全时四轮驱动汽车驱动轮牵引力综合控制策略

全时四轮驱动汽车驱动轮牵引力综合控制策略
全时四轮驱动汽车驱动轮牵引力综合控制策略

(完整word版)教案-驱动力控制系统教案(朱明zhubob)

一.复习(10') ABS系统具有的故障自诊断功能 二教学过程(60') 一、概述 牵引力控制系统(TRC)也称为驱动力控制系统(TCS)或驱动防滑转控制系统(ASR)。 系统作用: (1)在驱动过程中防止驱动车轮发生滑转, (2)并在起步和加速时,根据路面情况给出一个最佳的驱动力。 (3)在湿滑路面上起步、加速或转向时,能提高车辆的稳定性。 TCS和ABS系统的关系: (1)从控制车轮和路面的滑移率来看,采用了相同的技术, (2)但两者所控制的车轮滑移方向是相反的。 (3)TCS系统与ABS系统常合在一起使用,构成行驶安全系统。 (4)TCS和ABS共用许多电子元件,用共同的系统部件来控制车轮的运动。 1.TCS的控制作用 汽车在冰雪路面上急加速或超车时,ASR的控制效果是很明显的。 在均匀的结冰路面上、压实的雪路和深雪路面上使用TCS和不用TCS装置的驱动力的比较, 在左右轮附着系数不同的路面上,使用TCS和不使用TCS装置的汽车加速性比较的结果。 2.滑转率的控制范围 所谓的汽车打“滑”,有两种情况: 一是汽车制动时车轮的滑移,ABS是防止制动时车轮抱死而滑移;

二是汽车驱动时车轮的滑转。TCS防止驱动车轮原地不动而不停地滑转。 驱动轮滑转:当汽车起步时,驱动轮不停地转动,汽车却原地不动。 TCS与ABC起作用时,二者的制动力与驱动力正好相反, TRC防止驱动时车轮滑转的方法: 适当地控制驱动力,是TCS的作用。 将滑转率Vd控制在10%—30%范围之内,防滑效果较为理想。 3.牵引力控制装置的控制方式 1)发动机输出扭矩控制 发动机输出转矩改变:汽油机根据燃料喷射量、点火时间、节气门开度调整。 2)驱动轮制动控制 这种方法是对发生空转的驱动轮直接加以制动,反应时间最短。为使制动过程平稳,应缓慢升高制动压力。 制动控制方式的ASR的液压系统可分为两大类。

四轮独立转向四轮驱动电动汽车的研制

创新项目:四轮独立转向四轮驱动电动汽车的研制 信息调研概况表 信息调研主题了解四轮独立转向四轮驱动电动汽车的设计方案及研发现状 项目背景研究目的 设计出适合电动汽车的底盘系统,使电动汽车底盘实现电子化、 主动化,提高电动汽车性能。 研究内容 收集并分析国内外研究现状,为设计一种四轮独立转向四轮驱 动的电动汽车方案提供信息参考和数据支持。 信息收集参考书 [1]史文库主编. 现代汽车新技术. 北京市:国防工业出版社, 2011.02. [2]胡骅,宋慧主编. 电动汽车. 北京市:人民交通出版社, 2003. [3]苗丽芬主编. 青春创想曲深圳职业技术学院学生科技创新 优秀作品集. 广州市:华南理工大学出版社, 2008. [4]吴光强主编. 汽车理论. 北京市:人民交通出版社, 2007. (摘自图书信息调研结果,列举3-4个即可。) 收集到的信息类型 (必含类型)图书、期刊论文、专利、标准、网络信息;(可选 类型)其他 使用过的检索工具 人员分工 图书:期刊:专利:标准:网络信息:其他:调研结果简单总结 本次调研共收集标准**条;专利**条……根据信息调研结果,可得出初步结论:本项 目已有少量相关技术成果,但本项目方案仍存在优势,有发展空间。

信息类型图书 检索工具图书馆OPAC馆藏书目查询系统 检索式及检索结果检索项:题名关键词 检索式:电动汽车 检索结果:33条记录(如右图) (包括电动汽车原理、结构、技术、设计、测试、评价等) 检索项:题名关键词 检索式:四轮驱动 检索结果:1条记录(如右图) 信息调研详表 信息类型期刊论文 检索工具中国知网(CNKI)——期刊检索 检索式及检索结果检索项:关键词、篇名 检索式:电动汽车and(四轮转向or 全方位转向)and(四轮独立驱动or 四轮驱动) 匹配:精确 检索结果:3条记录(如右图)

浅谈汽车四轮驱动系统

浅谈汽车四轮驱动任建军汽车工作室说到全轮驱动,总能使人们想起那些身材魁梧、威猛超群的越野车。的确,全轮驱动的出现就是为了针对恶劣路况,征服那些两只车轮无法通过的险峻地形。最初,全轮驱动是纯种越野车的专门配备。但随着汽车工业的发展,以及人们对于汽车文化更加深入的认识,越来越多的车辆采用了全轮驱动系统。对于本篇文章中的主角“SUV”来说,全轮驱动在通常意义上可以理解为四轮驱动(因为绝大部分SUV在正常行驶中,都是四只车轮与地面保持接触)。在一般人看来,所谓的“四轮驱动”无非就是让四只车轮同时旋转,驱动车辆。在汽车工业十分发达的今天,想做到这一步并不困难,当今世界上绝大多数汽车生产厂商都制造出了四轮驱动的车辆。虽然有如此之多的车辆能够实现四轮驱动,虽然都被称为“四轮驱动”,但实际上,不同车型之间由于驱动系统的结构差异,最终导致其实际行驶特性大相径庭。也许有人会问,不都是“四轮驱动”吗?为什么会有如此巨大的差别?针对这些问题,本篇文章将会对此进行详细的分析与解答。 上图:给差速器加上锁真的就这么神奇吗? 为什么很多车辆需要四轮驱动呢?根本原因就在于,通常情况下,四轮驱动比起两轮驱动,具有更高的通过性能(所谓通过性能就是指车辆通过复杂地形的能力)。但是,无论车辆采用何种驱动方式,都无法避免一种情况的发生,这就是:驱动轮失去行驶附着力。当车辆行驶于复杂路况时,这种现象时常发生。对于一辆普通的两驱车来说,一旦两个驱动轮中的任何一个车轮无论何种原因而失去行驶附着力的话,理论上讲,在不借助任何外力的情况下,车辆将无法继续前进。也许此时您会问道“不是两轮驱动么?此时的另一个驱动轮为什么不能驱动车辆继续前进呢?”如果要解答这个问题,必须从车轮之间的连接方式说 起。

最新驱动力控制系统 TCS资料

驱动力控制系统TCS (又称TRC防滑控制系统TRAC循迹控制系统) 第一节概述 一、TCS的作用 在摩擦力限度内自动调节汽车的驱动力,避免车轮打滑、轮胎磨损,使车辆能正常行驶及维持转向的稳定性和操控性。 汽车行驶时,轮胎会受到两个力,即加速时的驱动力和转向时的向心力,两力之和称为轮胎力。 汽车的驱动力超过摩擦力的限度时轮胎因打滑的关系,将无法有效的将驱动力传至路面,使车辆无法操纵而发生不安全。 二、ABS与TCS的区别 1、ABS是在制动时防止车轮抱死,以免发生滑行现象,而TCS 是在湿滑起步或加速时防止驱动轮打滑或在摩擦系数相差很大的非对称路面防止单侧驱动轮打滑。 2、ABS对驱动轮和非驱动轮都可以控制,而TCS则只控制驱动轮 3、ABS控制期间,各车轮之间的影响不大,而TCS控制期间由于差速器的作用,会使驱动车轮之间产生相互影响 三、TCS的控制方式 1、控制发动机 控制燃油喷射量、节气门开度或点火的时间 2、控制制动(驱动轮)

与ABS调节器共用或另设调节器 3、发动机与制动力同时控制 四、TCS的控制范围 控制范围:滑移率0-35%(B范围) 1、以A范围为目标,可发挥最大的驱动力,但轮胎的向心力不足,转向控制性能变差,若以向心力最大为优先条件,则无法获得有效的见加速力。 2、为兼顾驱动力和向心力,以B范围为控制目标,以路面状况、转向盘转角、车身倾斜度等为据,由TCS ECU计算出最小滑移率目标值,由100%至100%向心力作最佳的调配,使车辆在安全状态下充分发挥其操作性与运动性。 五、TCS系统的控制对象 1、起步加速控制 当驾驶员在光滑路面上过多踩油门时,会造成车轮的滑转。驱动控制系统通过自动施加部分制动或减少发动机输出功率的方式,

丰田普拉多——四轮驱动系统解析

丰田普拉多——四轮驱动系统解析 丰田普拉多(PRADO)是丰田陆地巡洋舰系列中的最新款SUV。这款全新开发的新一代SUV,配备了丰田全新4.0L V6发动机,排放达到欧Ⅲ标准。普拉多(PRADO)先进的发动机提供强劲的动力输出,配以坚固的车架以及强化的悬架系统,使崎岖的路途变得舒适顺畅。作为一款越野车,四轮驱动系统可谓是重中之重。本文将着重为您介绍普拉多(PRADO) 装备的全时四驱系统。 对于普通的锥形齿轮式差速器,不论是轮间差速器还是中间差速器,由于行星齿轮在吸收转速差时因自转而产生的内摩擦力很小,如果不对其进行限制或锁止,只要有一侧(或一轴)车轮滑转,则另一车轮(或车轴)的驱动力也会被限制到与滑转一侧车轮(或一轴)的驱动力相等,不能充分发挥轮胎的抓地力,影响汽车的越野性。普拉多(PRADO)的底盘系统采用了全时驱动方式,布置了3个差速器:前、后差速器采用普通锥形齿轮式差速器,无差速限制和锁止装置,左、右两侧车轮的滑转通过TRC/VSC系统以制动方式来限制;中间差速器采用托儿森(TORSEN)T-3型限滑差速器。国产的一汽丰田普拉多(PRADO)采用 4BM分动器,可以实现对差速器的电控锁止。 全时四驱系统的基本构成 丰田普拉多(PRADO)四驱传动系统的机械部分主要由变速器、分动器(可电控锁止差速器)、前后传动轴及前后差速器等组成(图1)。 四驱的电控部分由制动控制ECU、发动机ECU、中间差速器锁止按钮、驻车及空挡位置开关、4WD控制ECU和分动器电控执行器等组成。分动器电控执行器根据驾驶员的操作意愿(中间差速器锁止按钮)、汽车制动状态、发动机运行转速状态、变速器挡位状态等信号对分动器内的差速器进行锁止控制。这样做的目的是为了便于驾驶员操作,确保分动器内的传动切换准确有效,避免由于误操作而造成的机件损坏。

汽车牵引力控制技术

汽车牵引力控制技术(TCS)的工作原理 现代科学技术的发展,促使车辆的性能越来越高,特别是机电一体化技术在车辆上得到了广泛的应用:电子控制燃油喷射系统、制动防抱死装置(ABS)、车辆防侧滑系统等。牵引力控制系统(Traction Control System, 简记为TCS)又称为驱动防滑控制系统(Anti-Slip Regulation, 简记为ASR),它是汽车制动防抱死系统基本思想在驱动领域的发展和推广。是上世纪80 年代中期开始发展的新型实用汽车安全技术,这项技术的采用主要解决了汽车在起步、转向、加速、在雪地和潮湿的路面行驶等过程中车轮滑转的问题。它的功能一是提高牵引力;二是保持汽车的行驶稳定。行驶在易滑的路面上,没有ASR的汽车加速时驱动轮容易打滑;如是后驱动的车辆容易甩尾,如是前驱动的车辆容易方向失控。有ASR时,汽车在加速时就不会有或能够减轻这种现象。在转弯时,如果发生驱动轮打滑会导致整个车辆向一侧偏移,当有ASR时就会使车辆沿着正确的路线转向。 一、汽车牵引力控制技术(TCS)的工作原理 ASR 系统和ABS系统采用相同的原理工作:即根据车辆车轮转速传感器所测得的车轮转速信号由电控单元进行分析、计算、处理后输送给执行机构用来控制车辆的滑移现象,使车辆的滑移率控制在10%~20%之间,从而增大了车轮和地面之间的附着力,有效地防止了车轮的滑转。 滑移率由实际车速和车轮的线速度控制,其计算公式为:滑移率=(实际车速—车轮线速度)/ 实际车速×100% 轮速可由轮速传感器准确检测得到。而车速的准确检测者比较困难,一般采用以下几种方法: 1、采用非接触式车速传感器 如多普勒测速雷达,但这种方式成本较高、技术复杂,应用较少。 2、采用加速传感器 这种方法由于受坡道的影响,误差较大,控制精度差,应用也较少。 3、根据车轮速度计算汽车速度 由于车速和轮速的变化趋势相同,当.实际车轮减速度达到某一特定值时以该瞬间的轮速为初始值,根据轮速按固定斜率变化的规律近似计算出汽车速度(称为车身参考速度)。 二、汽车牵引力控制技术(TCS)的控制方式 1、采用电控悬架实现驱动车轮载荷调配 在各驱动车轮的附着条件不一致时,可以通过电控悬架的主动调整使载荷较多地分配在附着条件较好的驱动车轮上,使各驱动车轮附着力的总和有所增大,从而有利于增大汽车的牵引力,提高汽车的起步加速性能;也可以通过悬架的主动调整使载荷较多地分配在附着条件较差的驱动车轮上,使各驱动车轮的附着力差异减小,从而有利于各驱动车轮之间牵引力的平衡,提高汽车的行驶方向稳定性。目前在ASR 领域中电控悬架参与控制技术还处在理论探索阶段,而且这项技术较为复杂,成本也较高,所以在ASR 系统中一般很少采用。 2、调节发动机的输出转矩控制驱动力矩发动机输出力矩调节是最早应用的驱动防滑控制方式。在附着系数较小的冰雪路面上或

电动汽车电机驱动控制策略研究

本科毕业设计(论文) () 论文题目:电动汽车电机驱动控制策略研究 本科生姓名:关海波学号:201211318 指导教师姓名:赵峰职称: 申请学位类别:工学学士专业:电力工程及管理 设计(论文)提交日期:(小四号楷体加黑)答辩日期:(小四号楷体加黑) 本科毕业设计(论文)

电动汽车电机驱动控制策略研究 姓名:关海波 学号:201211318 学院:新能源及动力工程学院专业班级:电力工程及管理1201班

指导教师:赵峰 完成日期: 兰州交通大学LanzhouJiaotongUniversity

摘要 本论文首先介绍了异步电动机的数学模型,通过坐标变换,得到了异步电动机的空间矢量等效电路。并由理想逆变器的8种开关状态入手,得到了理想逆变器的数学模型,建立了空间电压矢量的定义。并在此基础上对定子磁链和电磁转矩及空间电压矢量之间的关系进行了分析,阐述了六边形磁链轨迹和近似圆形磁链轨迹异步电动机直接转矩控制系统的结构和工作原理。 根据异步电动机直接转矩控制的工作原理,本论文在的平台下,分别搭建了六边形磁链轨迹和圆形磁链轨迹直接转矩控制系统模型。并对仿真结果进行了相应的分析,验证了异步电动机直接转矩控制策略的可行性。而且,对两种磁链轨迹直接转矩控制系统的优缺点及应用范围进行了比较。 本论文以电动汽车的电机驱动部分为研究对象,对于异步电动机的直接转矩控制技术进行了较为深入的理论研究,在电动汽车及其他相关领域的应用具有一定的参考价值。 关键词:电动汽车;电机驱动;直接转矩控制

, . . , . . , . a , a , . . :,, 目录 摘要错误!未指定书签。 错误!未指定书签。 1 绪论错误!未指定书签。 1.1国内外电动汽车的发展及现状错误!未指定书签。 2 电动汽车电机驱动系统分析错误!未指定书签。 2.1电动汽车驱动电机的特殊要求错误!未指定书签。 2.2电动汽车电机驱动系统的分类及选择错误!未指定书签。

牵引力控制系统 TCS

TCS:英文全称是Traction Control System,即牵引力控制系统,又称循迹控制系统。汽车在光滑路面制动时,车轮会打滑,甚至使方向失控。同样,汽车在起步或急加速时,驱动轮也有可能打滑,在冰雪等光滑路面上还会使方向失控而出危险,TCS就是针对此问题而设计的。TCS依靠电子传感器探测到从动轮速度低于驱动轮时(这是打滑的特征),就会发出一个信号,调节点火时间、减小气门开度、减小油门、降挡或制动车轮,从而使车轮不再打滑。TCS可以提高汽车行驶稳定性,提高加速性,提高爬坡能力。TCS如果和ABS相互配合使用,将进一步增强汽车的安全性能。TCS和ABS可共用车轴上的轮速传感器,并与行车电脑连接,不断监视各轮转速,当在低速发现打滑时,TCS会立刻通知ABS动作来减低此车轮的打滑。若在高速发现打滑时,TCS立即向行车电脑发出指令,指挥发动机降速或变速器降挡,使打滑车轮不再打滑,防止车辆失控甩尾。 TCS与ABS的区别在于,ABS是利用传感器来检测轮胎何时要被抱死,再减少制动器制动压力以防被抱死,它会快速的改变制动压力,以保持该轮在即将被抱死的边缘,而TCS主要是使用发动机点火的时间、变速器挡位和供油系统来控制驱动轮打滑。 TCS对汽车的稳定性有很大的帮助,当汽车行驶在易滑的路面上时,没有TCS的汽车,在加速时驱动轮容易打滑,如果是后轮,将会造成甩尾,如果是前轮,车子方向就容易失控,导致车子向一侧偏移,而有了TCS,汽车在加速时就能够避免或减轻这种现象,保持车子沿正确方向行驶。在TCS应用时,可以在仪表板显视出地面是否有打滑的现象发生,它有一个控制旋扭,如果想要享受一下自己控制的快感,在适当的时机可以将系统关掉,车子重新启动时TCS就会自动放开。ASR:ASR驱动防滑系统也叫牵引力控制系统,即Acceleration Slip Regulation的缩写。功能与TCS相同,同样是为了防止车辆在起步、再加速时驱动轮打滑,维持车辆行驶方向稳定性的系统,叫法不同,通常多在大众等德系车型上看到这个缩写。 TRC:TRC功能与TCS相同,此种叫法多出现于丰田、雷克萨斯等日系车型上。 ATC:功能与TCS相同,Automatic Traction Control的缩写,自动牵引力控制,又称为牵引力控制。

四轮驱动电动汽车驱动方式控制系统设计

四轮驱动电动汽车驱动方式控制系统设计 摘要 作为电动汽车行业新颖的发展方向,四轮驱动电动汽车由于其理想的控制特性和良好的应用前景,受到学术和工程界的普遍关注,已经成为研究热点。首先,根据整车参数和动力性的要求,计算出电机的功率、转速等主要指标,选定轮毂式无刷直流电机型号并进行简单的动力匹配。再根据不同工况,选择适合电动汽车的驱动方式,构建四轮独立驱动电动车的驱动方式控制的系统模型。其次,根据电动汽车行驶路面的路况和所处的工况,采用一定的控制策略和驱动策略,由切换电动机的工作状态,使电动汽车既可以在不同的工况(例如启动、爬坡及转弯)选择适应的驱动方式,又可以在不同等级的路面下(例如城市路面、高速公路)选择最佳的驱动方式,即做到电动汽车的即时四驱,从而最大程度地发挥电动汽车驱动方式控制的优点。最后,本文通过建立数学模型,并利用matlab进行软件仿真,来对轮毂电机驱动力模型、整车模型以及控制策略模型这些模型进行仿真试验。以上研究表明:四轮驱动是一种理想可行的驱动方案;本文建立的仿真模型合理实用。 关键词:四轮驱动;驱动方式控制;不同工况;轮毂式无刷直流电机

DESIGN OF DRIVING FORMS CONTROL SYSTEM OF FOUR-WHEEL DRIVE ELECTRIC VEHICLE ABSTRACT The four-wheel drive(4WD) EV is one of the developing directions for further EV. Because of its perfect controlling performance and good application prospect in engineering, 4WD EV have been getting universal attention by both academicians and engineers.It also has become a research hotspot of research.Firstly,according to the requirements of the vehicle parameters and power performance,we need to calculate main indicators such as the motor power, rotational speed, and select the model for wheel-hub brushless DC motor. According to different working condition, we should choose suitable driving forms for EV, and build up the model of driving control system about four-wheel independent drive EV.Then,according to EV working condition of pavement, we need to adopt certain control strategy and drive strategy.By switching the working state of the motor, 4WD EV can not only work in different conditions (such as starting, climbing and turning) to choose adapted drive forms, but also under different levels of the road (such as urban roads, highways) to choose the best way of driving.Which achieve the real-time four-wheel drive for EV, so as to maximize the advantages of EV driving forms control.Finally,by establishing the mathematical models and using MATLAB to simulation,we can set up the simulation models for driving force models of wheel-hub motor, vehicle models and control strategy models. Above research shows that the 4WD is a kind of ideal and feasible driving form; the simulation models in this paper is reasonable and practical. Key words:Four-wheel drive;The control of driving forms;Different working conditions;Wheel brushless DC motor

四轮驱动系统4WD-4 Wheel Drive system 技术解析

4WD-4 Wheel Drive system 四轮驱动系统 The 4WD system is the driving force of an engine from the 2WD system of two wheel drive to four wheel drive, while the 4WD system are included in the active safety system, mainly 4WD system has more excellent than the efficiency of driving force of 2WD engine, achieve better tire traction play an effective gravity and steering force, so in terms of security 4WD system application, better traction and steering force of gravity caused by tire, good driving stability and tracking, in addition to cross-country this more besides 2WD 4WD system No. 4WD currently can be broadly divided into short-term (PART TIME 4WD) and full time (FULL TIME 4WD) four wheel drive system, short four wheel drive system according to the driver's demand, the choice of two wheel drive and four wheel drive, the transmission system belongs to compared to traditional 4WD systems, from a cross-country Perspective, this transmission system when selecting four wheel drive mode before and after the gear connected directly, can ensure that the drive force output before the rear wheel, therefore this system belongs to the 4WD system

汽车自动控制系统

汽车自动控制系统 ESP电子车身稳定装置 ESP系统实际是一种牵引力控制系统,与其他牵引力控制系统比较,ESP不但控制驱动轮,而且可控制从动轮。如后轮驱动汽车常出现的转向过多情况,此时后轮失控而甩尾,ESP便会刹慢外侧的前轮来稳定车子;在转向过少时,为了校正循迹方向,ESP则会刹慢内后轮,从而校正行驶方向。 ESP系统包含ABS(防抱死刹车系统)及ASR(防侧滑系统),是这两种系统功能上的延伸。因此,ESP称得上是当前汽车防滑装置的最高级形式。ESP系统由控制单元及转向传感器(监测方向盘的转向角度)、车轮传感器(监测各个车轮的速度转动)、侧滑传感器(监测车体绕垂直轴线转动的状态)、横向加速度传感器(监测汽车转弯时的离心力)等组成。控制单元通过这些传感器的信号对车辆的运行状态进行判断,进而发出控制指令。有ESP与只有A BS及ASR的汽车,它们之间的差别在于ABS及ASR只能被动地作出反应,而ESP则能够探测和分析车况并纠正驾驶的错误,防患于未然。ESP对过度转向或不足转向特别敏感,例如汽车在路滑时左拐过度转向(转弯太急)时会产生向右侧甩尾,传感器感觉到滑动就会迅速制动右前轮使其恢复附着力,产生一种相反的转矩而使汽车保持在原来的车道上。当然,任何事物都有一个度的范围,如果驾车者盲目开快车,现在的任何安全装置都难以保全。 ASR加速防滑控制系统 ASR-Acceleration Skid control system 加速防滑控制系统, 或 Acceleration Stabilit y Retainer加速稳定保持系统,顾名思义就是防止驱动轮加速打滑的控制系统, 其目的就 是要防止车辆尤其是大马力的车子, 在起步、再加速驱动轮打滑的现象, 以维持车辆行驶方向的稳定性, 保持好的操控性及最适当的驱动力, 达到有好的行车安全。但是您可能并不清楚为什么轮胎打滑会造成车辆行驶方向的不稳定呢!其原因与煞车时ABS会避免轮胎锁死的道理是相同的, 主要是轮胎能产生的力量在同一负载是有一定的, 一般轮胎除了要产生使车辆前进的驱动力外, 也要产生使车辆转弯的转向力, 或者是使车辆停止的煞车力, 因此不论是单纯产生驱动力、转向力、煞车力, 或同时产生驱动力及转向力、煞车力及转向力, 其轮胎产生的总合的力量在某一负载条件下是一定的, 也就是说当前进急起动造成轮胎打滑时, 而此打滑的现象系指轮胎所有的抓地力全部用在驱动力上, 因此此时能控制车子转弯的转向力, 由於力量全部被驱动力使用掉, 因此将会失去使车辆转弯或保持车行方向的转向力, 因而会造成车行方向不稳定的现象。 ABS防抱死制动系统

最新驱动力控制系统TCS资料

驱动力控制系统TCS (又称TRC 防滑控制系统TRAC 循迹控制系统) 第一节概述 一、TCS 的作用在摩擦力限度内自动调节汽车的驱动力,避免车轮打滑、轮胎磨损,使车辆能正常行驶及维持转向的稳定性和操控性。 汽车行驶时,轮胎会受到两个力,即加速时的驱动力和转向时的向心力,两力之和称为轮胎力。 汽车的驱动力超过摩擦力的限度时轮胎因打滑的关系,将无法有效的将驱动力传至路面,使车辆无法操纵而发生不安全。 二、ABS 与TCS 的区别 1、ABS 是在制动时防止车轮抱死,以免发生滑行现象,而TCS 是在湿滑起步或加速时防止驱动轮打滑或在摩擦系数相差很大的非对称路面防止单侧驱动轮打滑。 2、ABS 对驱动轮和非驱动轮都可以控制,而TCS 则只控制驱动轮 3、ABS 控制期间,各车轮之间的影响不大,而TCS 控制期间由于差速器的作用,会使驱动车轮之间产生相互影响 三、TCS 的控制方式 1、控制发动机 控制燃油喷射量、节气门开度或点火的时间 2、控制制动(驱动轮) 与ABS 调节器共用或另设调节器 3、发动机与制动力同时控制

四、TCS 的控制范围 控制范围:滑移率0-35% (B 范围) 1、以A 范围为目标,可发挥最大的驱动力,但轮胎的向心力不足,转向控制性能变差,若以向心力最大为优先条件,则无法获得有效的见加速力。 2、为兼顾驱动力和向心力,以B 范围为控制目标,以路面状况、转向盘转角、车身倾斜度等为据,由TCS ECU 计算出最小滑移率目标值,由100%至100% 向心力作最佳的调配,使车辆在安全状态下充分发挥其操作性与运动性。 五、TCS 系统的控制对象 1、起步加速控制当驾驶员在光滑路面上过多踩油门时,会造成车轮的 滑转。驱 动控制系统通过自动施加部分制动或减少发动机输出功率的方式,可使车轮的滑移率保持在最佳范围内,由此可防止驾驶员过多踩油门所带来的负作用,获得较好的行驶安全性及良好的起步加速性能。当然,也可减少轮胎

四轮驱动汽车驱防滑控制系统的设计

Classified Index: 461.6University Code:10213 U.D.C: 629Security:Open Dissertation for the Master’s Degree in Engineering DESIGN OF ACCELERATION SLIP REGULATION FOR FOUR WHEEL DRIVE VEHICLE Candidate:Wang Liangliang Supervisor:Prof. Bian Wenfeng Academic Degree Applied for:Master of Engineering Speciality:Vehicle Engineering Affiliation:School of Automobile Engineering Date of Defence:June, 2009 Degree-Conferring-Institution:Harbin Institute of Technology -II-

哈尔滨工业大学工学硕士学位论文 摘要 驱动防滑控制系统ASR的基础是ABS,是在ABS为基础上的延伸,ABS 和ASR统称为防滑控制系统。驱动防滑控制系统通过调节作用于驱动轮的驱动力矩来控制驱动轮的滑转率,从而使汽车的操纵性、横向稳定性、动力性以及燃油经济性都得到提高。 四轮驱动汽车与二轮驱动汽车相比,因为其每个轮胎所受的驱动力只有二轮驱动汽车的一半,故具有更好的越野性能,然而,四轮驱动汽车本身存在许多不足,比如:短时四轮驱动汽车操作繁琐;常时四轮驱动汽车由于前后驱动桥之间以及左右驱动轮之间通过差速器连接,只要一个车轮处于低附着系数路面上时,整车驱动力几乎丧失。将驱动防滑控制系统用于四轮驱动汽车将有可能解决四轮驱动汽车打滑的问题。本文主要从轮胎的滑转以及整车的动力性等方面来分析驱动防滑控制系统对于四轮驱动汽车的影响,主要内容包括以下几个部分: 1、分析四轮驱动汽车的驱动特点,制定出四轮驱动汽车驱动防滑控制系统的控制策略。通过调节发动机的输出扭矩以及控制制动器来控制车轮的相对滑转。原始输入参考模型车发动机输出数据。 2、建立四轮驱动汽车驱动的简化数学模型。本文主要为控制算法的研究,故数学模型可适当简化,并将汽车行驶的条件设置为相对简单的路面情况。 3、进行ASR 系统的控制算法研究。并主要探讨了模糊控制在四轮驱动汽车ASR系统上的应用。分别设计了发动机输出扭矩控制器和制动力矩模糊控制器。 4、根据所建立的数学模型在 MATLAB/SIMULINK 环境下建立仿真模型,并进行了不同路面上的仿真分析。仿真结果表明驱动防滑控制系统对于四轮驱动汽车的驱动轮滑转起到了较好的抑制作用,并且使得四轮驱动汽车的动力性得到一定的提高,同时也验证了控制策略的正确性以及控制算法的可行性。 关键词:驱动防滑;四轮驱动;轮胎模型;MATLAB仿真;模糊控制

几种常见四轮驱动的区别

几种常见四轮驱动的区别 Quattro/4WD/AWD/xDrive 类型一:Quattro Quattro全时四轮驱动的核心是Torsen中央差速器,他比任何电子控制技术更快的调节前后轴力量的分配。EDL(电子差速锁)在必要时将多余的动力传送到车轮上,增强抓地性。当车轮空转或者没有与地面接触时,这些浪费的驱动力就被输送到可以受力的车轮上。一旦出现外部条件引起的前后轴的速度差异,Torsen就会自动地,毫无损失的将大部分的能量传输到有能力工作的驱动轴上,自动优化和分配四个车轮的动力。由于轴荷的平衡分布,驾驶者能够更好的掌握转向的精确性和灵活性,而不需要扭矩转向辅助。25年前,奥迪的工程师以quattro全时四轮驱动,在驱动技术领域树立了里程碑。 类型二:4WD(4X4)/AWD/ xDrive/sDrive 四轮驱动系统(4wd系统,车身上标识4X4与4WD意思一样)是将发动机的驱动力从2wd系统的两轮传动变为四轮传动。4wd系统之所以列入主动安全系统, 主要是 4wd系统有比2wd 更优异的发动机驱动力应用效率, 达到更好的轮胎牵引力与转向力的有效发挥。就安全性来说,

4wd系统对轮胎牵引力与转向力的更佳应用, 造成好的行车稳定性以及循迹性。除此之外4wd系统更有2wd所没有的越野性。 AWD (全时四驱系统)已经变得和4WD 几乎一样了,唯一的区别就在于AWD 比4WD 少了低比率的传动装置,不过AWD 仍然提供在湿滑路面、恶劣天气以及轻微越野路面的牵引能力。但实际情况是,对一辆车的越野能力起决定性作用的是车辆的离地高度而非AWD 能力。所有的AWD 系统是全时四轮驱动的,这也就意味着你不用进行2 轮驱动或者全轮驱动模式的转换。而宝马的xDrive、奔驰的4MATIC与AWD一样是全时四驱系统,仅仅是称呼不一样,而sDrive则为后驱系统。 不管是4WD还是AWD,最最本质的东西就是功率分配是如何达成的。目前市场上最优秀、最聪明的扭矩分配装置非托森(Torsen)莫属。我们把托森叫做差速器是贬低了它。托森当作差速器用的话那是大材小用,所以我称呼它为“托森机构”。托森机构是纯机械的,无需任何电子辅助,同时又是主动式的。所谓主动式,就是说在轮子有出现滑动倾向前,扭矩就被重新分配了--妙哉!而其它电子式的机构都是被动的,都要等到反馈信号后重新分配扭矩。反馈信号多数都是从ABS装置上采集过来。尽管电子信号传递飞快,但毕

第五章 电控驱动防滑/牵引力控制系统(ASR/TRC)

一、填空 (1)ABS控制的是汽车制动时车轮的“拖滑”,主要是用来提高制动效果和确保制动安全。 (2)ASR是控制车轮的“滑转”,用于提高汽车起步、加速及在滑溜路面行驶时的牵引力和确保行驶稳定性。 (3)ASR的传感器主要是车轮车速传感器和节气门开度传感器。 (4)ASR制动压力源是蓄压器,通过电磁阀调节驱动车轮制动压力的大小。 二、判断 (1)ABS控制的是汽车制动时车轮的“拖滑”,主要是用来提高制动效果和确保制动安全。(√) (1)ASR控制的是汽车加速时车轮的“拖滑”,主要是用来提高制动效果和确保制动安全。(×) (2)ASR是控制车轮的“滑转”,用于提高汽车起步、加速及在滑溜路面行驶时的牵引力和确保行驶稳定性。(√) (2)ABS是控制车轮的“滑转”,用于提高汽车起步、加速及在滑溜路面行驶时的牵引力和确保行驶稳定性。(×) (3)ASR只对驱动车轮实施制动控制。(√) (3)ASR可以对驱动车轮和从动车轮同时实施制动控制。(×) (4)当车速很低(小于8km/h)时,ABS系统不起作用。(√) (4)当车速很低(小于40km/h)时,ABS系统不起作用。(×) (5)将ASR选择开关关闭,ASR就不起作用。(√) (5)即使将ASR选择开关关闭,ASR也能起作用。(×) (6)单独方式是ASR制动压力调节器和ABS制动压力调节器在结构上各自分开。(√) 三、简答题 1、汽车打“滑”的分类 汽车打“滑”有两种情况,一是汽车制动时车轮的滑移,二是汽车驱动时车轮的滑转。 2、ASR的主要传感器 ASR的传感器主要是车轮车速传感器和节气门开度传感器。 四、问答题 1、ASR的基本功能 ASR的基本功能是防止汽车在加速过程中打滑,特别是防止汽车在非对称路面或在转弯时驱动轮的空转,以保持汽车行驶方向的稳定性,操纵性和维持汽车的最佳驱动力以及提高汽车的平顺性。 2、ASR的工作原理 车轮车速传感器将行驶汽车驱动车轮转速及非驱动车轮转速转变为电信号,输送给电子控制单元(ECU)。ECU根据车轮车速传感器的信号计算驱动车轮滑转率,如果滑转率超出了目标范围,控制器再综合参考节气门开度信号、发动机转速信号、转向信号(有的车无)等因素确定控制方式,输出控制信号,使相应的执行器动作,将驱动车轮的滑转率控制在目标范围之内。 3、防滑差速器的作用

主流几种电子四驱方式的对比

各有优劣主流城市SUV四驱系统大比拼 城市SUV已经渐渐成为一种购车趋势,09年更是有很多国产新车加入到这个行列。我们知道,城市SUV并不强调越野性能,所以目前价位在15-25万之间的主流SUV大多采用前驱布置,配合简单的电子控制系统实现四轮驱动。 文章导读:激活市场09年最值得期待的SUV新车 虽然城市SUV更加强调公路特性,并且四驱系统的使用方式看似相同,但是结构和原理上却有很大区别,这也就影响了车辆的通过性能。通过性能不仅仅指底盘的高度,更重要的是四驱系统的性能。 所以,本文就对目前主流城市SUV所使用的四驱系统进行简单的介绍,看看各自的通过性和公路性究竟孰好孰劣,为您的购车提供参考。 电控多片离合差速器——适时四驱 代表车型:科帕奇新奇骏途胜/狮跑指南者 通过性能:★★★ 公路性能:★★★ 燃油经济性:★★★ 前后动力分配比:100:0~50:50(指南者最大为40:60) 东风日产新奇骏进口雪弗兰科帕奇

进口吉普指南者现代途胜 以上这几款代表车型都属于前轮驱动,然后通过一根传动将前轮的动力分配给电控多片离合差速器。 从图中可以看出,位于左侧的离合器片被交替地分为两组,分别连接前桥和后桥的传动轴,其中前传动轴为动力输入轴,所以不能称之为中央差速器。 这种差速器只能通过电子设备来控制,当前轮出现打滑情况下,电子系统通过对离合器片施加压力将动力传递到后桥并带动后轮,但受限于结构上的限制,这种差速器最多能够实

现60:40的前后动力分配,一般最大为50:50。因此,车辆大多数情况下依旧是前驱行驶,只有在前轮打滑时系统才会介入。 所以,这种系统都会通过增加差速锁来提高四驱性能,通过车按钮的控制,能够将前后动力分配锁定在50:50,在通过一些路况较差的地段时,提前锁定四驱系统,变被动为主动,减小陷入困境的可能性。但是,在正常路面行驶时,千万不要使用四驱锁定,否则会带来不必要的机械损坏和轮胎磨损。 由于采用刚性的离合器片连接,所以这种差速器的性能是比较可靠的,传递效率也比较高,一般的越野路段也都是可以应付的,这种系统的缺点在于只能将动力分配给前后桥,而无法在四轮上独立分配,当对角线车轮同时打滑时,这套四驱系统就毫无办法了。 但说到公路性能,这种四驱系统就无法发挥任何性能,与一般的前驱车无异。不过,东风日产新奇骏将自身的系统与四驱系统结合起来,能够实现主动的四驱控制,辅助转向以及分配四个车轮的动力。 相关阅读:不“智能”?探索2.0L新奇骏四驱系统差异 在城市SUV中来看,这套系统的通过性能比较优秀,公路性能和经济性能一般,比较适合经常走乡道或者外出郊游的朋友。 电控粘性耦合差速器——适时四驱

汽车四轮驱动技术的研究分析

Abstract (3) 第一章绪论 (4) 第二章全时四轮驱动技术 (7) 2.1 全时四轮驱动技术概念及其优缺点 (7) 2.2 四轮驱动工作原理及其组件分析 (8) 2.3 四轮驱动分类 (11) 2.3.1 用途分类 (11) 2.3.2 分动器分类 (12) 第三章不同类型的四轮驱动系统的工作原理及特点 (13) 3.1 讴歌(Acura). 四轮驱动系统工作原理及特点 (14) 3.2 奥迪Quattro四轮驱动系统工作原理及特点 (15) 3.3 宝马X drive四轮驱动系统系统工作原理及特点 (17) 第四章四轮定位的差不多参数及其对汽车性能的阻碍 (18) 4.1外倾角与前束 (18) 4.2 主销后倾角 (23) 4.3主销内倾角、包容角及摩擦半径 (24) 4.4四轮定位参数间的关系 (30) 参考文献 (42)

摘要 四轮驱动技术比传统驱动技术更有明显的的优势,此技术今后会更有力的运用。为了更进一步了解全时四轮驱动技术,逐一的把四驱技术和传统驱动优缺点对比: 1.传动系统得到减化,整车质量大大减轻。由电动机直接驱动车轮甚至两者集成为一体。 2.与传统汽车相比,四轮独立驱动系统可通过电动机来完成驱动力的操纵而不需要其他附件,容易实现性能更好的、成本更低的牵引力操纵系统(TCS)、防抱死制动系统(ABS)及动力学操纵系统(VDC)。 3.对各车轮采纳制动能量回收系统,则可大大提高汽车能量利用效率,且与采纳 电动机驱动的电动汽车相比,其能量回收效率也获得显著增加。这对提高电动汽车续 里程是专门重要的。 4.实现汽车底盘系统的电子化、主动化。 【关键词】四轮驱动技术优势独立底盘定位

全球四轮驱动技术战略及发展前景

全球四轮驱动技术战略及发展前景 路通 2007-09-13 [ 字体:大中小 ] 四轮驱动最早应用于第一次世界大战的军事用车,很快这项技术在二战期间美国军事车吉普上得到广泛使用。二战结束之后,首先被应用在陆虎上。几十年来,四驱依然被应用在越野车领域上直到1970年英国罗孚(Range Rover)公司使用了这项技术。罗孚公司第一次将四驱技术应用在非越野车上,乘坐时驾乘人员感到前所未有的舒适。 上世纪八十年代初,奥迪推出新车型Quattro Coupe,但不是真正意义上的四驱型轿车。这款车仅是通过调节发动机的扭矩来控制负重轮的,不能达到越野性能。从此,四驱技术被广泛流传。 上世纪九十年代,在北美市场福特和通用推出大量多款SUV和皮卡。至2005年的十年间,这种轻卡占据北美轻型乘用车的50%,但并不是所有SUV和皮卡都采用了四驱技术。这款全尺寸轻卡,如占据北美轻卡市场半壁江山的雪佛兰Tahoe和福特F系列由后轮驱动(RWD)结构转向全时四轮驱动(AWD)。一些小型SUV,如福特Escape,采用前轮驱动(FWD)。 在欧洲,为SUV供货的OEM很少,大多受限于宝马、梅塞德斯—奔驰和陆虎。因此SUV销量仅占轻型乘用车的7%。陆虎的所有车型都采用后轮驱动/全时四轮驱动。而宝马和梅塞德斯—奔驰的SUV系列采用全/半四轮驱动,主要适应公路(on-road)用车。在欧洲四驱被广泛应用在高性能的公路用车或高端家庭用车上。紧随奥迪之后,许多汽车制造商至少在其产品中有一款车型采用四驱技术。因为在欧洲前驱比后驱更普遍,大多数四驱系统采用动力传输装置(PTU)和传输动力的中央差速器及后轴扭矩。这些系统逐渐不起主要作用,仅在前轮失去动力时才被启动。 宝马开始规模化在其X系中使用其四驱技术,随后应用到其乘用车上。宝马和梅塞德斯的全部系列车型都采用后轮驱动,因此采用了分动器系统分配四轮动力。 在日本市场无论是SUV还是高性能公路用车对四驱技术需求更加渴望。如丰田Supra和日产Skyline 就是最典型的代表。据专家估计,四驱和全时四驱占轻型乘用车总产量35%。如果这样,我们要格外注意日本汽车有45%是要出口海外的。 在某些时候,四驱技术的持续流行非常惊人。对一般客户进行调查显示SUV和其它形式的四驱车型很少在越野条件下行驶。四驱系统存在一定的不利因素。首先,需要考虑零部件的重量,一些传动装置就会产生额外燃油消耗。第二,在通过两轴和四轮传输时发动机动力会大大减少机械效率。 事实上,大多数消费者选择四驱车型都是看重其有利的一面。安全性和坚固性成为四驱车显著的特点。 四轮驱动技术特点 1、全时四驱

相关文档
最新文档