基因组学在育种中的应用

第八章分子生物学常用技术的原理及其应用及人类基因组学

第八章分子生物学常用技术的原理及其应用及人类基因组学 测试题 一、名词解释 1.分子杂交 2.Southernblotting 3.Northernblotting 4.Westernblotting 5.dotblotting 6.DNA芯片技术 7.PCR 8.功能性克隆 9.转基因技术 二、填空题 1.Southernblotting用于研究、Northernblotting用于研究,Westernblotting用于研究。 2.PCR的基本反应步骤包括、和三步。 3.在PCR反应体系中,除了DNA模板外,还需加入、、和。 4.Sange法测序的基本步骤包括、、和。 5.目前克隆致病相关基因的主要策略有、、。 6.血友病第Ⅷ因子基因的首次克隆成功所采用的克隆策略是,而DMD致病基因的克隆所采用的克隆策略是。 三、选择题 A型题 1.经电泳分离后将RNA转移到硝酸纤维素(NC)膜上的技术是: A.SouthernblottingB.Northernblotting

C.WesternblottingD.dotblotting E.insituhybridization 2.不经电泳分离直接将样品点在NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.Dotblotting E.insituhybridization 3.经电泳分离后将蛋白质转移到NC膜上的技术是 A.SouthernblottingB.Northernblotting C.WesternblottingD.dotblotting E.insituhybridization 4.经电泳后将DNA转移至NC膜上的技术是A.SouthernblottingB.Northernblotting C.WesternblottingD.Easternblotting E.insituhybridization 5.PCR的特点不包括 A.时间短,只需数小时B.扩增产物量大 C.只需微量模板D.用途非常广泛 E.底物必须标记 6.用于PCR的DNA聚合酶必须 A.耐热B.耐高压C.耐酸D.耐碱E.耐低温7.PCR反应过程中,模板DNA变性所需温度一般是A.95?CB.85?CC.75?CD.65?CE.55?C 8.PCR反应过程中,退火温度一般是 A.72?CB.85?CC.75?CD.65?CE.55?C 9.PCR反应过程中,引物延伸所需温度一般是A.95?CB.82?CC.72?CD.62?CE.55?C

作物基因组学前沿与应用

作物基因组学前沿与应用 Crop genomics: advances and applications 摘要:一些重要作物模式基因组测序的完成和进行高通量重测序的能力为提高对植物驯化历史的理解以及加快作物改良提供机遇。而这些数据以及新一代实验和计算方法正在改变作物比较基因组学。作物改良的未来将集中在个体植物基因组的比较,最好的手段可能在于结合运用新的遗传图谱构建策略与进化分析方法来指导和完善遗传变异的发掘与利用。这里我们回顾这些已然出现的策略与深刻见解。 一些重要作物和模式植物模式基因组测序的完成可能有助于实现长期存在的大大加快作物改良的植物基因组学研究要求(fig.1)。早在上世纪60年代末期,就已实现了对一个植物基因组分子标记的开发,但是最近几十年较易检测的分子标记数目存在分辨率较低的限制,而这些问题可以通过实验遗传学方法或者比较遗传学方法解决。仅仅几年前,高密度的遗传图谱需要对几千个标记进行费时费力地检测。实验群体通常会受限于两个亲本间的简单杂交;更详尽的研究设计可能提供对农学上重要突变遗传分布的评定,但相关种质中突变频率受到标记技术和用于区分多亲本分布的分析方法所限制。对群体间分子标记频率的分析,从而鉴定重要功能突变的比对方法已经提出,但是由于群体间预期的等位基因较高变异频率的存在,使得发掘研究的大量位点间重要功能突变显得相当的困难。 目前,已经报道了一些作物的模式基因组,并且在那些具有较大基因组的作物中引用取得进展。此外,已经报道了其他一些模式植物系统的模式基因组,包括拟南芥和短柄草。比较基因组学——传统上被认为是相关物种间同线性(基因顺序)的分析和序列的比对,目前由于报道的模式基因组数目的急速增加,源于高通量重测序的序列多样性的估计,大量缺失插入以及拷贝数变异(CNVs)基因组分布的鉴别,以及新一代实验和比较方法的出现而被重新定义。从遗传图谱的构建到进化分析,作物改良的未来将主要围绕着个体植物基因组间的比较。如果我们要继续提高作物产量,同时最低程度地减少农业生产对环境的影响,以面对不断增长的人口和变化的气候,那么最大限度地利用这些基因组数据对作物改良就显得至关重要了。 在这篇综述里,首先指出作物比较基因组学的挑战,这些挑战包括植物基因组的复杂结构以及在一些作物品种中发现的高水平核苷酸和结构的多样性。然后讨论了解驯化的重要性,因为一个作物的起源和种群分布影响着农艺性状的遗传基础和全基因组核苷酸多样性的方式。我们对农艺性状遗传学的理解由于基因组数据而发生根本性的变化。高密度的遗传标记正在被用于全基因组关联分析(GWASs),也可以应用到基因组选择中。对农艺性状的了解同样因为新一代的多亲本遗传图谱构建群体而得到提高。正如我们所讨论的那样,更高通量的重测序技术和标记基因型分析将会使新的作物改良方法成为可能,比如对有害突变的鉴别与选择性剔除。 植物基因组学的挑战 应用在植物中的基因组学研究工具通常会开发和测试其在哺乳动物或者其他模式生物中数据,比如果蝇和小鼠,但是植物基因组的规模和动态性增加或者加剧在其他模式生物中面临的挑战。相对于哺乳动物来说,植物倾向于拥有大量

大基因组大数据与生物信息学英文及翻译

Big Genomic Data in Bioinformatics Cloud Abstract The achievement of Human Genome project has led to the proliferation of genomic sequencing data. This along with the next generation sequencing has helped to reduce the cost of sequencing, which has further increased the demand of analysis of this large genomic data. This data set and its processing has aided medical researches. Thus, we require expertise to deal with biological big data. The concept of cloud computing and big data technologies such as the Apache Hadoop project, are hereby needed to store, handle and analyse this data. Because, these technologies provide distributed and parallelized data processing and are efficient to analyse even petabyte (PB) scale data sets. However, there are some demerits too which may include need of larger time to transfer data and lesser network bandwidth, majorly. 人类基因组计划的实现导致基因组测序数据的增殖。这与下一代测序一起有助于降低测序的成本,这进一步增加了对这种大基因组数据的分析的需求。该数据集及其处理有助于医学研究。 因此,我们需要专门知识来处理生物大数据。因此,需要云计算和大数据技术(例如Apache Hadoop项目)的概念来存储,处理和分析这些数据。因为,这些技术提供分布式和并行化的数据处理,并且能够有效地分析甚至PB级的数据集。然而,也有一些缺点,可能包括需要更大的时间来传输数据和更小的网络带宽,主要。 Introduction The introduction of next generation sequencing has given unrivalled levels of sequence data. So, the modern biology is incurring challenges in the field of data management and analysis. A single human's DNA comprises around 3 billion base pairs (bp) representing approximately 100 gigabytes (GB) of data. Bioinformatics is encountering difficulty in storage and analysis of such data. Moore's Law infers that computers double in speed and half in size every 18 months. And reports say that the biological data will accumulate at even faster pace [1]. Sequencing a human genome has decreased in cost from $1 million in 2007 to $1 thousand in 2012. With this falling cost of sequencing and after the completion of the Human Genome project in 2003, inundate of biological sequence data was generated. Sequencing and cataloguing genetic information has increased many folds (as can be observed from the GenBank database of NCBI). Various medical research institutes like the National Cancer Institute are continuously targeting on sequencing of a million genomes for the understanding of biological pathways and genomic variations to predict the cause of the disease. Given, the whole genome of a tumour and a matching normal tissue sample consumes 0.1 T B of compressed data, then one million genomes will require 0.1 million TB, i.e. 103 PB (petabyte) [2]. The explosion of Biology's data (the scale of the data exceeds a single machine) has made it more expensive to store, process and analyse compared to its generation. This has stimulated the use of cloud to avoid large capital infrastructure and maintenance costs. In fact, it needs deviation from the common structured data (row-column organisation) to a semi-structured or unstructured data. And there is a need to develop applications that execute in parallel on distributed data sets. With the effective use of big data in the healthcare sector, a

基因组学对我们的影响

基因组学对我们的影响 基因组学是研究生物基因组和如何利用基因的一门学问。用于概括涉及基因作图、测序和整个基因组功能分析的遗传学分支。该学科提供基因组信息以及相关数据系统利用,试图解决生物,医学,和工业领域的重大问题。基因组研究应该包括两方面的内容:以全基因组测序为目标的结构基因组学和以基因功能鉴定为目标的功能基因组学,又被称为后基因组研究,成为系统生物学的重要方法。 基因组是1924年提出用于描述生物的全部基因和染色体组成的概念。1986年由美国科学家ThomasRoderick提出的基因组学是指对所有基因进行基因组作图(包括遗传图谱、物理图谱、转录本图谱),核苷酸序列分析,基因定位和基因功能分析的一门科学。自从1990年人类基因组计划实施以来,基因组学发生了翻天覆地的变化,已发展成了一门生命科学的前沿和热点领域。 现在广泛公布的人类以及一系列其他生物体的基因组序列为我们描绘出了最基础的生物学以及生物医学信息。这些仍然很难破译的密码包含了细胞的结构和功能的的全部遗传指令信息,而这一信息又是揭开生物系统复杂性所必需的。阐明基因组的结构以及确定大量编码元素的功能可以建立基因组学与生物学的联系,从而加速我们对所有生命科学领域的探索。 把基于基因组的知识转化为人类健康的福祉,人类基因组测序,以及基因组学其他最近及预期的研究成果,极大地有助于我们了解遗传因素在人类健康和疾病中的角色,精确确定非遗传因素,并迅速将

新发现用于疾病的预防、诊断和治疗。美国国家研究院在其为HGP的最初远景规划中清楚地表明,人类基因组序列将改善人的健康状况,而它后来的五年计划也再一次明确了这一观点。但是这一点怎样才能实现还未得到更清晰的说明。随着HGP最初目标的完成,现在正是广泛发展和应用基因组战略改善人类健康、并预见和避免潜在伤害的时机。鉴定基因和路径在健康和疾病中的角色,测定它们与环境因素之间的关系;发展、评价以及应用以基因组为基础的诊断方法来预测对疾病的易感性,预测药物反应,疾病的早期诊断,疾病在分子水平上的精确分类;开发和应用促进基因组信息转化成治疗进步的方法。 促进基因组学的应用,最大程度地发挥效益,将危害降到最低基因组学通过学术研究和政策讨论一直处于对科学技术对社会的冲击进行严密关注的最前沿。如上文所述,基因组学主要能够造福于健康方面,但是除此之外,基因组学还能在社会其他领域有贡献。就像HGP和相关研究在基础生物学和健康方面开拓的新领域,同时为研究社会问题创造了机会,甚至可以使我们更全面地了解如何定义自己和他人。 在未来的几年内,社会不仅会为基因组学引起的无数的问题而探讨,而且还必须制定和贯彻相应的政策来解决它们。除非研究能够给出可信的数据和严格的方法作为决断的依据,否则这些政策就将是错误的,还可能会给我们大家带来潜在的危害。要想获得成功,这个研究就必须包含发展概念上的工具和共享语言的“基础”调查,和更多使用这些工具来探索制定适当的综合不同的观点的公共政策的“应用

《基因组学与应用生物学》

《基因组学与应用生物学》 论文编写指南 一、栏目设置与文体风格 本刊设置固定栏目和随机栏目。固定栏目常设研究论文(Articles)和研究报告(Research Report),发表最新的原始研究成果。随机栏目根据稿源可能设研究资源(Resources)、数据分析(Analysis)、技术主题(Technology feature)和评述与展望(Reviews and Progress)等栏目,还可能设置刊登有关科学新闻、科技简讯、专利、短评和书评等方面的栏目。本刊在栏目设置和文体格式上参照国际著名周刊《自然》及《自然生物技术》的刊发形式。以下就研究论文(Articles)、研究报告(Research Report)、评述与展望(Reviews and Progress)和研究资源(Resources)的文体格式做出说明,其它类型的详细的文体格式及其定义请向编辑部索取或从本刊网站下载。 1研究论文(An Article) 报道相对比较完整、全面的原始研究工作,其结论代表着一个重要问题的认识上有了实质性进展,并且具有及时而深远的影响。论文篇幅要求在8个印刷页面以上,由作者自由投稿,同行评审。 2研究报告(Research Report) 简洁报道有重要结果的原始研究工作,其重要性意味着本研究结果使其它领域的科学家也有兴趣。论文篇幅要求在6个印刷页面左右,由作者自由投稿,同行评审。 3评述与展望(Review and Progress) 对某一研究领域中最新研究进展进行权威的、公平的、学术上的回顾、鉴定和评述。论文篇幅要求在8个印刷页面以上,由作者自由投稿,同行评审。 4研究资源(A Resource) 对现有数据(如由各种阵列技术或者高通量研究平台所提供的基因组学, 转录组学或蛋白质组学的数据包)进行新分析,或描述由比较分析技术得出引起广大读者注意的重要新结论而获得的新数据。论文篇幅要求在6个印刷页面左右,由作者自由投稿,同行评审。 二、论文写作的基本要求 1题目与标题 论文题目要紧扣主题。务求简明、新颖,有足够的信息,能引起读者的兴趣,不用副标题,一般不超过25个汉字或英文单词。中英文题目应对应一致,顶格书写。避免在题目中使用不常用的缩写词。 2作者与单位 署名应限于参加本工作并能解答论文中有关问题者,必须注明通讯作者及其电子邮箱。中国作者英文名用汉语拼音,姓和名的首字母大写,双名不用连字号隔开;外国作者按其习惯书写,名用缩写,字母间加缩略点。作者下面一行书写作者的工作单位、城市名及邮政编码。工作单位的英文翻译应按照所在单位官方公布的为准。

基因组学与蛋白质组学

《基因组学与蛋白质组学》课程教学大纲 学时: 40 学分:2.5 理论学时: 40 实验学时:0 面向专业:生物科学、生物技 术课程代码:B7700005先开课程:生物化学、分子生物 学课程性质:必修/选修执笔人:朱新 产审定人: 第一部分:理论教学部分 一、课程的性质、目的和任务 《基因组学与蛋白质组学》是随着生物化学、分子生物学、结构生物学、晶体学和计算机技术等的迅猛发展而诞生的,是融合了生物信息学、计算机辅助设计等多学科而发展起来的新兴研究领域。是当今生命科学研究的热点与前沿领域。由于基因组学与蛋白质组学学科的边缘性,所以本课程在介绍基因组学与蛋白质组学基本基本技术和原理的同时,兼顾学科发展动向,讲授基因组与蛋白组学中的热点和最新进展,旨在使学生了解现代基因组学与蛋白质组学理论的新进展并为相关学科提供知识和技术。 二、课程的目的与教学要求 通过本课程的学习,使学生掌握基因组学与蛋白质组学的基本理论、基础知识、主要研究方法和技术以及生物信息学和现代生物技术在基因组学与蛋白质组学上的应用及典型研究实例,熟悉从事基因组学与蛋白质组学的重要方法和途

径。努力培养学生具有科学思维方式、启发学生科学思维能力和勇于探索,善于思考、分析问题的能力,激发学生的学习热情,并通过学习提高自学能力、独立思考能力以及科研实践能力,为将来从事蛋白质的研究奠定坚实的理论和实践基础。 三、教学内容与课时分配 第一篇基因组学

第一章绪论(1学时) 第一节基因组学的研究对象与任务; 第二节基因组学发展的历程; 第三节基因组学的分子基础; 第四节基因组学的应用前景。 本章重点: 1. 基因组学的概念及主要任务; 2. 基因组学的研究对象。 本章难点: 1.基因组学的应用及发展趋势; 2.基因组学与生物的遗传改良、人类健康及生物进化。建议教学方法:课堂讲授和讨论 思考题: 查阅有关资料,了解基因组学的应用发展。 第二章人类基因组计划(1学时) 第一节人类基因组计划的诞生; 第二节人类基因组研究的竞赛; 第三节人类基因组测序存在的缺口; 第四节人类基因组中的非编码成分; 第五节人类基因组的概观; 第六节人类基因组多样性计划。 本章重点: 1. 人类基因组的研究; 2. 人类基因组多样性。 本章难点: 人类基因组序列的诠释。 建议教学方法:课堂讲授和讨论 思考题:

基因组学研究的应用前景

基因组学研究的应用前景摘要:基因组学是一门研究基因组的结构,功能及表达产物的学科,基因组的结构不仅是蛋白质,还有许多复杂功能的RNA,包括三个不同的亚领域,及结构基因组学,功能基因组学和比较基因组学。近几年,基因组学在微生物药物,细菌,病毒基因,营养基因方面都有进展,其前景是光明的。 关键词:基因研究未来结构 一、微生物药物产生菌功能基因组学研究进展 微生物药物是一类化学结构和生物活性多样的次级代谢产物,近年来多个产生菌基因组序列已经被测定完成,在此基础上开展的功能基因组研究方兴未艾,并在抗生素生物合成,形态分化,调控,发育与进化及此生代谢产物挖掘等方面有着新的发现,展现出广阔的研究前景,青霉素及其衍生的《》内酰胺类抗生素极大地改善了人类的卫生保健和生活质量,并促进研究人员不断对其工业生产菌株类黄青霉进行遗传改良和提高其产量,从而降低生产成本。经过60年的随机诱变筛选,当前青霉素产量至少提高了三个数量级,同时,青霉素的生物合成机理也得到了较为清晰的阐述,其pcbAB编码的非核糖体肽合酶ACVS~DPcbc编码的异青霉素N合成酶IPNS位于细胞质中,而苯乙酸COA连接酶PenDE编码的IPN酰基转移酶位于特殊细胞器一微体中。 研究发现,青霉素合成基因区域串联扩增,产黄青细霉胞中微体含量增加都可显著提高青霉素产量。然而随机诱变筛选得到的黄青霉工业菌株高产的分子机制尚不明确。为此,2008年荷兰研究人员联合国美国venter基因组研究所对黄青霉wisconsin54—1225进行了基因组测试和分析,并进一步利用DNA芯片技术研究了wisconsin54—1255及其高产菌株DS17690在培养基中是否添加侧链前体苯乙酸情况下的转录组变化,四组数据的比较分析发现,有2470个基因至少在其中一个条件下是差异表达的,根据更为严格的筛选标准,在PPA存在的条件下,高产菌相比测序菌株有307个基因转录是上调的,和生长代谢,青霉素前体合成及其初级代谢和转运等功能相关,另有271个基因显著下调,主要是与生长代谢及发育分化相关的功能基因。 二、乳酸菌基因组学的研究进展

生物信息学复习

一、名词解释(31个) 1.生物信息学:广义:应用信息科学的方法和技术,研究生物体系和生物过程中信 息的存贮、信息的内涵和信息的传递,研究和分析生物体细胞、组织、器官的生理、病理、药理过程中的各种生物信息,或者也可以说成是生命科学中的信息科学。狭义:应用信息科学的理论、方法和技术,管理、分析和利用生物分子数据。 2.二级数据库:对原始生物分子数据进行整理、分类的结果,是在一级数据库、实验 数据和理论分析的基础上针对特定的应用目标而建立的。 3.多序列比对:研究的是多个序列的共性。序列的多重比对可用来搜索基因组序列的 功能区域,也可用于研究一组蛋白质之间的进化关系。 4.系统发育分析:是研究物种进化和系统分类的一种方法,其常用一种类似树状分支 的图形来概括各种(类)生物之间的亲缘关系,这种树状分支的图形称为系统发育树。 5.直系同源:如果由于进化压力来维持特定模体的话,模体中的组成蛋白应该是进化 保守的并且在其他物种中具有直系同源性。 指的是不同物种之间的同源性,例如蛋白质的同源性,DNA序列的同源性。(来自百度) 6.旁系(并系)同源:是那些在一定物种中的来源于基因复制的蛋白,可能会进化出 新的与原来有关的功能。用来描述在同一物种内由于基因复制而分离的同源基因。 (来自百度) 7.FASTA序列格式:将一个DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或 氨基酸字符串。 8.开放阅读框(ORF):是结构基因的正常核苷酸序列,从起始密码子到终止密码子 的阅读框可编码完整的多肽链,其间不存在使翻译中断的终止密码子。(来自百度)9.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折 叠得较为紧密,各行其功能,称为结构域。 10.空位罚分:序列比对分析时为了反映核酸或氨基酸的插入或缺失等而插入空位并进 行罚分,以控制空位插入的合理性。(来自百度) 11.表达序列标签:通过从cDNA文库中随机挑选的克隆进行测序所获得的部分cDNA的 3’或5’端序列。(来自文献) 12.Gene Ontology 协会: 13.HMM 隐马尔可夫模型:将核苷酸序列看成一个随机序列,DNA序列的编码部分与非 编码部分在核苷酸的选用频率上对应着不同的Markov模型。 14.一级数据库:数据库中的数据直接来源于实验获得的原始数据,只经过简单的归类 整理和注释 15.序列一致性:指同源DNA顺序的同一碱基位置的相同的碱基成员, 或者蛋白质的同 一氨基酸位置的相同的氨基酸成员, 可用百分比表示。 16.序列相似性:指同源蛋白质的氨基酸序列中一致性氨基酸和可取代氨基酸所占的比 例。 17.Blastn:是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将同所查 序列作一对一地核酸序列比对。(来自百度) 18.Blastp:是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐一地同 每条所查序列作一对一的序列比对。(来自百度)

基因组学与生物信息学教案

《基因组学与生物信息学》教案 授课专业:生物学大类各专业 课程名称:基因组学与生物信息学 主讲教师:夏庆友程道军赵萍徐汉福

课程说明 一、课程名称:基因组学与生物信息学 二、总课时数:36学时(理论27学时实验9学时) 三、先修课程:遗传学、分子生物学、基因工程 四、使用教材: 杨金水. 基因组学. 北京:高等教育出版社,2002. 张成岗. 贺福初, 生物信息学方法与实践. 北京:科学出版社,2002. 五、教学参考书: T.A.布朗著,袁建刚译著,基因组(2rd版),北京:科学出版社,2006. 沈桂芳,丁仁瑞,走向后基因组时代的分子生物学,杭州:浙江教育出版社,2005. 罗静初译,生物信息学概论,北京:北京大学出版社,2002. 六、考核方式:考查 七、教案编写说明: 教案又称课时授课计划,是任课教师的教学实施方案。任课教师应遵循专业教学计划制订的培养目标,以教学大纲为依据,在熟悉教材、了解学生的基础上,结合教学实践经验,提前编写设计好每门课程每个章、节或主题的全部教学活动。教案可以按每堂课(指同一主题连续1~2节课)设计编写。教案编写说明如下: 1、编号:按施教的顺序标明序号。 2、教学课型表示所授课程的类型,请在相应课型栏内选择打“√”。 3、题目:标明章、节或主题。 4、教学内容:是授课的核心。将授课的内容按逻辑层次,有序设计编排,必要时标以“*”、“#”“?” 符号分别表示重点、难点或疑点。 5、教学方式既教学方法,如讲授、讨论、示教、指导等。教学手段指教科书、板书、多媒体、模型、 标本、挂图、音像等教学工具。 6、讨论、思考题和作业:提出若干问题以供讨论,或作为课后复习时思考,亦可要求学生作为作业 来完成,以供考核之用。 7、参考书目:列出参考书籍、有关资料。 8、日期的填写系指本堂课授课的时间。

基因组学重点整理

生物五界:动物、植物、真菌、原生生物和原核生物;生物三界:真细菌、古细菌、真核生物 具有催化活性的RNA分子称为核酶(ribozyme)核酶催化的生化反应有:自我剪接、催化切断其它RNA、合成多肽键、催化核苷酸的合成 新基因的产生:基因与基因组加倍1)整个基因组加倍; 2)单条或部分染色体加倍;3)单个或成群基因加倍。DNA水平转移:原核生物中的DNA水平转移可通过接合转移,噬菌体转染,外源DNA的摄取等不同途径发生,水平转移的基因大多为非必须基因。动物中由于种间隔离不易进行种间杂交,但其主要来源于真核细胞与原核细胞的内共生。动物种间基因转移主要集中在逆转录病毒及其转座成分。 外显子洗牌与蛋白质创新:产生全新功能蛋白质的方式有二种:功能域加倍,功能域或外显子洗牌 基因冗余:一条染色体上出现一个基因的很多复份(复本)当人们分离到某一新基因时,为了鉴定其生物学功能,常常使其失活,然后观察它们对表型的影响。许多场合,由于第二个重复的功能基因可取代失活的基因而使突变型表型保持正常。这意味着,基因组中有冗余基因存在。看家基因很少重复,它们之间必需保持剂量平衡,因此重复的拷贝很快被淘汰。与个体发育调控相关的基因表达为转录因子,具有多功能域的结构。这类基因重复拷贝变异可使其获得不同的表达控制模式,促使细胞的分化与多样性的产生,并导致复杂形态的建成,具有许多冗余基因。 非编码序列扩张方式:滑序复制、转座因子 模式生物海胆、果蝇、斑马鱼、线虫、蟾蜍、小鼠、酵母、水稻、拟南芥等。模式生物基因组中G+C%含量高, 同时CpG 岛的比例也高。进化程度越高, G+C 含量和CpG 岛的比例就比较低 如果基因之间不存在重叠顺序,也无基因内基因(gene-within-gene),那么ORF阅读出现差错的可能只会发生在非编码区。细菌基因组中缺少内含子,非编码序列仅占11%, 对阅读框的排查干扰较少。细菌基因组的ORF阅读相对比较简单,错误的机率较少。高等真核生物DNA的ORF阅读比较复杂:基因间存在大量非编码序列(人类占70%);绝大多数基因内含有非编码的内含子。高等真核生物多数外显子的长度少于100个密码子 内含子和外显子序列上的差异:内含子的碱基代换很少受自然选择的压力,保留了较多突变。由于碱基突变趋势大多为C-T,故A/T的含量内含子高于外显子。由于终止密码子为TAA\TAG\TGA,如果以内含子作为编码序列,3种读码框有很高比例的终止密码子。 基因注释程序编写的依据:1)信号指令,包括起始密码子,终止密码子,终止信号,剪接受体位和供体位,多聚嘧啶序列,分支点保守序列2)内容指令,密码子偏好,内含子和外显子长短 基因功能的检测:基因失活、基因过表达、RNAi干涉 双链DNA的测序可从一端开始,亦可从两端进行,前者称单向测序,后者称双向测序。 要获得大于50 kb的DNA限制性片段必需采用稀有切点限制酶。 酵母人工染色体(YAC)1)着丝粒在细胞分裂时负责染色体均等分配。2)端粒位于染色体端部的特异DNA序列,保持人工染色体的稳定性3)自主复制起始点( ARS)在细胞中启动染色体的复制 合格的STS要满足2个条件:它应是一段序列已知的片段,可据此设计PCR反应来检测不同的DNA片段中是否存在这一顺序;STS必需在染色体上有独一无二的位置。如果某一STS在基因组中多个位点出现,那么由此得出的作图数据将是含混不清的。 遗传图绘制主要依据由孟德尔描述的遗传学原理,第一条定律为等位基因随机分离,第二条定律为非等位基因自由组合,显隐性规律/不完全显性、共显性、连锁 衡量遗传图谱的水平覆盖程度饱和程度 基因类型:transcribed, translatable gene (蛋白基因 ) ; transcribed but non-translatable gene ( RNA 基因 )Non- transcribed, non-translatablegene ( promoter, operator ) rRNA基因,tRNA基因, scRNA基因, snRNA 基因, snoRNA基因, microRNA基因 基因组(genome):生物所具有的携带遗传信息的遗传物质总和。 基因组学(genomic):用于概括涉及基因作图、测序和整个基因功能分析的遗传学分支。 染色体组(chromosome set):不同真核生物核基因组均由一定数目的染色体组成,单倍体细胞所含有的全套染色体。 比较基因组学(comparative genomics):比较基因组学是基因组学与生物信息学的一个重要分支。通过模式生物基因组与人类基因组之间的比较与鉴别,为分离重要的候选基因,预测新的基因功能,研究生物进化提供依据。(目标)

基因组学的重要性在健康管理中的应用

健康风险评估(health risk appraisal, HRA)是一种方法或工具,用于描述和评估某一个体未来发生某种特定疾病或因为某种特定疾病导致死亡的可能性。这种分析过程目的在于估计特定时间发生的可能性,而不在于做出明确的诊断。健康风险评估师对个人的健康状况及未来患病和/或死亡危险型的量化评估。包括健康状态、未来患病/或死亡危险、量化评估3个关键词。 目录 健康风险评估的历史 健康风险评估的原理与技术 1. (一)问卷 2. (二)风险的计算 3. (三)评估报告 健康风险评估的种类与方法 1. (一)一般健康风险评估 2. (二)疾病风险评估 3. (三)疾病风险评估与健康管理策略 健康风险评估的历史 健康风险评估的原理与技术 1. (一)问卷 2. (二)风险的计算 3. (三)评估报告 健康风险评估的种类与方法 1. (一)一般健康风险评估 2. (二)疾病风险评估 3. (三)疾病风险评估与健康管理策略 展开 健康风险评估的种类与方法 从不同的角度出发,健康风险评估可进行多种分类。如,按应用的领域区分,健康风险评估可分为:1)临床评估,包括体检、门诊、入院、治疗评估等;2)健康过程及结果评估,包括健康状态评估、患病危险性评估、疾病并发症评估及预后评估等;3)生活方式及健康行为评估,包括膳食、运动等的习惯评估;4)公共卫生监测与人群健康评估,从人群的角度进行环境、食品安全、职业卫生等方面的健康评估。 从评估功能的角度,常见的健康风险评估种类及方法如下: (一)一般健康风险评估 即前面所述,通过问卷、危险度计算和评估报告3个基本模块进行的健康风险评估(health risk appraisal, HRA)。

基因组学的重要性在健康管理中的应用

基因组学的重要性在健康管理中的应用

健康风险评估(health risk appraisal, HRA)是一种方法或工具,用于描述和评估某一个体未来发生某种特定疾病或因为某种特定疾病导致死亡的可能性。这种分析过程目的在于估计特定时间发生的可能性,而不在于做出明确的诊断。健康风险评估师对个人的健康状况及未来患病和/或死亡危险型的量化评估。包括健康状态、未来患病/或死亡危险、量化评估3个关键词。 目录 健康风险评估的历史 健康风险评估的原理与技术 1. (一)问卷 2. (二)风险的计算 3. (三)评估报告 健康风险评估的种类与方法 1. (一)一般健康风险评估 2. (二)疾病风险评估 3. (三)疾病风险评估与健康管理策略 健康风险评估的历史 健康风险评估的原理与技术 1. (一)问卷 2. (二)风险的计算 3. (三)评估报告 健康风险评估的种类与方法 1. (一)一般健康风险评估 2. (二)疾病风险评估 3. (三)疾病风险评估与健康管理策略 展开 健康风险评估的种类与方法 从不同的角度出发,健康风险评估可进行多种分类。如,按应用的领域区分,健康风险评估可分为:1)临床评估,包括体检、门诊、入院、治疗评估等;2)健康过程及结果评估,包括健康状态评估、患病危险性评估、疾病并发症评估及预后评估等;3)生活方式及健康行为评估,包括膳食、运动等的习惯评估;4)公共卫生监测与人群健康评估,从人群的角度进行环境、食品安全、职业卫生等方面的健康评估。 从评估功能的角度,常见的健康风险评估种类及方法如下: (一)一般健康风险评估 即前面所述,通过问卷、危险度计算和评估报告3个基本模块进行的健康风险评估(health risk appraisal, HRA)。

环境基因组学的研究进展及其应用

环境基因组学的研究进展及其应用 贾海鹰 张徐祥 孙石磊 赵大勇 程树培* (南京大学,环境学院,南京,210093) E-mail(jhy194@https://www.360docs.net/doc/ef12548380.html,) 摘 要:本文系统地介绍了环境基因组学的基本概念、研究的主流技术平台及其在环境污染控制、健康风险检测与评价等方面地应用,并阐明了环境基因组学与生物信息学两者之间的关系。环境基因组学在分子水平上揭示了环境污染物与生物之间的相互作用,为检测、控制环境污染维护环境健康注入了新的活力。 关键词:环境基因组学 生物信息学 健康风险评价 环境污染 环境健康 1.引言 2003年4月14日,人类基因组计划(Human Genome Project)顺利完成。HGP成功地绘制出了遗传图谱、物理图谱、序列图谱和转录图谱4张图谱。这标志着人类基因组计划的所有目标全部实现。至此,HGP的研究发生了翻天覆地的变化,已从结构基因组学研究时代进入了功能基因组(后基因组)时代[1-2],因此也就有了“人类后基因组计划”。HGP正朝着生物信息科学、计算机生物技术、数据处理、知识产权及社会伦理学研究等多方面发展,对生命科学、环境科学、医疗卫生、食品制药、人文科学各领域产生了广泛而深远的影响。环境基因组学(environmental genomics)是在人类基因组基础上发展的功能基因组内容之一,由基因组学和环境科学交叉融合而成,是一个近期发展起来的新型边缘学科,是基因组学技术和成果在环境污染保护与控制和生态风险评价中的应用,在其发展的短短的几年时间内已渗透到环境科学研究的各个研究领域并发挥着日益重要的作用。 2.环境基因组学的概念与定义 至今,国内外学者对环境基因组学还没有统一明确的定义。但是,大多数学者认为,环境基因组学(environmental genomics)的概念与毒理基因组学(toxicogenomics)密切相关。自从1999年Nuwaysir等[3]首次提出毒理基因组学概念至今,在短短的八年的时间里这一概念不断地发展和完善着。目前人们普遍采纳的定义有两种,一种是美国国家毒理学规划机构给出的定义[3]:毒物基因组学是研究外来化学物对基因活性和基因产物的影响及相互作用的科学;另一种是由世界卫生组织给出的定义[3],认为毒物基因组学是一门与遗传学、基因组水平上RNA表达(转录组学) 、细胞和组织范围的蛋白表达(蛋白质组学)、代谢谱(代谢组学) 、生物信息学和常规毒理学结合,以阐明化学物作用模式和基因-环境相互作用的潜在意义的科学。1998年4月4日,美国国会顾问环境卫生科学委员会正式投资专项基金进行环境基因组计划研究,其目的是专门研究与环境相关疾病的遗传易感性,寻找对化学损伤易感的基因,鉴定对环境发生反应基因中有重要功能的多态性,并确定它们在环境暴露引起疾病的危险度方面的差异;在疾病流行病学中研究基因与环境的相互作用,从而改善遗传分析技术,优化研究设计,建立样品资源库,把公用的多态性应用于社会、法律和伦理学[4-7]。2001年,Miller 提出环境基因组(Environmental Genomics)是在人类基因组(HGP)基础上发展起来的后 - 1 -

基因组学复习资料整理

基因组学 1. 简述基因组的概念和其对生命科学的影响。 基因组:指一个物种的全套染色体和基因。广义的基因组:核基因组,线粒体基因组,叶绿体基因组等。 基因组计划对生命科学的影响: ①研究策略的高通量,彻底认识生命规律:基因组研究高通量,研究手段和 研究策略的更新,加强了生命科学研究的分工与协作,从不同层次深入研究生命现象。 ②促进了相关学科的发展:分子生物学遗传学生物信息学生物化学细胞生 物学生理学表观遗传学等 ③物种的起源与进化: Ⅰ.重要基因的发掘、分离和利用:遗传疾病相关基因,控制衰老的基因,工业价值的细菌基因,重要农艺性状基因等。 Ⅱ.充分认识生命现象:基因的表达、调控,基因间的相互作用,不同物种基因组的比较研究,揭示基因组序列的共性,探讨物种的起源和进化。 ④伦理学法律问题:伦理问题,知识产权问题,法律问题,社会保险问题。 2. Ac/Ds转座因子 Ac因子有4563bp,它的大部分序列编码了一个由5个外显子组成的转座酶基因,成熟的mRNA有3500bp。该因子本身的两边为11bp的反向重复末端(IR),发生错位酶切的靶序列长度8bp。Ds因子较Ac因子短,它是由Ac因子转座酶基因发生缺失而形成的。不同的Ds因子的长度差异由Ac因子发生不同缺失所致。 Ac/Ds因子转座引起的插入突变方式:玉米Bz基因是使糊粉层表现古铜色的基因,当Ac/Ds转座插入到Bz基因座后,糊粉层无色。当Ac/Ds因子在籽粒发育过程,部分细胞发生转座,使Bz靶基因发生回复突变,从而形成斑点。 Ac/Ds两因子系统遗传特点: 1)Ac具有活化周期效应,有活性的Ac+因子被甲基化修饰后会形成无活性的ac-因子,反之无活性的ac-因子去甲基化成有活性的Ac+因子。 2)Ac与Ds因子有时表现连锁遗传但更多表现独立遗传。 3)Ac对Ds的控制具有负剂量效应。 4)Ac/Ds可引发靶基因表现为插入钝化、活性改变、表达水平改变和缺失突变等。 5)Ds的结构不同,插入同一靶基因的位点可能不同,形成的易变基因的表型也不同。(分子生物学79-81) 3. 正向遗传与反向遗传 正向遗传学研究指从突变体开始的遗传学研究,关心的问题是突变体表型的变化是由哪一个基因功能丧失后引起。 反向遗传学研究指从基因序列开始的遗传学研究,关心的问题是基因功能丧失后会使植物的表型产生什么样的变化。

基因组学在人类健康与疾病中的应用

基因组学在人类健康与疾病中的应用 ————094班 2090611412 王国东摘要:在发现DNA双螺旋结构50周年之际,高质量的人类基因组全序列测序工作的完成具有划时代的意义,基因组的新纪元已经到来。 关键词:DNA双螺旋、人类基因组、新纪元 前言:现在广泛公布的人类以及一系列其他生物体的基因组序列为我们描绘出了最基础的生物学以及生物医学信息。这些仍然很难破译的密码包含了细胞的结构和功能的的全部遗传指令信息,而这一信息又是揭开生物系统复杂性所必需的。阐明基因组的结构以及确定大量编码元素的功能可以建立基因组学与生物学的联系,从而加速我们对所有生命科学领域的探索。因此,我们需要新的概念和技术用来发展一种全面的、易于理解的人类基因组的编码目录明确基因编码的产物如何共同作用行使细胞和组织功能理解基因组如何改变和承担新功能。本文主要从以下几个方面来阐述基因组学在人类健康与疾病中的应用。 1.人类基因组的可遗传变异的详细理解 遗传学的主要内容之一是寻找表型的不同(性状)与DNA序列的变异之间的关联。人类遗传学的最大进步是把性状和单个基因联系起来。但是大部分的表型,包括普通疾病和对药物的不同反应,都是由更加复杂的原因所致,包括多种遗传因素(基因及其产物)以及非遗传因素(环境因素)的交互作用。揭示这一复杂体系不仅需要对人类基因组可遗传的变异进行全面描述,还需要开发出一系列用这些信息了解遗传疾病基础的分析方法。 早在几年前,人们已经急于开始建立一套人类基因常见差异的细目,包括单核苷酸多态性(SNPs),小的缺失和插入,以及其他结构上的不同。已经发现了许多SNPs,而且大部分结果已经公开(https://www.360docs.net/doc/ef12548380.html,/SNP)。2002年,一个公共协作项目--国际HapMap计划(https://www.360docs.net/doc/ef12548380.html, /Pages/Research/ HapMap)启动,它的目的是建立人类基因组的不均衡联接模式和单体型,用来鉴定携带大量这些模式的遗传变异信息的SNPs,从而使更广泛的遗传关联性的研究成为可能。这些研究要想成功,就需要用这种新的人类单体型框架来进行更充分的实验以及发展更多的计算方法。对人和其他模式生物遗传变异的全面了解可以推动基因型和生物功能相关性的研究。对特定变异的研究以及研究这些变异对特定蛋白的功能和途径的影响,将为我们认识和理解正常或病理状态下的生理过程提供重要新思路。把基因变异的信息结合到人类遗传学研究中的能力的提高,将为基因水平上的人类疾病的研究开启新的纪元。 2基因组学与人类健康与疾病的应用 2.1把基于基因组的知识转化为人类健康的福祉 人类基因组测序,以及基因组学其他最近及预期的研究成果,极大地有助于我们了解遗传因素在人类健康和疾病中的角色,精确确定非遗传因素,并迅速将新发现用于疾病的预防、诊

相关文档
最新文档