高考物理带电粒子创新题
高考物理带电粒子在电场中的运动解题技巧和训练方法及练习题(含答案)

高考物理带电粒子在电场中的运动解题技巧和训练方法及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
高考物理带电粒子在电场中的运动解题技巧和训练方法及练习题(含答案)

高考物理带电粒子在电场中的运动解题技巧和训练方法及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,一质量为m 、电荷量为+q 的粒子从竖直虚线上的P 点以初速度v 0水平向左射出,在下列不同情形下,粒子经过一段时间后均恰好经过虚线右侧的A 点.巳知P 、A 两点连线长度为l ,连线与虚线的夹角为α=37°,不计粒子的重力,(sin 37°=0.6,cos 37°=0.8).(1)若在虚线左侧存在垂直纸面向外的匀强磁场,求磁感应强度的大小B 1;(2)若在虚线上某点固定一个负点电荷,粒子恰能绕该负点电荷做圆周运动,求该负点电荷的电荷量Q (已知静电力常量为是);(3)若虚线的左侧空间存在垂直纸面向外的匀强磁场,右侧空间存在竖直向上的匀强电场,粒子从P 点到A 点的过程中在磁场、电场中的运动时间恰好相等,求磁场的磁感应强度的大小B 2和匀强电场的电场强度大小E .【答案】(1)0152mv B ql = (2)2058mv l Q kq = (3)0253mv B ql π= 220(23)9mv E qlππ-=【解析】 【分析】 【详解】(1)粒子从P 到A 的轨迹如图所示:粒子在磁场中做匀速圆周运动,设半径为r 1 由几何关系得112cos 25r l l α== 由洛伦兹力提供向心力可得2011v qv B m r =解得:0 152mv Bql=(2)粒子从P到A的轨迹如图所示:粒子绕负点电荷Q做匀速圆周运动,设半径为r2由几何关系得252cos8lr lα==由库仑力提供向心力得2222vQqk mr r=解得:258mv lQkq=(3)粒子从P到A的轨迹如图所示:粒子在磁场中做匀速圆周运动,在电场中做类平抛运动粒子在电场中的运动时间00sin35l ltv vα==根据题意得,粒子在磁场中运动时间也为t,则2Tt=又22mTqBπ=解得0253mvBqlπ=设粒子在磁场中做圆周运动的半径为r,则0v t rπ=解得:35l r π=粒子在电场中沿虚线方向做匀变速直线运动,21cos 22qE l r t mα-=⋅ 解得:220(23)9mv E qlππ-=2.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析

高考物理带电粒子在磁场中的运动解题技巧和训练方法及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图,区域I 内有与水平方向成45°角的匀强电场1E ,区域宽度为1d ,区域Ⅱ内有正交的有界匀强磁场B 和匀强电场2E ,区域宽度为2d ,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m 、电量大小为q 的微粒在区域I 左边界的P 点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q 点穿出,其速度方向改变了30,重力加速度为g ,求:(1)区域I 和区域Ⅱ内匀强电场的电场强度12E E 、的大小. (2)区域Ⅱ内匀强磁场的磁感应强度B 的大小. (3)微粒从P 运动到Q 的时间有多长.【答案】(1)12mg E =2mgE q =122m gd 121626d d gd gd π+ 【解析】 【详解】(1)微粒在区域I 内水平向右做直线运动,则在竖直方向上有:1sin45qE mg ︒= 求得:12mgE =微粒在区域II 内做匀速圆周运动,则重力和电场力平衡,有:2mg qE = 求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d =1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=2.如图所示,半径r =0.06m 的半圆形无场区的圆心在坐标原点O 处,半径R =0.1m ,磁感应强度大小B =0.075T 的圆形有界磁场区的圆心坐标为(0,0.08m ),平行金属板MN 的极板长L =0.3m 、间距d =0.1m ,极板间所加电压U =6.4x102V ,其中N 极板收集到的粒子全部中和吸收.一位于O 处的粒子源向第一、二象限均匀地发射速度为v 的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x 轴正方向,已知粒子在磁场中的运动半径R 0=0.08m ,若粒子重力不计、比荷qm=108C/kg 、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6. (1)求粒子的发射速度v 的大小;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,求它打出磁场时的坐标: (3)N 板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s ;(2)(0,0.18m );(3)29% 【解析】 【详解】(1)由洛伦兹力充当向心力,即qvB =m 2v R可得:v =6×105m/s ;(2)若粒子在O 点入射方向与x 轴负方向夹角为37°,作出速度方向的垂线与y 轴交于一点Q ,根据几何关系可得PQ=0.0637cos =0.08m ,即Q 为轨迹圆心的位置; Q 到圆上y 轴最高点的距离为0.18m-0.0637sin =0.08m ,故粒子刚好从圆上y 轴最高点离开; 故它打出磁场时的坐标为(0,0.18m );(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y=12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180×100%=29%3.如图甲所示,在直角坐标系0≤x≤L区域内有沿y轴正方向的匀强电场,右侧有一个以点(3L,0)为圆心、半径为L的圆形区域,圆形区域与x轴的交点分别为M、N.现有一质量为m、带电量为e的电子,从y轴上的A点以速度v0沿x轴正方向射入电场,飞出电场后从M点进入圆形区域,此时速度方向与x轴正方向的夹角为30°.不考虑电子所受的重力.(1)求电子进入圆形区域时的速度大小和匀强电场场强E的大小;(2)若在圆形区域内加一个垂直纸面向里的匀强磁场,使电子穿出圆形区域时速度方向垂直于x轴.求所加磁场磁感应强度B的大小和电子刚穿出圆形区域时的位置坐标;(3)若在电子刚进入圆形区域时,在圆形区域内加上图乙所示变化的磁场(以垂直于纸面向外为磁场正方向),最后电子从N点处飞出,速度方向与进入磁场时的速度方向相同.请写出磁感应强度B0的大小、磁场变化周期T各应满足的关系表达式.【答案】(1)(2)(3)(n=1,2,3…)(n=1,2,3…)【解析】(1)电子在电场中作类平抛运动,射出电场时,速度分解图如图1中所示.由速度关系可得:解得:由速度关系得:v y=v0tanθ=v0在竖直方向:而水平方向:解得:(2)根据题意作图如图1所示,电子做匀速圆周运动的半径R=L根据牛顿第二定律:解得:根据几何关系得电子穿出圆形区域时位置坐标为(,-)(3)电子在在磁场中最简单的情景如图2所示.在磁场变化的前三分之一个周期内,电子的偏转角为60°,设电子运动的轨道半径为r,运动的T0,粒子在x轴方向上的位移恰好等于r1;在磁场变化的后三分之二个周期内,因磁感应强度减半,电子运动周期T′=2T0,故粒子的偏转角度仍为60°,电子运动的轨道半径变为2r,粒子在x轴方向上的位移恰好等于2r.综合上述分析,则电子能到达N点且速度符合要求的空间条件是:3rn=2L(n=1,2,3…)而:解得:(n=1,2,3…)应满足的时间条件为: (T0+T′)=T而:解得(n=1,2,3…)点睛:本题的靓点在于第三问,综合题目要求及带电粒子运动的半径和周期关系,则符合要求的粒子轨迹必定是粒子先在正B0中偏转60°,而后又在− B0中再次偏转60°,经过n次这样的循环后恰恰从N点穿出.先从半径关系求出磁感应强度的大小,再从周期关系求出交变磁场周期的大小.4.电子扩束装置由电子加速器、偏转电场和偏转磁场组成.偏转电场的极板由相距为d的两块水平平行放置的导体板组成,如图甲所示.大量电子由静止开始,经加速电场加速后,连续不断地沿平行板的方向从两板正中间OO’射入偏转电场.当两板不带电时,这些电子通过两板之间的时间为2t0;:当在两板间加最大值为U0、周期为2t0的电压(如图乙所示)时,所有电子均能从两板间通过,然后进入竖直宽度足够大的匀强酸场中,最后打在竖直放置的荧光屏上.已知磁场的水平宽度为L,电子的质量为m、电荷量为e,其重力不计.(1)求电子离开偏转电场时的位置到OO’的最远位置和最近位置之间的距离(2)要使所有电子都能垂直打在荧光屏上,①求匀强磁场的磁感应强度B②求垂直打在荧光屏上的电子束的宽度△y【答案】(1)2010U e y t dm ∆= (2)①00U t B dL =②2010U e y y t dm∆=∆= 【解析】 【详解】(1)由题意可知,从0、2t 0、4t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最大,在这种情况下,电子的最大距离为:2222000max 00000311222y U e U e U e y at v t t t t dm dm dm=+=+= 从t 0、3t 0、……等时刻进入偏转电场的电子离开偏转电场时的位置到OO ′的距离最小,在这种情况下,电子的最小距离为:220min 001122U e y at t dm== 最远位置和最近位置之间的距离:1max min y y y ∆=-,2010U e y t dm∆=(2)①设电子从偏转电场中射出时的偏向角为θ,由于电子要垂直打在荧光屏上,所以电子在磁场中运动半径应为:sin L R θ=设电子离开偏转电场时的速度为v 1,垂直偏转极板的速度为v y ,则电子离开偏转电场时的偏向角为θ,1sin y v v θ=,式中00y U ev t dm= 又:1mv R Be =解得:00U tB dL=②由于各个时刻从偏转电场中射出的电子的速度大小相等,方向相同,因此电子进入磁场后做圆周运动的半径也相同,都能垂直打在荧光屏上.由第(1)问知电子离开偏转电场时的位置到OO ′的最大距离和最小距离的差值为△y 1, 所以垂直打在荧光屏上的电子束的宽度为:2010U e y y t dm∆=∆=5.如图所示,在第一象限内存在匀强电场,电场方向与x 轴成45°角斜向左下,在第四象限内有一匀强磁场区域,该区域是由一个半径为R 的半圆和一个长为2R 、宽为2R的矩形组成,磁场的方向垂直纸面向里.一质量为m 、电荷量为+q 的粒子(重力忽略不计)以速度v 从Q(0,3R)点垂直电场方向射入电场,恰在P(R ,0)点进入磁场区域.(1)求电场强度大小及粒子经过P点时的速度大小和方向;(2)为使粒子从AC边界射出磁场,磁感应强度应满足什么条件;(3)为使粒子射出磁场区域后不会进入电场区域,磁场的磁感应强度应不大于多少?【答案】(1)22mvE=;2v,速度方向沿y轴负方向(2)82225mv mvBqR qR≤≤(3)()22713mvqR-【解析】【分析】【详解】(1)在电场中,粒子沿初速度方向做匀速运动132cos4522cos45RL R R=-︒=︒1L vt=沿电场力方向做匀加速运动,加速度为a22sin452L R R=︒=2212L at=qEam=设粒子出电场时沿初速度和沿电场力方向分运动的速度大小分别为1v、2v,合速度v'1v v =、2v at =,2tan v vθ=联立可得224mv E qR=进入磁场的速度22122v v v v =+='45θ=︒,速度方向沿y 轴负方向(2)由左手定则判定,粒子向右偏转,当粒子从A 点射出时,运动半径12Rr =由211mv qv B r =''得122mvB qR=当粒子从C 点射出时,由勾股定理得()222222R R r r ⎛⎫-+= ⎪⎝⎭解得258r R =由222mv qv B r =''得2825mvB qR=根据粒子在磁场中运动半径随磁场减弱而增大,可以判断,当82225mv mvB qR qR≤≤时,粒子从AC 边界射出(3)为使粒子不再回到电场区域,需粒子在CD 区域穿出磁场,设出磁场时速度方向平行于x 轴,其半径为3r ,由几何关系得222332R r r R ⎛⎫+-= ⎪⎝⎭解得()3714R r =由233mv qv B r =''得)322713mv B qR= 磁感应强度小于3B ,运转半径更大,出磁场时速度方向偏向x 轴下方,便不会回到电场中6.如图所示,在竖直平面内建立直角坐标系,y 轴沿竖直方向.在x = L 到x =2L 之间存在竖直向上的匀强电场和垂直坐标平面向里的匀强磁场,一个比荷(qm)为k 的带电微粒从坐标原点以一定初速度沿+x 方向抛出,进入电场和磁场后恰好在竖直平面内做匀速圆周运动,离开电场和磁场后,带电微粒恰好沿+x 方向通过x 轴上x =3L 的位置,已知匀强磁场的磁感应强度为B ,重力加速度为g .求:(1)电场强度的大小; (2)带电微粒的初速度;(3)带电微粒做圆周运动的圆心坐标.【答案】(1)g k (2)2gkB(3)2222232(,)28g k B L L k B g -【解析】 【分析】 【详解】(1)由于粒子在复合场中做匀速圆周运动,则:mg =qE ,又=qk m解得g E k=(2)由几何关系:2R cos θ=L ,粒子做圆周运动的向心力等于洛伦兹力:2v qvB m r= ;由cos y v vθ=在进入复合场之前做平抛运动:y gt =v0L v t =解得02g v kB=(3)由212h gt =其中2kBL t g = ,则带电微粒做圆周运动的圆心坐标:'32O x L =; 222'222sin 8O g k B L y h R k B g θ=-+=-7.如图,第一象限内存在沿y 轴负方向的匀强电场,电场强度大小为E ,第二、三、四象限存在方向垂直xOy 平面向外的匀强磁场,其中第二象限的磁感应强度大小为B ,第三、四象限磁感应强度大小相等,一带正电的粒子,从P (-d ,0)点沿与x 轴正方向成α=60°角平行xOy 平面入射,经第二象限后恰好由y 轴上的Q 点(图中未画出)垂直y 轴进入第一象限,之后经第四、三象限重新回到P 点,回到P 点时速度方向与入射方时相同,不计粒子重力,求:(1)粒子从P 点入射时的速度v 0; (2)第三、四象限磁感应强度的大小B /; 【答案】(1)3EB(2)2.4B 【解析】试题分析:(1)粒子从P 点射入磁场中做匀速圆周运动,画出轨迹如图,设粒子在第二象限圆周运动的半径为r ,由几何知识得: 2360d d dr sin sin α===︒ 根据200mv qv B r =得023qBdv =粒子在第一象限中做类平抛运动,则有21602qE r cost m -︒=(); 00y v qEt tan v mv α==联立解得03Ev B=(2)设粒子在第一象限类平抛运动的水平位移和竖直位移分别为x 和y ,根据粒子在第三、四象限圆周运动的对称性可知粒子刚进入第四象限时速度与x 轴正方向的夹角等于α.则有:x=v 0t , 2y v y t =得0322y v y tan x v α===由几何知识可得 y=r-rcosα= 132r = 则得23x d =所以粒子在第三、四象限圆周运动的半径为125323d d R sin α⎛⎫+ ⎪⎝⎭==粒子进入第三、四象限运动的速度00432v qBdv v cos α===根据2'v qvB m R=得:B′=2.4B考点:带电粒子在电场及磁场中的运动8.如图所示,在不考虑万有引力的空间里,有两条相互垂直的分界线MN 、PQ ,其交点为O .MN 一侧有电场强度为E 的匀强电场(垂直于MN ),另一侧有匀强磁场(垂直纸面向里).宇航员(视为质点)固定在PQ 线上距O 点为h 的A 点处,身边有多个质量均为m、电量不等的带负电小球.他先后以相同速度v0、沿平行于MN方向抛出各小球.其中第1个小球恰能通过MN上的C点第一次进入磁场,通过O点第一次离开磁场,OC=2h.求:(1)第1个小球的带电量大小;(2)磁场的磁感强度的大小B;(3)磁场的磁感强度是否有某值,使后面抛出的每个小球从不同位置进入磁场后都能回到宇航员的手中?如有,则磁感强度应调为多大.【答案】(1)20 12mvqEh=;(2)2EBv=;(3)存在,EBv'=【解析】【详解】(1)设第1球的电量为1q,研究A到C的运动:2112q Eh tm=2h v t=解得:212mvqEh=;(2)研究第1球从A到C的运动:12yq Ev hm=解得:0yv v=tan1yvvθ==,45oθ=,2v v=;研究第1球从C作圆周运动到达O的运动,设磁感应强度为B由2 1v q vBmR=得1mvRq B=由几何关系得:22sinR hθ=解得:2EBv=;(3)后面抛出的小球电量为q,磁感应强度B'①小球作平抛运动过程2hmx v t vqE==2yqEv hm=②小球穿过磁场一次能够自行回到A,满足要求:sinR xθ=,变形得:sinmvxqBθ'=解得:EBv'=.9.如图所示,在直角坐标系xOy平面内有两个同心圆,圆心在坐标原点O,小圆内部(I区)和两圆之间的环形区域(Ⅱ区)存在方向均垂直xOy平面向里的匀强磁场(图中未画出),I、Ⅱ区域磁场磁感应强度大小分别为B、2B。
压轴题 带电粒子在叠加场中运动(解析版)-2024年高考物理压轴题专项训练

带电粒子在叠加场中运动1.带电粒子在叠加场中的运动在高考物理中占据重要地位,是检验学生综合运用电场、磁场等物理知识解决复杂问题的能力的重要考点。
2.在命题方式上,这类题目通常以综合性强的计算题形式出现,可能涉及电场、磁场、重力场等多个叠加场的组合,要求考生分析带电粒子在这些叠加场中的受力情况、运动轨迹、速度变化等,并运用相应的物理公式和定理进行计算和推理。
3.备考时,考生应首先深入理解叠加场的基本原理和带电粒子在其中的运动规律,掌握电场力、洛伦兹力、重力等力的计算方法和叠加原理。
同时,考生需要熟悉相关的物理公式和定理,并能够灵活运用它们解决具体问题。
此外,考生还应注重实践练习,通过大量做题来提高自己的解题能力和速度。
考向一:带电粒子在叠加场中的直线运动1.带电粒子在电场和磁场的叠加场中做直线运动,电场力和洛伦兹力一定相互平衡,因此可利用二力平衡解题。
2.带电粒子在电场、磁场、重力场的叠加场中做直线运动,则粒子一定处于平衡状态,因此可利用平衡条件解题。
考向二:带电粒子在叠加场中的圆周运动1.带电粒子做匀速圆周运动,隐含条件是必须考虑重力,且电场力和重力平衡。
2.洛伦兹力提供向心力和带电粒子只在磁场中做圆周运动解题方法相同。
考向三:配速法处理带电粒子在叠加场中的运动1.若带电粒子在磁场中所受合力不会零,则粒子的速度会改变,洛伦兹力也会随着变化,合力也会跟着变化,则粒子做一般曲线运动,运动比较麻烦,此时,我们可以把初速度分解成两个分速度,使其一个分速度对应的洛伦兹力与重力(或电场力,或重力和电场力的合力)平衡,另一个分速度对应的洛伦兹力使粒子做匀速圆周运动,这样一个复杂的曲线运动就可以分解分两个比较常见的运动,这种方法叫配速法。
2.几种常见情况:常见情况处理方法初速度为0,有重力把初速度0,分解一个向左的速度v 1和一个向右的速度v 1初速度为0,不计重力把初速度0,分解一个向左的速度v 1和一个向右的速度v 1初速度为0,有重力把初速度0,分解一个斜向左下方的速度v 1和一个斜向右上方的速度v 1初速度为v 0,有重力把初速度v 0,分解速度v 1和速度v 201束缚类直线运动1如图所示,两个倾角分别为30°和60°的光滑绝缘斜面固定于水平地面上,并处于方向垂直纸面向里、磁感应强度为B 的匀强磁场中,两个质量为m 、带电荷量为+q 的小滑块甲和乙分别从两个斜面顶端由静止释放,运动一段时间后,两小滑块都将飞离斜面,在此过程中()A.甲滑块在斜面上运动的时间比乙滑块在斜面上运动的时间短B.甲滑块在斜面上运动的位移比乙滑块在斜面上运动的位移小C.甲滑块飞离斜面瞬间重力的瞬时功率比乙滑块飞离斜面瞬间重力的瞬时功率大D.两滑块在斜面上运动的过程中,重力的平均功率相等【答案】D【详解】A .小滑块飞离斜面时,洛伦兹力与重力的垂直斜面的分力平衡,有mg cos θ=qv m B 解得v m =mg cos θqB所以斜面角度越小,飞离斜面瞬间的速度越大,故在甲滑块飞离时速度较大,物体在斜面上运动的加速度恒定不变,由受力分析和牛顿第二定律可知加速度a =g sin θ,所以甲的加速度小于乙的加速度,因为甲的最大速度大于乙的最大速度,由v m =at 得,甲的时间大于乙的时间,故A 错误;B .由A 选项的分析和x =v 2m 2a得,甲的位移大于乙的位移,故B 错误;C .滑块飞离斜面瞬间重力的瞬时功率为P =mgv m sin θ=m 2g 2sin θ⋅cos θqB 则可知两滑块飞离斜面瞬间重力的瞬时功率均为P =3m 2g 28qB故C 错误;D .由平均功率的公式得P =mg ⋅v m2sin θ=m 2g 2sin θ⋅cos θ2qB因sin30°=cos60°,故两滑块重力的平均功率均为P =3m 2g 28qB 故D 正确。
高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)

高考物理带电粒子在电场中的运动解题技巧(超强)及练习题(含答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,OO′为正对放置的水平金属板M 、N 的中线.热灯丝逸出的电子(初速度重力均不计)在电压为U 的加速电场中由静止开始运动,从小孔O 射入两板间正交的匀强电场、匀强磁场(图中未画出)后沿OO′做直线运动.已知两板间的电压为2U ,两板长度与两板间的距离均为L ,电子的质量为m 、电荷量为e .(1)求板间匀强磁场的磁感应强度的大小B 和方向;(2)若保留两金属板间的匀强磁场不变,使两金属板均不带电,求从小孔O 射入的电子打到N 板上的位置到N 板左端的距离x . 【答案】(1)12mU B L e = 垂直纸面向外;(23L【解析】 【分析】(1)在电场中加速度,在复合场中直线运动,根据动能定理和力的平衡求解即可; (2)洛伦兹力提供向心力同时结合几何关系求解即可; 【详解】(1)电子通过加速电场的过程中,由动能定理有:212eU m v = 由于电子在两板间做匀速运动,则evB eE =,其中2U E L= 联立解得:12mUB L e=根据左手定则可判断磁感应强度方向垂直纸面向外;(2)洛伦兹力提供电子在磁场中做圆周运动所需要的向心力,有:2v evB m r=,其中由(1)得到2eUv m=设电子打在N 板上时的速度方向与N 板的夹角为θ,由几何关系有:2cos L r rθ-=由几何关系有:sin x r θ= 联立解得:3x L =. 【点睛】本题考查了带电粒子的加速问题,主要利用动能定理进行求解;在磁场中圆周运动,主要找出向心力的提供者,根据牛顿第二定律列出方程结合几何关系求解即可.2.如图,质量分别为m A=1kg、m B=2kg的A、B两滑块放在水平面上,处于场强大小E=3×105N/C、方向水平向右的匀强电场中,A不带电,B带正电、电荷量q=2×10-5C.零时刻,A、B用绷直的细绳连接(细绳形变不计)着,从静止同时开始运动,2s末细绳断开.已知A、B与水平面间的动摩擦因数均为μ=0.1,重力加速度大小g=10m/s2.求:(1)前2s内,A的位移大小;(2)6s末,电场力的瞬时功率.【答案】(1) 2m (2) 60W【解析】【分析】【详解】(1)B所受电场力为F=Eq=6N;绳断之前,对系统由牛顿第二定律:F-μ(m A+m B)g=(m A+m B)a1可得系统的加速度a1=1m/s2;由运动规律:x=12a1t12解得A在2s内的位移为x=2m;(2)设绳断瞬间,AB的速度大小为v1,t2=6s时刻,B的速度大小为v2,则v1=a1t1=2m/s;绳断后,对B由牛顿第二定律:F-μm B g=m B a2解得a2=2m/s2;由运动规律可知:v2=v1+a2(t2-t1)解得v2=10m/s电场力的功率P=Fv,解得P=60W3.如图甲所示,极板A、B间电压为U0,极板C、D间距为d,荧光屏到C、D板右端的距离等于C、D板的板长.A板O处的放射源连续无初速地释放质量为m、电荷量为+q的粒子,经电场加速后,沿极板C、D的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C、D板间未加电压时,粒子通过两板间的时间为t0;当C、D板间加上图乙所示电压(图中电压U1已知)时,粒子均能从C、D两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度. 【答案】(1)02qU L t m =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t = 解得:02qU L t m=(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动 偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK] 出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.4.如图1所示,光滑绝缘斜面的倾角θ=30°,整个空间处在电场中,取沿斜面向上的方向为电场的正方向,电场随时间的变化规律如图2所示.一个质量m=0.2kg ,电量q=1×10-5C的带正电的滑块被挡板P 挡住,在t=0时刻,撤去挡板P .重力加速度g=10m/s 2,求:(1)0~4s 内滑块的最大速度为多少? (2)0~4s 内电场力做了多少功? 【答案】(1)20m/s (2)40J 【解析】 【分析】对滑块受力分析,由牛顿运动定律计算加速度计算各速度. 【详解】【解】(l)在0~2 s 内,滑块的受力分析如图甲所示,电场力F=qE11sin F mg ma θ-=解得2110/a m s =在2 ---4 s 内,滑块受力分析如图乙所示22sin F mg ma θ+=解得2210/a m s =因此物体在0~2 s 内,以2110/a m s =的加速度加速,在2~4 s 内,2210/a m s =的加速度减速,即在2s 时,速度最大由1v a t =得,max 20/v m s =(2)物体在0~2s 内与在2~4s 内通过的位移相等.通过的位移max202v x t m == 在0~2 s 内,电场力做正功1160W F x J == - 在2~4 s 内,电场力做负功2220W F x J ==- 电场力做功W=40 J5.如图所示,荧光屏MN 与x 轴垂直放置,与x 轴相交于Q 点,Q 点的横坐标06x cm =,在第一象限y 轴和MN 之间有沿y 轴负方向的匀强电场,电场强度51.610/E N C =⨯,在第二象限有半径5R cm =的圆形磁场,磁感应强度0.8B T =,方向垂直xOy 平面向外.磁场的边界和x 轴相切于P 点.在P 点有一个粒子源,可以向x 轴上方180°范围内的各个方向发射比荷为81.010/qC kg m=⨯的带正电的粒子,已知粒子的发射速率60 4.010/v m s =⨯.不考虑粒子的重力、粒子间的相互作用.求:(1)带电粒子在磁场中运动的轨迹半径; (2)粒子从y 轴正半轴上射入电场的纵坐标范围; (3)带电粒子打到荧光屏上的位置与Q 点间的最远距离. 【答案】(1)5cm (2)010y cm ≤≤ (3)9cm 【解析】 【详解】(1)带电粒子进入磁场受到洛伦兹力的作用做圆周运动20v qv B m r=解得:05mv r cm qB== (2)由(1)问中可知r R =,取任意方向进入磁场的粒子,画出粒子的运动轨迹如图所示,由几何关系可知四边形1PO FO '为菱形,所以1//FO O P ',又O P '垂直于x 轴,粒子出射的速度方向与轨迹半径1FO 垂直,则所有粒子离开磁场时的方向均与x 轴平行,所以粒子从y 轴正半轴上射入电场的纵坐标范围为010y cm ≤≤.(3)假设粒子没有射出电场就打到荧光屏上,有000x v t =2012h at =qE a m=解得:18210h cm R cm =>=,说明粒子离开电场后才打到荧光屏上.设从纵坐标为y 的点进入电场的粒子在电场中沿x 轴方向的位移为x ,则0x v t =212y at =代入数据解得2x y =设粒子最终到达荧光屏的位置与Q 点的最远距离为H ,粒子射出的电场时速度方向与x 轴正方向间的夹角为θ,000tan 2y qE x v m v yv v θ===g所以()(00tan 22H x x x y y θ=-=g 由数学知识可知,当(022x y y = 4.5y cm =时H 有最大值,所以max 9H cm =6.长为L 的平行板电容器沿水平方向放置,其极板间的距离为d ,电势差为U ,有方向垂直纸面向里的磁感应强度大小为B 的匀强磁场.荧光屏MN 与电场方向平行,且到匀强电、磁场右侧边界的距离为x ,电容器左侧中间有发射质量为m 带+q 的粒子源,如图甲所示.假设a 、b 、c 三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O 点;b 粒子在电、磁场中向上偏转;c 粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a 、b 、c 粒子在原来位置上以各自的原速度水平射入电场,结果a 粒子仍恰好打在荧光屏上的O 点;b 、c 中有一个粒子也能打到荧光屏,且距O 点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.【答案】(1)242222222akL Bd q m UEmB d= (2)1()2xy dL=+ (3)11224==5UqyW dUqW yd【解析】【详解】据题意分析可作出abc三个粒子运动的示意图,如图所示.(1) 从图中可见电、磁场分开后,a粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O点,运动轨迹如图中Ⅰ所示.Uq Bqv d=, BdU v =, L LBd t v U==, 222122a Uq L B qdy t dm mU ==, 21()2a a k U U qy E m d Bd=- 242222222a k L B d q m U E mB d =(2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得12=122dy L L x +, 1()2x y d L =+(3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 22111·2Uq y t md =,11y Uq v t md =122221·2y Uq t m y t d v +=,22158qU y t md=, 124=5y y , 11224==5Uqy W d Uq W y d7.如图所示,虚线OL 与y 轴的夹角θ=450,在OL 上侧有平行于OL 向下的匀强电场,在OL 下侧有垂直纸面向外的匀强磁场,一质量为m 、电荷量为q (q >0)的粒子以速率v 0从y 轴上的M (OM =d )点垂直于y 轴射入匀强电场,该粒子恰好能够垂直于OL 进入匀强磁场,不计粒子重力。
高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案)

高考物理带电粒子在电场中的运动解题技巧及经典题型及练习题(含答案) 一、高考物理精讲专题带电粒子在电场中的运动 1.如图(a)所示,整个空间存在竖直向上的匀强电场(平行于纸面),在同一水平线上的两位置,以相同速率同时喷出质量均为m的油滴a和b,带电量为+q的a水平向右,不带电的b竖直向上.b上升高度为h时,到达最高点,此时a恰好与它相碰,瞬间结合成油滴p.忽略空气阻力,重力加速度为g.求
(1)油滴b竖直上升的时间及两油滴喷出位置的距离;
(2)匀强电场的场强及油滴a、b结合为p后瞬间的速度;
(3)若油滴p形成时恰位于某矩形区域边界,取此时为0t时刻,同时在该矩形区域加一
个垂直于纸面的周期性变化的匀强磁场,磁场变化规律如图(b)所示,磁场变化周期为T0
(垂直纸面向外为正),已知P始终在矩形区域内运动,求矩形区域的最小面积.(忽略
磁场突变的影响)
【答案】(1)2hg;2h(2)2mgq;Pvgh 方向向右上,与水平方向夹角为45°
(3)20min22
ghTs
【解析】 【详解】 (1)设油滴的喷出速率为0v,则对油滴b做竖直上抛运动,有
2002vgh
解得
02vgh
000vgt
解得
0
2htg
对油滴a的水平运动,有 000xvt
解得
0
2xh
(2)两油滴结合之前,油滴a做类平抛运动,设加速度为a,有
qEmgma,2012hat,解得ag,
2mgEq
设油滴的喷出速率为0v,结合前瞬间油滴a速度大小为av,方向向右上与水平方向夹角,则
0acosvv,00tanvat,解得a2vgh,45 两油滴的结束过程动量守恒,有:12pmvmv,联立各式,解得:pvgh,方向向右上,与水平方向夹45角 (3)因2qEmg,油滴p在磁场中做匀速圆周运动,设半径为r,周期为T,则
由2082ppvmqvmqTr 得04Tghr,由2prTv 得02
2014高考物理易错创新专题预测提分知识点优化解析18:带电粒子在复合场中的运动(含详解)
2014高考物理易错创新专题预测提分知识点优化解析18带电粒子在复合场中的运动(含详解)一、单项选择题(本大题共4小题,每小题6分,共24分,每小题只有一个选项符合题意) 1.如图所示,匀强电场方向竖直向上,匀强磁场方向水平指向纸外,有一电子(不计重力),恰能沿直线从左向右飞越此区域,若电子以相同的速率从右向左水平飞入该区域,则电子将( )A.沿直线飞越此区域B.向上偏转C.向下偏转D.向纸外偏转2.一个水平放置的挡板ab 中间有一小孔S ,一个质量为m 、带电量为+q 的带电小球,从S 处无初速度地进入一个足够大的匀强磁场中,磁场方向垂直纸面向里,磁感应强度大小为B ,如图所示.小球最后将向右做匀速直线运动,则( )A.小球最后的速度为mg2qBB.小球最后与ab 的距离为m 2g2q 2B 2C.磁场对小球共做功m 2g22q 2B 2D.以上说法都不对3.(创新题)如图所示,质量为m ,电荷量为e 的质子以某一初速度从坐标原点O 沿x 轴正方向进入场区,若场区仅存在平行于y 轴向上的匀强电场时,质子通过P(d ,d)点时的动能为5E k ;若场区仅存在垂直于xOy 平面的匀强磁场时,质子也能通过P 点.不计质子的重力.设上述匀强电场的电场强度大小为E ,匀强磁场的磁感应强度大小为B ,则下列说法中正确的是( ) A.E =k 3E ed B.E =k5E edC.BD.B4.如图,空间某一区域内存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A 点进入这个区域沿直线运动,从C 点离开区域;如果这个区域只有电场,则粒子从B 点离开场区;如果这个区域只有磁场,则粒子从D 点离开场区;设粒子在上述三种情况下,从A 到B 点、A 到C 点和A 到D 点所用的时间分别是t 1、t 2和t 3,比较t 1、t 2和t 3的大小,则有(粒子重力忽略不计)( )A.t 1=t 2=t 3B.t 2<t 1<t 3C.t 1=t 2<t 3D.t 1=t 3>t 2二、双项选择题(本大题共5小题,每小题8分,共40分,每小题有两个选项符合题意) 5.(易错题)场强为E 的匀强电场与磁感应强度为B 的匀强磁场正交,复合场的水平宽度为d ,竖直方向足够长,如图所示.现有一束带电荷量为+q 、质量为m 的粒子以各不相同的初速度v 0沿电场方向射入场区,则那些能飞出场区的粒子的动能增量ΔE k 可能为( )A.dq(E +B)B.qEd BC.qEdD.06.(易错题)在空间某一区域中既存在匀强电场,又存在匀强磁场.有一带电粒子,以某一速度从不同方向射入到该区域中(不计带电粒子受到的重力),则该带电粒子在区域中的运动情况可能是( )A.做匀速直线运动B.做匀速圆周运动C.做匀变速直线运动D.做匀变速曲线运动7.如图所示,竖直放置的两块很大的平行金属板a 、b ,相距为d ,ab 间的电场强度为E ,今有一带正电的微粒从a 板下边缘以初速度v 0竖直向上射入电场,当它飞到b 板时,速度大小不变,而方向变为水平方向,且刚好从高度也为d 的狭缝穿过b 板而进入bc 区域,bc 区域的宽度也为d ,所加电场大小为E ,方向竖直向上,磁感应强度方向垂直纸面向里,磁场磁感应强度大小等于E/v 0,重力加速度为g ,则下列关于粒子运动的有关说法正确的是( )A.粒子在ab 区域的运动时间为v 0gB.粒子在bc 区域中做匀速圆周运动,圆周半径r =dC.粒子在bc 区域中做匀速圆周运动,运动时间为πd6v 0D.粒子在ab 、bc 区域中运动的总时间为(π+6)d3v 08.北半球某处,地磁场水平分量B 1=0.8×10-4T ,竖直分量B 2=0.5×10-4T ,海水向北流动,海洋工作者测量海水的流速时,将两极板插入此海水中,保持两极板正对且垂线沿东西方向,两极板相距d =20 m ,如图所示,与两极板相连的电压表(可看做是理想电压表)示数为U =0.2 mV ,则( )A.西侧极板电势高,东侧极板电势低B.西侧极板电势低,东侧极板电势高C.海水的流速大小为0.125 m/sD.海水的流速大小为0.2 m/s9.环形对撞机是研究高能粒子的重要装置,其核心部件是一个高度真空的圆环状的空腔.若带电粒子初速度可视为零,经电压为U 的电场加速后,沿圆环切线方向注入对撞机的环状空腔内,空腔内存在着与圆环平面垂直的匀强磁场,磁感应强度大小为B.带电粒子将被限制在圆环状空腔内运动.要维持带电粒子在圆环内做半径确定的圆周运动,下列说法中正确的是( )A.对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B越大B.对于给定的加速电压,带电粒子的比荷q/m越大,磁感应强度B越小C.对于给定的带电粒子,加速电压U越大,粒子运动的周期越小D.对于给定的带电粒子,不管加速电压U多大,粒子运动的周期都不变三、计算题(本大题共2小题,共36分,要有必要的文字说明和解题步骤,有数值计算的要注明单位)10.(创新题)(16分)一种半导体材料称为“霍尔材料”,用它制成的元件称为“霍尔元件”,这种材料有可定向移动的电荷,称为“载流子”,每个载流子的电荷量大小为q=1.6×10-19C,霍尔元件在自动检测、控制领域得到了广泛应用,如录像机中用来测量录像磁鼓的转速、电梯中用来检测电梯门是否关闭以及自动控制升降电动机的电源的通断等.在一次实验中,一块霍尔材料制成的薄片宽ab=1.0×10-2m、长bc=4.0×10-2m、厚h=1.0×10-3 m,水平放置在竖直向上的磁感应强度B=2.0 T的匀强磁场中,bc方向通有I=3.0 A的电流,如图所示,由于磁场的作用,稳定后,在沿宽度方向上产生1.0×10-5 V的横向电压.(1)薄板中载流子定向运动的速率为多大?(2)这块霍尔材料中单位体积内的载流子个数为多少?11.(预测题)(20分)如图所示,M、N是竖直正对放置的两个平行金属板,S1、S2是M、N板上的两个小孔;N板的右侧有一个在竖直面内,以O为圆心的圆形区域,该区域内存在垂直圆面向外的匀强磁场,另有一个同样以O为圆心的半圆形荧光屏AO′C,已知S1、S2、O和荧光屏的中间位置O′在同一直线上,且AC⊥S1O′.当在M、N板间加恒定电压U时,一带正电离子在S1处由静止开始加速向S2孔运动,最后打在图示的荧光屏上的P处,∠COP=30°.若要让上述带正电离子(不计重力)仍在S1处由静止开始加速,最后打在图示的荧光屏下边缘C处,求M、N板间所加电压的大小.答案解析1.【解析】选C.电子在复合场中从左边进入时受力如图(a),沿直线从左向右飞越此区域,则f =F 电;电子从右边进入复合场区域时受力如图(b)所示.由电子受力方向与速度方向的关系知电子应在速度和力决定的平面内向下偏转做曲线运动.故选项C 正确.2.【解析】选B.由于洛伦兹力不做功,故C 错误.小球最后向右做匀速直线运动,则qvB =mg ,v =mg qB ,A 错误.由机械能守恒得,mgh =12mv 2,故h =m 2g2q 2B2,故B 正确. 3.【解析】选D.质子在电场中,d =v 0t ,d =v y 2t ,12m(v 20+v 2y )2=5E k ,v y =at ,a =eE m,解得E=k4E ed,A 、B 错误.再根据ev 0B =mv 20d ,B C 错误、D 正确.【变式备选】带电粒子(不计重力)以初速度v0从a 点进入匀强磁场,如图.运动中经过b 点,Oa =Ob.若撤去磁场,加一个与y 轴平行的匀强电场,仍以v 0从a 点进入电场,粒子仍能通过b 点,那么电场强度E 与磁感应强度B 之比E/B 为( )A.v 0B.1C.2v 0D.v 02【解析】选 C.粒子在磁场中运动时,qv 0B =mv 20r ,粒子在电场中运动时,r =v 0t ,r =12at 2,a=qE m .解得EB=2v 0,故C 正确. 4.【解析】选C.在复合场中沿直线运动时,带电粒子速度大小和方向都不变,只有电场时,粒子沿初速度方向的分速度不变,故t 1=t 2.只有磁场时,粒子做匀速圆周运动,速度大小不变,方向时刻改变.沿初速度方向的分速度不断减小.故t 1=t 2<t 3,C 正确.【变式备选】质量为m 的带电小球在正交的匀强电场、匀强磁场中做匀速圆周运动,轨道平面在竖直平面内,电场方向竖直向下,磁场方向垂直圆周所在平面向里,如图所示,由此可知( )A.小球带正电,沿顺时针方向运动B.小球带负电,沿顺时针方向运动C.小球带正电,沿逆时针方向运动D.小球带负电,沿逆时针方向运动【解析】选B.带电小球在复合场中做匀速圆周运动的条件是电场力和重力平衡,故电场力应竖直向上,则小球带负电,洛伦兹力提供向心力,再根据左手定则可以确定小球沿顺时针方向运动,故B 正确.5.【解析】选C 、D.带电粒子可从左侧或右侧飞出场区,由于洛伦兹力不做功,电场力做功与路径无关,所以从左侧飞出时ΔE k =0,从右侧飞出时ΔE k =qEd ,选项C 、D 正确.6.【解析】选A 、C.如果粒子受到的电场力和洛伦兹力平衡,则粒子做匀速直线运动,A 正确;如果粒子速度方向与磁感线平行,则粒子做匀变速直线运动,C 正确.7.【解题指南】解题时应注意以下几点: (1)由题意,本题需考虑带电微粒的重力.(2)在ab 区域,粒子竖直方向在重力作用下做减速运动,水平方向在电场力作用下做加速运动.(3)在bc 区域,粒子受重力、电场力和洛伦兹力.【解析】选A 、D.粒子在ab 区域运动时,竖直方向在重力作用下做匀减速运动,故v 0=gt ,t =v 0g ,A 正确.在水平方向,v 0=at ,a =qEm ,则qE =mg.在bc 区域,由于粒子所受电场力竖直向上,且qE =mg ,故粒子只在洛伦兹力作用下做匀速圆周运动.其轨道半径r =mv 0qB =mv 2qE ,又qE =mg ,v 20=2gd ,所以r =2d ,故B 错误;设粒子在bc 区域转过的角度为θ,则sin θ=d r=12,则θ=30°,所以粒子在bc 区域做匀速圆周运动的时间t 2=30°360°T =112·2πm qB =πmv 06qE ,或t 2=2πr 12v 0=πd 3v 0.故C 错.粒子在电场中运动时间t 1=2d v 0,故总时间t =t 1+t 2=(π+6)d 3v 0,故D 正确.8.【解析】选A 、D.由于海水向北流动,地磁场有竖直向下的分量,由左手定则可知,正电荷偏向西侧极板,负电荷偏向东侧极板,即西侧极板电势高,东侧极板电势低,故选项A 正确;对于流过两极板间的带电粒子有:qvB 2=q U d ,即v =2U B d =340.2100.51020⨯⨯⨯ m/s =0.2 m/s ,故选项D 正确.9.【解析】选B 、C.带电粒子经过加速电场后速度为v =2Uqm,带电粒子以该速度进入对撞机的环状空腔内,且在圆环内做半径确定的圆周运动,因此R =mvBq=2UmB 2q,对于给定的加速电压,即U 一定,则带电粒子的比荷q/m 越大,磁感应强度B 应越小,A 错误,B 正确;对于给定的带电粒子,运动周期T =2πRv ,加速电压越大,粒子的速度越大,则周期越小,故C 正确,D 错误.10. 【解析】(1)稳定时载流子在沿宽度方向上受到的磁场力和电场力平衡qvB =q Uab, (5分)v =U Bab = 1.0×10-52.0×1.0×10-2 m/s =5×10-4m/s (5分)(2)由电流的微观解释可得:I =nqvS.S =ab ·h 故n =I/qvS =3.75×1027个/m3(6分)答案:(1)5×10-4m/s (2)3.75×1027个/m 311.【解析】设离子的质量为m ,电荷量为q ,磁场的磁感应强度为B 、所在区域的半径为R ,离子加速后获得的速度为v. 当电压为U 时,由动能定理有qU =12mv 2①(4分)在磁场中,离子做匀速圆周运动,如图.由牛顿运动定律可知qvB =mv2r ②(4分)由①②式得U =r 2B 2q2m③(2分)其中,r =Rtan60°=3R ④(2分) 当电压为U ′时,离子打在C 处同理有U ′=r ′2B 2q2m ⑤(4分)其中,r ′=R ⑥(2分) 由③④⑤⑥可解得U ′=U3 (2分)答案:13U【总结提升】带电粒子在组合场中运动的分析方法(1)弄清组合场的情况,将粒子的运动分为不同的阶段,准确画出粒子的轨迹.(2)确定粒子在不同区域运动的规律.如电场中的加速类平抛运动、磁场中的圆周运动等,应用动能定理、运动的合成与分解、洛伦兹力提供向心力等规律列出各阶段方程.(3)将各阶段的运动联立起来,第一阶段的末速度就是第二阶段的初速度,根据各方程之间的关系求出问题的答案.。
高考真题物理难题选择
高考真题物理难题选择2021年的高考物理真题中出现了一道难题,让许多学生为之头疼。
这道题目是关于电荷在电场中受力的问题,需要运用电场力公式和牛顿第二定律进行解答。
下面就让我们来看看这道题目的具体内容及解题方法。
题目内容为:一个沿笛卡尔坐标系的x轴正方向的光滑水平导轨上放置一带电粒子Q,其电量为Q,在t=0时刻给予粒子Q一个沿着x轴负方向的初速度v0,设坐标原点O为轨道中所在的位置,另一空间位置B有一带电粒子Q0,其电量为1μC,质量为1mg,从小于0的某处以速度v0运动而来,假设B到O的距离d较之Q到O的速度v0*dt 的量级小很多,设Q所带电量Q0为1muC,则√(d^2+v0^2*t^2)的关于时间的导数为(1)√(d^2+v0^2*t^2) *v0*t/d (2) v0*t/d (3)(v0^2*t)/(d*√(d^2+v0^2*t^2) )(4)v0*t 。
解题方法:首先我们需要明确题目中所涉及的物理概念和原理。
题目是考察电荷在电场中受力的问题,根据库伦定律,带电粒子Q和Q0之间会相互作用,产生电场力。
同时,根据牛顿第二定律F=ma,可求解带电粒子Q的运动方程。
在解答问题之前,我们需要明确题目给出的条件:1. 粒子Q的电量为Q,在t=0时刻给予一个负向初速度v0;2. 粒子Q0的电量为1μC,质量为1mg,速度为v0,从小于0的某处运动而来;3. 坐标原点O为轨道中所在位置,粒子Q和Q0之间的距离为d;4. 题目要求求解√(d^2+v0^2*t^2)的关于时间的导数。
接下来,我们可以利用电场力公式和牛顿第二定律,结合链式法则求解导数√(d^2+v0^2*t^2)的关于时间的导数:首先,计算带电粒子Q在电场中受到的电场力。
根据库伦定律F=k*|Q1*Q2|/r^2,其中k为静电力常数,Q1、Q2分别为两个带电粒子的电量,r为两个带电粒子之间的距离。
代入题目中的数据,可得电场力为F=k*Q*1μC/d^2。
高考物理带电粒子在电场中的运动题20套(带答案)
高考物理带电粒子在电场中的运动题20套(带答案)一、高考物理精讲专题带电粒子在电场中的运动1.如图所示,光滑绝缘的半圆形轨道ABC 固定在竖直面内,圆心为O ,轨道半径为R ,B 为轨道最低点。
该装置右侧的14圆弧置于水平向右的足够大的匀强电场中。
某一时刻一个带电小球从A 点由静止开始运动,到达B 点时,小球的动能为E 0,进入电场后继续沿轨道运动,到达C 点时小球的电势能减少量为2E 0,试求: (1)小球所受重力和电场力的大小; (2)小球脱离轨道后到达最高点时的动能。
【答案】(1)0E R 02E R(2)8E 0 【解析】 【详解】(1)设带电小球的质量为m ,则从A 到B 根据动能定理有:mgR =E 0则小球受到的重力为:mg =E R方向竖直向下;由题可知:到达C 点时小球的电势能减少量为2E 0,根据功能关系可知:EqR =2E 0则小球受到的电场力为:Eq =2E R方向水平向右,小球带正电。
(2)设小球到达C 点时速度为v C ,则从A 到C 根据动能定理有:EqR =212C mv =2E 0 则C 点速度为:v C 04E m方向竖直向上。
从C 点飞出后,在竖直方向只受重力作用,做匀减速运动到达最高点的时间为:41C v E t g g m== 在水平方向只受电场力作用,做匀加速运动,到达最高点时其速度为:0442E E qE qE v at t m mg m m==== 则在最高点的动能为:2200411(2)822k E E mv m E m===2.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r =0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d =0.2m 。
质量m 1=0.05kg 的不带电绝缘滑块静止在A 点,质量m 2=0.1kg 、电荷量q =1×10﹣5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场。
高考物理带电粒子在电场中的运动题20套(带答案)
高考物理带电粒子在电场中的运动题20套(带答案)一、高考物理精讲专题带电粒子在电场中的运动1.利用电场可以控制电子的运动,这一技术在现代设备中有广泛的应用,已知电子的质量为m ,电荷量为e -,不计重力及电子之间的相互作用力,不考虑相对论效应.(1)在宽度一定的空间中存在竖直向下的匀强电场,一束电子以相同的初速度0v 沿水平方向射入电场,如图1所示,图中虚线为某一电子的轨迹,射入点A 处电势为A ϕ,射出点B 处电势为B ϕ.①求该电子在由A 运动到B 的过程中,电场力做的功AB W ;②请判断该电子束穿过图1所示电场后,运动方向是否仍然彼此平行?若平行,请求出速度方向偏转角θ的余弦值cos θ(速度方向偏转角是指末速度方向与初速度方向之间的夹角);若不平行,请说明是会聚还是发散.(2)某电子枪除了加速电子外,同时还有使电子束会聚或发散作用,其原理可简化为图2所示.一球形界面外部空间中各处电势均为1ϕ,内部各处电势均为221()ϕϕϕ>,球心位于z 轴上O 点.一束靠近z 轴且关于z 轴对称的电子以相同的速度1v 平行于z 轴射入该界面,由于电子只受到在界面处法线方向的作用力,其运动方向将发生改变,改变前后能量守恒.①请定性画出这束电子射入球形界面后运动方向的示意图(画出电子束边缘处两条即可);②某电子入射方向与法线的夹角为1θ,求它射入球形界面后的运动方向与法线的夹角2θ的正弦值2sin θ.【答案】(1)①()AB B A W e ϕϕ=- ②是平行;()020cos 2B A v ve v mθϕϕ==-+(2)① ②()1122211sin sin 2v e v mθθϕϕ=-+【解析】 【详解】(1)①AB 两点的电势差为AB A B U ϕϕ=-在电子由A 运动到B 的过程中电场力做的功为()AB AB B A W eU e ϕϕ=-=-②电子束在同一电场中运动,电场力做功一样,所以穿出电场时,运动方向仍然彼此平行,设电子在B 点处的速度大小为v ,根据动能定理2201122AB W mv mv =- 0cos v v θ=解得:()020cos 2B A v v ve v mθϕϕ==-+(2)①运动图如图所示:②设电子穿过界面后的速度为2v ,由于电子只受法线方向的作用力,其沿界面方向的速度不变,则1122sin sin θθ=v v 电子穿过界面的过程,能量守恒则:2211221122mv e mv e ϕϕ-=- 可解得:()212212e v v mϕϕ-=+ 则()1122211sin 2e v mθϕϕ=-+故本题答案是:(1)①()AB B A W e ϕϕ=- ②()020cos 2B A v ve v mθϕϕ==-+(2)① ②()1122211sin sin 2v e v mθθϕϕ=-+2.如图所示,竖直平面内有一固定绝缘轨道ABCDP ,由半径r=0.5m 的圆弧轨道CDP 和与之相切于C 点的水平轨道ABC 组成,圆弧轨道的直径DP 与竖直半径OC 间的夹角θ=37°,A 、B 两点间的距离d=0.2m .质量m 1=0.05kg 的不带电绝缘滑块静止在A 点,质量m 2=0.1kg 、电荷量q=1×10-5C 的带正电小球静止在B 点,小球的右侧空间存在水平向右的匀强电场.现用大小F=4.5N 、方向水平向右的恒力推滑块,滑块到达月点前瞬间撤去该恒力,滑块与小球发生弹性正碰,碰后小球沿轨道运动,到达P 点时恰好和轨道无挤压且所受合力指向圆心.小球和滑块均视为质点,碰撞过程中小球的电荷量不变,不计一切摩擦.取g=10m /s 2,sin37°=0.6,cos37°=0.8.(1)求撤去该恒力瞬间滑块的速度大小v 以及匀强电场的电场强度大小E ; (2)求小球到达P 点时的速度大小v P 和B 、C 两点间的距离x . 【答案】(1) 6m /s ;7.5×104N /C (2) 2.5m /s ;0.85m 【解析】 【详解】(1)对滑块从A 点运动到B 点的过程,根据动能定理有:2112Fd m v = 解得:v =6m /s小球到达P 点时,受力如图所示:则有:qE =m 2g tan θ, 解得:E =7.5×104N /C(2)小球所受重力与电场力的合力大小为:2cos m gG 等θ=小球到达P 点时,由牛顿第二定律有:2P v G r=等解得:v P =2.5m /s滑块与小球发生弹性正碰,设碰后滑块、小球的速度大小分别为v 1、v 2, 则有:m 1v =m 1v 1+m 2v 222211122111222m v m v m v =+ 解得:v 1=-2m /s(“-”表示v 1的方向水平向左),v 2=4m /s 对小球碰后运动到P 点的过程,根据动能定理有:()()22222211sin cos 22P qE x r m g r r m v m v θθ--+=- 解得:x =0.85m3.如图甲所示,极板A 、B 间电压为U 0,极板C 、D 间距为d ,荧光屏到C 、D 板右端的距离等于C 、D 板的板长.A 板O 处的放射源连续无初速地释放质量为m 、电荷量为+q 的粒子,经电场加速后,沿极板C 、D 的中心线射向荧光屏(荧光屏足够大且与中心线垂直),当C 、D 板间未加电压时,粒子通过两板间的时间为t 0;当C 、D 板间加上图乙所示电压(图中电压U 1已知)时,粒子均能从C 、D 两板间飞出,不计粒子的重力及相互间的作用.求:(1)C 、D 板的长度L ;(2)粒子从C 、D 板间飞出时垂直于极板方向偏移的最大距离; (3)粒子打在荧光屏上区域的长度.【答案】(1)L t =2)2102qU t y md =(3)21032qU t s s md∆== 【解析】试题分析:(1)粒子在A 、B 板间有20012qU mv = 在C 、D 板间有00L v t =解得:L t =(2)粒子从nt 0(n=0、2、4……)时刻进入C 、D 间,偏移距离最大 粒子做类平抛运动 偏移距离2012y at = 加速度1qU a md=得:2102qU t y md=(3)粒子在C 、D 间偏转距离最大时打在荧光屏上距中心线最远ZXXK] 出C 、D 板偏转角0tan y v v θ=0y v at =打在荧光屏上距中心线最远距离tan s y L θ=+荧光屏上区域长度21032qU t s s md∆==考点:带电粒子在匀强电场中的运动【名师点睛】此题是带电粒子在匀强电场中的运动问题;关键是知道粒子在水平及竖直方向的运动规律和特点,结合平抛运动的规律解答.4.如图所示,一内壁光滑的绝缘圆管ADB 固定在竖直平面内.圆管的圆心为O ,D 点为圆管的最低点,AB 两点在同一水平线上,AB=2L ,圆管的半径为L(自身的直径忽略不计).过OD 的虚线与过AB 的虚线垂直相交于C 点,在虚线AB 的上方存在方向水平向右、范围足够大的匀强电场;虚线AB 的下方存在方向竖直向下、范围足够大的匀强电场,电场强度大小E 2=mgq.圆心O 正上方的P 点有一质量为m 、电荷量为-q(q>0)的小球(可视为质点),PC 间距为L .现将该小球从P 点无初速释放,经过一段时间后,小球刚好从管口A 无碰撞地进入圆管内,并继续运动.重力加速度为g .求:(1)虚线AB 上方匀强电场的电场强度E 1的大小; (2)小球在AB 管中运动经过D 点时对管的压力F D ;(3)小球从管口B 离开后,经过一段时间到达虚线AB 上的N 点(图中未标出),在圆管中运动的时间与总时间之比ABPNt t . 【答案】(1)mg q (2)2mg ,方向竖直向下(3)4ππ+ 【解析】 【分析】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,根据正交分解,垂直运动方向的合力为零,列出平衡方程即可求出虚线AB 上方匀强电场的电场强度;(2)根据动能定理结合圆周运动的规律求解小球在AB 管中运动经过D 点时对管的压力F D ;(3)小物体由P 点运动到A 点做匀加速直线运动,在圆管内做匀速圆周运动,离开管后做类平抛运动,结合运动公式求解在圆管中运动的时间与总时间之比. 【详解】(1)小物体释放后在重力和电场力的作用下做匀加速直线运动,小物体从A 点沿切线方向进入,则此时速度方向与竖直方向的夹角为45°,即加速度方向与竖直方向的夹角为45°,则:tan45°= mgEq解得:mg qE =(2)从P 到A 的过程,根据动能定理:mgL+EqL=12mv A 2 解得v A gL小球在管中运动时,E 2q=mg ,小球做匀速圆周运动,则v 0=v A gL 在D 点时,下壁对球的支持力2022v F m mg r==由牛顿第三定律,22F F mg =='方向竖直向下.(3)小物体由P 点运动到A 点做匀加速直线运动,设所用时间为t 1,则:211222L gt =解得12L t g= 小球在圆管内做匀速圆周运动的时间为t 2,则:2323244A rL t v gππ⋅==小球离开管后做类平抛运动,物块从B 到N 的过程中所用时间:322L t g= 则:24t t ππ=+ 【点睛】本题考查带点小物体在电场力和重力共同作用下的运动,解题关键是要分好运动过程,明确每一个过程小物体的受力情况,并结合初速度判断物体做什么运动,进而选择合适的规律解决问题,匀变速直线运动利用牛顿第二定律结合运动学公式求解或者运用动能定理求解,类平抛利用运动的合成和分解、牛顿第二定律结合运动学规律求解.5.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求 (1)匀强磁杨的磁感应强度B(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围; (3)荧光屏上发光点距N 点的最远距离L【答案】(1)0mv ed ; (2)02y d ≤≤;(3)94d ; 【解析】(1)设电子在磁场中做圆周运动的半径为r ;由几何关系可得r =d电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:200v ev B m r=解得:0mv B ed=(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.设此时的圆心位置为O ',有:sin 30rO a '=︒3OO d O a ='-' 解得OO d '=即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:根据运动学公式有:0x v t =212eE y t m=⋅ y eE v t m=tan y v v θ=tan 3Ld xθ=- 解得:(32)2L d y y =-⋅ 即98y d =时,L 有最大值 解得:94L d =当322d y y -=【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.6.1897年汤姆孙使用气体放电管,根据阴极射线在电场和磁场中的偏转情况发现了电子,并求出了电子的比荷。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
带电粒子在复合场中的运动
1. 质谱仪是一种测定带电粒子质量和分析同位素的
重要工具,它的构造原理如图所示,离子源S产生
的各种不同正离子束(速度可看作为零),经加速电
场加速后垂直进入有界匀强磁场,到达记录它的照
相底片P上,设离子在P上的位置到入口处S1的
距离为x,可以判断:
A. 若离子束是同位素,则x越大,离子质量越大
B. 若离子束是同位素,则x越大,离子质量越小
C. 只要x相同,则离子质量一定相同
D. 只要x相同,则离子的荷质比一定相同
2. 质量为m,电量为e的电子,绕原子核以一定半径做匀速圆周运动,垂直电
子轨迹平面有一磁感强度为B的匀强磁场,若电子所受到的电场力的大小是
洛仑兹力大小的4倍,则电子运动角速度可能为:
A.mBe2 B.mBe3 C.mBe4 D.mBe5
3. 设空间存在竖直向下的匀强电场和垂直纸面向里的匀
强磁场,如图所示,已知一离子在电场力和洛仑兹力作
用下,从静止开始自且沿曲线ACB运动,到达B点时,
速度为零,C点为最低点,不计重力,以下说法正确的
是:
A.离子必带正电荷
B.A点和B点位于同一高度
C.离子在C点时速度最大
D.离子到B点后,将沿曲线返回A
4. 如图所示,ab和cd为两条相距较远的平行直线,ab
的左边和cd的右边都有磁感应强度为B、方向垂直
纸面向里的匀强磁场,虚线是由两个相同的半圆及和
半圆相切的两条线段组成.甲、乙两带电体分别从图
中的A、D两点以不同的初速度开始向两边运动,轨
迹正好和虚线重合,它们在C点碰撞后结为一体向右
运动,若整个过程中重力不计,则下面说法正确的是:
A.开始时甲的动量一定比乙的小
B.甲带的电量一定比乙带的多
C.甲、乙结合后运动的轨迹始终和虚线重合
D.甲、乙结合后运动的轨迹和虚线不重合
5. 如图,带电粒子在没有电场和磁场空间以v0从
坐标原点O沿x轴方向做匀速直线运动,若空
间只存在垂直于xoy平面的匀强磁场时,粒子
通过P点时的动能为Ek;当空间只存在平行于
y轴的匀强电场时,则粒子通过P点时的动能
为:
A. Ek B.2Ek C.4Ek D.5Ek
6. 如图,在以O点为圆心、r为半径的圆形区域内,在
磁感强度为B,方向垂直纸面向里的匀强磁场,a、b、
c为圆形磁场区域边界上的3点,其中∠aob=∠
boc=600,一束质量为m,电量为e而速率不同的电
子从a点沿ao方向射人磁场区域,其中从bc两点的
弧形边界穿出磁场区的电子,其速率取值范围
是 .
7. 如图,质量为m、电量为e的电子沿垂直挡板方向以速度
v从O孔射入匀强磁场中,磁场方向垂直纸面向里,磁感
强度为B,运动中电子经某点P,OP连线与入射方向的
夹角为θ,则电子由O运动至P点的时间为 .
8. 如图所示,在POQ区域内分布有磁感应强度为B的匀强
磁场,磁场方向垂直于纸面向里,有一束负离子流沿纸
面垂直于磁场边界OQ方向从A点射入磁场,已知OA=s,
∠POQ=450,负离子的质量为m,带电量的绝对值为q,
要使负离子不从OP边射出,负离子进入磁场的速度最大
不能超过 .
9. 在地面附近的真空环境中,建立一直角坐标系,y轴正方向
竖直向上,x轴正方向水平向右,空间有沿水平方向且垂直
于xoy平面指向读者的匀强磁场(磁感强度B=0.25T)和沿x
轴正方向的匀强电场(场强E=2N/C),如图所示,一个质量
m=3×10-7kg,电量q=5×10-7C的带负电微粒,在此区域
中刚好沿直线运动(g取10m/s2).
⑴求此带电微粒的速度v.
⑵当此带电微粒沿直线运动到y轴上一点y时,突然将磁场撤去而保持电场
不变,若在运动中微粒还能再一次通过y轴上另一点P(N、P位置均未在图中标
出),求此时的速度vP的大小.
10. 如图,在竖直平面内的直角坐标系中第Ⅱ象限区域内有一沿+y方向的匀强电
场,场强E1=50N/C,还有一个与x轴相切于Q点的圆形有界匀强磁场,磁感
强度B1=500T方向垂直于纸面向里时,在x轴的
下方区域内有垂直于纸面向外的匀强磁场.磁感
应强度B2=25T,还有一个电场线位于坐标平面的
匀强电场,方向如图所示,今有一个质量
m=1.0×10-5kg,电量q1=+2.0×10-6C的带电小球1,
从y轴上的P点以初速v0=40m/s斜射入第Ⅱ象
限,经过圆形有界磁场时偏转了600角,恰与x
轴上静止于Q点的另一质量仍为m的带电小球2
相碰,小球2的带电量q2=-6×10-6C,两球相碰
后粘合在一起,问:
⑴在第Ⅱ象限内圆形磁场区的最小半径多大?
⑵欲使碰后小球沿直线运动,x轴下方匀强电场的场强E2的大小应为多少?
11. 如图所示,一个初速为零的带正电的粒子经过MN两平行板间电场加速后,
从N板上的孔射出,当带电粒子到达P点时,长方形abcd区域内出现大小
不变、方向垂直于纸面且方向交替变化的匀强磁场.磁感应强度B=0.4T,每
经过st3104,磁场方向变化一次,粒子到达P点时出现的磁场方向指向
纸外.在Q处有一个静止的中性粒子.PQ间距离
s=3m.PQ直线垂直平分ab、cd.已知D=1.6m,带电
粒子的荷质比为1.0×104C/kg,重力忽略不计.求:
⑴加速电压为200V时带电粒子能否与中性粒子碰
撞?
⑵画出它的轨迹.
⑶能使带电粒子与中性粒子碰撞,加速电压的最大值
是多少?
12. 空间中存在着以x=0平面为理想分界面的两个
匀强磁场,左右两边磁场的磁感强度分别为B
1
和B2,且B1:B2=4:3,方向如图所示,现在原
点O处有带等量异号电荷的两个带电粒子a、b
分别以大小相等的水平初动量沿x轴正向和负
向同时射入两磁场中,且a带正电,b带负电.若
a粒子在第4次经过y轴时,恰与b粒子相遇,
试求a粒子和b粒子的质量比ma:mb。(不计粒子
a和b的重力).
参考答案
1.AD 2.BD 3.ABC 4.BC 5.D 6.meBrmeBr333, 7.Bem2
8.mqBs12 9.⑴v=1.6m/s,方向与x轴成300角 ⑵vp=5.8m/s
10.⑴Rmin=0.2m ⑵E2=50N/s
11.⑴带电粒子能与中性粒子碰撞 ⑵图略 ⑶Umax=450V 12.7:5:bamm