单核苷酸多态性及其应用
单核苷酸多态性及其在畜牧兽医领域的研究进展

单核苷酸多态性及其在畜牧兽医领域的研究进展内蒙古赤峰市024031内蒙古赤峰市喀喇沁旗农牧局2内蒙古赤峰市024400 内蒙古赤峰市农牧科学研究所3内蒙古赤峰市024031内蒙古赤峰市动物疫病预防控制中心4内蒙古赤峰市024000摘要:单核苷酸多态性(SNPs)主要指基因组DNA中特定核苷酸位置的改变,如转换、颠换、插入或缺失。
序列多态性。
与其他遗传标记如限制性片段长度多态性(RFLP)和微卫星标记(STRS)相比,SNP标记有两个显著的特点。
SNP是基因组中的双等位基因,其等位基因频率在任何人群中都可以准确估计,便于高通量批量检测。
SNPs在基因组中分布广泛,具有最丰富的遗传多样性,并且许多SNPs与生物性状的变异有关,因此它们是研究遗传变异的候选基因或位点。
因此,SNP的研究有助于解释不同个体间表型性状的差异,以及不同群体和个体对疾病和环境因素反应的差异。
关键词:单核苷酸多态性;检测方法;动物;分子标记辅助育种;品种鉴定;疾病研究;一、SNP的常用检测方法1.测序法。
测序法是SNP的经典检测方法,是最直接、最准确的方法,该方法对于发现未知的SNP十分有效,检出率可达到100%,还可区分SNP的突变碱基类型和突变位置。
DNA测序技术分别经历了第一代测序技术到第三代测序技术的发展。
第一代测序代表技术是Sanger发明的双脱氧链终止法(Chain Termination Method),也称为Sanger法,人类基因组计划(Human Genome Project,HGP)采用的大规模测序技术正是基于Sanger法。
Sanger采用的是末端终止法,目前已可测长达1 000 bp的DNA片段,对每一个碱基的读取准确率可高达99.99%。
第二代测序技术意义上真正实现了高通量,测序原理为微循环阵列法,使用边合成边测序技术。
主要技术平台有454焦磷酸法平台(每个测序片段长度最大500 bp)、Solexa基因组分析仪(每个测序片段长度仅为75 bp)和SOLiD高通量测序仪。
分子标记—SNP

等位基因特异寡核苷酸 片段分析(ASO)
突变错配扩增检验 (MAMA)
SNP的应用
➢ 遗传图谱的构建
在许多物种中发现、收集与鉴定的SNPs已 经构成了庞大的序列变异数据库, 极大地促进 了遗传图谱的构建工作,使得原来冗长乏味的 事情变得轻松而有趣
用SNP标记还有助于将遗传图谱和物理图 谱进行进一步的整合
SNP标记在群体水平上的应用最具有吸引 力的方面是利用群体遗传学中的连锁不平衡原 理来进行高密度图谱的构建和进行关联分析
从某种意义上说,当前人们对SNPs产生如此 之大的兴趣在于它作为一种标记,通过连锁不平 衡作图法可以用于鉴定导致生物特定性状(如 人类疾病)的基因
SNP的特点
➢ 位点丰富
SNP是基因组中分布最广泛而稳定的点突变,在人 类基因组中大概每1000 个碱基就至少有一个SNP,人类 基因组上的SNP总量可达300万个甚至更多
➢ 具有代表性
某些位于基因内部的SNP 有可能直接影响蛋白质结构 或表达水平, 因此它们可能代表疾病遗传机理中的某些 作用因素
基因间SNP (iSNP)
SNP的检测
SNP 检测技术按研究对象主要分为两大类
➢ 未知单核苷酸突变位点的检测技术
温度梯度凝胶电泳(TGGE)
通过温度的变化,使点突变或正常的DNA片段 由于氢键不稳定,造成TM值不同而表现出不同的 解链行为。作为一种常用的检测SNP的强有力的 工具,TGGE可分析长度在200~900bp内的双链DNA 片段,但如果在GC富集区,则SNP检出率则大大 下降
技术路线图
Multiplex SNaPshot-多重单碱基延伸技 术
1. 在一个含有测序酶,四种荧光标记的ddNTP, 紧挨多 态位点5’端的不同长度延伸引物和PCR产物模板的 反应体系中,引物延伸一个碱基即终止
单核苷酸多态性名词解释

单核苷酸多态性名词解释
单核苷酸多态性是指一个特定基因变异,这种突变可能会使同一位点上出现多种不同的碱基组合,而这些不同的碱基组合又会影响到该位点所承担的生物功能。
单核苷酸多态性可以大致分为三种类型:第一种是偶然多态性,它是一种无害变异,不会对携带者的健康造成影响。
第二种是有害变异,它会对携带者的健康造成影响,甚至会促使某些疾病的发生。
第三种是有益变异,它可以增强人类身体的抗病能力,或者促进某些疾病的抗病能力。
单核苷酸多态性变异也与环境因素有很大关系,受到自然环境影响程度不同,不同地区的单核苷酸多态性可能会有很大的差异。
因此,单核苷酸多态性变异的研究也有助于研究社会的生态环境,从而了解环境变化和社区病毒介导的遗传变异之间的关系。
此外,单核苷酸多态性变异也可能会影响人类的营养摄入,比如在几乎相同的种群中,某些携带者会产生抗药性,这些携带者对某种营养物质的摄入有不同的需求。
此外,单核苷酸多态性变异也可能会影响人类的运动能力,比如某些携带者有着更高的耐力,而另一些携带者可能更容易疲劳。
单核苷酸多态性变异的研究也可以帮助人们更加全面地了解疾
病的发生机制,因为有些疾病是由特定的变异引发的,而这些变异又可能会受到一些外部因素的影响,而变异研究也可以为医学界提供新的潜在治疗或预防措施。
总而言之,单核苷酸多态性的研究对人们的健康、社会生态环境
和营养摄入、运动能力等多个方面产生了巨大的影响,是当今研究的一大关注点。
只有通过对这些变异的深入研究,我们才能更加客观地了解这些变异,为人类健康提供更好的服务。
单核苷酸多态性SNP(singlenucleotidepolymorphism)

单核苷酸多态性SNP(singlenucleotidepolymorphism)定义主要指基因组⽔平上由单个核苷酸的变异所引起的 DNA 序列多态性。
在基因组⽔平上由单个核苷酸的变异所引起的DNA。
即:在不同个体的同⼀条染⾊体或同⼀位点的核苷酸序列中,绝⼤多数核苷酸序列⼀致⽽只有⼀个碱基不同的现象。
⾸先来看看多态性(polymorphism)的英⽂解释Polymorphism*the quality or state of existing in or assuming different forms: such as: a variation in a specific DNA sequence*the condition of occuring in several different forms后者的解释是⽐较清楚的,不同形式⽽产⽣的状态。
我⾃⼰的⼀些理解是这样的,虽然⼈类的基因都是属于⼀类物种的基因,但是不全相同,这是由于在⼈类基因组上有各种各样的突变,随即由于遗传的 DNA 不同便会产⽣不⼀样的性状,如卷⾆与否、发⾊、瞳⾊、样貌等等,⼈与⼈之间的差距就在这⼩⼩的 DNA 间产⽣了,说来也挺有意思的。
⽽这些突变中之⼀便是单核苷酸的突变,⽽它也是⼈类可遗传的变异中最常见的⼀种。
SNP 在⼈类基因组中⼴泛存在,平均 500~1000 个碱基对中就有 1 个,估计总数可达300 万个甚⾄更多。
由于每个⼈的基因组因 SNP 产⽣的差异性,SNP 成为了第三代遗传标志(也可以成为个体差异的标志),⼈体许多表型差异,对药物的敏感程度及疾病发⽣的概率等可能均与 SNP 有关为何产⽣ SNP它是⼀种⼆态的标记(两种形式&两种状态),由单个碱基的变异所发⽣的条件是具有多态性,即不只⼀种条件能引起它的变异。
⼀般是由单个碱基的转换(transition)或颠换(transversion)所引起。
当然也存在碱基的插⼊或者缺失,但这两种情况极少并不做讨论。
单核苷酸多态性在作物遗传及改良中的应用

单核苷酸多态性在作物遗传及改良中的应用杜春芳;刘惠民;李润植;李朋;任志强【期刊名称】《遗传》【年(卷),期】2003(025)006【摘要】单核苷酸多态性(single nucleotide polymorphism,SNP)是等位基因间序列差异最为普遍的类型,可作为一种高通量的遗传标记.已建立了PCR扩增目标序列及其产物测序和电子SNP(eSNP)等多种发现和检测SNP的方法.玉米和大豆等作物也已开展了SNP分析.一些栽培作物种质的多样性不断减少,其结果使连锁不平衡(linkage disequilibrium,LD)增加,这有利于目的基因座上SNP单元型(haplotype)与表型的相关性分析.SNP已在作物基因作图及其整合、分子标记辅助育种和功能基因组学等领域展示了广泛的应用价值.【总页数】5页(P735-739)【作者】杜春芳;刘惠民;李润植;李朋;任志强【作者单位】山西农业大学农业生物工程研究中心,太谷,030801;山西省农业科学院棉花研究所,运城,044000;山西省农业科学院,太原,030031;山西农业大学农业生物工程研究中心,太谷,030801;山西省农业科学院棉花研究所,运城,044000;山西省农业科学院,太原,030031【正文语种】中文【中图分类】Q943【相关文献】1.单核苷酸多态性在作物遗传育种中的研究 [J], 邹枚伶;王海燕;卢诚;王文泉2.单核苷酸多态性及其在作物遗传育种中的应用 [J], 娄虹;阮亚男;李其久;韩阳3.植物的单核苷酸多态性及其在作物遗传育种中的应用 [J], 郝岗平;杨清;吴忠义;曹鸣庆;黄丛林4.基因编辑技术在作物遗传改良中的应用研究 [J], 马成意5.CRISPR/Cas9基因组编辑技术及其在作物遗传改良中的应用进展 [J], 王莹婕;马玲玲;梁振因版权原因,仅展示原文概要,查看原文内容请购买。
单核苷酸多态性(SNP)

SNP的应用
• 1、等位基因特异性杂交(ASH)
TaqMan探针技术、DASH、分子信标技术
• 2、内切酶酶切技术
RFLP、随机扩增多态DNA(RAPD)、引 物入侵分析技术
• 3、引物延伸法
测序法、等位基因特异性延伸法
• 4、寡核苷酸连接分析(OLA)
SNP位点分析
纯和(G/G)
杂交(G/T)
不需要洗脱或分离等PCR后处理过程
分子信标技术检测SNP原理
引物入侵分析技术检测SNP
等温反应,不 依赖PCR扩增、 直接从基因组 DNA进行SNP 检测
结语
• 由于SNP检测在后基因组计划中的重要性,
高通量检测SNP的新技术正在不断发展。从 目前已有的报道来讲,检测方法主要集中 在综合利用纳米材料技术、多重PCR技术、 各种荧光探针设计和荧光标记技术。 • 检测技术方面,PCR无疑是最为理想最有发 展潜力,但仍然存在问题,如检测成本高、 重复性不够好。需要我们的努力来改进。
TaqMan探针法
• PCR扩增时,加入一个引物和一个TaqMan
探针,探针两端分别有报告荧光基团和淬 灭荧光基团,PCR扩增时,Taq酶5’核酸 酶将探针酶切降解,使报告荧光基团与淬 灭荧光集团分开而发出荧光。因为Taq酶5’ 核酸酶只能降解与目标序列相同的序列, 所以可以根据荧光信号来区分等位基因类 型。
THANKS!
• 转换:嘌呤被嘌呤或嘧啶被嘧啶替换 • 颠换:嘌呤被嘧啶或嘧啶被嘌呤替换
ห้องสมุดไป่ตู้
C→T G →A C →A G→T
• SNP有2、3、4等位性,但3、4等位性非常少见,
通常所说都是二等位多态性。
SNP检测原理和应用

SNP的应用
1. 确定基因多态性和疾病的关系 2. 解释个体间的表型差异对疾病的易感程度 3. 对未来疾病做出诊断 4. 研究不同基因型个体对药物反应的差异,指导药物开 发及临床合理用药 5. 个体间SNP千差万别,通过SNP检测等技术进行法医 鉴定及个体识别
基因组制“物理图”、“序列图”和“转录图” 将SNPs 与人类基因组序列、物理和遗传图谱结合起来以 期在序列变异、疾病关联基因、种族遗传和基因组扫描等 方面作出进一步研究。 1998年,SNPs图谱,2227 个SNPs 定位和作图。 2001年,124万个SNPs的图谱。 目前超过500万个SNP位点,图谱未知。
疾病易感性研究中的应用
原理:SNPs被认为是一种稳定遗传的早期突变,与疾病 有着稳定的相关性。当一个遗传标记的频率在患者明显超 过非患者时,即表明该标记与疾病关联,通过比较分析两 者的单倍型和研究连锁不平衡性,可将基因组中任何未知 的致病基因定位。
Horikawa 等,应用SNPs作为遗传标记通过基于连锁不 平衡的相关分析,在墨西哥裔美国人群和北欧人群中发现 了一个糖尿病易感基因———钙离子中性蛋白酶基因 (CAPN10基因),该基因第三个内含子上的A/G多态性 (SNP43) 同2型糖尿病(2型DM) 连锁,该位点为纯合子G 的个体患2型DM 的风险增加,这是目前为止所发现的第 一个与2型DM相关的SNP,预示了SNP在DM相关基因研 究中的重要作用。
连锁不平衡性分析
原理:首先确定一批按一定间隔存在、覆盖整个基因组的 SNP标记,然后在特定群体中寻找这些SNP 标记与待研 究特征之间的关系,即确定与特征相关的SNP基因型,从 而确定导致生物出现特定性状的基因组区域。
Martin 等,为阿尔茨海默症(Alzheimer disease,AD) 的候选基因ApoE附近的SNP制图,在ApoE周围1.5Mb 的区域内为60个SNP分型,并通过家系连锁分析,在 ApoE基因两侧各40kb的区域内13个SNP中发现有7个连 锁,已有有力证据表明这7个SNP以及ApoE基因周围 16kb内另外两个SNP与AD连锁。
亲子鉴定常用snp位点

亲子鉴定常用snp位点亲子鉴定是通过比对个体基因型,确定亲子关系的一种技术手段。
常用的亲子鉴定方法中,snp位点是其中的重要因素之一。
本文将介绍亲子鉴定中常用的snp位点及其作用。
首先,我们来了解一下snp是什么。
SNP,即单核苷酸多态性(Single Nucleotide Polymorphism),是指基因组中单个碱基发生变异的现象。
这种变异通常是由DNA测序过程中产生的,是一种广泛存在于基因组中的常见变异形式。
由于snp位点在人类基因组中分布广泛,因此被广泛应用于亲子鉴定领域。
接下来,我们将介绍几个常用的亲子鉴定snp位点。
第一个是RS3094315位点,它位于人类染色体的第6号位置。
该位点上的基因多态性与亲子鉴定的准确性有着密切的关系。
此外,RS3094315位点的检测方法简便,所需样本量相对较少。
另一个常用的snp位点是RS2032665,位于第3号染色体。
该位点的多态性较高,常用于亲子鉴定中。
通过检测RS2032665位点的基因型,可以有效地判断亲子关系。
此外,RS1800497也是一个常用的亲子鉴定snp位点,位于第16号染色体。
该位点上的基因型与某些疾病的易感性有关,因此在亲子鉴定中有较高的应用价值。
除了以上几个例子,亲子鉴定中还存在其他一些常用的snp位点,如RS2563298、RS1805008等。
这些位点在亲子鉴定中具有重要的作用,可以通过比对基因型的一致性来确定亲子关系。
综上所述,亲子鉴定常用的snp位点在确定亲子关系方面起到了重要的作用。
通过检测这些位点的基因型,可以准确判断个体之间的亲子关系。
然而,在实际应用中,还需要综合考虑其他因素,如样本的质量、分析方法的准确性等。
只有综合使用这些手段,才能够得出可靠的亲子鉴定结果。