小也相同,则( )
A. 力 F 对物体做的功相同,合力对物体做的总功也相同 B. 力 F 对物体做的功相同,合力对物体做的总功不相同
C. 力 F 对物体做的功不相同,合力对物体做的总功相同
D. 力 F 对物体做的功不相同,合力对物体做的总功也不相同
2
A.研究飞船绕地球做匀速圆周运动,根据万有引力提供向心力,列出等式: 2 = ,解得: = ,故 A 错
误;
B.根据万有引力提供向心力,得: 2 = ,所以: = 2 ,故 B 错误;
C.根据万有引力提供向心力,得:
2=
4 2 ,所以: 2
=2
3 ,故 C 正确;
D.飞船在此圆轨道上运行所受的向心力为万有引力,得: =
(必考题)高中物理必修二第五章《抛体运动》测试题(包含答案解析)(3)
一、选择题1.一条船在静水中的速度为4m/s ,它要渡过一条40m 宽的大河,河水的流速为3m/s ,则下列说法错误的是( )A .船可以垂直于河岸航行B .船渡河的速度有可能为5m/sC .船到达对岸的最短时间为8sD .船到达对岸的最短距离为40m 2.如图所示,小船船头始终垂直于河岸行驶,且船速保持不变。
从A 点出发行驶至B 点,小船轨迹如图所示。
则下列说法正确的是( )A .河岸中心水速最大B .船可能做匀速运动C .水速将影响渡河时间,水速越大,渡河时间越短D .改变船速方向不会影响渡河时间3.如图所示,小球自足够长的斜面上的O 点水平抛出,落至斜面时速度与斜面方向的夹角用α表示,不计空气阻力,对小球在空中的运动过程以下说法正确的是( )A .初速度越大,α角越大B .初速度越大,α角越小C .运动时间与初速度成正比D .下落的高度与初速度成正比4.一小船在静水中的速度为3m /s ,它在一条河宽为300m 、水流速度为4m /s 的河流中渡河,下列说法正确的是( )A .小船到达正对岸的时间为100sB .小船渡河的时间可能为75sC .当小船以最短时间渡河时,小船相对河岸的速度大小为3m /sD .当小船以最短时间渡河时,渡河的位移大小为500m5.冬奥会跳台滑雪比赛,它是利用山势特点建造的一个特殊跳台。
简化模型如图所示,一运动员穿着专用滑雪板,在助滑路上获得高速后从A 点水平飞出,在空中飞行一段距离后在山坡上B 点着陆。
已知可视为质点的运动员水平飞出的速度020m/s v =,山坡看成倾角为37︒的斜面,不考虑空气阻力,(sin370.6︒=,cos370.8︒=)则关于运动员以下说法正确的是( )A .在空中飞行的时间为1.5sB .落到斜面上B 点时离A 点的距离为60mC .若运动员水平飞出速度减半,则落到斜面上时离A 点的距离减半D .若运动员水平飞出速度减半,则落到斜面上时速度方向不变6.用细绳拴一个质量为m 的小球,小球将一固定在墙上的水平轻质弹簧压缩了x (小球与弹簧不拴连),如图所示。
高中物理必修二精品解析:天津市滨海新区大港太平村中学高一(下)期末质量检测物理试题(解析版)
(2)根据小球水平方向做匀速直线运动,可知小球释放点与落地点之间的水平距离
。
16.中国北斗卫星导航系统是中国自行研制的全球卫星导航系统。如图所示为其中一颗北斗卫星的轨道示意图。已知该卫星绕地球做匀速圆周运动的周期为T,地球半径为R,地球表面附近的重力加速度为g,引力常量为G。求:
(1)物体到达C点的速度大小vc;
(2)弹簧压缩至A时的弹性势能Ep;
(3)物体从B至C运动过程中克服阻力做的功W。
【答案】(1)2.45m/s;(2) ;(3)
【解析】
【详解】(1)物体恰能运动到C点则有
解得
=2.45m/s
(2)物体在B点由牛顿第二定律
根据牛顿第三定律
由机械能守恒定律
解得
(3)物体从B运动到C的过程,由动能定理
D.由于二者的质量关系是未知的,则不能比较它们的动能大小,故D错误.
6.纯电动汽车绿色环保,许多人驾驶纯电动汽车出行。一辆纯电动汽车功率为30kW,当行驶速度大小为20m/s时,牵引力的大小为( )
A.600NB.1500NC.1.5ND.6×105N
【答案】B
【解析】
详解】根据P=Fv可得牵引力
故选B。
CD.由动能定理可知,抛出时人对石块所做的功为
故C正确,D错误。
故选AC。
第II卷非选择题(共52分)
三、实验题(本题共2小题,共10分)
13.在“探究平抛运动的特点”实验中,让小球沿同一斜槽轨道运动,落到水平放置的倾斜的挡板上。上下调节挡板多次实验,记录小球经过的多个位置,通过描点法画出小球平抛运动的轨迹。
A. 石块落地时的动能为
B. 石块离手时的机械能为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 6 页
高中物理必修2期末测试卷(考试时间60分钟,满分100分)
一、本题共10小题,在每小题给出的四个选项中,只有一个选项......是符合题意的。(每小题4分,共48分) 1.做匀速圆周运动的物体,在运动过程中保持不变的物理量是 A.动能 B.速度 C.加速度 D.合外力 2.如图1所示,在光滑水平面上,一质量为m的小球在绳的拉力作用下做半径为r的匀速圆周运动,小球运动的线速度为v,则绳的拉力F大小为
A.rvm B. rvm2 C.mvr D.mvr2 3.一颗运行中的人造地球卫星,到地心的距离为r时,所受万有引力为F;到地心的距离为2r时,所受万有引力为
A.F B.3F C.41F D.31F 4.如图2所示,一物块在与水平方向成θ角的拉力F的作用下,沿水平面向右运动一段距离s. 则在此过程中,拉力F对物块所做的功为 A.Fs B.Fscosθ C.Fssinθ D.Fstanθ 5.图3中虚线是一跳水运动员在跳水过程中其重心运动的轨迹,则从起跳至入水的过程中,该运动员的重力势能 A.一直减小 B.一直增大 C.先增大后减小 D.先减小后增大 6.关于弹性势能,下列说法正确的是 A.弹性势能与物体的形变量有关 B.弹性势能与物体的形变量无关 C.物体运动的速度越大,弹性势能越大 D.物体运动的速度越大,弹性势能越小 7.下列所述的实例中(均不计空气阻力),机械能守恒的是 A.小石块被水平抛出后在空中运动的过程 B.木箱沿粗糙斜面匀速下滑的过程 C.人乘电梯加速上升的过程 D.子弹射穿木块的过程 8.如图4所示,在水平路面上一运动员驾驶摩托车跨越壕沟,壕沟两侧的高度差为0.8m. 取g=10m/s2,则运动员跨过壕沟所用的时间为A.3.2s B.1.6s C. 0.8s D. 0.4s 9.在公路上常会看到凸形和凹形的路面,如图5所示. 一质量为m的汽车,通过凸形路面的最高处时对路面的压力为N1,通过凹形路面最低处时对路面的压力为N2,则 A.N1 > mg B.N1 < mg C.N2 = mg D.N2 < mg
图1 r m 图2 F θ
图3 图4 0.8m
图5 第 2 页 共 6 页
10.汽车在水平公路上转弯,沿曲线由M向N行驶. 图6中分别画出了汽车转弯时所受合力F的四种方向,你认为正确的是
11.长度为L=0. 5m的轻质细杆OA,A端有一质量为m=3.0kg的小球,如图3所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率为2.0m/s,不计空气阻力,g取10m/s2,则此时细杆OA受到 A.6.0N的拉力 B.6.0N的压力 C.24N的拉力 D.24N的压力
12.如图4,桌面高为h,质量m的小球从离桌面高H处自由下落,不计空气阻力,假设桌面为参考平面,则小球落到地面前瞬间的机械能为 A.0 B.mgh C.mgH D.mg(H+h)
第错误!未找到引用源。卷(非机读卷 共50分) 二、实验题(每小题6分,共12分) 13、某实验小组利用拉力传感器和速度传感器探究“动能定理”,如图1-7-3所示,他们将拉力传感器固定在小车上,用不可伸长的细线将其通过一个定滑轮与钩码相连,用拉力传感器记录小车受到拉力的大小.在水平桌面上相距50.0 cm的A、B两点各安装一个速度传感器,记录小车通过A、B时的速度大小.小车中可以放置砝码.
图1-7-3 (1)实验主要步骤如下: ①测量________和拉力传感器的总质量M1;把细线的一端固定在拉力传感器上,另一端通过定滑轮与钩码相连;正确连接所需电路; ②将小车停在C点,__________,小车在细线拉动下运动,记录细线拉力及小车通过A、B时的速度.
A F N M B F N M C F N M D
F N M 图6
图7 v t O 图8 A B 第 3 页 共 6 页
③在小车中增加砝码,或_______________,重复②的操作. (2)表1是他们测得的一组数据,其中M是M1与小车中砝码质量之和,|v22-v21| 是两个速度传感器记录速度的平方差,可以据此计算出动能变化量△E,F是拉力传感器受到的拉力,W是F在A、B间所做的功.表格中△E3=__________,W3=________.(结果保留三位有效数字) 表1 数据记录表 次数 M/kg |v21-v22 /(m/s)2 △E/J F/N W/J
1 0.500 0.760 0.190 0.400 0.200 2 0.500 1.65 0.413 0.840 0.420 3 0.500 2.40 △E3 1.220 W3 4 1.000 2.40 1.20 2.420 1.21 5 1.000 2.84 1.42 2.860 1.43 (3)根据表1,请在图1-7-4中的方格纸上作出△E-W图线.
14.(1)图16为“验证机械能守恒定律”的实验装置,下列哪些说法是正确的( ) A.实验时应选用密度大体积小,并且下端有橡胶垫的重锤 B.实验时,当松开纸带让重锤下落同时,立即接通电源. C.要选用第1、2点间距离接近2mm的纸带 D.实验结果总是动能的增量略大于重力势能的减小量. E、纸带的上端用夹子夹住比用手拉住要好 (2)在“验证机械能守恒定律”的实验中,所用电源的频率为50Hz,某同学选择了一条合理的纸带,用刻度尺测量时各计数点对应刻度尺上的读数如图17所示,数值的单位是mm;图中O点是打点计时器打出的第一个点,A、B、C、D、E分别是每打两个点取出的计数点。设重物的质量为1kg,(当地重力加速度g=9.8m/s2.)
图1-7-4 第 4 页 共 6 页
(1)重物从开始下落到计时器打B点时,减少的重力势能pBE=____________J。 (2)重物下落到计时器打B点时增加的动能KBE__________J(保留三位有效数字) (3)根据纸带提供的数据,在误差允许的范围内,重锤从静止开始到打出B点的过程中,得到的结论是 。 二、计算题(共40分) 解题要求:写出必要的文字说明、方程式、演算步骤和答案。有数值计算的题,答案必须明确写出数值和单位。 15.(10分)一汽车额定功率为P额=100 kW,质量为m=10×103 kg,设阻力恒为车重的0.1倍,取g=10 m/s2. (1)若汽车以额定功率启动,求所达到的最大速度vm; (2)若汽车以a=0.5 m/s2的加速度启动,求其匀加速运动的最长时间.
16.(8分)一颗质量为m的人造地球卫星绕地球做匀速圆周运动,卫星到地心的距离为r,已知引力常量G和地球质量M,求: (1)地球对卫星的万有引力的大小; (2)卫星的速度大小.
17.(10分)如图10,一个小球沿光滑固定轨道从A点由静止开始滑下。已知轨道的末端水平,距水平地面的高度h=3.2m,小球落地点距轨道末端的水平距离x = 4.8m. 取g =10 m/s2,求: (1)小球离开轨道时的速度大小; (2)A点离地面的高度H.
18.(12分)如图,光滑水平面AB与竖直面的半圆形导轨在B点相连接,导轨半径为R,一质量为m的静止木块在A处压缩弹簧,释放后,木块获得一向右的初速度,当它经过B点进入导轨瞬间对导
图10 H x
A
h 第 5 页 共 6 页
轨的压力是其重力的7倍,之后向上运动恰能通过轨道顶点C,不计空气阻力,试求: (1)弹簧对木块所做的功; (2)木块从B到C过程中克服摩擦力做的功; (3)木块离开C点落回水平面所需的时间和落回水平面时的动能。
物理参考答案 一、选择题(48分) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B C B C A A D B D B C
二、实验题(每小题6分,共12分) 13.(1)①小车、砝码 ②接通电源,释放小车 ③减少砝码 (2)0.600 0.610(3)如图1-7-5所示.
14、(1)A、C E (全对得2分,不全得1分)(2)1.91PBEJ (3)1.88kBEJ (2分) (4)、在实验误差范围内机械能守恒(在实验误差范内减小的重力势能等于增加的动能) 三、计算题(共40分) 15.(1)汽车以额定功率启动,达到最大速度时,阻力与牵引力相等.依题Ff=0.1mg,
所以vm=1010101.0101001.033mgPFPFPf额额额 m/s=10 m/s. (2)汽车以匀加速启动时的牵引力为: F=ma+Ff=ma+0.1mg=10×103×0.5 N+0.1×10×103×10 N=1.5×104 N 第 6 页 共 6 页
达到额定功率时的速度为:vt=43105.110100FP额 m/s=6.7 m/s vt即为匀加速运动的末速度,
故做匀加速运动的最长时间为:t=5.07.6avt s=13.3 s. 16.(8分)(1)地球对卫星的万有引力的大小 F=G2r
Mm……………………………………………………..…4分.
(2)设卫星的速度大小为v,由牛顿第二定律有
G2rMm=mrv2
解得 v =r
GM……………………………………………4分.
17.(10分)(1)设小球离开轨道时的速度大小为v,对于平抛运动过程有 x=vt, h=21gt2
所以 v=2hgx= 6 m/s………………………………………………5分 (2)对于小球在轨道上的运动过程,根据机械能守恒定律有 mg(H-h)= 21mv2
所以 H=h+2gv2= 5 m…………………………………………………5分
18、⑴、mgRW3 ⑵、mgRWf21
⑶、gRt2 ,mgREK25'