八年级数学反比例函数的应用2
初中数学:反比例函数的应用教学设计学情分析教材分析课后反思

跨学科知识融合点挖掘
物理学科
在物理学科中,反比例关系广泛 存在于各种物理量之间,如速度 、密度等。通过学习反比例函数 ,可以帮助学生更好地理解和应
用这些物理概念。
化学学科
在化学学科中,反应速率与反应 物浓度的关系往往呈现反比例关 系。通过学习反比例函数,可以 帮助学生更好地理解和描述化学
反应的过程。
初中数学:反比例函数 的应用教学设计学情分 析教材分析课后反思
汇报人:XXX 2024-01-28
目录
• 教学目标与重点难点 • 学情分析与学生特点 • 教材分析与资源整合 • 教学过程与方法手段 • 课后反思与改进策略 • 总结与展望
01
教学目标与重点难点
知识与技能目标
掌握反比例函数的概念和性质 ,理解反比例函数与正比例函 数、一次函数的区别和联系。
重点:反比例函数的概念、性质和应 用。
难点:如何根据实际问题情境建立反 比例函数模型,并运用反比例函数的
知识解决问题。
解决策略
采用多种教学方法和手段,如讲解、 演示、实例分析等,帮助学生理解反 比例函数的概念和性质。
通过小组合作、探究学习的方式,引 导学生积极参与数学活动,提高学生 的合作意识和探究能力。
练习题难度不够
在课堂练习中,发现部分练习题难度较低,无法充分检验 学生的学习效果。未来可以适当增加难度,设计更具挑战 性的练习题。
学生自主学习能力有待提高
部分学生过于依赖教师的讲解和指导,缺乏自主学习的意 识和能力。可以通过布置探究性作业、引导学生使用学习 资源等方式,培养学生的自主学习能力。
未来发展趋势预测及应对策略
自我评价引导
引导学生对自己的学习情况进行自我 评价,包括知识掌握情况、解题能力 、学习态度等方面,帮助学生发现自 身不足并制定改进措施。
反比例函数的图象和性质(二)课件

反比例函数可以通过垂直和水平变换来进行平移和伸缩等操作。当多个函数进行组合 使用时,反比例函数会发生一些有趣的变化。
反比例函数的应用举例
1 实际问题中的应用
反比例函数在实际问题中的应用非常广泛,例如在物理、经济学和生物学等领域中。
2 实际问题的建模与解决
我们可以使用反比例函数来建立实际问题的模型,分析问题并解决问题。
总结和要点
反比例函数的基本 性质回顾
反比例函数是一个含有x的有 理式,其中x不能为0。其图 象有垂直和水平渐近线,单 调性以及奇偶性等特点。
反比例函数在实际 生活中的重要性
反比例函数在各个领域中都 有广泛的应用,是一种十分 有用的数学工具。
反比例函数应用中 需注意的问题
在反比例函数的应用过程中, 需要注意变换和组合使用时 的变化,以及实际问题的建 模和解决方法。
反比例函数的图象和性质
在本节课中,我们将深入研究反比例函数的图象和性质,探索其在数学中的 应用。
反比例函数的定义和表达式
定义
反比例函数是一个含有x的有理式,其中x不能为0。
表达式
一般形式为f(x) = k/x,其中k为常数且k ≠ 0。
反比例函数的图象特点
垂直渐近线和水平渐近线
反比例函数的图象在x轴和y轴上分别有一个渐近 线,即y轴和x轴。
单调性和奇偶性
反比例函数具有单调性,即当x增大时,f(x)减小; 当x减小时,f(x)增大。同时,反比例函数是奇函 数。Biblioteka 反比例函数的性质1
定义域和值域
反比例函数的定义域是除了0的所有实数,值域也是除了0的所有实数。
2
极值和最值
反比例函数无极值,但有最值。最小值为0,最大值不存在。
3
反比例函数的变换和组合使用
反比例函数的实际应用、 实际问题与反比例函数(教案)

26.2 实际问题与反比例函数第1课时反比例函数的实际应用(1)【知识与技能】进一步运用反比例函数的知识解决实际问题.【过程与方法】经历“实际问题一建立模型一问题解决”的过程,发展学生分析问题,解决问题的能力.【情感态度】运用反比例函数知识解决实际应用问题的过程中,感受数学的应用价值,提高学习兴趣.【教学重点】运用反比例函数的意义和性质解决实际问题.【教学难点】用反比例函数的思想方法分析、解决实际应用问题.一、情境导入,初步认识问题我们知道,确定一个一次函数y = kx+b的表达式需要两个独立的条件,而确定一个反比例函数表达式,则只需一个独立条件即可,如点A(2,3)是一个反比例函数图象上的点,则此反比例函数的表达式是,当x=4时,y的值为,而当y=13时,相应的x的值为,用反比例函数可以反映很多实际问题中两个变量之间的关系,你能举出一个反比例函数的实例吗?二、典例精析,掌握新知例1 市煤气公司要在地下修建一个容积为104m3的圆柱形煤气储存室.(1)储存室的底面积S(单位:m2 )与其深度 d(单位:m)有怎样的函数关系?(2 )公司决定把储存室的底面积定为 500m2,施工队施工时应该向地下掘进多深?(3)当施工队按(2)中的计划掘进到地下15m时,碰到坚硬的岩石,为了节约建设资金,公司临时改变计划,把储存室的深改为15m,相应地,储存室的底面积应改为多少才能满足需要(精确到0.01m2)?【分析】已知圆柱体体积公式V=S • d,通过变形可得S=Vd,当V—定时,圆柱体的底面积S是圆柱体的高(深)d的反比例函数,而当S= 500m2时,就可得到d的值,从而解决问题(2),同样地,当d= 15m —定时,代入S = Vd可求得S,这样问题(3)获解.例2 码头工人以每天30吨的速度往一艘轮船上装载货物,装载完毕恰好用了8天时间.(1)轮船到达目的地后开始卸货,卸货速度V(单位:吨/天)与卸货时间t 单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多货?【分析】由装货速度×装货时间=装货总量,可知轮船装载的货物总量为240吨;再根据卸货速度=卸货总量÷卸货时间,可得V与t的函数关系式为V=240t,获得问题(1)的解;在(2)中,若把t=5代入关系式,可得V=48,即每天至少要卸载48吨,则可保证在5天内卸货完毕.此处,若由V=240t得到t=240V,由t≤5,得240V≤5,从而V≥48,即每天至少要卸货48吨,才能在不超过5天内卸货完毕.【教学说明】例2仍可由学生自主探究,得到结论.鼓励学生多角度出发,对问题(2)发表自己的见解,在学生交流过程中,教师可参与他们的讨论,帮助学生寻求解决问题的方法,对有困难的学生及时给予点拨,使不同层次的学生在学习中都有所收获.例3如图所示是某一蓄水池每1h的排水量V(m3/h)与排完水池中的水所用时间t(h)之间的函数图象.(1) 请你根据图象提供的信息求出此蓄水的蓄水量.(2) 写出此函数的函数关系式.(3) 若要6h排完水池的水,那么每1h的排水量应该是多少?(4) 如果每1h排水量是5m3,那么水池中【分析】解此题关键是从图象中获取有关信息,会根据图象回答.解:(1)由图象知:当每1h排水4m3时,需12h排完水池中的水,∴蓄水量为4×12 = 48(m3 )(2)由图象V与t成反比例,设V=kt(k≠0).把V=4,t=12代入得k=48,∴V =48t(t>0).(3)当t=6时,486V== 8,即每1h排水量是8m3⑷当V=5时,5 = 48t,485t∴== 9.6(h),即水池中的水需要用9.6h排完.【教学说明】例3相比前面两例,难度增加,教师在讲解本题时,要辅导学生从图象中获取信息,会根据图象回答问题.三、运用新知,深化理解1.某玻璃器皿公司要挑选一种容积为1升 (1升=1立方分米)的圆锥形漏斗.(1)漏斗口的面积S与漏斗的深d有怎样的函数关系?(2)如果漏斗口的面积为100厘米2,则漏斗的深为多少?2.市政府计划建设一项水利工程,工程需要运送的土石方总量为106m3,某运输公司承办了这项工程运送土石方的任务.(1)运输公司平均每天的工作量V(单位:m3/天)与完成运送任务所需的时间t (单位:天)之间具有怎样的函数关系?(2)这个运输公司共有100辆卡车,每天一共可运送土石方104m3.则公司完成全部运输任务需要多长时间?【教学说明】以上两题让学生相互交流,共同探讨,获得结果,使学生通过对上述问题的思考,巩固所学知识,增强运用反比例函数解决问题的能力.在完成上述题目后,教师引导学生完成创优作业中本课时的“名师导学”部分.【答案】1.解:(1)13Sd=1,S =3d(d>0)(2)100cm2 = 1dm2,当S = 1dm2时,3d=1,d=3dm.2.解:(1)661010,(Vt V tt==>0) .(2)t=662410101010V== .即完成任务需要100天.四、师生互动,课堂小结谈谈这节课的收获和体会,与同伴交流.1.布置作业:从教材“习题26. 2”中选取.2.完成创优作业中本课时的“课时作业”部分.本节课是用函数的观点处理实际问题,其中蕴含着体积、面积这样的实际问题.而解决这些问题的关键在于分析实际情境,建立函数模型,并进一步明确数学问题,将实际问题置于已有的知识背景之中,用数学知识重新解释这是什么,可以是什么,从而逐步形成考察实际问题的能力.在解决问题时,应充分利用函数的图象,渗透数形结合的思想.学生已经有了反比例函数的概念及其图象与性质这些知识作为基础,另外在小学也学过反比例,并且上学期已经学习了正比例函数、一次函数,学生已经有了一定的知识准备.因此,本节课教师可从身边事物入手,使学生真正体会到数学知识来源于生活,有一种亲切感.在学习中要让学生经历实践、思考、表达与交流的过程,给学生留下充足的时间来进行交流活动,不断引导学生利用数学知识来解决实际问题.26.2 实际问题与反比例函数第1课时实际问题与反比例函数(1)——面积问题与装卸货物问题一、新课导入1.课题导入前面我们结合实际问题讨论了反比例函数,看到了反比例函数在分析和解决问题中所起的作用.这节课我们进一步探讨如何利用反比例函数解决实际问题.2.学习目标(1)掌握常见几何图形的面积(体积)公式.(2)能利用工作总量、工作效率和工作时间的关系列反比例函数解析式.(3)从实际问题中抽象出数学问题,建立函数模型,运用所学的数学知识解决实际问题.3.学习重、难点重点:面积问题与装卸货物问题.难点:分析实际问题中的数量关系,正确写出函数解析式.二、分层学习1.自学指导(1)自学内容:教材P12例1.(2)自学时间:8分钟.(3)自学指导:抓住问题的本质和关键,寻求实际问题中某些变量之间的关系.(4)自学参考提纲:①圆柱的体积=底面积×高,教材P12例1中,圆柱的高即是d,故底面积410Sd .②P12例1的第(2)问实际是已知S=500,求d.③例1的第(3)问实际是已知d=15,求S.④如图,科技小组准备用材料围建一个面积为60 m2的矩形科技园ABCD,其中一边AB靠墙,墙长为12 m,设AD的长为x m,DC的长为y m.a.求y与x之间的函数关系式;60 yx ⎛=⎫ ⎪⎝⎭b.若围成矩形科技园ABCD的三边材料总长不超过26 m,材料AD和DC 的长都是整米数,求出满足条件的所有围建方案.(AD=5 m,DC=12 m;AD=6m,DC=10 m;AD=10 m,DC=6 m.)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否掌握利用面积(体积)公式列反比例函数关系式.②差异指导:辅导关注学困生.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例1的解题思路和解答过程.(2)面积公式与体积公式中的反比例关系.(3)练习:已知某矩形的面积为20 cm2.①写出其长y与宽x之间的函数表达式;②当矩形的长为12 cm时,宽为多少?当矩形的宽为4 cm,长为多少?③如果要求矩形的长不小于8 cm,其宽最多是多少?答案:①20yx=②53cm;5 cm③52cm1.自学指导(1)自学内容:教材P13例2.(2)自学时间:5分钟.(3)自学方法:认真分析例题,积极思考,结合自学参考提纲自学.(4)自学参考提纲:①工作总量、工作时间和工作效率(或速度)之间的关系是怎样的?②教材例2中这艘船共装载货物240吨,卸货速度v(吨/天)与卸货时间t(天)的关系是240 vt =.③如果列不等式求“平均每天至少要卸载多少吨”,你会怎样做?写出你的解答过程.④一司机驾汽车从甲地去乙地,以80千米/小时的平均速度用6小时到达目的地.a.当他按原路匀速返回时,汽车速度v(千米/小时)与时间t(小时)有怎样的函数关系?480 vt⎛=⎫ ⎪⎝⎭b.如果该司机必须在4小时之内返回甲地,则返程时的速度不得低于多少?(120千米/小时)c.若返回时,司机全程走高速公路,且匀速行驶,根据规定:最高车速不得超过120千米/小时,最低车速不得低于60千米/小时,试问返程所用时间的范围是多少?(4~8小时)2.自学:学生可结合自学指导进行自学.3.助学(1)师助生:①明了学情:了解学生是否会列函数关系式,是否会根据反比例函数关系解决实际问题.②差异指导:指导学生从形式和自变量的取值范围两个方面对比正比例函数理解反比例函数.(2)生助生:同桌之间、小组内交流、研讨.4.强化(1)教材例2的解题思路和解答过程.(2)练习:某学校食堂为方便学生就餐,同时又节约成本,常根据学生多少决定开放多少售饭窗口,假定每个窗口平均每分钟可以售饭给3个学生,开放10个窗口时,需1小时才能对全部学生售饭完毕.①共有多少学生就餐?②设开放x 个窗口时,需要y 小时才能让当天就餐的同学全部买上饭,试求出y 与x 之间的函数关系式;③已知该学校最多可以同时开放20个窗口,那么最少多长时间可以让当天就餐的学生全部买上饭?答案:①1800个;②10y x=;③30分钟. 三、评价1.学生自我评价.2.教师对学生的评价:(1)表现性评价;(2)纸笔评价(评价检测).3.教师的自我评价(教学反思).函数是初中数学的难点之一,当函数遇到实际应用,可谓是难上加难,但也使解题多了几种途径.对于这些实际问题,要善于运用函数的观点去处理.因此在教学过程要注意培养学生的审题能力,理解文字中隐藏的已知条件,合理地建立函数模型,然后根据模型找出实际生活中的数据与模型中的哪些量相对应.将实际问题置于已有的知识背景中,用数学知识重新解释这是什么,可以是什么,逐步培养解决实际问题的能力.一、基础巩固(70分)1.(10分)某轮船装载货物300吨,到港后,要求船上货物必须不超过5日卸载完毕,则平均每天至少要卸载(B )A.50吨B.60吨C.70吨D.80吨2.(10分) 用规格为50 cm×50 cm 的地板砖密铺客厅恰好需要60块.如果改用规格为a cm×a cm 的地板砖y 块也恰好能密铺该客厅,那么y 与a 之间的关系为(A ) A.2150000y a = B.150000y a = C.y=150000a 2 D.y=150000a3.(10分) 如果以12 m 3/h 的速度向水箱注水,5 h 可以注满.为了赶时间,现增加进水管,使进水速度达到Q (m 3/h ),那么此时注满水箱所需要的时间t (h )与Q (m3/h)之间的函数关系为(A)A.60tQ= B.t=60QC.6012tQ=- D.6012tQ=+4.(10分) 如果等腰三角形的底边长为x,底边上的高为y,当它的面积为10时,x与y 的函数关系式为(D)A.10yx= B.5yx= C.20xy= D.20yx=5.(10分) 已知圆锥的体积V=13Sh(其中S表示圆锥的底面积,h表示圆锥的高).若圆锥的体积不变,当h为10 cm时,底面积为30 cm2,则h关于S的函数解析式为300 hS =.6.(10分)小艳家用购电卡购买了1000度电,那么这些电能够使用的天数m 与小艳家平均每天的用电度数n有怎样的函数关系?如果平均每天用电4度,这些电可以用多长时间?解:1000mn=;250天.7.(10分)某农业大学计划修建一块面积为2×106 m2的长方形试验田.(1)试验田的长y(单位:m)关于宽x(单位:m)的函数关系式是什么?(2)如果试验田的长与宽的比为2∶1,则试验田的长与宽分别是多少?解:(1)6210yx⨯=;(2)长:2×103 m,宽:103 m.二、综合应用(20分)8. (10分)某地计划用120~180天(含120天与180天)的时间建设一项水利工程,工程需要运送的土石方总量为360万立方米.(1)写出运输公司完成任务所需的时间y(单位:天)与平均每天的工作量x(单位:万立方米)之间的函数关系式,并给出自变量x的取值范围;(2)由于工程进度的需要,实际平均每天运送土石方比原计划多5000立方米,工期比原计划减少了24天,原计划和实际平均每天运送土石方各是多少万立方米?解:(1)360yx=(2≤x≤3);(2)设原计划每天运送土石方x万立方米,实际每天运送土石方(x+0.5)万立方米.则360360240.5x x+=+().解得x=2.5.因此,原计划每天运送土石方2.5万立方米,实际每天运送土石方3万立方米.9.(10分)正在新建中的住宅楼主体工程已经竣工,只剩下楼体外表面需要贴瓷砖,已知楼体外表面的面积为5×103 m2.(1)所需瓷砖的块数n与每块瓷砖的面积S有怎样的函数关系?(2)为了使住宅楼的外观更漂亮,开发商决定采用灰、白和蓝三种颜色的瓷砖,每块砖的面积都是80 cm2,灰、白、蓝瓷砖使用比例为2∶2∶1,则需三种瓷砖各多少块?解:(1)n=5×103S;(2)设需灰、白、蓝三种瓷砖分别为2x、2x、x块.(2x+2x+x)·80=5×103×104x=1.25×105因此,需灰、白、蓝三种瓷砖分别为2.5×105块、2.5×105块、1.25×105块.三、拓展延伸(10分)10.(10分) 水产公司有一种海产品共2104千克,为寻求合适的销售价格,进行了8天试销,试销情况如下:观察表中数据,发现这种海产品每天的销售量y(千克)是销售价格x(元/千克)的函数,且这种函数是反比例函数、一次函数中的一种.(1)请你选择一种合适的函数,求出它的函数关系式,并简要说明不选择另外一种函数的理由;(2)在试销8天后,公司决定将这种海产品的销售价格定为150元/千克,并且以后每天都按这个价格销售,那么余下的这些海产品预计再用多少天可以全部售出?(3)在按(2)中定价继续销售15天后,公司发现剩余的这些海产品必须在不超过2天内全部售出,此时需要重新确定一个销售价格,使后面两天都按新的价格销售,那么新确定的价格最高不超过每千克多少元才能完成销售任务?解:(1)12000y x;不选一次函数是因为y 与x 之间不成正比例关系. (2)30+40+48+12000240+60+80+96+100=504(千克), (2104-504)÷12000150=20(天). (3)(20-15)×12000150÷2=200(千克),12000÷200=60(元/千克).。
【初中数学精品资料】暑假专题——反比例函数的应用

年 级 初二 学 科 数学版 本人教新课标版课程标题 暑假专题——反比例函数的应用编稿老师 何莹娟 一校 林卉二校张琦锋审核孙永涛一、学习目标:1. 巩固反比例函数的概念,会求反比例函数表达式并能画出图象。
2. 巩固反比例函数图象的变化及其性质,并能运用其解决某些实际问题。
3. 会处理正、反比例函数结合的综合题。
二、重点、难点:1. 运用反比例函数解决实际问题的意识。
2. 反比例函数y=k x 中k 的意义:反比例函数y=kx(k≠0)中比例系数k 的几何意义。
三、考点分析:考点课 标 要 求知识与技能目标了解 理解 掌握 灵活应用 反比例函数理解反比例函数的意义 √ 会画反比例函数的图象√ 理解反比例函数的性质√ 能根据实际问题中的反比例关系用待定系数法确定反比例函数的解析式√√知识点一、反比例函数的图象和性质例1. 已知反比例函数1k y x-=(k 为常数,1k ≠). (1)若点2A (1 ),在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一支上,y 随x 的增大而减小,求k 的取值范围; (3)若13k =,试判断点34B ( ),,25C ( ),是否在这个函数的图象上,并说明理由. 思路分析:1)题意分析:本题考查了反比例函数的图象和性质 2)解题思路:(1)把点2A (1 ),代入xk y 1-=可求得反比例函数解析式;(2)由反比例函数的增减性可得;(3)可代入函数解析式进行检验。
解答过程:(1)∵点2A (1 ),在这个函数的图象上,∴ 21k =-.解得3k =.(2)∵ 在函数1k y x-=图象的每一支上,y 随x 的增大而减小,∴ 10k ->.解得1k >.(3)∵ 13k =,有112k -=.∴ 反比例函数的解析式为12yx=.将点B 的坐标代入12y x =,可知点B 的坐标满足函数关系式,∴ 点B 在函数12y x =的图象上.将点C 的坐标代入12y x=,由1252≠,可知点C 的坐标不满足函数关系式,∴ 点C 不在函数12y x=的图象上.解题后的思考:要熟悉反比例函数的图象和性质表达式y=kx(k≠0) 图 象k>0k<0性 质1. 图象在第一、三象限;2. 在每个象限内,函数y 的值随x 的增大而减小.1. 图象在第二、四象限;2. 在每个象限内,函数y 的值随x 的增大而增大.知识点二、反比例函数与一次函数相结合的综合运用例 2. 如图,已知反比例函数ky x=与一次函数y x b =+的图象在第一象限相交于点(1,4)A k -+.(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B 的坐标,并根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.思路分析:1)题意分析:本题是一道反比例函数与一次函数相结合的综合试题。
6.2反比例函数的图象与性质》2课时教案

在今天的教学中,我重点关注了反比例函数的图象与性质这一章节。我尝试通过生活实例导入新课,让学生感受到反比例函数在现实生活中的应用,以此激发他们的学习兴趣。在教学过程中,我注意观察学生的反应,发现他们在理解反比例函数的定义和图象性质方面存在一些困难。
在理论介绍环节,我意识到需要更生动、形象地解释反比例函数的概念,以帮助学生更好地理解。在讲解图象性质时,我使用了动态演示和图象分析,希望让学生直观地感受到反比例函数图象的变化规律。但我也发现,对于一些学生来说,这部分内容仍然较难理解,尤其是双曲线在第一、三象限的渐近线特点。
举例:针对难点b,教师可以通过动态演示或图象分析,说明当x从正数变为负数时,y值的变化规律,以及当x接近0时,y值趋向于无穷大或无穷小的现象。对于难点c,教师可以设计具体的案例分析,如“一个水池的排水问题”,帮助学生理解如何将实际情况转化为反比)导入新课(用时5分钟)
a.当k > 0时,图象位于第一、三象限;
b.当k < 0时,图象位于第二、四象限;
c.反比例函数图象在每个象限内,y随x的增大(或减小)而增大(或减小);
d.反比例函数图象与坐标轴无交点;
4.实际应用:结合实际情境,解释反比例函数的意义及其应用。
二、核心素养目标
《6.2反比例函数的图象与性质》
1.培养学生的数感与符号意识,使其理解反比例函数的一般形式,并能运用数学符号进行表达;
2.教学难点
a.反比例函数图象的双曲线形状的理解,尤其是双曲线在第一、三象限的渐近线特点;
b.反比例函数性质中,对于y随x的变化规律的理解,尤其是当x接近0时,y的极端变化;
c.学生在构建反比例函数模型时,对于自变量和因变量的辨识,以及如何将实际问题转化为数学表达式的难点;
八年级数学反比例函数的简单应用

6.(2010 年广东珠海)已知:正比例函数 y=k1x 的图象与 k2 反比例函数 y= x (x>0)的图象交于点 M(a,1), MN⊥x 轴于点 N(如 图 5-4),若△OMN 的面积等于 2,求这两个函数的解析式.
图 5 -4
解:∵MN⊥x 轴,点 M(a,1), 1 ∴S△OMN=2a=2.∴a=4,得 M(4,1). k2 ∵正比例函数 y=k1x 的图象与反比例函数 y= x (x>0)的图
4.(2010 年四川南充)如图 5-3,直线 y=x+2 与双曲线 y k =x相交于点 A,点 A 的纵坐标为 3,k 的值为( C )
图 5 -3 A.1 B.2 C.3 D.4
5. (2010 年广东汕头)已知一次函数 y=kx-1 的图像与反比 2 例函数 y= x的图像的一个交点坐标为(2,1),那么另一个交点的 坐标是( B ) A.(-2,1) C.(2,-1) B.(-1,-2) D.(-1,2)
章末热点考向专题
专题一 反比例函数的简单应用
在中考中,对本章知识的考查常常体现在反比例函数的图
象、性质及表达式,这些都属于反比例函数的简单应用.
【例 1】(2009 年广东茂名)设从茂名到北京所需的时间是 t,
平均速度为 v,则下面刻画 v 与 t 的函数关系的图象是( )
思路点拨: 设茂名到北京的距离为s定值 → s s=vt,即v= t t>0 答案:A
图 5-1
A.y<-1
B.y≤-1
C.y≤-1 或 y>0 D.y<-1 或 y≥0
专题二
反比例函数的综合应用
反比例函数与正比例函数、一次函数的综合主要体现在两
个函数的交点上,求交点的一般方法是联立方程组求解. m-8 【例 2】(2010 年广东广州)已知反比例函数 y= (m 为 x 常数)的图象经过点 A(-1,6). (1)求 m 的值; (2)如图 5-2,过点 A 作直线 AC 与函数 y= m-8 的图象交 x
中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)
中考数学复习----《反比例函数之综合应用》知识点总结与练习题(含答案解析)知识点总结1. 反比例函数k 的集合意义:①过反比例函数图像上任意一点作坐标轴的垂线,两垂线与坐标轴构成一个矩形,矩形的面积等于k 。
②过反比例函数图像上任意一点作其中一条坐标轴的垂线,并连接这个点与原点,则构成一个三角形。
这个三角形的面积等于2k 。
2. 待定系数法求反比例函数解析式:在反比例函数中只有一个系数k ,所以只需要在图像上找一个对应的点即可求出k 的值,从而求出反比例函数解析式。
3. 反比例函数与一次函数的不等式问题: 若反比例函数()0≠=k x ky 与一次函数()0≠+=k b kx y 有交点,则不等式b kx xk +>的解集取反比例函数图像在一次函数图像上方的部分所对应的自变量取值范围;等式b kx xk+<的解集取反比例函数图像在一次函数图像下方的部分所对应的自变量取值范围。
反比例函数与一次函数的交点把自变量分成三部分。
练习题1、(2022•日照)如图,矩形OABC 与反比例函数y 1=xk1(k 1是非零常数,x >0)的图像交于点M ,N ,与反比例函数y 2=xk2(k 2是非零常数,x >0)的图像交于点B ,连接OM ,ON .若四边形OMBN 的面积为3,则k 1﹣k 2=( )A .3B .﹣3C .23 D .﹣23【分析】根据矩形的性质以及反比例函数系数k 的几何意义即可得出结论. 【解答】解:∵y 1、y 2的图像均在第一象限, ∴k 1>0,k 2>0,∵点M 、N 均在反比例函数y 1=(k 1是非零常数,x >0)的图像上,∴S △OAM =S △OCN =k 1,∵矩形OABC 的顶点B 在反比例函数y 2=(k 2是非零常数,x >0)的图像上,∴S 矩形OABC =k 2,∴S 四边形OMBN =S 矩形OABC ﹣S △OAM ﹣S △OCN =3, ∴k 2﹣k 1=3, ∴k 1﹣k 2=﹣3, 故选:B .2、(2022•牡丹江)如图,等边三角形OAB ,点B 在x 轴正半轴上,S △OAB =43,若反比例函数y =xk(k ≠0)图像的一支经过点A ,则k 的值是( )A .233 B .23C .433 D .43【分析】根据正三角形的性质以及反比例函数系数k 的几何意义,得出S △AOC =S △AOB =2=|k |,即可求出k 的值.【解答】解:如图,过点A 作AC ⊥OB 于点C , ∵△OAB 是正三角形, ∴OC =BC ,∴S △AOC =S △AOB =2=|k |,又∵k >0, ∴k =4,故选:D .3、(2022•郴州)如图,在函数y =x2(x >0)的图像上任取一点A ,过点A 作y 轴的垂线交函数y =﹣x8(x <0)的图像于点B ,连接OA ,OB ,则△AOB 的面积是( )A .3B .5C .6D .10【分析】根据反比例函数系数k 的几何意义进行计算即可. 【解答】解:∵点A 在函数y =(x >0)的图像上, ∴S △AOC =×2=1,又∵点B 在反比例函数y =﹣(x <0)的图像上, ∴S △BOC =×8=4, ∴S △AOB =S △AOC +S △BOC =1+4 =5, 故选:B .4、(2022•黑龙江)如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数y =x 3的图像上,顶点A 在反比例函数y =xk的图像上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是( )A .2B .1C .﹣1D .﹣2【分析】设B (a ,),根据四边形OBAD 是平行四边形,推出AB ∥DO ,表示出A 点的坐标,求出AB =a ﹣,再根据平行四边形面积公式列方程,解出即可.【解答】解:设B (a ,), ∵四边形OBAD 是平行四边形, ∴AB ∥DO , ∴A (,),∴AB =a ﹣,∵平行四边形OBAD 的面积是5, ∴(a ﹣)=5,解得k =﹣2, 故选:D .5、(2022•十堰)如图,正方形ABCD 的顶点分别在反比例函数y =xk 1(k 1>0)和y =xk 2(k 2>0)的图像上.若BD ∥y 轴,点D 的横坐标为3,则k 1+k 2=( )A .36B .18C .12D .9【分析】连接AC交BD于E,延长BD交x轴于F,连接OD、OB,设AE=BE=CE=DE =m,D(3,a),根据BD∥y轴,可得B(3,a+2m),A(3+m,a+m),即知k1=3(a+2m)=(3+m)(a+m),从而m=3﹣a,B(3,6﹣a),由B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,得k1=3(6﹣a)=18﹣3a,k2=3a,即得k1+k2=18﹣3a+3a=18.【解答】解:连接AC交BD于E,延长BD交x轴于F,连接OD、OB,如图:∵四边形ABCD是正方形,∴AE=BE=CE=DE,设AE=BE=CE=DE=m,D(3,a),∵BD∥y轴,∴B(3,a+2m),A(3+m,a+m),∵A,B都在反比例函数y=(k1>0)的图像上,∴k1=3(a+2m)=(3+m)(a+m),∵m≠0,∴m=3﹣a,∴B(3,6﹣a),∵B(3,6﹣a)在反比例函数y=(k1>0)的图像上,D(3,a)在y=(k2>0)的图像上,∴k1=3(6﹣a)=18﹣3a,k2=3a,∴k1+k2=18﹣3a+3a=18;故选:B .6、(2022•邵阳)如图是反比例函数y =x1的图像,点A (x ,y )是反比例函数图像上任意一点,过点A 作AB ⊥x 轴于点B ,连接OA ,则△AOB 的面积是( )A .1B .C .2D .【分析】由反比例函数的几何意义可知,k =1,也就是△AOB 的面积的2倍是1,求出△AOB 的面积是.【解答】解:∵A (x ,y ), ∴OB =x ,AB =y ,∵A 为反比例函数y =图像上一点, ∴xy =1,∴S △ABO =AB •OB =xy =1=,故选:B .7、(2022•内江)如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数y =x 8和y =xk的图像交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣22【分析】利用k 的几何意义解题即可. 【解答】解:∵直线l ∥y 轴, ∴∠OMP =∠OMQ =90°,∴S △OMP =×8=4,S △OMQ =﹣k . 又S △POQ =15, ∴4﹣k =15, 即k =11,∴k =﹣22. 故选:D .8、(2022•东营)如图,△OAB 是等腰直角三角形,直角顶点与坐标原点重合,若点B 在反比例函数y =x1(x >0)的图像上,则经过点A 的函数图像表达式为 .【分析】作AD ⊥x 轴于D ,BC ⊥x 轴于C ,根据△OAB 是等腰直角三角形,可证明△BOC ≌△OAD ,利用反比例函数k 的几何意义得到S △OBC =,则S △OAD =,所以|k |=,然后求出k 得到经过点A 的反比例函数解析式. 【解答】解:如图,作AD ⊥x 轴于D ,BC ⊥x 轴于C , ∴∠ADO =∠BCO =90°,∵∠AOB =90°, ∴∠AOD +∠BOC =90°, ∴∠AOD +∠DAO =90°, ∴∠BOC =∠DAO , ∵OB =OA ,∴△BOC ≌△OAD (AAS ),∵点B 在反比例函数y =(x >0)的图像上, ∴S △OBC =, ∴S △OAD =, ∴k =﹣1,∴经过点A 的反比例函数解析式为y =﹣. 故答案为:y =﹣.9、(2022•盐城)已知反比例函数的图像经过点(2,3),则该函数表达式为 . 【分析】利用反比例函数的定义列函数的解析式,运用待定系数法求出函数的解析式即可. 【解答】解:令反比例函数为y =(k ≠0), ∵反比例函数的图像经过点(2,3), ∴3=, k =6,∴反比例函数的解析式为y =. 故答案为:y =.10、(2022•湖北)在反比例函数y =xk 1−的图像的每一支上,y 都随x 的增大而减小,且整式x 2﹣kx +4是一个完全平方式,则该反比例函数的解析式为 . 【分析】由整式x 2﹣kx +4是一个完全平方式,可得k =±4,由反比例函y =的图像的每一支上,y 都随x 的增大而减小,可得k ﹣1>0,解得k >1,则k =4,即可得反比例函数的解析式.【解答】解:∵整式x 2﹣kx +4是一个完全平方式,∴k =±4, ∵反比例函数y =的图像的每一支上,y 都随x 的增大而减小,∴k ﹣1>0, 解得k >1, ∴k =4,∴反比例函数的解析式为y =. 故答案为:y =.35.(2022•陕西)已知点A (﹣2,m )在一个反比例函数的图像上,点A '与点A 关于y 轴对称.若点A '在正比例函数y =21x 的图像上,则这个反比例函数的表达式为 .【分析】根据轴对称的性质得出点A '(2,m ),代入y =x 求得m =1,由点A (﹣2,1)在一个反比例函数的图像上,从而求得反比例函数的解析式. 【解答】解:∵点A '与点A 关于y 轴对称,点A (﹣2,m ), ∴点A '(2,m ),∵点A '在正比例函数y =x 的图像上, ∴m ==1,∴A (﹣2,1),∵点A (﹣2,1)在一个反比例函数的图像上, ∴反比例函数的表达式为y =﹣, 故答案为:y =﹣.11、(2022•攀枝花)如图,正比例函数y =k 1x 与反比例函数y =xk 2的图像交于A (1,m )、B 两点,当k 1x ≤xk2时,x 的取值范围是( )A .﹣1≤x <0或x ≥1B .x ≤﹣1或0<x ≤1C .x ≤﹣1或x ≥1D .﹣1≤x <0或0<x ≤1【分析】根据反比例函数的对称性求得B 点的坐标,然后根据图像即可求得. 【解答】解:∵正比例函数y =k 1x 与反比例函数y =的图像交于A (1,m )、B 两点,∴B (﹣1,﹣m ), 由图像可知,当k 1x ≤时,x 的取值范围是﹣1≤x <0或x ≥1,故选:A .37.(2022•东营)如图,一次函数y 1=k 1x +b 与反比例函数y 2=xk 2的图像相交于A ,B 两点,点A 的横坐标为2,点B 的横坐标为﹣1,则不等式k 1x +b <xk2的解集是( )A .﹣1<x <0或x >2B .x <﹣1或0<x <2C .x <﹣1或x >2D .﹣1<x <2【分析】根据两函数图像的上下位置关系结合交点横坐标,即可得出不等式k 1x +b <的解集,此题得解.【解答】解:观察函数图像可知,当﹣1<x <0或x >2时,一次函数y 1=k 1x +b 的图像在反比例函数y 2=的图像的下方,∴不等式k 1x +b <的解集为:﹣1<x <0或x >2,故选:A .12、(2022•朝阳)如图,正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =xk(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点,则不等式ax >xk的解集为( )A .x <﹣2或x >2B .﹣2<x <2C .﹣2<x <0或x >2D .x <﹣2或0<x <2【分析】根据关于原点对称的点的坐标特征求得B (2,﹣m ),然后根据函数的图像的交点坐标即可得到结论.【解答】解:∵正比例函数y =ax (a 为常数,且a ≠0)和反比例函数y =(k 为常数,且k ≠0)的图像相交于A (﹣2,m )和B 两点, ∴B (2,﹣m ),∴不等式ax >的解集为x <﹣2或0<x <2, 故选:D .13、(2022•无锡)一次函数y =mx +n 的图像与反比例函数y =xm的图像交于点A 、B ,其中点A 、B 的坐标为A (﹣m1,﹣2m )、B (m ,1),则△OAB 的面积是( ) A .3B .413C .27D .415【分析】根据反比例函数图像上点的坐标特征求出m ,进而求出点A 、B 的坐标,根据三角形的面积公式计算即可.【解答】解:∵点A (﹣,﹣2m )在反比例函数y =上, ∴﹣2m =,解得:m =2,∴点A 的坐标为:(﹣,﹣4),点B 的坐标为(2,1), ∴S △OAB =××5﹣××4﹣×2×1﹣×1=,故选:D .14、(2022•荆州)如图是同一直角坐标系中函数y 1=2x 和y 2=x2的图像.观察图像可得不等式2x >x2的解集为( )A .﹣1<x <1B .x <﹣1或x >1C .x <﹣1或0<x <1D .﹣1<x <0或x >1【分析】结合图像,数形结合分析判断.【解答】解:由图像,函数y 1=2x 和y 2=的交点横坐标为﹣1,1, ∴当﹣1<x <0或x >1时,y 1>y 2,即2x >, 故选:D .15、(2022•怀化)如图,直线AB 交x 轴于点C ,交反比例函数y =xa 1−(a >1)的图像于A 、B 两点,过点B 作BD ⊥y 轴,垂足为点D ,若S △BCD =5,则a 的值为( )A.8B.9C.10D.11【分析】设点B的坐标为(m,),然后根据三角形面积公式列方程求解.【解答】解:设点B的坐标为(m,),∵S△BCD=5,且a>1,∴×m×=5,解得:a=11,故选:D.16、(2022•宁夏)在显示汽车油箱内油量的装置模拟示意图中,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是()A.反比例函数B.正比例函数C.二次函数D.以上答案都不对【分析】由油箱中油的体积V与电路中总电阻R总是反比例关系,电流I与R总是反比例关系,可得V=I(为常数),即可得到答案.【解答】解:由油箱中油的体积V与电路中总电阻R总是反比例关系,设V•R总=k(k为常数),由电流I与R总是反比例关系,设I•R总=k'(k为常数),∴=,∴V=I(为常数),∴I与V的函数关系是正比例函数,故选:B.17、(2022•宜昌)已知经过闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系.根据下表判断a和b的大小关系为()A.a>b B.a≥b C.a<b D.a≤b【分析】根据等量关系“电流=”,即可求解.【解答】解:∵闭合电路的电流I(单位:A)与电路的电阻R(单位:Ω)是反比例函数关系,∴40a=80b,∴a=2b,∴a>b,故选:A.18、(2022•丽水)已知电灯电路两端的电压U为220V,通过灯泡的电流强度I(A)的最大限度不得超过0.11A.设选用灯泡的电阻为R(Ω),下列说法正确的是()A.R至少2000ΩB.R至多2000ΩC.R至少24.2ΩD.R至多24.2Ω【分析】利用已知条件列出不等式,解不等式即可得出结论.【解答】解:∵电压U一定时,电流强度I(A)与灯泡的电阻为R(Ω)成反比例,∴I=.∵已知电灯电路两端的电压U为220V,∴I=.∵通过灯泡的电流强度I(A)的最大限度不得超过0.11A,∴≤0.11,∴R≥2000.故选:A.19、(2022•郴州)科技小组为了验证某电路的电压U(V)、电流I(A)、电阻R(Ω)三者之间的关系:I=U,测得数据如下:那么,当电阻R=55Ω时,电流I=A.【分析】由表格数据求出反比例函数的解析式,再将R=55Ω代入即可求出答案.【解答】解:把R=220,I=1代入I=得:1=,解得U=220,∴I=,把R=55代入I=得:I==4,故答案为:4.20、(2022•山西)根据物理学知识,在压力不变的情况下,某物体承受的压强p(Pa)是它的受力面积S(m2)的反比例函数,其函数图像如图所示.当S=0.25m2时,该物体承受的压强p的值为Pa.【分析】设p=,把(0.1,1000)代入得到反比例函数的解析式,再把S=0.25代入解析式即可解决问题.【解答】解:设p=,∵函数图像经过(0.1,1000),∴k=100,∴p=,当S=0.25m2时,物体所受的压强p==400(Pa),故答案为:400.。
《反比例函数(第2课时)》教案精品 2022年华师大版八下数学
反比例函数第2课时(一)本课目标1.了解反比例函数图象的形状特征.2.会画反比例函数的图象.3.经历探究反比例函数性质的过程,掌握反比例函数的性质.4.学会利用反比例函数的性质解决简单的实际问题.(二)教学流程1.复习导入(1)反比例函数是怎样定义的(2)确定反比例函数的解析式需要什么条件2.课前热身请同学们展示各自在上节课实践活动中所画出的问题2的函数图象,比一比谁画-得最好(学生互评在上节课的实践活动中所画出的问题2的函数图象, 形成对反比例函-数图象的初步感形认识.)3.合作探究(1)整体感知我们知道一次函数y=kx+b(k≠0)的图象是直线,其性质随着k的正负发生变化,那么反比例函数y=kx(k≠0)的图象又具有什么特征其性质是否随着k 的正负发生变化呢本课我们着重探讨这两个问题.(2)四边互动互动1师:利用多媒体演示幻灯片.【例1】画出函数y=6x的图象.师:在未知函数图象的形状特征时,我们画函数的图象通常用什么方法这个函数自变量的取值范围是什么由此猜想这个函数的图象是连在一起的吗用描点法画该函数的图象,在列表应注意哪些生:逐个举手答复以下问题,达成共识.师:利用多媒体展现画图过程.(1)列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y 的对应值表:──┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬──x │…│-6│-3│-2│-1│…│1 │2│3 │6 │…──┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼──y │…│-1│-2│-3│-6│…│6 │3 │2 │1 │…──┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴──(2)描点:由这些有序实数对,可以在直角坐标系中描出相应的点(-6,-1),(-3,--2),(-2,-3)等.(3)连线:用光滑曲线将各点依次连起来,就得到反比例函数的图象,如下列图:师:请同学们用透明纸放在课本的该函数图象上复制这个图象,并用大头钉固定上下坐标系原点,再把上面的图象绕着原点旋转180°,结果你发现什么现象生:动手操作,并提出发现的问题.师:利用多媒体演示.试一试:在课本图所在坐标系中画出函数y=-6x的图象.生:动手画图,交流画图的结果. 师:请同学们讨论以下问题.讨论:(1)这个函数的图象在哪两个象限和函数y=6x的图象有什么不同(2)反比例函数y=kx图象在哪两个象限由什么确定生:在小组内展开交流,然后各组推选代表答复提出的问题,在全班交流,让全体同学达成共识.明确概括:通过上述操作、讨论与交流,我们发现反比例函数的图象是两条曲线,且这两条曲线关于原点对称,这种图象通常称为双曲线(hyperbola).反比例函数y=kx图象的两个分支位居的象限与k的正负有关,当k>0时, 函数的图象分布在第一、三象限;当k<0时,函数的图象分布在第二、四象限.互动2师:利用多媒体演示课件:反比例函数图象上的点与两条坐标轴上对应点做同步运动.请同学们观察反比例函数y=6x和y=-6x图象上点的运动情况,然后答复以下问题.(1)对于反比例函数y=6x,其图象在每个象限内从左到右是上升的还是下降的y的值随着x的变化将怎样变化(2)对于反比例函数y=-6x,其图象在每个象限内从左到右是上升的还是下降的y的值随着x的变化将怎样变化生:在观察的根底上,在小组内展开讨论,并概括归纳发现的现象,对提出的问题进行解答.明确通过观察可知,反比例函数y=k x有以下性质:(1)当k>0时,函数的图象( 如图17-4-2所示)在每个象限内,曲线从左向右下降,也就是在每个象限内y 随x 的增加而减小;(2)当k<0时,函数的图象(如图17-4-2所示)在每个象限内, 曲线从左向右上升,也就是在每个象限内y 随x 的增加而增大.互动3师:利用多媒体演示幻灯片.y 是x 的反比例函数,当x=2时,y=23,求这个反比例函数的表达式. 师:我们在学习一次函数时,已经学会了应用待定系数法求一次函数的表达式.同样,我们是不是也可以用待定系数法求反比例函数的表达式呢生:可以.设其表达式为y=k x,因为当x=2时,y=23,所以23=2k ,所以k=43. 所以这个反比例函数的表达式为y=43x互动4师:利用多媒体演示幻灯片.反比例函数y=3x在第一象限内的图象如下列图,点M 、N 是图象上的两个不同点,分别过点M 、N 作x 轴的垂线,垂足分别为A 、B,试探究△MOA 的面积S △MOA 与△NOB 的面积S △NOB 之间的大小关系.师:(点拨)如果设点M 、N 的坐标分别位(x 1,y 1)和(x 2,y 2),那么S △MOA 与x 1、y 1之间存在怎样的关系x 1·y 1的值是多少S △NOB 与x 2,y 2呢y xM OBAN生:在讨论交流的根底上,答复以下问题,并着手尝试解决问题,最后交流解答的过程与结果.明确因为点(x 1,y 1)在该反比例函数图象上,所以y 1=13x ,得x 1·y 1=3, S △MOA=12OA·MA=111322x y ⋅⋅=,同理S △NOB=32,所以S △MOA=S △NOB.归纳可知:过反比例函数图象上任意一点作x 轴的垂线,那么这点与垂足、坐标系原点构成的三角形的面积是一个定值.互动5师:利用多媒体演示.点A(-3,a)、B(-2,b)、C(4,c)在双曲线y=-2x上,请把a 、b 、c 按从小到大的顺序进行排列.生:动手操作,操作完毕把个人所得结果在小组内展开交流.师:请同学们画出该双曲线的草图,验证你的结论,从中你发现什么问题 生:动手画图,验证各自解答的结果.明确许多同学直接利用反比例函数的性质,得出错误的结论:c<b<a.原因是没有理解反比例函数的性质“当k<0时,在每个象限内y 随x 的增加而增大〞.在同一个象限内y 随x 的增加而增大,并不是说在整个坐标平面内y 随x 的增加而增大.因此,在比较反比例函数值的大小时,要分清对应的自变量的值是否在x 轴的同一个方向上(或几个点是否在同一个象限),如果不在同一个方向上,不能直接应用反比例函数的性质.4.达标反响 (多媒体演示)(1)写出一个反比例函数,使它的图象在第二、四象限,这个函数解析式为y=1x- (2)如下列图,直线y=kx 与双曲线y=-6x相交于点A 、B,过点A 作AC ⊥y 轴于点C,那么△ABC 的面积为 6.(3)反比例函数y=3mx-的两点(x 1,y 1),(x 2,y 2),当x 1<0<x 2时,y 1<y 2,那么m 的取值范围是(D)A.m<0B.m>0C.m>3D.m<3(4)以下四个函数中,当x>0时,y 随x 的增大而减小的是(D)A.y=2xB.y=x+3C.y=-2xD.y=2x5.学习小结 (1)内容总结反比例函数图象特征、画法 性质(2)方法归纳画反比例函数的图象,只能用描点法,利用反比例函数的性质比较大小时, 要注意对应的点是否在同一个象限内.(三)延伸拓展 1.链接生活某课外小组在做气体实验时,获得压强p(帕)与体积v(cm 3)之间的以下对应数据:⎧⎨⎩yxOC BA┌───┬─┬─┬─┬─┬──┬──┬─┐│p(帕) │…│1 │2 │3 │4 │5 │…│├───┼─┼─┼─┼─┼──┼──┼─┤│v(cm3)│…│6 │3 │2 │1.5 │1.2 │…│└───┴─┴─┴─┴─┴──┴──┴─┘根据表中提供的信息,答复以下问题:(1)在坐标系中描出表中各点,猜想p与v之间的关系,并求出函数解析式;(2)当气体的体积是12cm3时,压强是多少2.实践探索(1)实践活动收集反比例函数在社会生活中应用的实例2个.(2)稳固练习课本第58页练习第1题和第2题和习题第3题.(四)板书设计第二课时用坐标表示平移1.掌握用坐标表示点的平移的规律;(重点)2.了解并掌握用坐标表示图形平移的规律与方法.(难点)一、情境导入如图是小丽利用平移设计的一幅作品,说一说平移的特点.你能在坐标系中快速画出这一组图案吗?二、合作探究探究点一:点在坐标系中的平移平面直角坐标系中,将点A(-3,-5)向上平移4个单位,再向左平移3个单位到点B,那么点B的坐标为()A.(1,-8) B.(1,-2)C.(-6,-1) D.(0,-1)解析:利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减求解.点A的坐标为(-3,-5),将点A向上平移4个单位,再向左平移3个单位到点B,点B的横坐标是-3-3=-6,纵坐标为-5+4=-1,即(-6,-1).应选C.方法总结:此题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.探究点二:图形在坐标系中的平移【类型一】根据平移求对应点的坐标如图,把△ABC经过一定的平移变换得到△A′B′C′,如果△ABC边上点P的坐标为(a,b),那么这个点在△A′B′C′中的对应点P′的坐标为()A.(a+6,b-2) B.(a+6,b+2)C.(-a+6,-b) D.(-a+6,b+2)解析:根据三对对应点的坐标,得出变换规律,再让点P的坐标也做相应变化.∵A(-3,-2),B(-2,0),C(-1,-3),A′(3,0),B′(4,2),C′(5,-1),∴△ABC向右平移6个单位,向上平移2个单位得到△A′B′C′.∵△ABC边上点P的坐标为(a,b),∴点P变换后的对应点P′的坐标为(a+6,b+2).应选B.方法总结:坐标系中图形上所有点的平移变化规律是一致的,解决此类问题的关键是根据对应点找到各对应点之间的平移变化规律.【类型二】平移作图如图,在平面直角坐标系中,P(a,b)是△ABC的边AC上一点,△ABC经平移后点P的对应点为P1(a+6,b+2).(1)请画出上述平移后的△A 1B 1C 1,并写出点A 、C 、A 1、C 1的坐标; (2)求出以A 、C 、A 1、C 1为顶点的四边形的面积.解析:(1)横坐标加6,纵坐标加2,说明向右移动了6个单位,向上平移了2个单位;(2)以A 、C 、A 1、C 1为顶点的四边形的面积可分割为以AC 1为底的2个三角形的面积.解:(1)△A 1B 1C 1如下列图,各点的坐标分别为A (-3,2)、C (-2,0)、A 1(3,4)、C 1(4,2);(2)如图,连接AA 1、CC 1.S △AC 1A 1=12×7×2=7,S △AC 1C =12×7×2=7,故S 四边形ACC 1A 1=S △AC 1A 1+S △AC 1C =7+7=14.方法总结:坐标系中图形平移的坐标变化规律为:左右移动改变点的横坐标,左减右加;上下移动改变点的纵坐标,下减上加.求四边形的面积通常转化为求几个三角形的面积的和.探究点三:平面坐标系中点及图形平移的规律探究如图,一个动点在第一象限及x 轴、y 轴上运动,在第1秒钟,它从原点运动到(1,0),然后接着按图中箭头所示方向运动,即(0,0)→(1,0)→(1,1)→(0,1)→…,且每秒移动一个单位,那么第2021秒时动点所在位置的坐标是________.解析:方法一:动点运动的规律:(0,0),动点运动了0秒;(1,1),动点运动了1×2=2(秒),接着向左运动;(2,2),动点运动了2×3=6(秒),接着向下运动;(3,3),动点运动了3×4=12(秒),接着向左运动;(4,4),动点运动了4×5=20(秒),接着向下运动;…于是会出现:(44,44),动点运动了44×45=1980(秒),接着动点向下运动,而2021-1980=31,故动点的位置为(44,44-31),即(44,13).方法二:由题目可以知道,动点运动的速度是每秒钟运动一个单位长度,(0,0)→(1,0)→(1,1)→(0,1)用的秒数分别是1秒钟,2秒钟,3秒钟,到(0,2)用4秒,到(2,2)用6秒,到(2,0)用8秒,到(3,0)用9秒,到(3,3)用12秒,到(0,4)用16秒,依次类推,到(5,5)用30秒.由上面的结论,我们可以得到的第一象限角平分线上的点从(0,0)到(1,1)用2秒,到(2,2)用6秒,到(3,3)用12秒,那么由(n,n)到(n+1,n+1)所用时间增加(2n +2)秒,这样可以先确定第2021秒时动点所在的正方形,然后就可以进一步推得点的坐标是(44,13).方法三:该动点每一次从一个轴走到另一个轴所走的步数要比上一次多走一横步,多走一竖步,共多走两步.从(0,0)点走到(0,1)点共要3步,从(0,1)点走到(2,0)点共5步……当n为偶数时,从(0,n-1)点到(n,0)点共走(2n+1)步;当n为奇数时,从(n-1,0)点到(0,n)点共走(2n +1)步,这里n=1,2,3,4,….∵3+5+7+…+(2n+1)=n(n+2)=(n+1)2-1,∴当n=44时,n(n+2)=(n+1)2-1=452-1=2024,离2021最近,此时n为偶数,即该过程是从(0,43)到(44,0-2021=13,即从(44,0)向上“退〞13步即可.当到2021秒时动点所在的位置为(44,13).故答案为(44,13).方法总结:此类归纳探索猜想型问题的解题关键是总结规律,由特殊到一般的归纳思想来确定点所在的大致位置,进而确定该点的坐标.三、板书设计用坐标表示平移:横坐标右移加,左移减;纵坐标上移加,下移减.通过本课时的学习,学生经历图形坐标变化与图形平移之间的关系的探索过程,掌握空间与图形的根底知识和根本作图技巧,丰富对现实空间及图形的认识,建立初步的空间观念,培养形象思维能力,激发数学学习的好奇心与求知欲.教学过程中让学生能积极参与数学学习活动,积极交流合作,体验数学活动的乐趣。
华师大版八下数学17.4.2反比例函数的图象和性质教学设计
华师大版八下数学17.4.2反比例函数的图象和性质教学设计一. 教材分析华师大版八下数学17.4.2反比例函数的图象和性质是本节课的教学内容。
本节课是在学生学习了函数、正比例函数的基础上进行的,是初中数学的重要内容,也是中考的热点。
反比例函数的图象和性质既有规律性,又有特殊性,需要学生通过观察、分析、归纳、总结等过程来掌握。
二. 学情分析八年级的学生已经具备了一定的函数知识,对正比例函数有了初步的认识,但反比例函数作为一种新的函数形式,对学生来说是一个新的挑战。
学生需要通过观察、实践、探究等活动,来理解和掌握反比例函数的图象和性质。
三. 教学目标1.知识与技能:使学生掌握反比例函数的图象和性质,能够运用反比例函数解决一些实际问题。
2.过程与方法:通过观察、分析、归纳、总结等过程,培养学生独立思考、合作交流的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的数学素养,使学生感受到数学的美。
四. 教学重难点1.反比例函数的图象和性质的规律性。
2.如何运用反比例函数解决实际问题。
五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生观察、分析、归纳、总结,培养学生独立思考、合作交流的能力。
六. 教学准备1.教学PPT。
2.反比例函数的图象和性质的相关案例。
3.学生分组合作的准备。
七. 教学过程1.导入(5分钟)通过一个实际问题,引入反比例函数的概念,激发学生的学习兴趣。
2.呈现(10分钟)呈现反比例函数的图象和性质,让学生观察、分析,引导学生发现其中的规律。
3.操练(10分钟)让学生通过实践,自己画出反比例函数的图象,验证性质,加深对反比例函数的理解。
4.巩固(10分钟)通过一些练习题,让学生巩固反比例函数的图象和性质,能够运用反比例函数解决实际问题。
5.拓展(10分钟)引导学生思考反比例函数在实际生活中的应用,提高学生运用数学解决实际问题的能力。
6.小结(5分钟)对本节课的内容进行小结,使学生明确反比例函数的图象和性质,以及如何运用反比例函数解决实际问题。
人教版八年级数学下册反比例函数知识点归纳(重点)
人教版八年级数学下册反比例函数知识点归纳和典型例题(一)知识结构(二)学习目标1.理解并掌握反比例函数的概念,能根据实际问题中的条件确定反比例函数的解析式(k为常数,),能判断一个给定函数是否为反比例函数.2.能描点画出反比例函数的图象,会用代定系数法求反比例函数的解析式,进一步理解函数的三种表示方法,即列表法、解析式法和图象法的各自特点.3.能根据图象数形结合地分析并掌握反比例函数(k为常数,)的函数关系和性质,能利用这些函数性质分析和解决一些简单的实际问题.4.对于实际问题,能“找出常量和变量,建立并表示函数模型,讨论函数模型,解决实际问题”的过程,体会函数是刻画现实世界中变化规律的重要数学模型.5.进一步理解常量与变量的辨证关系和反映在函数概念中的运动变化观点,进一步认识数形结合的思想方法.(三)重点难点1.重点是反比例函数的概念的理解和掌握,反比例函数的图象及其性质的理解、掌握和运用.2.难点是反比例函数及其图象的性质的理解和掌握.二、基础知识(一)反比例函数的概念1.()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2.()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例函数的解析式;3.反比例函数的自变量,故函数图象与x轴、y轴无交点.(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称).(三)反比例函数及其图象的性质1.函数解析式:()2.自变量的取值范围:3.图象:(1)图象的形状:双曲线.越大,图象的弯曲度越小,曲线越平直.越小,图象的弯曲度越大.(2)图象的位置和性质:与坐标轴没有交点,称两条坐标轴是双曲线的渐近线.当时,图象的两支分别位于一、三象限;在每个象限内,y随x的增大而减小;当时,图象的两支分别位于二、四象限;在每个象限内,y随x的增大而增大.(3)对称性:图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上.图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上.4.k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PA⊥x轴于A点,PB⊥y轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是).如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QC⊥PA的延长线于C,则有三角形PQC的面积为.图1 图25.说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论.(2)直线与双曲线的关系:当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称.(3)反比例函数与一次函数的联系.(四)实际问题与反比例函数1.求函数解析式的方法:(1)待定系数法;(2)根据实际意义列函数解析式.2.注意学科间知识的综合,但重点放在对数学知识的研究上.(五)充分利用数形结合的思想解决问题.三、例题分析1.反比例函数的概念(1)下列函数中,y是x的反比例函数的是().A.y=3x B.C.3xy=1 D.(2)下列函数中,y是x的反比例函数的是().A.B.C.D.答案:(1)C;(2)A.2.图象和性质(1)已知函数是反比例函数,①若它的图象在第二、四象限内,那么k=___________.②若y随x的增大而减小,那么k=___________.(2)已知一次函数y=ax+b的图象经过第一、二、四象限,则函数的图象位于第________象限.(3)若反比例函数经过点(,2),则一次函数的图象一定不经过第_____象限.(4)已知a·b<0,点P(a,b)在反比例函数的图象上,则直线不经过的象限是().A.第一象限B.第二象限C.第三象限D.第四象限(5)若P(2,2)和Q(m,)是反比例函数图象上的两点,则一次函数y=kx+m的图象经过().A.第一、二、三象限B.第一、二、四象限C.第一、三、四象限D.第二、三、四象限(6)已知函数和(k≠0),它们在同一坐标系内的图象大致是().A.B.C.D.答案:(1)①②1;(2)一、三;(3)四;(4)C;(5)C;(6)B.3.函数的增减性(1)在反比例函数的图象上有两点,,且,则的值为().A.正数B.负数C.非正数D.非负数(2)在函数(a为常数)的图象上有三个点,,,则函数值、、的大小关系是().A.<<B.<<C.<<D.<<(3)下列四个函数中:①;②;③;④.y随x的增大而减小的函数有().A.0个B.1个C.2个D.3个(4)已知反比例函数的图象与直线y=2x和y=x+1的图象过同一点,则当x>0时,这个反比例函数的函数值y随x的增大而(填“增大”或“减小”).答案:(1)A;(2)D;(3)B.注意,(3)中只有②是符合题意的,而③是在“每一个象限内” y随x的增大而减小.4.解析式的确定(1)若与成反比例,与成正比例,则y是z的().A.正比例函数B.反比例函数C.一次函数D.不能确定(2)若正比例函数y=2x与反比例函数的图象有一个交点为(2,m),则m=_____,k=________,它们的另一个交点为________.(3)已知反比例函数的图象经过点,反比例函数的图象在第二、四象限,求的值.(4)已知一次函数y=x+m与反比例函数()的图象在第一象限内的交点为P (x 0,3).①求x 0的值;②求一次函数和反比例函数的解析式.(5)为了预防“非典”,某学校对教室采用药薰消毒法进行消毒.已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧完后,y与x 成反比例(如图所示),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克.请根据题中所提供的信息解答下列问题:①药物燃烧时y关于x的函数关系式为___________,自变量x 的取值范围是_______________;药物燃烧后y关于x的函数关系式为_________________.②研究表明,当空气中每立方米的含药量低于1.6毫克时学生方可进教室,那么从消毒开始,至少需要经过_______分钟后,学生才能回到教室;③研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10 分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?答案:(1)B;(2)4,8,(,);(3)依题意,且,解得.(4)①依题意,解得②一次函数解析式为,反比例函数解析式为.(5)①,,;②30;③消毒时间为(分钟),所以消毒有效.5.面积计算(1)如图,在函数的图象上有三个点A、B、C,过这三个点分别向x轴、y 轴作垂线,过每一点所作的两条垂线段与x轴、y轴围成的矩形的面积分别为、、,则().A.B.C.D.第(1)题图第(2)题图(2)如图,A、B是函数的图象上关于原点O对称的任意两点,AC//y轴,BC//x 轴,△ABC的面积S,则().A.S=1 B.1<S<2C.S=2 D.S>2(3)如图,Rt△AOB的顶点A在双曲线上,且S△AOB=3,求m的值.第(3)题图第(4)题图(4)已知函数的图象和两条直线y=x,y=2x在第一象限内分别相交于P1和P2两点,过P1分别作x轴、y轴的垂线P1Q1,P1R1,垂足分别为Q1,R1,过P2分别作x 轴、y轴的垂线P2 Q 2,P2 R 2,垂足分别为Q 2,R 2,求矩形O Q 1P1 R 1和O Q 2P2 R 2的周长,并比较它们的大小.(5)如图,正比例函数y=kx(k>0)和反比例函数的图象相交于A、C两点,过A作x轴垂线交x轴于B,连接BC,若△ABC面积为S,则S=_________.第(5)题图第(6)题图(6)如图在Rt△ABO中,顶点A是双曲线与直线在第四象限的交点,AB⊥x轴于B且S△ABO=.①求这两个函数的解析式;②求直线与双曲线的两个交点A、C的坐标和△AOC的面积.(7)如图,已知正方形OABC的面积为9,点O为坐标原点,点A、C分别在x轴、y轴上,点B在函数(k>0,x>0)的图象上,点P (m,n)是函数(k>0,x>0)的图象上任意一点,过P分别作x轴、y轴的垂线,垂足为E、F,设矩形OEPF在正方形OABC以外的部分的面积为S.①求B点坐标和k的值;②当时,求点P的坐标;③写出S关于m的函数关系式.答案:(1)D;(2)C;(3)6;(4),,矩形O Q 1P1 R 1的周长为8,O Q 2P2 R 2的周长为,前者大.(5)1.(6)①双曲线为,直线为;②直线与两轴的交点分别为(0,)和(,0),且A(1,)和C(,1),因此面积为4.(7)①B(3,3),;②时,E(6,0),;③.6.综合应用(1)若函数y=k1x(k1≠0)和函数(k2 ≠0)在同一坐标系内的图象没有公共点,则k1和k2().A.互为倒数B.符号相同C.绝对值相等D.符号相反(2)如图,一次函数的图象与反比例数的图象交于A、B两点:A(,1),B(1,n).①求反比例函数和一次函数的解析式;②根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.(3)如图所示,已知一次函数(k≠0)的图象与x 轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D,若OA=OB=OD=1.①求点A、B、D的坐标;②求一次函数和反比例函数的解析式.(4)如图,一次函数的图象与反比例函数的图象交于第一象限C、D两点,坐标轴交于A、B两点,连结OC,OD(O是坐标原点).①利用图中条件,求反比例函数的解析式和m的值;②双曲线上是否存在一点P,使得△POC和△POD的面积相等?若存在,给出证明并求出点P的坐标;若不存在,说明理由.(5)不解方程,判断下列方程解的个数.①;②.答案:(1)D.(2)①反比例函数为,一次函数为;②范围是或.(3)①A(0,),B(0,1),D(1,0);②一次函数为,反比例函数为.(4)①反比例函数为,;②存在(2,2).(5)①构造双曲线和直线,它们无交点,说明原方程无实数解;②构造双曲线和直线,它们有两个交点,说明原方程有两个实数解.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.3 反比例函数的应用
学习目标:
1.综合运用一次函数和反比例函数的知识解决有关问题;
2.借助一次函数和反比例函数的图象解决某些简单的实际问题.
3.通过看图(象)、识图(象)、读图(象),体会用“数、形”结合思想解答函数题.
一、创设情境
已知正比例函数y=ax和反比例函数xby的图象相交于点(1,2),求两函数解析式.
分析 根据题意可作出图象.点(1,2)在正比例函数和反比例函数图象上,把点(1,2)
代入正比例函数和反比例函数的解析式中,求出a和b.
解
.
二、探究归纳
综合运用一次函数和反比例函数的知识解题,一般先根据题意画出图象,借助图
象和题目中提供的信息解题.
三、实践应用
例1 已知直线y=x+b经过点A(3,0),并与双曲线xky的交点为B(-2,m)和C,
求k、b的值.
解
例2 已知反比例函数xky1的图象与一次函数y=k2x-1的图象交于A(2,1).
(1)分别求出这两个函数的解析式;
(2)试判断A点关于坐标原点的对称点与两个函数图象的关系.
分析 (1)因为点A在反比例函数和一次函数的图象上,把A点的坐标代入这两个解析
式即可求出k1、k2的值.
(2)把点A关于坐标原点的对称点A′坐标代入一次函数和反比例函数解析式,可知
A
′是否在这两个函数图象上.
解
例3 已知一次函数y=kx+b的图象经过点A(0,1)和点B(a,-3a),a<0,且点B在
反比例函数的xy3的图象上.
(1)求a的值.(2)求一次函数的解析式,并画出它的图象.
(3)利用画出的图象,求当这个一次函数y的值在-1≤y≤3范围内时,相应的x的
取值范围.
(4)如果P(m,y1)、Q(m+1,y2)是这个一次函数图象上的两点,试比较y1与y2的大小.
分析 (1)由于点A、点B在一次函数图象上,点B在反比例函数图象上,把这些点的
坐标代入相应的函数解析式中,可求出k、b和a的值.
四、交流反思
1.综合运用一次函数和反比例函数求解两种函数解析式,往往仍用待定系数法.
2.观察图象,把图象中提供、展现的信息转化为与两函数有关的知识来解题.
五、检测反馈
1.已知一次函数y=kx+b的图象过点A(0,1)和点B(a,-3a)(a>0),且点B在反比
例函数xy3的图象上,求a及一次函数式.
2.已知关于x的一次函数y=mx+3n和反比例函数xnmy52图象都经过点(1,-
2),求这个一次函数与反比例函数的解析式.
3、如图,一次函数y=kx+b的图象与反比例函数xmy的图象交于A、B两点.
(1)利用图象中的条件,求反比例函数和一次函数的解析式;
(2)根据图象写出使一次函数的值大于反比例函数值的x的取值范围.
提示:(1)把A、B两点坐标代入两解析式,即可求得一次函数和反比例函数解析式 .
(2)因为图象上每一点的纵坐标与函数值是相对应的,一次函数值大于反比例函数值,
反映在图象上,自变量取相同的值时,一次
函数图象上点的纵坐标大于反比例函数图
象上点的纵坐标.
4.如图,点P是直线221xy与双曲线xky在第一象限内的一个交点,直线
221xy
与x轴、y轴的交点分别为A、C,过P作PB垂直于x轴,若AB+PB=9.
(1)求k的值;(2)求△PBC的面积.
5、如图,已知一次函数y=kx+b的图象与反比例函数xy8的图象交于A、B两
点,且点A的横坐标和点B的纵坐标都是-2.
(1)求一次函数的解析式;(2)求△AOB的面积.
6 如图,点P是一个反比例函数与正比例函数2yx的图象的交点,PQ垂直于
x
轴,垂足Q的坐标为(2,0).
(1) 求这个反比例函数的解析式.
(2) 如果点M在这个反比例函数的
图象上,且△MPQ的面积为6,求点M的坐
标.
O
Q
x
P
y
7、已知:如图,在直角坐标系中,O为原点,点A、B的坐标分别为(333,0)、
(3+33,0), 点C、D在一个反比例函数的图象上,且∠AOC=45º,∠ABC=30°
,AB=BC,
DA=DB.
求:点C、D两点的坐标.
O A B x
C
y
8.如图,在等腰直角三角形ABC中,O是斜边AC的中点,P是斜边AC上的一个动点,
D为BC上的一点,且PB=PD,DE⊥AC,垂足为点E
.
求证:(1)PE=BO;
(2)设AC=2,AP=x,四边形PBDE的面积为y,求
y与x
之间的函数关系式,并写出函数的定义域.
A
B
C
P
D
E
O