工程力学名词解释

合集下载

工程力学ppt课件

工程力学ppt课件
拉伸过程中,材料可能发生弹性变形 、塑性变形或断裂;压缩过程中,材 料同样可能发生弹性变形、塑性变形 或屈曲。
剪切与扭转
剪切与扭转是研究材料在剪切和扭矩作用下的行为。
在剪切力作用下,材料可能发生剪切屈服和剪切断裂;在扭矩作用下,材料可能 发生扭转变形和扭断。
弯曲与失稳
弯曲与失稳是研究材料在弯曲和不稳定状态下的行为。
航空航天器的轻质结构易受到 气动力的影响,导致结构振动 和失稳。动力学分析确保飞行 器的安全性和稳定性。
推进系统动力学
火箭和航空发动机的稳定性直 接影响飞行器的性能和安全性 。推进系统动力学研究燃烧、 流动和振动等复杂因素。
姿态控制与稳定性
航天器在空间中的稳定姿态控 制是实现有效任务的关键。动 力学模型用于预测和控制航天 器的姿态变化。
工程力学ppt课件
汇报人:文小库
2023-12-31
CONTENTS
• 工程力学概述 • 静力学基础 • 动力学基础 • 材料力学 • 工程力学的实际应用
01
工程力学概述
定义与特点
定义
工程力学是研究物体运动规律和力的 关系的学科,为工程设计和实践提供 理论基础和技术支持。
特点
工程力学具有理论性强、实践应用广 泛、与多学科交叉融合等特点。
多体动力学与柔性结构分 析
考虑航天器中各部件的相互作 用,以及柔性结构在力矩和推 力作用下的响应。
车辆的行驶稳定性分析
轮胎与地面相互作用 研究轮胎与不同类型地面的相互 作用,以及由此产生的摩擦力和 反作用力。
操控性与稳定性控制 利用现代控制理论和方法,通过 主动或半主动控制系统来提高车 辆的操控性和行驶稳定性。
当材料受到弯曲力时,可能发生弯曲变形和弯曲断裂;失稳是指材料在某些条件下失去稳定性,可能 导致结构破坏。

工程力学的主要内容与工程应用

工程力学的主要内容与工程应用

工程力学是研究物体在外力作用下的静力学和动力学性质的一门学科,是建筑、桥梁、机械、航天、水利等领域不可或缺的基础学科。

本文将结合工程力学的主要内容与工程应用,探讨其理论基础、发展历程、应用领域及未来发展趋势。

一、工程力学的理论基础1.静力学静力学是研究物体在平衡状态下受力分析的学科。

在工程力学中,静力学主要包括力的合成与分解、平衡条件、摩擦力、支持反力等内容。

工程中的建筑、桥梁、机械等结构,都需要静力学的理论支持,以确保结构的稳定性和安全性。

2. 动力学动力学是研究物体在外力作用下的运动规律的学科。

在工程力学中,动力学包括质点的运动学、质点的运动方程、动量定理、能量原理等内容。

通过动力学的分析,可以理解并预测物体在外力作用下的运动状态,为工程设计和实际工程应用提供理论依据。

二、工程力学的发展历程1. 古典力学时期古典力学是工程力学的奠基时期,代表人物有牛顿、欧拉、达朗贝尔等。

在这一时期,人们逐渐建立了力学基本定律和原理,如牛顿三定律、达朗贝尔原理等,为工程力学的发展奠定了基础。

2. 现代力学时期随着科学技术的发展,工程力学在20世纪得到了快速发展。

在这一时期,工程力学逐渐与其他学科相结合,形成了新的分支学科,如连续介质力学、弹性力学、塑性力学、流体力学等。

工程力学理论不断完善,应用领域不断拓展,为工程实践提供了更多的支持。

三、工程力学的应用领域1. 工程结构设计工程力学在建筑、桥梁、隧道、地基等工程结构设计中起着重要的作用。

通过力学分析,可以确定结构的受力状态、设计结构的尺寸和材料,保证结构的安全可靠。

2. 机械设计与制造在机械工程领域,工程力学理论被广泛应用于机械设计和制造过程中。

通过力学分析,可以确定机械零部件的尺寸、材料和结构,保证机械设备的正常运转和高效工作。

3. 航天航空航天航空领域是工程力学的重要应用领域之一。

在飞行器的设计和制造中,需要考虑飞行器受力状态、空气动力学特性等问题,这些都离不开工程力学的支持。

工程力学知识点详细总结

工程力学知识点详细总结

工程力学知识点详细总结工程力学是研究物体受力和变形规律的学科,它是工程学的基础学科之一。

在工程实践中,我们经常需要对结构物体的力学特性进行分析和计算,以保证结构的安全可靠。

因此,工程力学的理论和方法在工程设计和施工中起着不可替代的作用。

本文以静力学、动力学和固体力学为主要内容,详细总结了工程力学的相关知识点。

一、静力学1.力的概念和分类力是引起物体产生加速度的原因,根据力的性质和来源可以将力分为接触力和场力。

接触力是通过物体的静止接触面传递的力,包括摩擦力、正压力和剪切力等;场力是由物体之间的相互作用所产生的力,包括重力、电磁力和引力等。

2.受力分析受力分析是研究物体受力情况的一种分析方法,通过分析物体受力的大小、方向和作用点,可以确定物体的平衡条件和受力状态。

在受力分析中,可以应用力矩平衡、受力图和自由体图等方法来分析物体的受力情况。

3.力的合成和分解力的合成和分解是将若干个力按照一定规律合成为一个合力,或者将一个力分解为若干个分力的方法。

通过力的合成和分解,可以简化受力分析的过程,求解物体的受力情况。

4.平衡条件平衡是指物体处于静止状态或匀速直线运动状态。

根据平衡的要求,可以得出物体的平衡条件,包括受力平衡和力矩平衡。

在分析物体的平衡条件时,可以应用力的合成和分解、力矩平衡等方法进行求解。

5.杆件受力分析杆件受力分析是研究杆件受力情况的一种分析方法,通过分析杆件受力的大小、方向和作用点,可以确定杆件的受力状态。

在杆件受力分析中,可以应用正压力、拉力和剪力等概念进行求解。

6.梁的受力分析梁是一种常见的结构构件,受到外部加载作用时会产生弯曲变形。

梁的受力分析是研究梁受力情况的一种分析方法,通过分析梁受到的弯矩和剪力的分布规律,可以确定梁的受力状态。

在梁的受力分析中,可以应用梁的静力平衡和弯矩方程等方法进行求解。

7.静力学原理静力学原理是研究物体力学特性的基本原理,包括牛顿定律、平衡条件和力的合成分解定理等。

工程力学知识点

工程力学知识点

工程力学知识点工程力学是研究力在结构、机械和材料中的作用及其相互关系的学科。

它是工程学的基础科学之一,涉及力的平衡、结构的强度和刚度、变形和破坏等问题。

在工程领域中,工程力学的应用广泛,可以帮助工程师设计和分析各种结构,确保其安全可靠。

首先,我们来谈论力的平衡。

力的平衡是指一个物体在无外界干扰的情况下,所有作用力之间达到的一种平衡状态。

根据牛顿第一定律,当物体处于静止状态或匀速直线运动时,合力为零。

因此,当我们分析一个结构的稳定性时,我们需要确保在每个关键节点上的合力为零。

这可以通过绘制力的平衡图来实现,将各个力的大小和方向表示出来,并使用向量法进行图解求解。

其次,结构的强度和刚度是工程力学的重要内容。

强度是指结构抵抗外部载荷而产生破坏的能力。

在设计结构时,工程师需要考虑各个零部件的强度,以确保它们能够承受预计的载荷,并避免发生破坏。

材料的力学性质是评估结构强度的关键因素,通过对材料的应力-应变关系进行实验和分析,可以确定其强度属性。

刚度是指结构对形变的抵抗能力。

不同的结构需要具有不同的刚度特性,以满足设计要求。

工程师可以使用弹性力学的理论和方法,计算结构的刚度,从而选择合适的材料和几何尺寸。

变形是工程力学中另一个重要的内容。

当一个结构受到载荷作用时,它会发生形变。

这些形变可能会导致结构的破坏或功能受损。

因此,工程师需要了解结构在受力下的变形规律,并采取适当的措施来控制和限制这些变形。

工程力学的弹性力学分支是研究结构变形的理论基础。

通过弹性力学的分析方法,我们可以计算和预测结构在受力下的变形,并确定合适的设计参数,以满足变形限制。

最后,破坏分析是工程力学的重要应用之一。

当一个结构超过其极限强度时,它会发生破坏。

了解结构的破坏机理对于工程师来说至关重要,因为只有通过理解结构的破坏过程,他们才能进行适当的设计和改进。

破坏分析主要涉及材料的断裂和疲劳行为。

断裂力学研究材料的裂纹扩展和破坏过程,以及如何预测和控制这些过程。

工程力学知识点总结

工程力学知识点总结

工程力学知识点总结工程力学是一门研究物体受力、变形以及力学性质的学科。

它是工程学的基础学科之一,广泛应用于工程设计、结构分析和材料力学等领域。

在本文中,我将对工程力学的一些重要知识点进行总结,希望能够帮助读者更好地理解和应用工程力学的原理和方法。

第一部分:力的基本概念和平衡条件力是工程力学的核心概念之一,它可以引起物体的形状和运动发生变化。

在工程力学中,力的三要素是大小、方向和作用点。

力的大小可以用矢量表示,它的方向可以用箭头表示,作用点是力所作用的物体上的一点。

对于一个物体的平衡条件,有三种可能:静力平衡、动力平衡和稳定平衡。

静力平衡是指物体在受到多个力的作用下,力的合力为零,物体处于静止状态。

动力平衡是指物体在受到多个力的作用下,力的合力不为零,物体处于运动状态。

稳定平衡是指物体在受到微小扰动后能够自动恢复到原来的平衡状态。

第二部分:受力分析和结构受力受力分析是工程力学的基础,它通过分析物体所受到的外力和内力,来确定物体的运动状态和受力情况。

在受力分析中,我们常常使用自由体图和受力分解的方法来求解受力问题。

自由体图是指将物体从结构中分离出来,在图上标识出所受到的外力和内力,便于分析和计算。

结构受力是工程力学的重要内容之一,它研究物体在受到外力作用下的变形和应力情况。

常见的结构受力包括轴力、剪力、弯矩和应力等。

轴力是指物体沿着轴线方向受到的拉力或压力,剪力是指物体内部两个相邻截面之间的力,弯矩是指物体在受力作用下发生的弯曲时所产生的力矩,应力是指物体受到的单位面积上的力。

第三部分:材料力学和变形性能材料力学是工程力学中的重要分支,它研究物体的材料在受力作用下的变形和破坏情况。

常见的材料力学知识点包括杨氏模量、屈服强度、伸长率和断裂韧性等。

杨氏模量是描述材料刚度的指标,它反映了材料在受力作用下产生的弹性变形程度。

屈服强度是指材料在受到一定载荷后开始发生塑性变形的临界点。

伸长率是指材料在拉伸过程中的长度变化百分比,它可以反映材料的延展性能。

工程力学 引言

工程力学 引言

工程力学引言工程力学是工程学科中的一门基础课程,它是研究力的作用和力的效果的科学。

工程力学主要包括静力学和动力学两个部分,静力学是研究物体在静止状态下受力情况的学科,动力学是研究物体在运动状态下受力情况的学科。

工程力学的研究对象是物体,物体可以是刚体也可以是非刚体。

刚体是指在力的作用下形状和体积不发生变化的物体,非刚体则是指在力的作用下形状和体积会发生变化的物体。

工程力学通过研究物体受力情况,可以分析和计算物体的运动和变形情况,为工程设计和实际工程问题的解决提供依据。

静力学是工程力学的重要组成部分,它研究物体在静止状态下受力平衡的情况。

静力学主要包括力的合成与分解、力的平衡条件、力的作用点和力的大小的确定等内容。

在静力学中,力的合成与分解是一个重要的基础概念,它可以将多个力合成为一个力或将一个力分解为多个力,从而简化力的计算和分析。

力的平衡条件是指物体在静止状态下所受的外力和内力之间达到平衡的条件,根据力的平衡条件可以求解物体受力情况的未知量。

力的作用点和力的大小的确定是在具体问题中需要解决的关键问题,通过分析物体受力情况,可以确定力的作用点和力的大小,进而求解物体的运动和变形情况。

动力学是工程力学的另一个重要组成部分,它研究物体在运动状态下受力和力的效果的情况。

动力学主要包括质点的运动学和动力学、刚体的运动学和动力学等内容。

质点的运动学研究质点在运动过程中的位置、速度和加速度等运动量的变化规律,质点的动力学研究质点在运动过程中受力和力的效果的情况。

刚体的运动学研究刚体在运动过程中的位置、速度和角速度等运动量的变化规律,刚体的动力学研究刚体在运动过程中受力和力的效果的情况。

通过研究物体在运动过程中的受力情况,可以求解物体的运动和变形情况,为工程设计和实际工程问题的解决提供依据。

工程力学在工程学科中具有重要的地位和作用,它为工程设计和实际工程问题的解决提供了基础和手段。

工程力学的研究方法和理论成果在工程实践中得到了广泛应用,为各类工程的设计、建造和运营提供了科学的依据。

工程力学专业介绍

工程力学专业介绍工程力学是一门应用力学原理和方法研究工程结构力学性能和工程问题的学科。

它主要涉及静力学、动力学、材料力学、结构力学、流体力学以及振动与控制等领域。

工程力学的研究内容包括力学的基本原理、结构力学的基本理论和应用、工程设计原理与实践、物质的力学与性能评价等。

工程力学作为现代工程学的基础学科,具有广泛的应用领域。

它在各个工程领域,如土木工程、建筑工程、机械工程、航空航天工程等中都扮演着重要的角色。

通过工程力学的研究,可以对工程结构的力学性能进行分析和评价,为工程设计提供理论基础和实践指导。

工程力学专业的学习内容包括力学的基础理论、工程力学的基本原理、材料力学、结构力学、流体力学、振动与控制等课程。

学生在学习过程中将通过理论课程、实验教学和工程实践等多种方式培养自己的工程力学能力。

在工程力学的学习中,学生将学习到以下几个方面的知识与技能:1. 力学基础:学生将学习到力学的基本原理和方法,包括力学的基本概念、力的合成与分解、力的作用点和力的矩等。

2. 结构力学:学生将学习到结构力学的基本原理和方法,包括结构受力分析、结构稳定性、结构受力性能评价等。

3. 材料力学:学生将学习到材料力学的基本原理和方法,包括材料的力学性能、材料的强度、刚度、韧性等。

4. 流体力学:学生将学习到流体力学的基本原理和方法,包括流体的性质与流动规律、流体的静力学、动力学以及流体力学中的应用等。

5. 振动与控制:学生将学习到振动与控制的基本原理和方法,包括机械振动的特性与控制、结构振动的特性与控制等。

在工程力学专业学习中,学生将通过理论课程的学习、实验教学的实践和工程实践的参与培养自己的工程力学综合能力。

他们将能够运用力学原理实现工程结构的安全可靠设计和优化,并能够分析和解决工程实践中出现的力学问题。

工程材料力学名词解释

应变(strain):为一微小材料(元素)承受应力时所产生的单位长度变形量(力学定义,无量纲)弹性变形(elastic deformation): 材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。

重要特征:可逆性、胡克定律(是力学基本定律之一。

适用于一切固体材料的弹性定律,它指出:在弹性限度内,物体的形变跟引起形变的外力成正比)4)塑性变形(plastic deformation):材料在外力作用下产生的永久不可恢复的变形。

(5)断裂(fracture,rupture 破裂、crack裂纹):物体在外力作用下产生裂纹以至断开的现象。

脆性断裂(未发生较明显的塑性变形)、韧性断裂(发生较明显的塑性变形),宏观特征(1)弹性(elasticity):是指物体(材料)本身的一种特性,发生形变后可以恢复原来的状态的一种性质.(2)弹性变形(elastic deformation):材料在外力作用下产生变形,当外力去除后恢复其原来形状,这种随外力消失而消失的变形。

(3)弹性模量(elastic modulus,modulus of elasticity):是表征材料弹性的物理参数,是指材料在弹性变形范围内,应力和对应的应变的比值E=σ/ε,也是材料内部原子之间结合力强弱的直接量度。

(4)刚度(stiffness):指物体(固体)在外力作用下抵抗变形的能力,可用使产生单位形变所需的外力值来量度.刚度越高,物体表现越硬。

(5)弹性比功(elastic specific work): 表示材料吸收弹性变形功的能力,弹性比能、应变比能,决定于弹性模量和弹性极限(即材料由弹性变形过渡到弹-塑性变形时的应力)。

(6)滞弹性(anelasticity):在弹性范围内加快加载或卸载后,随时间延长产生附加弹性应变的现象。

7)循环弹性(cyclic elasticity):在交变载荷(振动)下材料吸收不可逆变形功的能力. (8)包申格效应(Bauschinger′s effect,Bauschinger effect):简单地说,就是经过预先加载产生少量塑性变形后的金属材料,再次进行同向或反向加载,会产生残余伸长应力(弹性极限或屈服极限)增加或降低的现象。

工程力学

工程力学工程力学是研究有关物质宏观运动规律,及其应用的科学。

工程给力学提出问题,力学的研究成果改进工程设计思想。

从工程上的应用来说,工程力学包括:质点及刚体力学,固体力学,流体力学,流变学,土力学,岩体力学等。

人类对力学的一些基本原理的认识,一直可以追溯到史前时代。

在中国古代及古希腊的著作中,已有关于力学的叙述。

但在中世纪以前的建筑物是靠经验建造的。

1638年3月伽利略出版的著作《关于两门新科学的谈话和数学证明》被认为是世界上第一本材料力学著作,但他对于梁内应力分布的研究还是很不成熟的。

纳维于1819年提出了关于梁的强度及挠度的完整解法。

1821年5月14日,纳维在巴黎科学院宣读的论文《在一物体的表面及其内部各点均应成立的平衡及运动的一般方程式》,这被认为是弹性理论的创始。

其后,1870年圣维南又发表了关于塑性理论的论文水力学也是一门古老的学科。

早在中国春秋战国时期(公元前5~前4世纪),墨翟就在《墨经》中叙述过物体所受浮力与其排开的液体体积之间的关系。

欧拉提出了理想流体的运动方程式。

物体流变学是研究较广义的力学运动的一个新学科。

1929年,美国的宾厄姆倡议设立流变学学会,这门学科才受到了普遍的重视。

研究方法分实验研究和理论分析与计算两个方面。

但两者往往是综合运用,互相促进。

实验研究包括实验力学,结构检验,结构试验分析。

模型试验分部分模型和整体模型试验。

结构的现场测试包括结构构件的试验及整体结构的试验。

实验研究是验证和发展理论分析和计算方法的主要手段。

结构的现场测试还有其他的目的:①验证结构的机能与安全性是否符合结构的计划、设计与施工的要求;②对结构在使用阶段中的健全性的鉴定,并得到维修及加固的资料。

理论分析与计算结构理论分析的步骤是首先确定计算模型,然后选择计算方法。

土力学在二十世纪初期即逐淅形成,并在40年代以后获得了迅速发展。

在其形成以及发展的初期,泰尔扎吉起了重要作用。

岩体力学是一门年轻的学科,二十世纪50年代开始组织专题学术讨沦,其后并已由对具有不连续面的硬岩性质的研究扩展到对软岩性质的研究。

工程力学的基本概念和原理

工程力学的基本概念和原理工程力学是研究物体受力和运动规律的一门学科,它是工程中必不可少的基础学科。

它的研究对象是力的作用下物体的平衡和运动,通过分析和计算,可以为工程设计和建设提供科学依据。

本文将介绍工程力学的基本概念和原理。

一、力的基本概念力是物体之间相互作用的结果,可以改变物体的状态(使静止的物体产生运动,改变运动物体的速度或方向)。

力的三要素包括大小、方向和作用点。

大小用数量表示,单位是牛顿(N);方向用箭头表示,箭头的长度表示力的大小,箭头的方向表示力的方向;作用点是力作用的位置。

二、力的分类力可以根据不同的性质和来源进行分类。

常见的力主要有以下几种:1. 重力:是地球对物体的吸引力,是物体的质量和地球的质量之间的相互作用,大小为物体的质量乘以重力加速度。

2. 弹力:是物体之间弹性变形产生的相互作用力,例如弹簧和弹性绳产生的力。

3. 摩擦力:是物体表面之间的相互作用力,可以分为静摩擦力和动摩擦力。

4. 引力:是物体之间由于引力而产生的相互作用力,例如地球和月球之间的引力。

5. 浮力:是物体在液体或气体中受到的上升力,大小等于物体排开液体或气体的体积乘以液体或气体的密度和重力加速度。

三、牛顿三定律牛顿三定律是描述物体受力和运动规律的基本原理,是工程力学的基石。

它们分别是:1. 牛顿第一定律(惯性定律):物体静止或匀速直线运动时,受力为零,物体将保持原来的状态。

2. 牛顿第二定律(运动定律):物体的加速度与作用在物体上的力成正比,与物体的质量成反比。

可以用公式F=ma表示,其中F是力的大小,m是物体的质量,a是物体的加速度。

3. 牛顿第三定律(作用与反作用定律):相互作用的两个物体之间,彼此之间的力相等、方向相反。

四、力的分解和合成力的分解是将一个力按照一定的规律分解成多个力的过程,力的合成是将多个力按照一定的规律合成为一个力的过程。

力的分解和合成可以简化问题的计算和分析,常用的方法有平行四边形法则和三角法则。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

所谓刚体是这样的物体,在力的作用下,其内部任意两点之间的距离始终保持不变。

刚体是在力的作用下不变形的物体。

变形体:构件尺寸与形状的变化。

这时的物体即视为变形固体。

二力平衡公理:作用在同一刚体上的的两个力,使刚体保持平衡的必要和充分条件是,这两个力的大小相等、方向相反、且在同一直线上。

加减平衡力系原理:在已知力上加上或减去任意的平衡力系,并不改变原力系对刚体的作用。

力的可传性原理:作用于刚体上某点的力,可以沿着它的作用线移到刚体内任意一点,并不改变该力对刚体的作用。

三力平衡汇交定理:作用于刚体上三个相互平衡的力,若其中两个力的作用线汇交于一点,则第三个力的作用线必通过此汇交点,且三个力共面。

刚化原理:变形体在某一力系作用下处于平衡,如将此变形体刚化为刚体,则平衡状态保持不变。

约束:对非自由体的位移起限制作用的物体。

约束力:约束对非自由体的作用力。

由两个等值、反向、不共线的(平行)力组成的力系称为力偶,记作 力偶中两力所在平面称为力偶作用面。

力偶两力之间的垂直距离称为力偶臂。

合力投影定理:合力在任一轴上的投影,等于各分力在同一轴上投影的代数和。

力偶系的平衡条件:空间力偶系平衡的必要充分条件是合力偶矩矢等于零,即力偶系各力偶矩矢的矢量和等于零。

平面任意力系:各力的作用线在同一平面内,既不汇交为一点又不相互平行的力系叫平面任意力系。

力系向一点简化:把未知力系(平面任意力系)变成已知力系(平面汇交力系和平面力偶系)
力的平移定理:可以把作用在刚体上点A 的力平行移到任一点B ,但必须同时附加一个力偶。

这个力偶的矩等于原来的力对新作用点B 的矩。

强 度:杆件在外载作用下,抵抗断裂或过量塑性变形的能力。

刚 度:杆件在外载作用下,抵抗弹性变形的能力。

稳定性:杆件在压力外载作用下,保持其原有平衡状态的能力。

连续性假设:物质密实地充满物体所在空间,毫无空隙。

(可用微积分数学工具) 均匀性假设:物体内,各处的力学性质完全相同。

各向同性假设:组成物体的材料沿各方向的力学性质完全相同。

(这样的材料称为各项同性材料;沿各方向的力学性质不同的材料称为各向异性材料。


小变形假设:材料力学所研究的构件在载荷作用下的变形与原始尺寸相比甚小,故对构件进行受力分析时可忽略其变形。

内力的定义:指由外力作用所引起的、物体内相邻部分之间分布内力系的合成(附加内力)。

应力:内力在截面上的分布集度
应力研究的平面假设:原为平面的横截面在变形后仍为平面。

纵向纤维变形相同。

危险截面:内力最大的面,截面尺寸最小的面。

危险点:应力最大的点。

许用应力:对不同材料确定其允许承受的最大应力值,常用符号[σ] ()
,F F '
若图形对某一对轴的惯性积为零,则称这对轴为图形的惯性主轴( principal axes of inertia )。

如果惯性主轴通过形心,则称之为形心惯性主轴。

图形关于惯性主轴的惯性矩称之为主惯性矩。

形心惯性主轴对应的惯性矩,称为形心主惯性矩。

剪应力互等定理:该定理表明:在单元体相互垂直的两个平面上,剪应力必然成对出现,且数值相等,两者都垂直于两平面的交线,其方向则共同指向或共同背离该交线。

单元体的四个侧面上只有剪应力而无正应力作用,这种应力状态称为纯剪切应力状态。

剪切虎克定律:当剪应力不超过材料的剪切比例极限时(τ≤τp),剪应力与剪应变成正比关系。

GI p反映了截面抵抗扭转变形的能力,称为截面的抗扭刚度。

[ ]称为许用单位扭转角。

弯曲: 杆受垂直于轴线的外力或外力偶矩的作用时,轴线变成了曲线,这种变形称为弯曲。

平面弯曲:杆发生弯曲变形后,轴线仍然和外力在同一平面内。

对称弯曲(如下图)——平面弯曲的特例,弯曲变形后的轴线也将是位于这个对称面内的一条曲线。

非对称弯曲——若梁不具有纵对称面,或者,梁虽具有纵对称面但外力并不作用在对称面内,这种弯曲则统称为非对称弯曲。

横力弯曲:某段梁的内力既有弯矩又有剪力时,该段梁的变形称为横力弯曲。

如C A,BD段。

刚体:物体变形很小时,变形对物体的运动和平衡影响甚微,因此在研究力的作用效应时,变形可以忽略不计,这时的物体便可抽象为刚体。

刚度:指构件在确定的外力作用下,其弹性变形或位移不超过工程允许范围的能力。

强度:指构件在确定的外力作用下,不发生破裂或过量塑性变形的能力。

二力平衡原理:不计自重的刚体在二力作用下平衡的充分必要条件是,二力沿着同一作用线,大小相等,方向相反。

二力构件:在二力作用下平衡的刚体称为二力构件。

约束:约束是对与之连接的物体的运动施加一定限制条件的作用。

约束力:约束施加于被约束物体的力称为约束力。

铰链:1、光滑圆柱铰链约束2、球形铰链约束3、止推轴承约束
三力汇交原理:作用于刚体上的三个力,若构成平衡力系,且其中的两个力的作用线交于一点,则这三个力必在同一平面上,且第三个力的作用线一定通过交汇点。

力系的简化:就是将若干个力和力偶所组成的力系,变成一个力,或者一个力偶,或者一个力和一个力偶等简单而等效的情形。

关于材料力学的基本假定:1各向同性假定2均匀连续性假定3小变形假定
胡克定律:若在弹性范围内加载,对于只承受单方向正应力或承受剪应力的微元体,正应力与正应变以及剪应力与剪应变之间存在线性关系:
σ =E *ετ=G*γ
剪力互等定理:在单元体相互垂直的两个平面上,剪应力必然成对出现,且数值相等,两者都垂直于两平面的交线,其方向则共同指向或共同背离该交线。

纯弯曲:一般情况下,平面弯曲时,梁的横截面上有两个内力分量,就是剪力和弯矩。

如果梁的横截面上只有弯矩一个内力分量,这种平面弯曲称为纯弯曲。

中性层:梁发生弯曲后,梁内一层纤维既不伸长也不缩短,因而纤维不受拉应力和压应力,此层纤维称中性层。

中性轴:中性层与梁的横截面的交线,称为截面的中性轴。

相关文档
最新文档