2019-年高考理科数学全国卷一概率压轴题解析

合集下载

对一道高考数学压轴题的几点思考——以2019年江苏数学高考卷第19题为例

对一道高考数学压轴题的几点思考——以2019年江苏数学高考卷第19题为例


犕 ,求证:犕
4 ≤27.
不难发现,前两 问 比 较 常 规,所 以 下 面 我 们 重 点
谈谈对于第 (3)问 的 思 考.分 析 问 题,我 们 发 现:目 标
是要证明 “犕

4”,要 27



标,必






犳(狓)的极大值;要研究函数犳(狓)的极大值,必须知 道函数犳(狓)的单调性;要知道函数犳(狓)的单调性, 必须先研究犳(狓)的导函数的零点.接着,我们就执行 这个分析思路.


因为犳(狓1)=狓3 1 - (犫+1)狓2 1 +犫狓1,所以犳(狓1)
( ) =狓3 1

(犫
+ 1)狓2 1
+犫狓1
=犳′(狓1)狓31
犫+1 -9

2(犫2 -9犫+1)狓1

犫(犫+1) 犫(犫+1)


27

2(犫-12)72(犫+1)+227(槡犫(犫-1)+1).
因为0<犫≤1,所以犳(狓1)≤227+0+227≤247.
解:因为犳(狓)=狓(狓 -犫)(狓 -1)=狓3 - (犫+ 1)狓2 +犫狓,所以犳′(狓)=3狓2 -2(犫+1)狓+犫.
因 为Δ =4(犫+1)2 -12犫=(2犫-1)2 +3>0,所 以犳′(狓)有2个不同的零点,设为狓1,狓2,不妨令狓1 <
狓2. 当狓 <狓1 时,犳′(狓)>0,当狓1 <狓 <狓2 时,
( ) (2)要证ln狓+狓犪-1>1犪 ≥ 1 2,狓 >1 成立,
(含有狓 和犪两个未知量,考虑消元)即证ln狓+狓犪-1 ≥ln狓+2(狓1-1)>1.(利用不等关系消犪)即证2(狓 -1)ln狓+1>2(狓-1)当狓 >1时成立.

【数学】2019年高考全国卷1理科数学试题及参考答案

【数学】2019年高考全国卷1理科数学试题及参考答案

x2019 年普通高等学校招生全国统一考试理科数学C.x2A .165cmB .175cm C.185cm5.函数f x sin x x2在,的图象大致为、选择题:本题共12 小题,每小题5 分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合M x 2 ,N x x2 x 60 ,则M I Nx2C.x 2 D.x 22.设复数满足1,在复平面内对应的点为x,y ,则B.x3.已知a log 2 0.2 ,b 20.2 c 0.20.3,则B.a cb C.ab D.b ca4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512 0.618 ,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是例,且腿长为105cm ,头顶至脖子下端的长度为26cm,则其身高可能是515 1。

若某人满足上述两个黄金分割比2512D.x2D .190cm6.我国古代典籍《周易》用“卦”描述万物的变化。

每一“重卦”由从下到上排列的6 个爻组成,爻分为阳爻“”和阴爻“——”,右图就是一重卦,在所有重卦7.8.9.中随机取一重卦,则该重卦恰有3个阳爻的概率是A.16 B.1132C.213211 D.16已知非零向量r ra2ba,b 满足,且a b,则a 与b 的夹角为()A.6B.32C.3 D.右图是求11的程序框图,图中空白框中应填入1112A21A112A11AA.B.AC.AD.A2A记S n 为等差数列A .a n 2n 5a n 的前n项和,已知S4=0,a5B .a n 3n 10C.S 2n2 8n5,D.10.已知椭圆C 的焦点为F1 1,0 ,F2 1,0 AB BF1 ,则C 的方程为2x2A .y 122xB.32 y21211.关于函数f x sin x sinx ① f x 是偶函数② fA.①②④Sn 2n2n,过F2 的直线与C 交于A ,B 两点,AF2 2 F2B ,2xC.42y213D.2y214有下述四个结论:x 在区间2,有 4 个零点④ fB.②④单调递增x 的最大值为2C.①④D.①③12.已知三棱锥 P ABC 的四个顶点在球 O 的球面上, PA PB PC , △ABC 是边长为 2 的正三角形, E , F 分别是 PA , PB 的中点, CEF 90 ,则球 O 的体积为A .8 6B . 4 6C . 2 6D . 6二、填空题:本题共 4 小题,每小题 5 分,共 20 分。

2019年全国乙卷统一高考数学试卷(理科)(新课标II)逐题解析

2019年全国乙卷统一高考数学试卷(理科)(新课标II)逐题解析


y2 b2
1(a>0,b>0)的右焦点,O 为坐标原点,以 OF 为直径的
圆与圆 x2+y2=a2 交于 P、Q 两点.若|PQ|=|OF|,则 C 的离心率为
A. 2
B. 3
C. 2
D. 5
解析如下:A
准确画图,由图形对称性得出 P 点坐标,代入圆的方程得到 c 与 a 关系,可求双曲线的离心 率.
的方法,如 p 2 时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除 A,同样可排除
B,C,故选 D.
因 为 抛 物 线 y2 2 px( p 0) 的 焦 点 ( p , 0) 是 椭 圆 x2 y2 1 的 一 个 焦 点 , 所 以
2
3p p
3 p p ( p )2 ,解得 p 8 ,故选 D. 2
本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.


9.下列函数中,以 为周期且在区间( , )单调递增的是
2
42
A. f(x)=│cos 2x│
B. f(x)=│sin 2x│
C. f(x)=cos│x│
D. f(x)= sin│x│
解析如下:A 本题主要考查三角函数图象与性质,渗透直观想象、逻辑推理等数学素养.画出各函数图象, 即可做出选择.
中位数仍为 x5 ,A 正确.
②原始平均数
x

1 9
( x1

x2

x3

x4

x8

x9 )
,后来平均数
x 17(x2 x3 x4 x8)
平均数受极端值影响较大, x 与 x 不一定相同,B 不正确

专题14 概率统计解答题突破(第一季)-2019年领军高考数学(理)压轴题必刷题(解析版)

专题14 概率统计解答题突破(第一季)-2019年领军高考数学(理)压轴题必刷题(解析版)

专题14-1概率统计解答题突破第一季1.某中学有学生500人,学校为了解学生课外阅读时间,从中随机抽取了50名学生,收集了他们2018年10月课外阅读时间(单位:小时)的数据,并将数据进行整理,分为5组:[10,12),[12,14),[14,16),[16,18),[18,20],得到如图所示的频率分布直方图.(Ⅰ)试估计该校所有学生中,2018年10月课外阅读时间不小于16小时的学生人数;(Ⅱ)已知这50名学生中恰有2名女生的课外阅读时间在[18,20],现从课外阅读时间在[18,20]的样本对应的学生中随机抽取2人,求至少抽到1名女生的概率;(Ⅲ)假设同组中的每个数据用该组区间的中点值代替,试估计该校学生2018年10月课外阅读时间的平均数.【答案】(Ⅰ)150(Ⅱ)7(Ⅲ)14.68【解析】(Ⅰ)0.10×2+0.05×2=0.30,即课外阅读时间不小于16小时的样本的频率为0.30.因为500×0.30=150,所以估计该校所有学生中,2018年10月课外阅读时间不小于16小时的学生人数为150.(Ⅱ)阅读时间在[18,20]的样本的频率为0.05×2=0.10.因为50×0.10=5,即课外阅读时间在[18,20]的样本对应的学生人数为5.这5名学生中有2名女生,3名男生,设女生为A,B,男生为C,D,E,从中抽取2人的所有可能结果是:(A,B),(A,C),(A,D),(A,E),(B,C),(B,D),(B,E),(C,D),(C,E),(D,E).其中至少抽到1名女生的结果有7个,所以从课外阅读时间在[18,20]的样本对应的学生中随机抽取2人,至少抽到1名女生的概率为p=(Ⅲ)根据题意,0.08×2×11+0.12×2×13+0.15×2×15+0.10×2×17+0.05×2×19=14.68(小时).由此估计该校学生2018年10月课外阅读时间的平均数为14.68小时.2.2018年“双十一”期间,某商场举办了一次有奖促销活动,顾客消费每满1000元可参加一次抽奖(例如:顾客甲消费930元,不得参与抽奖;顾客乙消费3400元,可以抽奖三次)。

(完整版)2019年全国1卷理科数学解析版

(完整版)2019年全国1卷理科数学解析版

2019年全国1卷理科数学试题及详解一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}{}242,60M x x N x x x =-<<=--<,则M N =( )A .{}43x x -<< B .{}42x x -<<- C .{}22x x -<< D .{}23x x <<【答案】C 。

【解析】由260x x --<可得()()32023x x x -+<⇒-<<,故{}23N x =-<<。

故而可得MN ={}22x -<<,故选C 。

2.设复数1z i -=,z 在复平面内对应的点为(),x y ,则( ) A .()2211x y ++= B .()2211x y -+= C .()2211x y +-= D .()2211x y ++=【答案】C 。

【解析】由z 在复平面内对应的点为(),x y 可得z x yi =+,故而()()22111z i x y i x y -=+-=+-=,化简可得()2211x y +-=。

故选C 。

3.已知0.20.32log 0.220.2a b c ===,,,则( )A .a b c <<B .a c b <<C .c a b <<D .b c a <<【答案】B 。

【解析】取中间值。

22log 0.2log 100a a =<=⇒<,0.202211b b =>=⇒>,0.300.20.2101c c =<=⇒<<,故而可得a c b <<,故选B 。

4.古希腊时期,人们认为最美人体的头顶到肚脐的长度与肚脐至足底的长度之比为512-(510.6182-≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此。

2019年全国卷(I)数学(理)高考真题(选择题和填空题)详解版

2019年全国卷(I)数学(理)高考真题(选择题和填空题)详解版

所以 2 因此 2
− 2= − 2=
答案:C
(3)已知 a=log20.2,b=20.2,c=0.20.3,则
1 / 10
晦, 2 = 2 2晦)
(A)a<b<c
(B)a<c<b
(C)c<a<b
(D)b<c<a
考点:考查指数函数、对数函数的基本性质 概念:①幂函数 y = 䁝 䁝 h 且 䁝 ,在区间(0,+ 单调递增。
=
.
综上所述,本题正确答案为 A
答案:A (7)已知非零向量 a,b 满足|a|=2|b|,且(a-b)⊥b,则 a 与 b 的夹角为
(A)
(B)
(C)2
(D)
考点: 考查平面向量的数量积 概念: 平面向量的数量积 ab=|a||b|cos<a,b> 解析:根据题意,(a-b)⊥b
推出(a-b)b=0。 即 ab-|b|2=0 所以|b||b|cos<a,b>-|b|2=0 因为|a|=2|b| 所以 2|b|2cos<a,b>-|b|2=0 所以|b|2(2cos<a,b>-1)=0, 因为 a,b 为非零向量, 所以|b|≠0, 因此 2cos<a,b>-1=0
②指数函数 y = 䁝 (0<a<1),在区间(0,+ 单调递减。 ③指数函数 y = 䁝 (a>1),在区间(0,+ 单调递增。 ④对数函数 y = log䁝 < 䁝 < ,在区间(0,+ 单调递减。 解析:log20.2 的底数为 2,2 大于 1,那么 log20.2< log21=0,即 a<0。 根据指数函数 y = 䁝 (a>1)的单调性可知,1=20<20.2,即 b>1。 根据指数函数 y = 䁝 (0<a<1)的单调性可知,0<0.20.3<0.20=1,即 0<c<1。 由此可知 a<c<b 答案:B

2019年高考理科数学详解(全国一卷)

2019年高考理科数学详解(全国一卷)

2019年普通高等学校招生全国统一考试理科数学一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合{}24|<<-=x x M ,{}06|2<--=x x x N ,则N M = A.{}34|<<-x x B.{}24|-<<-x x C.{}22|<<-x x D.{}32|<<x x2.设复数z 满足1||=-i z ,z 在复平面内对应的点为(x ,y ),则 A.1)1(22=++y x B.1)1(22=+-y x C.1)1(22=-+y x D.1)1(22=++y x3.已知3.02.022.022.0log ===c b a ,,,则A.c b a <<B.b c a <<C.b a c <<D.a c b <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的 长度之比是215-(618.0215≈-,称为黄金分割比例),著名的“断臂维纳斯”便是如此。

此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是215-。

若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是 A.165cm B.175cm C.185cm D.190cm5.函数2cos sin )(x x xx x f ++=在[-π,π]的图像大致为6.我国古代典籍《周易》用“卦”描述万物的变化,每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“--”,如图就是一重卦,在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A.165B.3211C.3221D.16117.已知非零向量a ,b 满足||2||b a =,且b b a ⊥-)(,则a 与b 的夹角为A.6πB.3πC.32πD.65π8.如图是求212121++的程序框图,图中空白框中应填入A.a A +=21B.a A 12+=C.a A 211+=D.a A 211+=9.设n S 为等差数列{}n a 的前n 项和。

2019年高考理科数学试卷(全国I卷)及答案

2019年高考理科数学试卷(全国I卷)及答案

2019年全国高考理科数学试卷(全国I 卷)及答案一、选择题(本大题共12小题,共60分)1.已知集合}24|{<<-=x x M ,}06|{2<--=x x x N ,则=N M ()A.}34|{<<-x xB.}24|{-<<-x xC.}22|{<<-x xD.}32|{<<x x 2.设复数z 满足1z i -=,z 在复平面内对应的点为(,)x y ,则()A.22(1)1x y ++=B.22(1)1x y -+=C.22(1)1x y +-=D.22(1)1x y ++=3.已知2log 0.2a =,0.22b =,0.30.2c =,则()A.a b c <<B.a c b <<C.c a b <<D.b c a<<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是215-(618.0215≈-称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是215-.若某人满足上述两个黄金分割比例,且腿长为cm 105,头顶至脖子下端的长度为cm 26,则其身高可能是()A.cm 165B.cm 175C.cm 185D.cm 1905.函数2sin ()cos x xf x x x+=+在[,]ππ-的图像大致为()A.B.C.D.6.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,下图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.11167.已知非零向量,a b 满足2a b = ,且()a b b -⊥ ,则a 与b的夹角为()A.6πB.3πC.23πD.56π8.右图是求112+12+2的程序框图,图中空白框中应填入()A.12A A =+B.12A A=+C.112A A =+D.112A A=+9.记n S 为等差数列{}n a 的前n 项和.已知40S =,55a =,则()A.25n a n =- B.310n a n =- C.228n S n n=- D.2122n S n n =-10.已知椭圆C 的焦点为)0,1(1-F ,)0,1(2F ,过2F 的直线与C 交于A ,B 两点.若||2||22B F AF =,||||1BF AB =,则C 的方程为()A.1222=+y xB.12322=+y x C.13422=+y x D.14522=+y x 11.关于函数()sin sin f x x x =+有下述四个结论:①()f x 是偶函数②()f x 在区间(,)2ππ单调递增③()f x 在[],ππ-有4个零点④()f x 的最大值为2其中所有正确结论的编号是()A.①②④B.②④C.①④D.①③12.已知三棱锥P ABC -的四个顶点在球O 的球面上,PA PB PC ==,ABC ∆是边长为2的正三角形,,E F 分别是PA ,AB 的中点,90CEF ∠=︒,则球O 的体积为()A.B.C.二、填空题(本大题共4小题,共20分)13.曲线23()x y x x e =+在点(0,0)处的切线方程为.14.记n S 为等比数列{}n a 的前n 项和,若113a =,246a a =,则5S =.15.甲乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该对获胜,决赛结束)根据前期的比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以4:1获胜的概率是.16.已知双曲线C:22221(0,0)x y a b a b -=>>的左、右焦点分别为12,F F ,过1F 的直线与C 的两条渐近线分别交于,A B 两点.若112,0F A AB F B F B =⋅=uuu r uuu r uuu r uuu r ,则C 的离心率为.三、解答题(本大题共5小题,共60分)17.ABC ∆的内角,,A B C 的对边分别为,,a b c .设()22sin sin sin sin sin B C A B C -=-.(1)求A ;2b c +=,求sin C .18.如图,直四棱柱1111ABCD A B C D -的底面是菱形,14,2,60AA AB BAD ==∠=︒,,,E M N 分别是11,,BC BB A D 的中点.(1)证明://MN 平面1C DE ;(2)求二面角1A MA N --的正弦值.19.已知抛物线x y C 3:2=的焦点为F ,斜率为23的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若4||||=+BF AF ,求l 的方程;(2)若PB AP 3=,求||AB .20.已知函数()sin ln(1)f x x x =-+,()f x '为()f x 的导函数.证明:(1)()f x '在区间(1,2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.21.为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.实验方案如下:每一轮选取两只白鼠对药效进行对比实验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮实验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止实验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮实验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得1-分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得1-分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮实验中甲药的得分记为X .(1)求X 的分布列;(2)若甲药、乙药在实验开始时都赋予4分,(0,1,,8)i p i = 表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则00p =,81p =,11i i i i p ap bp cp -+=++(1,2,,7)i = ,其中(1)a P X ==-,(0)b P X ==,(1)c P X ==.假设0.5α=,0.8β=.(i)证明:1{}(0,1,2,,7)i i p p i +-= 为等比数列;(ii)求4p ,并根据4p 的值解释这种实验方案的合理性.四、选做题(2选1)(本大题共2小题,共10分)22.在直角坐标系xOy 中,曲线C 的参数方程为22211()41t x t t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩为参数.以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2cos sin 110ρθθ+=.(1)求C 和l 的直角坐标方程;(2)求C 上的点到l 距离的最小值.23.已知,,a b c 为正数,且满足1abc =,证明:(1)222111a b c a b c++≤++(2)333()()()24a b b c c a +++++≥2019年高考理科数学(全国I 卷)参考答案选择题1-5CCBBD 6-12ABAAB CD13.3y x =14.5S =121315.0.1816.217.解答:(1)由()22sin sin sin sin sin B C A B C -=-得222sin sin sin sin sin B C A B C +-=结合正弦定理得222b c a bc+-=∴2221cos =22b c a A b c +-=⋅⋅又(0,)A π∈,∴=3A π.(22b c +=sin 2sin A B C +=,()sin 2sin A A C C ++=∴6sin()2sin 23C C π++=,∴1sin cos 222C C -=∴2sin()62C π-=又203C π<<∴662C πππ-<-<又sin()06C π->∴062C ππ<-<∴2cos 62C π⎛⎫-= ⎪⎝⎭,∴sin sin()66C C ππ=-+=sin cos cos sin 6666C C ππππ⎛⎫⎛⎫-+- ⎪ ⎝⎭⎝⎭624=.18、解:(1)连结,M E 和1,B C ,∵,M E 分别是1BB 和BC 的中点,∴1//ME B C 且112ME B C =,又N 是1A D ,∴//ME DN ,且ME DN =,∴四边形MNDE 是平行四边形,∴//MN DE ,又DE ⊂平面1C DE ,MN ⊄平面1C DE ,∴//MN 平面1C DE.(2)以D 为原点建立如图坐标系,由题(0,0,0)D ,(2,0,0)A ,1(2,0,4)A,M 1(0,0,4)A A =-uuu r,1(2)A M =--uuuu r ,1(2,0,4)A D =--uuur,设平面1AA M 的法向量为1111(,,)n x y z =u r ,平面1DA M 的法向量为2222(,,)n x y z =u u r,由111100n A A n A M ⎧⋅=⎪⎨⋅=⎪⎩u r uuu r u r uuuu r得11114020z x z -=⎧⎪⎨-+-=⎪⎩,令1x =得1n =u r ,由212100n A D n A M ⎧⋅=⎪⎨⋅=⎪⎩u u r uuur u u r uuuu r得2222224020x z x z --=⎧⎪⎨-+-=⎪⎩,令22x =得2(2,0,1)n =-u u r ,∴12121215cos ,5n n n n n n ⋅==⋅u r u u ru r u u r u r u u r ,∴二面角1A MA N --的正弦值为5.19.解答:设直线l 的方程为b x y +=23,设),(11y x A ,),(22y x B ,(1)联立直线l 与抛物线的方程:⎪⎩⎪⎨⎧=+=x y bx y 3232消去y 化简整理得0)33(4922=+-+b x b x ,0494)33(22>⨯--=∆b b ,21<∴b ,9)33(421b x x -⨯=+,依题意4||||=+BF AF 可知42321=++x x ,即2521=+x x ,故259)33(4=-⨯b ,得87-=b ,满足0>∆,故直线l 的方程为8723-=x y ,即07128=+-x y .(2)联立方程组⎪⎩⎪⎨⎧=+=x y b x y 3232消去x 化简整理得0222=+-b y y ,084>-=∆b ,21<∴b ,221=+y y ,b y y 221=, PB AP 3=,可知213y y -=,则222=-y ,得12-=y ,31=y ,故可知23-=b 满足0>∆,∴3134|13|941||11||212=+⨯+=-⋅+=y y k AB .20.解答:(1)对()f x 进行求导可得,1()cos 1f x x x '=-+,(12x π-<<取1()cos 1g x x x=-+,则21()sin (1)g x x x '=-++,在(1,2x π∈-内21()sin (1)g x x x '=-++为单调递减函数,且(0)1g =,21(102(1)2g ππ=-+<+所以在(0,1)x ∈内存在一个0x ,使得()0g x '=,所以在0(1,)x x ∈-内()0g x '>,()f x '为增函数;在0(,2x x π∈内()0g x '<,()f x '为减函数,所以在()f x '在区间(1,2π-存在唯一极大值点;(2)由(1)可知当(1,0)x ∈-时,()f x '单调增,且(0)0f '=,可得()0'<x f 则()f x 在此区间单调减;当0(0,)x x ∈时,()f x '单调增,且(0)0f '=,()0f x '>则()f x 在此区间单调增;又(0)0f =则在0(1,)x x ∈-上()f x 有唯一零点0x =.当0(,2x x π∈时,()f x '单调减,且0()0,()02f x f π''><,则存在唯一的10(,)2x x π∈,使得1()0f x '=,在01(,)x x x ∈时,()0f x '>,()f x 单调增;当1(,)2x x π∈时,()f x 单调减,且()1ln(1)1ln 022f e ππ=-+>-=,所以在0(,)2x x π∈上()f x 无零点;当(,)2x ππ∈时,sin y x =单调减,ln(1)y x =-+单调减,则()f x 在(,)2x ππ∈上单调减,()0ln(1)0f ππ=-+<,所以在(,)2x ππ∈上()f x 存在一个零点.当(,)x π∈+∞时,()sin ln(1)1ln(1)0f x x x π=-+<-+<恒成立,则()f x 在(,)x π∈+∞上无零点.综上可得,()f x 有且仅有2个零点.21.解答:(1)一轮实验中甲药的得分有三种情况:1、1-、0.得1分时是施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则(1)(1)P X αβ==-;得1-分时是施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则(1)(1)P X αβ=-=-;得0分时是都治愈或都未治愈,则(0)(1)(1)P X αβαβ==+--.则X的分布列为:(2)(i )因为0.5α=,0.8β=,则(1)0.4a P X ==-=,(0)0.5b P X ===,(1)0.1c P X ===.可得110.40.50.1i i i i p p p p -+=++,则110.50.40.1i i i p p p -+=+,则110.4()0.1()i i i i p p p p -+-=-,则114i ii i p p p p +--=-,所以1{}(0,1,2,,7)i i p p i +-= 为等比数列.(ii )1{}(0,1,2,,7)i i p p i +-= 的首项为101p p p -=,那么可得:78714p p p -=⨯,67614p p p -=⨯,………………2114p p p -=⨯,以上7个式子相加,得到76811(444)p p p -=⨯+++ ,则886781111441(1444)143p p p p --=⨯++++=⨯=- ,则18341p =-,再把后面三个式子相加,得23411(444)p p p -=⨯++,则4423411844141311(1444)334141257p p p --=⨯+++==⨯==-+.4p 表示“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”,因为0.5α=,0.8β=,αβ<,则实验结果中“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”这种情况的概率是非常小的,而41257p =的确非常小,说明这种实验方案是合理的.22.(1)曲线C :由题意得22212111t x t t -==-+++即2211x t +=+,则2(1)y t x =+,然后代入即可得到2214y x +=(1)x ¹-而直线l :将cos ,sin x y ρθρθ==代入即可得到2110x ++=(2)将曲线C 化成参数方程形式为则d =所以当362ππθ+=23.(1)1abc = ,111bc ac ab a b c∴++=++.由基本不等式可得:222222,,222b c a c a b bc ac ab +++≤≤≤,于是得到222222222111222b c a c a b a b c a b c +++++≤++=++.(2)由基本不等式得到:332()8()a b a b ab +≥+≥,332()8()b c b c bc +≥+≥,332()8()c a c a ac +≥+≥.于是得到333333222()()()8[()()()]a b b c c a ab bc ac +++++≥++824≥⨯。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档