怀柔一模试题定稿

合集下载

2018怀柔区初三数学一模试题与答案word

2018怀柔区初三数学一模试题与答案word

怀柔区2017—2018学年度初三初三一模数学试卷2018.5一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个1.如图所示,比较线段a和线段b的长度,结果正确的是()A. a>bB. a<bC. a=bD. 无法确定2.若代数式3-xx2有意义,则实数x的取值范围是()A. x=0B. x≠3C. x≠0D. x=33.如图,左图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.4.如图所示,数轴上点A所表示的数的绝对值为()A. 2B. ﹣2a b第4题图A–1–2–3–4–512345第3题图. 学习帮手.. 学习帮手.C. ±2D. 以上均不对5. 中国结是一种我国特有的手工编织工艺品,它的造型独特、绚丽多彩、寓意深刻、内涵丰富,是我国传统吉祥装饰物品.下列中国结图案,既是轴对称图形又是中心对称图形的是6.下图是某品牌毛衣和衬衫2016年9月至2017年4月在怀柔京北大世界的销量统计图.根据统计图提供的信息,下列推断不合理的是( ) A. 9月毛衣的销量最低,10月衬衫的销量最高 B.与10月相比,11月时,毛衣的销量有所增长, 衬衫的销量有所下降C.9月—11月毛衣和衬衫的销量逐月增长D.2月毛衣的销售量是衬衫销售量的7倍左右7.2017年怀柔区中考体育加试女子800米耐力测试中,同时起跑的李丽和吴梅所跑的路程S (米)与所用时间t (秒).下列说法正确的是( ) A.李丽的速度随时间的增大而增大 B.吴梅的平均速度比李丽的平均速度大C.在起跑后180秒时,两人相遇BCD——毛衣的销量 ……衬衫的销量. 学习帮手 .D.在起跑后50秒时,吴梅在李丽的前面8. 一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定 高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面 不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:下面有三个推断:①投掷1000次时,“兵”字面朝上的次数是550,所以“兵”字面朝上的概率是0.55 ②随着实验次数的增加,“兵”字面朝上的频率总在0.55附近,显示出一定的稳定性,可以估计“兵”字面朝上的概率是0.55③当实验次数为200次时,“兵”字面朝上的频率一定是0.55 其中合理的是( )A.①B. ②C. ①②D. ①③二、填空题(本题共16分,每小题2分) 9.比较大小10.若正多边形的内角和为720°,则它的边数为________.11.如果x+y-1=0,那么代数式x yx x y x -÷⎪⎪⎭⎫ ⎝⎛-2的值是__________.. 学习帮手 .12. 如图,在四边形ABCD 中,AB ∥CD ,AC 、BD 相交于点E ,若41=CD AB ,则=ACAE_____.13.如图,这是怀柔区部分景点的分布图,若表示百泉山风景区的点的坐标为(0,1),表示慕田峪长城的点的坐标为(-5,-1),则表示雁栖湖的点的坐标为_________. 14.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下: ① 这次数学测试成绩中,甲、乙两个班的平均水平相同;② 甲班学生中数学成绩95分及以上的人数少; ③ 乙班学生的数学成绩比较整齐,分化较小. 上述评估中,正确的是_____________.(填序号)15.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀第12题图重一斤.问燕、雀一枚各重几何?”译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?”设每只雀重x斤,每只燕重y斤,可列方程组为_____________.16. 阅读下面材料:小明的作法如下:请回答:该尺规作图的依据是____________________________.三、解答题(本题共68分,第17—23、25每题5分,第24题6分,第26、27每题7分,. 学习帮手.. 学习帮手 .第28题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:12130tan 3)3(31-︒⎪⎭⎫⎝⎛-+---π.18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x19.如图,在平面直角坐标系xOy 中,每个小正方形的边长都为1,△DEF 和△ABC 的顶点都在格点上,回答下列问题:(1)△DEF 可以看作是△ABC 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC 得到△DEF 的过程(2)画出△ABC 绕点B 逆时针旋转(3)在(2)中,点C20.已知关于x 的方程226990-+-=x mx m . (1)求证:此方程有两个不相等的实数根;第19题图. 学习帮手 .(2)若此方程的两个根分别为x 1,x 2,其中x 1>x 2,若x 1=2x2,求m 的值.21.直角三角形ABC 中,∠BAC=90°,D 是斜边BC 上一点,且AB=AD ,过点C 作CE ⊥AD ,交AD 的延长线于点E ,交AB 延长线于点F. (1)求证:∠ACB=∠DCE ;(2)若∠BAD=45°,AF =过点B 作BG ⊥FC 于点G ,接DG .依题意补全图形,并求四边形ABGD 的面积.22.在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与y 轴交于点B (0,1),与反比例函数xmy = 的图象交于点A(3,-2).(1)求反比例函数的表达式和一次函数表达式;(2)若点C 是y 轴上一点,且BC=BA ,直接写出点C 的坐标.23.如图,AC 是⊙O 的直径,点B 是⊙O 内一点,且BA=BC ,连结BO 并延长线交⊙O 于点D ,过点C 作⊙O 的切线CE ,且BC 平分∠DBE.(1)求证:BE=CE ;(2)若⊙O 的直径长8,sin ∠BCE=45,求BE 的长.24.某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.第23题图..收集数据 从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球 10 9.5 9.5 10 8 9 9.5 97 10 4 5.5 109.5 9.5 10篮球 9.5 98.5 8.5 10 9.5 10 8 6 9.510 9.598.59.5 6整理、(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)分析数据 两组样本数据的平均数、中位数、众数如下表所示:得出结论(1)如果全校有160人选择篮球项目,达到优秀的人数约为 人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意 的看法, 理由为 .(至少从两个不同的角度说明推断的合理性)25、如图,在等边△ABC 中, BC=5cm ,点D 是线段BC 上的一动点,连接AD ,过点D作DE ⊥AD ,垂足为D ,BD 为x cm ,CE 为y cm .. 学习帮手.小聪根据学习函数的经验,对函数y 随自变量x 的变化而变化的规律进行了探究. 下面是小聪的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x 与y 的几组值,如下表:((2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;. 学习帮手 .(3)结合画出的函数图象,解决问题:当线段BD 是线段CE 长的2倍时,BD 的长度约为________cm .26.在平面直角坐标系xOy 中,抛物线y=nx 2-4nx+4n-1(n ≠0),与x 轴交于点C ,D(点C 在点D 的左侧),与y 轴交于点A . (1)求抛物线顶点M 的坐标;(2)若点A 的坐标为(0,3),AB ∥x 轴,交抛物线于点B ,求点B 的坐标;(3)在(2)的条件下,将抛物线在B ,C 两点之间的部分沿y 轴翻折,翻折后的图象记为G ,若直线m x y +=21与图象G 有一个交点,结合函数的图象,求m 的取值范围.27.如图,在△ABC 中,∠A=90°,AB=AC ,点D 是BC 上任意一点,将线段AD 绕点A 逆.时针方向旋转90°,得到线段AE ,连结EC. (1)依题意补全图形; (2)求∠ECD 的度数;(3)若∠CAE=7.5°,AD=1,将射线DA 绕点D 顺时针旋转60°交EC 的延长线于点F ,请写出求AF 长的思路.28. P 是⊙C 外一点,若射线..PC 交⊙C 于点A ,B 两点,则给出如下定义:若0<PA PB ≤3,则点P 为⊙C 的“特征点”. (1)当⊙O 的半径为1时.. 学习帮手 .①在点P 1(2,0)、P 2(0,2)、P 3(4,0)中,⊙O 的“特征点”是 ; ②点P 在直线y=x+b 上,若点P 为⊙O 的“特征点”.求b 的取值范围;(2)⊙C 的圆心在x 轴上,半径为1,直线y=x+1与x 轴,y 轴分别交于点M ,N ,若线段MN 上的所有点都不是...⊙C 的“特征点”,直接写出点C 的横坐标的取值范围.2017-2018学年度初三一模数学试卷评分标准一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个二、填空题(本题共16分,每小题2分) 9.311>. 10. 6. 11. 1. 12.51. 13. (1,-3).14. ①③. 15. ⎩⎨⎧=++=+.165,54y x x y y x16. 到角两边距离相等的点在角平分上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.三、解答题(本题共68分,第17—23、25每题5分,第24题6分,第26、27每题7分,第28题8分)解答应写出文字说明、演算步骤或证明过程. 17.解:原式1132=-+⨯…………………………………………………4分 .…………………………………………………………………5分4=. 学习帮手 .18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分 原不等式组的解集为93x -<< ………………………………………………………5分19.(1)答案不唯一.例如:先沿y 轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y 轴翻折. ……………3分 (2)如图所示………………………………………4分(3)π .………………………………………………5分 20.(1)∵△=(-6m)2-4(9m 2-9) ……………………………………………………………………1分=36m 2-36m 2+36 =36>0.∴方程有两个不相等的实数根……………………………………………………………2分. 学习帮手 .(2)66332m x m ±===±.……………………………………………………3分 ∵3m+3>3m-3,∴x 1=3m+3,x 2=3m-3, …………………………………………………………………………4分 ∴3m+3=2(3m-3) .∴m=3. …………………………………………………………………………………………5分 21.(1)∵AB=AD ,∴∠ABD=∠ADB ,………………………………1分∵∠ADB=∠CDE ,∴∠ABD=∠CDE.∵∠BAC=90°,∴∠ABD+∠ACB=90°.∵CE ⊥AE ,∴∠DCE+∠CDE=90°.∴∠ACB=∠DCE. …………………………………2分 (2)补全图形,如图所示: …………………………3分 ∵∠BAD=45°, ∠BAC=90°,∴∠BAE=∠CAE=45°, ∠F=∠ACF=45°, ∵AE ⊥CF, BG ⊥CF,∴AD ∥BG.∵BG ⊥CF, ∠BAC=90°,且∠ACB=∠DCE, ∴AB=BG.∵AB=AD ,∴BG=AD. ∴四边形ABGD 是平行四边形.. 学习帮手 .∵AB=AD∴平行四边形ABGD 是菱形.…………………………………………………………………4分 设AB=BG=GD=AD=x ,∴BF=2BG=2x.∴AB+BF=x+2x=2+2. ∴x=2, 过点B 作BH ⊥AD 于H. ∴BH=22AB=1. ∴S 四边形ABDG =AD×BH=2. ……………………………………………………………………5分 22.(1)∵双曲线x m y =过A (3,-2),将A (3,-2)代入xm y =, 解得:m= -6.∴所求反比例函数表达式为: y=x6-. …………………………………1分 ∵点A (3,-2)点B (0,1)在直线y=kx+b 上,∴-2=3k+1. …………………………………………………………………………………2分 ∴k=-1.∴所求一次函数表达式为y=-x+1. …………………………………………………………3分 (2)C(0,123+ )或 C(0,231- ). ……………………………………………………5分 23.(1)∵BA=BC ,AO=CO,∴BD ⊥AC.∵CE 是⊙O 的切线, ∴CE ⊥AC.∴CE∥BD. ……………………………………1分∴∠ECB=∠CBD.∵BC平分∠DBE,∴∠CBE=∠CBD.∴∠ECB=∠CBE.∴BE=CE. …………………………………………2分(2)解:作EF⊥BC于F. …………………………3分∵⊙O 的直径长8,∴CO=4.∴sin∠CBD= sin∠BCE= 45=OCBC. …………………………………………………………4分∴BC=5,OB=3.∵BE=CE,∴BF=1522BC=.∵∠BOC=∠BFE=90°,∠CBO=∠EBF,∴△CBO∽△EBF.∴BE BFBC OB=.∴BE=256. ……………………………………………………………………………………5分24.补全表格:E. 学习帮手.. 学习帮手 .xy –1123456–1123456O…………………………………………………………………………………………………2分 (1)130;…………………………………………………………………………………………4分 (2)答案不唯一,理由需支持判断结论. ………………………………………………………6分 25.(1)约1.1; ………………………………………………………………………………………1分 (2)如图:…………………………………………………………………………………………………4分 (3)约1.7. ………………………………………………………………………………………5分 26.(1)M(2,-1); ………………………………………………………………………………2分. 学习帮手B(2)B(4,3); …………………………………………………………………………………3分 (3)∵抛物线y=mx 2-4mx+4m-1(m ≠0)与y 轴交于点A (0,3), ∴4n-1=3.∴n=1. ……………………………………………………………………………………4分∴抛物线的表达式为342+-=x x y .由34212++=+x x m x . 由△=0,得: 161-=m ……………………………………………………………………5分∵抛物线342+-=x x y 与x 轴的交点C 的坐标为(1,0),∴点C 关于y 轴的对称点C 1的坐标为(-1,0).把(-1,0)代入m x y +=21,得:21=m .……………………………………………6分 把(-4,3)代入m x y +=21,得:5=m .∴所求m 的取值范围是161-=m 或21<m ≤ 5. …………………………………………7分27.(1)如图 …………………………………………………………………………………………1分(2) ∵线段AD 绕点A 逆时针方向旋转90°,得到线段∴∠DAE=90°,AD=AE. ∴∠DAC+∠CAE =90°. ∵∠BAC=90°, ∴∠BAD+∠DAC =90°.∴∠BAD=∠CAE . …………………………………………………………………………2分 又∵AB=AC,. 学习帮手 .∴△ABD ≌△ACE. ∴∠B=∠ACE.∵△ABC 中,∠A=90°,AB=AC, ∴∠B=∠ACB=∠ACE=45°.∴∠ECD=∠ACB+∠ACE=90°. ……………………………………………………………4分(3)Ⅰ.连接DE,由于△ADE 为等腰直角三角形,所以可求DE=2;……………………5分 Ⅱ.由∠ADF=60°,∠CAE=7.5°,可求∠EDC 的度数和∠CDF 的度数,从而可知DF 的长; …………………………………………………………………………………………………6分Ⅲ.过点A 作AH ⊥DF 于点H ,在Rt △ADH 中, 由∠ADF=60°,AD=1可求AH 、DH 的长; Ⅳ. 由DF 、DH 的长可求HF 的长;Ⅴ. 在Rt △AHF 中, 由AH 和HF,利用勾股定理可求AF 的长.…………………………7分 28.(1)①P 1(2,0)、P 2(0,2)…………………………………………………………………2分②如图, 在y=x+b 上,若存在⊙O 的“特征点”点P ,点O 到直线y=x+b 的距离m ≤2. 直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt △DOE 中,可知OE=22. 可得b 1=22.同理可得b 2=-22.∴b 的取值范围是:22-≤b ≤22. …………………………………………………6分 (2)x>3或 3-<x . …………………………………………………………………………8分. 学习帮手.。

2018怀柔区初三数学一模试题及答案word教学内容

2018怀柔区初三数学一模试题及答案word教学内容

精品资料》》》》》怀柔区2017—2018学年度初三初三一模数学试卷2018.5考生须知1.本试卷共8页,三道大题,28道小题,满分100分。

考试时间120分钟。

2.认真填写第1、5页密封线内的学校、姓名、考号。

3.考生将选择题答案一律填在选择题答案表内。

4.考生一律用蓝色或黑色钢笔、圆珠笔、碳素笔在试卷上按题意和要求作答。

5.字迹要工整,卷面要整洁。

一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个1.如图所示,比较线段a和线段b的长度,结果正确的是()A. a>bB. a<bC. a=bD. 无法确定2.若代数式3-xx2有意义,则实数x的取值范围是()A. x=0B. x≠3C. x≠0D. x=33.如图,左图是由4个大小相同的正方体组合而成的几何体,其左视图是()A. B. C. D.4.如图所示,数轴上点A所表示的数的绝对值为()A. 2B. ﹣2C. ±2D. 以上均不对5. 中国结是一种我国特有的手工编织工艺品,它的造型独特、绚丽多彩、寓意深刻、内涵丰富,是我国传统吉祥装饰物品.下列中国结图案,既是轴对称图形又是中心对称图形的是a b第4题图A第3题图A B C D<<<<<<<<<<<<精品资料》》》》》t (秒)S (米)800 600 400300 200 O50180 220 BCA D 6.下图是某品牌毛衣和衬衫2016年9月至2017年4月在怀柔京北大世界的销量统计图.根据统计图提供的信息,下列推断不合理的是( ) A. 9月毛衣的销量最低,10月衬衫的销量最高 B.与10月相比,11月时,毛衣的销量有所增长, 衬衫的销量有所下降C.9月—11月毛衣和衬衫的销量逐月增长D.2月毛衣的销售量是衬衫销售量的7倍左右7.2017年怀柔区中考体育加试女子800米耐力测试中,同时起跑的李丽和吴梅所跑的路程S (米)与所用时间t 是( ) A.李丽的速度随时间的增大而增大 B.吴梅的平均速度比李丽的平均速度大 C.在起跑后180秒时,两人相遇 D.在起跑后50秒时,吴梅在李丽的前面8. 一粒木质中国象棋子“兵”,它的正面雕刻一个“兵”字,它的反面是平的.将它从一定 高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵”字面朝下.由于棋子的两面 不均匀,为了估计“兵”字面朝上的概率,某实验小组做了棋子下掷实验,实验数据如下表:实验次数n 20 60 100 120 140 160 500 1000 2000 5000 “兵”字面朝上次数m 14 38 52 66 78 88 280 550 1100 2750 “兵”字面朝上频率nm0.70.630.520.550.560.550.560.550.550.55下面有三个推断:①投掷1000次时,“兵”字面朝上的次数是550,所以“兵”字面朝上的概率是0.55②随着实验次数的增加,“兵”字面朝上的频率总在0.55附近,显示出一定的稳定性,可以估计“兵”字面朝上的概率是0.55③当实验次数为200次时,“兵”字面朝上的频率一定是0.55 其中合理的是( )A.①B. ②C. ①②D. ①③——毛衣的销量 ……衬衫的销量<<<<<<精品资料》》》》》二、填空题(本题共16分,每小题2分) 9.比较大小:11_________3.10.若正多边形的内角和为720°,则它的边数为________.11.如果x+y-1=0,那么代数式x y x x y x -÷⎪⎪⎭⎫ ⎝⎛-2的值是__________.12. 如图,在四边形ABCD 中,AB ∥CD ,AC 、BD 相交于点E ,若41=CD AB ,则=ACAE_____.13.如图,这是怀柔区部分景点的分布图,若表示百泉山风景区的点的坐标为(0,1),表示慕田峪长城的点的坐标为(-5,-1),则表示雁栖湖的点的坐标为_________. 14.在一次数学测试中,同年级人数相同的甲、乙两个班的成绩统计如下表:班级 平均分 中位数 方差 甲班 92.5 95.5 41.25 乙班92.590.536.06数学老师让同学们针对统计的结果进行一下评估,学生的评估结果如下: ① 这次数学测试成绩中,甲、乙两个班的平均水平相同; ② 甲班学生中数学成绩95分及以上的人数少; ③ 乙班学生的数学成绩比较整齐,分化较小. 上述评估中,正确的是_____________.(填序号)15.被历代数学家尊为“算经之首”的《九章算术》是中国古代算法的扛鼎之作.《九章算术》中记载:“今有五雀、六燕,集称之衡,雀俱重,燕俱轻.一雀一燕交而处,衡适平.并燕、雀重一斤.问燕、雀一枚各重几何?” BA E第12题图<<<<<<精品资料》》》》》译文:“今有5只雀、6只燕,分别聚集而且用衡器称之,聚在一起的雀重,燕轻.将一只雀、一只燕交换位置而放,重量相等.5只雀、6只燕重量为1斤.问雀、燕毎只各重多少斤?” 设每只雀重x 斤,每只燕重y 斤,可列方程组为_____________.16. 阅读下面材料:在数学课上,老师提出利用尺规作图完成下面问题:小明的作法如下:请回答:该尺规作图的依据是____________________________.三、解答题(本题共68分,第17—23、25每题5分,第24题6分,第26、27每题7分,第28题8分)解答应写出文字说明、演算步骤或证明过程.17.计算:12130tan 3)3(31-︒⎪⎭⎫⎝⎛-+---π.18.解不等式组:()⎪⎩⎪⎨⎧<+-<-.1213,213x x x x<<<<<<精品资料》》》》》19.如图,在平面直角坐标系xOy 中,每个小正方形的边长都为1,△DEF 和△ABC 的顶点都在格点上,回答下列问题:(1)△DEF 可以看作是△ABC 经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△ABC 得到△DEF 的过程: ; (2)画出△ABC 绕点B 逆时针旋转90º的图形△A ′(3)在(2)中,点C 所形成的路径的长度为 .20.已知关于x 的方程226990-+-=x mx m .(1)求证:此方程有两个不相等的实数根; (2)若此方程的两个根分别为x 1,x 2,其中x 1>x 2,若x 1=2x 2,求m 的值.21.直角三角形ABC 中,∠BAC=90°,D 是斜边BC 上一点,且AB=AD ,过点C 作CE ⊥AD ,交AD 的延长线于点E ,交AB 延长线于点F.(1)求证:∠ACB=∠DCE ;(2)若∠BAD=45°,AF =B 作BG ⊥FC 于点G 连接DG .依题意补全图形,并求四边形ABGD 的面积.22.在平面直角坐标系xOy 中,一次函数y=kx+b 的图象与y 轴交于点B (0,1),与反比例函数xmy = 的图象交于点A(3,-2).(1)求反比例函数的表达式和一次函数表达式;(2)若点C 是y 轴上一点,且BC=BA ,直接写出点C 的坐标. 第19题图<<<<<<精品资料》》》》》23.如图,AC 是⊙O 的直径,点B 是⊙O 内一点,且BA=BC ,连结BO 并延长线交⊙O 于点D ,过点C 作⊙O 的切线CE ,且BC 平分∠DBE. (1)求证:BE=CE ;(2)若⊙O 的直径长8,sin ∠BCE=45,求BE 的长.24.某校初三体育考试选择项目中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下,请补充完整.收集数据 从选择篮球和排球的学生中各随机抽取16人,进行了体育测试,测试成绩(十分制)如下:排球 10 9.5 9.5 10 8 9 9.5 97 10 4 5.5 109.5 9.510篮球 9.5 98.5 8.5 10 9.5 10 8 6 9.510 9.598.59.5 6整理、描述数据 按如下分数段整理、描述这两组样本数据:(说明:成绩8.5分及以上为优秀,6分及以上为合格,6分以下为不合格.)分析数据 两组样本数据的平均数、中位数、众数如下表所示:得出结论(1)如果全校有160人选择篮球项目,达到优秀的人数约为 人;(2)初二年级的小明和小军看到上面数据后,小明说:排球项目整体水平较高.小军说:篮球项目整体水平较高.你同意 的看法, 理由为 .(至少从两个不同的角度说明推断的合理性)第23题图25、如图,在等边△ABC中,BC=5cm,点D是线段BC上的一动点,连接AD,过点D作DE⊥AD,垂足为D,交射线AC与点E.设BD为x cm,CE为y cm.小聪根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小聪的探究过程,请补充完整:(1)通过取点、画图、测量,得到了x与y的几组值,如下表:((2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象;(3)结合画出的函数图象,解决问题:当线段BD是线段CE长的2倍时,BD的长度约为________cm.<<<<<<精品资料》》》》》yx–1–2–3–4–512345–1–2–3–4–512345Oyx–1–2–3–4–512345–1–2–3–4–512345O26.在平面直角坐标系xOy中,抛物线y=nx2-4nx+4n-1(n≠0),与x轴交于点C,D(点C在点D的左侧),与y轴交于点A.(1)求抛物线顶点M的坐标;(2)若点A的坐标为(0,3),AB∥x轴,交抛物线于点B,求点B的坐标;(3)在(2)的条件下,将抛物线在B,C两点之间的部分沿y轴翻折,翻折后的图象记为G,若直线mxy+=21与图象G有一个交点,结合函数的图象,求m的取值范围.27.如图,在△ABC中,∠A=90°,AB=AC,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.(1)依题意补全图形;(2)求∠ECD的度数;(3)若∠CAE=7.5°,AD=1,将射线DA绕点D顺时针旋转60°交EC的延长线于点F,请写出求AF长的思路.28. P是⊙C外一点,若射线..PC交⊙C于点A,B两点,则给出如下定义:若0<PA⋅PB≤3,则点P为⊙C的“特征点”.(1)当⊙O的半径为1时.①在点P1(2,0)、P2(0,2)、P3(4,0)中,⊙O的“特征点”是;②点P在直线y=x+b上,若点P为⊙O的“特征点”.求b的取值范围;(2)⊙C的圆心在x轴上,半径为1,直线y=x+1与x轴,y轴分别交于点M,N,若线段MN上的所有点都不是...⊙C的“特征点”,直接写出点C的横坐标的取值范围.<<<<<<精品资料》》》》》<<<<<<精品资料》》》》》2017-2018学年度初三一模数学试卷评分标准一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个二、填空题(本题共16分,每小题2分)9.311>.10. 6. 11. 1. 12.51. 13. (1,-3). 14. ①③. 15. ⎩⎨⎧=++=+.165,54y x x y y x16. 到角两边距离相等的点在角平分上;两点确定一条直线;角平分上的点到角两边的距离相等;圆的定义;经过半径的外端,并且垂直于这条半径的直线是圆的切线.三、解答题(本题共68分,第17—23、25每题5分,第24题6分,第26、27每题7分,第28题8分)解答应写出文字说明、演算步骤或证明过程. 17. 解:原式1132=-+- …………………………………………………4分 .…………………………………………………………………5分18.解:由①得:3x < . ………………………………………………………………………2分由②得:9x >- …………………………………………………………………………4分原不等式组的解集为93x -<< 19. (1)答案不唯一.例如:先沿y 轴翻折,再向右平移1个单位,向下平移3个单位;先向左平移1个单位,向下平移3个单位,再沿y 轴翻折. ……………3分(2)如图所示………………………………………4分 (3)π .………………………………………………5分4=<<<<<<精品资料》》》》》20.(1)∵△=(-6m)2-4(9m 2-9) ……………………………………………………………………1分=36m 2-36m 2+36=36>0. ∴方程有两个不相等的实数根……………………………………………………………2分(2)6663322m m x m ±===±.……………………………………………………3分∵3m+3>3m-3,∴x 1=3m+3,x 2=3m-3, …………………………………………………………………………4分∴3m+3=2(3m-3) .∴m=3. …………………………………………………………………………………………5分 21.(1)∵AB=AD ,∴∠ABD=∠ADB ,………………………………1分∵∠ADB=∠CDE ,∴∠ABD=∠CDE. ∵∠BAC=90°,∴∠ABD+∠ACB=90°. ∵CE ⊥AE ,∴∠DCE+∠CDE=90°.∴∠ACB=∠DCE. …………………………………2分 (2)补全图形,如图所示: …………………………3分<<<<<<精品资料》》》》》∵∠BAD=45°, ∠BAC=90°, ∴∠BAE=∠CAE=45°, ∠F=∠ACF=45°, ∵AE ⊥CF, BG ⊥CF,∴AD ∥BG . ∵BG ⊥CF, ∠BAC=90°,且∠ACB=∠DCE, ∴AB=BG.∵AB=AD ,∴BG=AD.∴四边形ABGD 是平行四边形. ∵AB=AD∴平行四边形ABGD 是菱形.…………………………………………………………………4分 设AB=BG=GD=AD=x ,∴BF=2BG=2x.∴AB+BF=x+2x=2+2. ∴x=2, 过点B 作BH ⊥AD 于H.∴BH=22AB=1. ∴S 四边形ABDG =AD×BH=2. ……………………………………………………………………5分 22.(1)∵双曲线xmy =过A (3,-2),将A (3,-2)代入xm y =,解得:m= -6.∴所求反比例函数表达式为: y=x6-. …………………………………1分 ∵点A (3,-2)点B (0,1)在直线y=kx+b 上,∴-2=3k+1. …………………………………………………………………………………2分 ∴k=-1.∴所求一次函数表达式为y=-x+1. …………………………………………………………3分 (2)C(0,123+ )或 C(0,231- ). ……………………………………………………5分 23.(1)∵BA=BC ,AO=CO, ∴BD ⊥AC.∵CE 是⊙O 的切线, ∴CE ⊥AC.<<<<<<精品资料》》》》》–11234512345O∴CE ∥BD. ……………………………………1分 ∴∠ECB=∠CBD. ∵BC 平分∠DBE, ∴∠CBE=∠CBD. ∴∠ECB=∠CBE.∴BE=CE. …………………………………………2分 (2)解:作EF ⊥BC 于F. …………………………3分 ∵⊙O 的直径长8, ∴CO=4.∴sin ∠CBD= sin ∠BCE= 45=OC BC. …………………………………………………………4分 ∴BC=5,OB=3. ∵BE=CE, ∴BF=1522BC =. ∵∠BOC=∠BFE=90°,∠CBO=∠EBF, ∴△CBO ∽△EBF.∴BE BFBC OB=. ∴BE=256. ……………………………………………………………………………………5分24. 补全表格:分 (1)130;…………………………………………………………………………………………4分 (2)答案不唯一,理由需支持判断结论. ………………………………………………………6分 25.(1)约1.1; ………………………………………………………………………………………1分 (2)如图:E<<<<<<精品资料》》》》》B…………………………………………………………………………………………………4分 (3)约1.7. ………………………………………………………………………………………5分 26.(1)M(2,-1); ………………………………………………………………………………2分 (2)B(4,3); …………………………………………………………………………………3分 (3)∵抛物线y=mx 2-4mx+4m-1(m ≠0)与y 轴交于点A (0,3), ∴4n-1=3.∴n=1. ……………………………………………………………………………………4分∴抛物线的表达式为342+-=x x y .由34212++=+x x m x . 由△=0,得: 161-=m ……………………………………………………………………5分∵抛物线342+-=x x y 与x 轴的交点C 的坐标为(1,0),∴点C 关于y 轴的对称点C 1的坐标为(-1,0).把(-1,0)代入m x y +=21,得:21=m .……………………………………………6分 把(-4,3)代入m x y +=21,得:5=m .∴所求m 的取值范围是161-=m 或21<m ≤ 5. …………………………………………7分27.(1)如图 …………………………………………………………………………………………1分 (2) ∵线段AD 绕点A 逆时针方向旋转90°,得到线段∴∠DAE=90°,AD=AE.∴∠DAC+∠CAE =90°. ∵∠BAC=90°, ∴∠BAD+∠DAC =90°.∴∠BAD=∠CAE . …………………………………………………………………………2分 又∵AB=AC,<<<<<<精品资料》》》》》∴△ABD ≌△ACE. ∴∠B=∠ACE.∵△ABC 中,∠A=90°,AB=AC, ∴∠B=∠ACB=∠ACE=45°.∴∠ECD=∠ACB+∠ACE=90°. ……………………………………………………………4分 (3)Ⅰ.连接DE,由于△ADE 为等腰直角三角形,所以可求DE=2;……………………5分 Ⅱ.由∠ADF=60°,∠CAE=7.5°,可求∠EDC 的度数和∠CDF 的度数,从而可知DF 的长; …………………………………………………………………………………………………6分 Ⅲ.过点A 作AH ⊥DF 于点H ,在Rt △ADH 中, 由∠ADF=60°,AD=1可求AH 、DH 的长; Ⅳ. 由DF 、DH 的长可求HF 的长;Ⅴ. 在Rt △AHF 中, 由AH 和HF,利用勾股定理可求AF 的长.…………………………7分 28.(1)①P 1(2,0)、P 2(0,2)…………………………………………………………………2分 ②如图, 在y=x+b 上,若存在⊙O 的“特征点”点P ,点O 到直线y=x+b 的距离m ≤2. 直线y=x+b 1交y 轴于点E ,过O 作OH ⊥直线y=x+b 1于点H. 因为OH=2,在Rt △DOE 中,可知OE=22. 可得b 1=22.同理可得b 2=-22.∴b 的取值范围是:22-≤b ≤22. …………………………………………………6分 (2)x>3或 3-<x . …………………………………………………………………………8分。

2020届北京市怀柔区高三一模数学试题(含解析)

2020届北京市怀柔区高三一模数学试题(含解析)

2020年北京怀柔区数学适应性训练本试卷分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷1至2页、第Ⅱ卷3至4页,共150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作答无效,考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共40分)一、选择题(共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.已知集合{1,2}A =,{}02B x x =<<,则A B =I ( ) A. {1}B. {1,2}C. {0,1,2}D. {}02x x <<2.已知复数z 满足1iz i =-,则z =( ) A. 1i --B. 1i -C. 1i -+D. 1i +3.函数22cos 1y x =-的最小正周期为( ) A.2π B. πC. 2πD. 4π4.函数f(x)=|log 2x|的图象是( )A. B.C. D.5.等差数列{}n a 中,若45615a a a ++=,则28a a +=( )A. 6B. 10C. 7D. 56.已知圆C 与圆(x -1)2+y 2=1关于原点对称,则圆C 的方程为( ) A. x 2+y 2=1 B. x 2+(y +1)2=1 C. x 2+(y -1)2=1D. (x +1)2+y 2=17.已知1a =r ,则“()a a b ⊥+rr r ”是“1a b ⋅=-r r ”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件8.如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A.23B.43C. 3D.329.已知0a b <<,则下列不等式成立的是 ( ) A. 22a b <B. 2a ab <C.11a b< D.1b a< 10.“割圆术”是我国古代计算圆周率π的一种方法.在公元263年左右,由魏晋时期的数学家刘徽发明.其原理就是利用圆内接正多边形的面积逐步逼近圆的面积,进而求π.当时刘微就是利用这种方法,把π的近似值计算到3.1415和3.1416之间,这是当时世界上对圆周率π的计算最精确的数据.这种方法的可贵之处就是利用已知的、可求的来逼近未知的、要求的,用有限的来逼近无穷的.为此,刘微把它概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这种方法极其重要,对后世产生了巨大影响,在欧洲,这种方法后来就演变为现在的微积分.根据“割圆术”,若用正二十四边形来估算圆周率π,则π的近似值是( )(精确到0.01)(参考数据sin150.2588≈o )A. 3.05B. 3.10C. 3.11D. 3.14第二部分(非选择题共110分)二、填空题(共5小题,每小题5分,共25分.)11.已知抛物线22y px =的焦点与双曲线2214x y -=的右顶点重合,则抛物线的焦点坐标为__________;准线方程为___________.12.7(1)x +的展开式中3x 的系数是___________.13.在ABC ∆中,60ABC ∠=o ,22BC AB ==,E 为AC的中点,则AB BE ⋅=u u u r u u u r___________.14.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得折扣优惠金额为30元,则他实际所付金额为____元. 15.若函数()(cos )xf x e x a =-在区间(,)22ππ-上单调递减,则实数a 的取值范围是___________. 三、解答题(共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.)16.已知在ABC ∆中,2a =,2b =①π4A =;②B A >;③sin sin B A <;④4c =.(1)直接写出所有可能满足的条件序号;(2)在(1)的条件下,求B 及c 的值.17.如图,已知四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥平面ABCD ,E 、F 分别是BC ,PC 的中点,2,2AB AP ==,.(1)求证:BD ⊥平面PAC ; (2)求二面角E AF C --的大小.18.某校高一、高二年级的全体学生都参加了体质健康测试,测试成绩满分为100分,规定测试成绩在[85,100]之间为“体质优秀”,在[75,85)之间为“体质良好”,在[60,75)之间为“体质合格”,在[0,60)之间为“体质不合格”.现从这两个年级中各随机抽取7名学生,测试成绩如下: 学生编号 1 2 3 4 5 6 7 高一年级 60 85 80 65 90 9175高二年级 7985917560m n其中,m n 是正整数.(1)若该校高一年级有280学生,试估计高一年级“体质优秀”的学生人数;(2)若从高一年级抽取的7名学生中随机抽取2人,记X 为抽取的2人中为“体质良好”的学生人数,求X 的分布列及数学期望;(3)设两个年级被抽取学生的测试成绩的平均数相等,当高二年级被抽取学生的测试成绩的方差最小时,写出,m n 的值.(只需写出结论)19.已知函数()ln ,()xf x xg x e ==.(1)求()y f x =在点(1,(1))f 处的切线方程; (2)当0x >时,证明:()()f x x g x <<;(3)判断曲线()f x 与()g x 是否存在公切线,若存在,说明有几条,若不存在,说明理由.20.已知椭圆()222210x y a b a b +=>>. (1)求椭圆的方程;(2)设,A B 是椭圆上关于坐标原点对称的两点,且点A 在第一象限,AE x ⊥轴,垂足为E ,连接BE 并延长交椭圆于点D ,证明:ABD ∆是直角三角形.21.已知数列{}{}{},,n n n a b c ,且11,()n n n n n n b a a c b b n N *++=-=-∈.若{}n b 是一个非零常数列,则称{}n a 是一阶等差数列,若{}n c 是一个非零常数列,则称{}n a 是二阶等差数列.(1)已知111,1,1n a b c ===,试写出二阶等差数列{}n a 的前五项;(2)在(1)的条件下,证明:222n n n a -+=;(3)若{}n a 的首项12a =,且满足1132()n n n n c b a n N +*+-+=-∈,判断{}n a 是否为二阶等差数列.第一部分(选择题共40分)一、选择题(共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.)1.已知集合{1,2}A =,{}02B x x =<<,则A B =I ( ) A. {1} B. {1,2}C. {0,1,2}D. {}02x x <<【答案】A 【解析】 【分析】根据交集的概念,可得结果.【详解】由题可知:{1,2}A =,{}02B x x =<< 所以{}1A B ⋂= 故选:A【点睛】本题考查交集的概念,属基础题. 2.已知复数z 满足1iz i =-,则z =( )A. 1i --B. 1i -C. 1i -+D. 1i +【答案】C 【解析】把i 1i z =-两边同乘以i -,则有()()1i ?i 1i z =--=--,1i z ∴=-+,故选C. 3.函数22cos 1y x =-的最小正周期为( ) A.2πB. πC. 2πD. 4π【答案】B 【解析】 【分析】根据二倍角的余弦公式,可得cos 2y x =,然后利用2T ωπ=,可得结果.【详解】由题可知:22cos 1cos 2y x x =-=所以最小正周期为222T πππω=== 故选:B【点睛】本题考查二倍角的余弦公式以及三角函数最小正周期的求法,重在识记公式,属基础题. 4.函数f(x)=|log 2x|的图象是( )A. B.C. D.【答案】A 【解析】试题分析:易知函数值恒大于等于零,同时在(0,1)上单调递减且此时的图像是对数函数的图像关于x 轴的对称图形,在单调递增.故选A .考点:已知函数解析式作图.5.在等差数列{}n a 中,若45615a a a ++=,则28a a +=( ) A. 6 B. 10C. 7D. 5【答案】B 【解析】 【分析】根据等差数列的性质,可得5a ,然后由2852a a a +=,简单计算结果. 【详解】由题可知:456553155++==⇒=a a a a a又2852a a a +=,所以2810a a += 故选:B【点睛】本题主要考查等差数列的性质,若m n p q +=+,则m n p q a a a a +=+,考验计算,属基础题. 6.已知圆C 与圆(x -1)2+y 2=1关于原点对称,则圆C 的方程为( ) A. x 2+y 2=1 B. x 2+(y +1)2=1 C. x 2+(y -1)2=1 D. (x +1)2+y 2=1【答案】D 【解析】 【分析】利用对称性,可得点C 坐标以及圆C 的半径,然后可得结果. 【详解】由题可知:圆C 的圆心()1,0C -,半径为1 所以圆C 的方程为:()2211x y ++= 故选:D【点睛】本题考查圆的方程,直观形象,简单判断,对圆的方程关键在于半径和圆心,属基础题.7.已知1a =r ,则“()a a b ⊥+rr r ”是“1a b ⋅=-r r ”的( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 非充分非必要条件【答案】C 【解析】 【分析】根据向量的垂直关系,可得()0a a b ⋅+=rr r ,简单计算,可得结果.【详解】由()a a b ⊥+rr r,则2()00⋅+=⇒+⋅=rrr rrr a a b a a b 又1a =r ,所以1a b ⋅=-r r若1a b ⋅=-r r ,且1a =r ,所以20+⋅=r r r a a b ,则()a a b ⊥+r r r所以“()a a b ⊥+rr r”是“1a b ⋅=-r r”的充要条件 故选:C【点睛】本题考查向量的垂直的数量积表示以及计算,同时考查了充分、必要条件,识记概念与计算公式,属基础题.8.如图,网格纸上小正方形的边长均为1,粗线画出的是某几何体的三视图,则该几何体的体积为( )A.23B.43C. 3D.32【答案】D 【解析】 【分析】利用数形结合,还原出原几何体的直观图,可得该几何体为一个三棱锥,然后根据锥体体积公式简单计算即可.【详解】根据三视图可知,该几何体的直观图为三棱锥P ABC -, 如图可知3,1,==⊥AB BC AB BC ,点P 到平面ABC 的距离为3h =11331222△=⋅⋅=⋅⋅=ABC S AB BC所以113333322△-=⋅⋅=⋅⋅=P ABC ABC V S h故选:D【点睛】本题考查三视图还原以及几何体体积,关键在于三视图的还原,熟悉常见的几何体的三视图,比如:圆锥,圆柱,球,三棱锥等,属中档题. 9.已知0a b <<,则下列不等式成立的是 ( ) A. 22a b < B. 2a ab <C.11a b< D.1b a< 【答案】D 【解析】 【分析】直接利用作差比较法比较即得正确选项.【详解】22a b -=22)()0,,a b a b a b +->∴>(所以A 选项是错误的. 2a ab -=2()0,.a a b a ab ->∴>所以B 选项是错误的.11a b -=110,.b a ab a b ->∴>所以C 选项是错误的. 1b a -=0, 1.b a b a a -<∴<所以D 选项是正确的. D 故选:.【点睛】(1)本题主要考查不等式的性质和实数比较大小,意在考查学生对这些知识的掌握水平和分析推理能力.(2)比较实数大小,常用包括比差和比商两种方法.比差的一般步骤是:作差→变形(配方、因式分解、通分等)→与零比→下结论;比商的一般步骤是:作商→变形(配方、因式分解、通分等)→与1比→下结论.如果两个数都是正数,一般用比商,其它一般用比差.10.“割圆术”是我国古代计算圆周率π的一种方法.在公元263年左右,由魏晋时期的数学家刘徽发明.其原理就是利用圆内接正多边形的面积逐步逼近圆的面积,进而求π.当时刘微就是利用这种方法,把π的近似值计算到3.1415和3.1416之间,这是当时世界上对圆周率π的计算最精确的数据.这种方法的可贵之处就是利用已知的、可求的来逼近未知的、要求的,用有限的来逼近无穷的.为此,刘微把它概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这种方法极其重要,对后世产生了巨大影响,在欧洲,这种方法后来就演变为现在的微积分.根据“割圆术”,若用正二十四边形来估算圆周率π,则π的近似值是( )(精确到0.01)(参考数据sin150.2588≈o )A. 3.05B. 3.10C. 3.11D. 3.14【答案】C 【解析】 【分析】假设圆的半径为r ,根据以圆心为顶点将正二十四边形分割成全等的24个等腰三角形,顶角为36024o,计算正二十四边形的面积,然后计算圆的面积,可得结果. 【详解】设圆的半径为r ,以圆心为顶点将正二十四边形分割成全等的24个等腰三角形且顶角为3601524=oo所以正二十四边形的面积为2124sin1512sin152⋅⋅⋅⋅=o o r r r 所以2212sin1512sin15 3.11ππ=⇒=≈o o r r 故选:C【点睛】本题考查分割法使用,考验计算能力与想象能力,属基础题.第二部分(非选择题共110分)二、填空题(共5小题,每小题5分,共25分.)11.已知抛物线22y px =的焦点与双曲线2214x y -=的右顶点重合,则抛物线的焦点坐标为__________;准线方程为___________.【答案】 (1). (2,0) (2). 2x =-; 【解析】【分析】计算双曲线的右顶点坐标,可得抛物线的焦点坐标,进一步可得准线方程.【详解】由题可知:双曲线2214x y -=的右顶点坐标为()2,0所以可知抛物线的焦点坐标为()2,0,准线方程为2x =- 故答案为:(2,0);2x =-【点睛】本题主要考查抛物线的方程的应用,审清题意,注意细节,属基础题.12.7(1)x +的展开式中3x 的系数是___________.【答案】35; 【解析】 【分析】根据二项式定理的通项公式1C r n r rr n T a b -+=,简单计算,可得结果.【详解】由题可知:7(1)x +的通项公式为717r r r T C x -+=,令734-=⇒=r r所以3x 的系数是4735C =故答案为:35【点睛】本题考查二项式中指定项的系数,掌握公式,细心计算,属基础题.13.在ABC ∆中,60ABC ∠=o ,22BC AB ==,E 为AC 的中点,则AB BE ⋅=u u u r u u u r___________.【答案】1-; 【解析】 【分析】计算BA BC ⋅u u u r u u u r ,然后将BE u u u r 用,BA BC u u ur u u u r 表示,最后利用数量积公式可得结果.【详解】由60ABC ∠=o ,22BC AB ==,所以1cos 1212⋅=∠=⨯⨯=u u u r u u u r u u u r u u u r BA BC BA BC ABC又E 为AC 的中点,所以()12=+u u u r u u u r u u u r BE BA BC所以()211111122222⋅=-⋅+=--⋅=--=-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r AB BE BA BA BC BA BA BC故答案为:1-【点睛】本题考查向量的数量积运算,给出已知的线段与相应的夹角,通常可以使用向量的方法,将几何问题代数化,便于计算,属基础题.14.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元. 【答案】1120 【解析】 【分析】明确折扣金额y 元与购物总金额x 元之间的解析式,结合y =30>25,代入可得某人在此商场购物总金额, 减去折扣可得答案.【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式,y ()()006000.0560060011000.11100251100x x x x x ⎧≤⎪=-≤⎨⎪-+⎩,<,<,> ∵y =30>25 ∴x >1100∴0.1(x ﹣1100)+25=30 解得,x =1150, 1150﹣30=1120,故此人购物实际所付金额为1120元.【点睛】本题考查的知识点是分段函数,正确理解题意,进而得到满足条件的分段函数解析式是解答的关键.15.若函数()(cos )xf x e x a =-在区间(,)22ππ-上单调递减,则实数a 的取值范围是___________. 【答案】2,)+∞. 【解析】使用等价转化的思想,转化为'()0f x ≤在(,)22ππ-恒成立,然后利用分离参数的方法,结合辅助角公式,可得max4π⎤⎛⎫≥+⎪⎥⎝⎭⎦a x ,简单计算和判断,可得结果. 【详解】由题可知:函数()(cos )x f x e x a =-在区间(,)22ππ-上单调递减等价于'()0f x ≤在(,)22ππ-恒成立 即()'()cos sin 0=--≤xf x ex x a 在(,)22ππ-恒成立则cos sin 4π⎛⎫≥-=+ ⎪⎝⎭a x x x 在(,)22ππ-恒成立所以max4π⎤⎛⎫≥+⎪⎥⎝⎭⎦a x , 由(,)22x ππ∈-,所以3,444πππ⎛⎫+∈- ⎪⎝⎭x故cos 42π⎛⎤⎛⎫+∈- ⎥ ⎪ ⎝⎭⎝⎦x (4π⎛⎫+∈- ⎪⎝⎭x所以a ≥)∈+∞a故答案为:)+∞【点睛】本题考查根据函数的单调性求参,难点在于得到'()0f x ≤在(,)22ππ-恒成立,通过等价转化的思想,化繁为简,同时结合分离参数方法的,转化为最值问题,属中档题.三、解答题(共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.)16.已知在ABC ∆中,2a =,b =①π4A =;②B A >;③sin sin B A <;④4c =. (1)直接写出所有可能满足的条件序号; (2)在(1)条件下,求B 及c 的值.【答案】(1)①,③;(2)6B π=;1c =【解析】(1)根据大边对大角,可得A B >,然后根据正弦定理,可得sin sin B A <.(2)利用正弦定理,可得B ,然后利用余弦定理2222cos a b c bc A =+-,简单计算可得结果. 【详解】解:(1)①,③.(2)由sin sin a b A B=,可得22sin 4π=22sin2142sin 222B π⨯∴=== 226a b A B B π=>=⇒>⇒=Q22222222cos 2(2)22a b c bc A c c =+-⇒=+-⨯⨯⨯由 解得31c =+或31c =-+(舍).【点睛】本题考查正弦定理、余弦定理解三角形,识记公式,熟练使用正弦定理、余弦定理,边角互化,考验计算能力,属中档题.17.如图,已知四棱锥P ABCD -的底面ABCD 为正方形,PA ⊥平面ABCD ,E 、F 分别是BC ,PC 的中点,2,2AB AP ==,.(1)求证:BD ⊥平面PAC ; (2)求二面角E AF C --的大小.【答案】(1)见解析 (2)6π【解析】【详解】(1)PA ABCD PA BD ABCD AC BD BD PAC⊥⇒⊥⇒⊥⇒⊥Q 平面正方形平面(2)以A 为原点,如图所示建立直角坐标系(0,0,0)(2,1,0)(1,1,1)(2,1,0)(1,1,1)A E F AE AF ==u u u r u u u r ,, 设平面FAE 法向量为(,,)n x y z =r,则20{x y x y z +=++=(1,2,1)n =-r,(2,2,0)BD =-u u u r ,·3cos 22?6||?,66n BD n BD E AF C θππθ===∴=--u u u r r u u u ur u u r 即二面角的大小为18.某校高一、高二年级的全体学生都参加了体质健康测试,测试成绩满分为100分,规定测试成绩在[85,100]之间为“体质优秀”,在[75,85)之间为“体质良好”,在[60,75)之间为“体质合格”,在[0,60)之间为“体质不合格”.现从这两个年级中各随机抽取7名学生,测试成绩如下: 学生编号 1 2 3 4 5 6 7 高一年级 60 85 80 65 90 9175高二年级 7985917560m n其中,m n 是正整数.(1)若该校高一年级有280学生,试估计高一年级“体质优秀”的学生人数;(2)若从高一年级抽取的7名学生中随机抽取2人,记X 为抽取的2人中为“体质良好”的学生人数,求X的分布列及数学期望; (3)设两个年级被抽取学生的测试成绩的平均数相等,当高二年级被抽取学生的测试成绩的方差最小时,写出,m n 的值.(只需写出结论)【答案】(1)120;(2)详见解析;(3)78m n == 【解析】 【分析】(1)根据表中数据计算样本中的优秀率,然后用样本估计整体,简单计算可得结果.(2)写出X 所有可能取值,并求得相应的概率,列出分布列,然后根据数学期望公式,可得结果. (3)根据两个年级被抽取学生的测试成绩的平均数相等,可得,m n 之间关系,然后利用方差公式,结合二次函数,可得结果.【详解】解:(1)高一年级随机抽取的7名学生中, “体质优秀”的有3人,优秀率为37,将此频率视为概率, 估计高一年级“体质优秀”的学生人数为32801207⨯=人.(2)高一年级抽取的7名学生中“体质良好”的有2人,非“体质良好”的有5人. 所以X 的可能取值为0,1,2所以021*******771010(0),(1),2121======C C C C P X P X C C 2025271(2)21===C C P X C 所以随机变量X 的分布列为:10101124()012212121217E X =⨯+⨯+⨯== (3)78m n ==【点睛】本题考查离散性随机变量的分布列以及数学期望,同时考查平均数与方差,本题主要考验计算,牢记计算的公式,掌握基本统计量的概念,属基础题.19.已知函数()ln ,()xf x xg x e ==.(1)求()y f x =在点(1,(1))f 处的切线方程; (2)当0x >时,证明:()()f x x g x <<;(3)判断曲线()f x 与()g x 是否存在公切线,若存在,说明有几条,若不存在,说明理由. 【答案】(1)1y x =-;(2)证明见解析;(3)存在;存在2条公切线 【解析】 【分析】 (1)计算()'f x ,根据曲线在该点处导数的几何意义可得切线的斜率,然后计算()1f ,利用点斜式,可得结果.(2)分别构造()ln ,()=-=-xh x x x s x x e ,通过导数研究(),()h x s x 的性质,可得 max ()0h x <,()(0)1s x s <=-,简单判断,可得结果.(3)分别假设()f x 与()g x 的切线,根据公切线,可得(1)10-++=xx x e ,利用导数研究函数()(1)1x h x e x x =-++零点个数,根据()h x 性质可得结果.【详解】解:(1)()ln f x x =的定义域(0,)+∞1()(1)1f x k f x=⇒'='=由 又(1)0f =所以()y f x =在点(1,(1))f 处的切线方程为:1y x =-. (2)设()()ln (0)h x f x x x x x =-=->,11'()101x h x x x x-=-==⇒=由, '(),()h x h x x 随变化如下:max ()(1)ln1110h x h ∴==-=-< ()f x x ∴<设()(),=-=-x s x x g x x e 则'()1e 0x s x =-<在(0,)x ∈+∞上恒成立(0,())x s x ∈+∴∞在上单调递减()(0)10()∴<=-<⇒<s x s x g x综上()()f x x g x <<(3)曲线()f x 与()g x 存在公切线,且有2条,理由如下: 由(2)知曲线()f x 与()g x 无公共点,设12,l l 分别切曲线()f x 与()g x 于2112(,ln ),(,)xx x x e ,则22112211:ln 1;:(1)x x l y x x l y e x e x x =⋅+-=⋅+-, 若12l l =,即曲线()f x 与()g x 有公切线,则222122121(1)10ln 1(1)x x x ex e x x x e x ⎧=⎪⇒-++=⎨⎪-=-⎩ 令()(1)1xh x e x x =-++,则曲线()f x 与()g x 有公切线,当且仅当()h x 有零点,'()1x h x xe =-+Q ,当0x ≤时,'()0h x >,()h x 在(),0-∞单调递增,当0x >时,()''()10=-+<xh x x e ,'()h x 在()0,∞+单调递减'(0)10,'(1)10h h e =>=-<又,所以存在0(0,1)x ∈,使得000'()10=-+=xh x x e 且当0(0,)x x ∈时,'()0,()h x h x >单调递增, 当0(,)x x ∈+∞时,'()0,()h x h x <单调递减0max 0000001()()(1)1(1)10x h x h x e x x x x x ∴==-++=-++>, 又22(2)310,(2)30--=-<=-+<h e h e 所以()h x 在00(2,),(,2)-x x 内各存在有一个零点 故曲线()f x 与()g x 存在2条公切线.【点睛】本题考查导数综合应用,掌握曲线在某点处导数的几何意义,同时比较式子之间大小关系常用方法:作差法,函数单调性等,考验逻辑推理能力,属难题.20.已知椭圆()222210x y a b a b +=>>. (1)求椭圆的方程;(2)设,A B 是椭圆上关于坐标原点对称的两点,且点A 在第一象限,AE x ⊥轴,垂足为E ,连接BE 并延长交椭圆于点D ,证明:ABD ∆是直角三角形.【答案】(1)22142x y +=(2)见解析【解析】 【分析】 (1)由题得2c b a ==,222a b c =+,解之即得椭圆的方程;(2)设()11,A x y ,(),y D D D x ,则()11,B x y --,()1,0E x ,联立直线BE 的方程和椭圆的方程求出21121838D y x x y -=-, 312138D y y y -=-,证明1AB AD k k =-g ,ABD ∆是直角三角形即得证.【详解】(1)依题意可得2c b a ==,所以2222222212c a b a a a a --===,得2a =,所以椭圆的方程是22142x y += .(2)设()11,A x y ,(),y D D D x ,则()11,B x y --,()1,0E x , 直线BE 的方程为()1112y y x x x =-,与22142x y +=联立得 222211*********y y y x x x x ⎛⎫+-+-= ⎪⎝⎭, 因为D x ,1x -是方程的两个解,所以()212211122211121482212D y y x x x x y y x ---==+⎛⎫+ ⎪⎝⎭g 又因为2211142x y +=, 所以21121838D y x x y -=-,代入直线方程得312138D y y y -=- 3112211122111112138241838AB ADy y y y y k k y x x x x y +--===----g g 所以AB AD ⊥,即ABD ∆是直角三角形.【点睛】本题主要考查椭圆方程的求法,考查直线和椭圆的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.21.已知数列{}{}{},,n n n a b c ,且11,()n n n n n n b a a c b b n N *++=-=-∈.若{}n b 是一个非零常数列,则称{}n a 是一阶等差数列,若{}n c 是一个非零常数列,则称{}n a 是二阶等差数列.(1)已知111,1,1n a b c ===,试写出二阶等差数列{}n a 的前五项;(2)在(1)的条件下,证明:222n n n a -+=; (3)若{}n a 的首项12a =,且满足1132()n n n n c b a n N +*+-+=-∈,判断{}n a 是否为二阶等差数列.【答案】(1)11a =,22a =,34a =,47a =,511a =;(2)证明见解析;(3){}n a 不是二阶等差数列【解析】【分析】(1)根据111,1,1n a b c ===,以及11,++=-=-n n n n n n b a a c b b ,简单计算,可得结果.(2)根据11+-==n n n b b c ,可知n b n =,利用1n n n a a +-=,使用迭加法,可得n a .(3)根据题意可得1124(2)+++=+n n n n a a ,进一步可得n a ,然后可得942=⋅-n n n c ,简单判断,可得结果.【详解】解:(1)11a =,22a =,34a =,47a =,511a =. (2)11,1,2,3,n n n b b c n +-===⋅⋅⋅Q11111n n i i b c b n n -=∴=+=-+=∑又1,1,2,3,n n n a a b n n +-===⋅⋅⋅2111(1)2122n n i i n n n n a b a -=--+∴=+=+=∑. (3){}n a 不是二阶等差数列.理由如下: Q 数列{}n a 满足1132()n n n n c b a n N +*+-+=-∈ 又1n n n b a a +=-,1+=-n n n c b b (n *∈N ) ∴由11113242++++-+=-⇒=+n n n n n n n c b a a a 则1124(2)+++=+n n n n a a∴数列{}2n n a +是首项为124a +=,公比为4的等比数列 1244442n n n n n n n a a -∴+=⋅=⇒=-942n n n c ∴=⋅-,显然{}n c 非常数列 {}n a ∴不是二阶等差数列.【点睛】本题考查数列中新定义的理解,关键在于发现,,n n n a b c 之间的关系,考查观察能力,分析能力以及逻辑思维能力,新定义的理解同时考查了阅读理解能力,属难题.。

北京市怀柔区中考物理一模试题 人教新课标版

北京市怀柔区中考物理一模试题 人教新课标版

物理试卷考生须知1.本试卷共8页,共五道大题,38道小题,满分100分。

考试时间120分钟。

2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。

3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。

4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。

5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。

共24分,每小题2分)1.在国际单位制中,电压的单位是A.焦耳(J) B.安培(A) C.伏特(V) D.瓦特(W)2.图1所示的四种现象中,属于光的直线传播现象的是3.下列物品中,在通常情况下属于绝缘体的是A.橡皮 B.铅笔芯 C.食盐水 D.钢勺4.图2所示的四个实例中,目的是为了减小摩擦的是5.下列物态变化中,属于汽化的是A.寒冷的冬天,湖水结成冰 B.晾晒的湿衣服变干C.初冬的清晨,地面上出现霜 D.秋天的夜晚,草叶上出现露珠6.下列现象中,通过热传递改变物体内能的是A.两手相互摩擦,手发热 B.用砂轮磨菜刀,菜刀的温度升高C.用锯锯木头,锯条发热 D.用火炉烧水,水的温度升高图2打球时用力握紧球拍旅游鞋底有凹凸的花纹行李箱下安装轮子自行车脚蹬上刻有纹线A B C D图1B.屏幕上的“手影”C.沙漠中的“海市蜃楼”D.鸟巢在水中的“倒影”A.汽车上的“后视镜”7.图3所示的用具中,属于省力杠杆的是8.图4所示的四种用电器中,利用电流热效应工作的是9.下面是对日常生活中一些物体的质量和长度的估计,其中最接近实际的是A.一位中学生身高约为165cm B.人行过街天桥的高度约为25mC.一个大西瓜的质量是500g D.一名中学生的质量是500kg10.家用电吹风机由电动机和电热丝等组成,为了保证电吹风机的安全使用,要求电动机不工作时,电热丝不能发热;电热丝不发热时,电动机仍能工作。

图5所示电路中符合要求的是11.如图6所示电路,电源两端电压保持不变。

2019北京怀柔高三数学一模理科试卷

2019北京怀柔高三数学一模理科试卷

2019北京怀柔高三数学一模理科试卷怀柔区2019学年度第二学期高三期中练习数学(理科)2019.3本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷1至2页,第Ⅱ卷3至8页,共150分.考试时间120分钟.考试结束,将本试卷和答题卡一并交回.注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目等涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案.不能答在试卷上.一、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.设集合}2{>-1Q,则=QP,}0=xx{≤1x<-=xPA.}11x C.}2<x|{≤-x<x{≤|1{<<x B.}2-x1|D.}1x|x>{-2.若向量a=(1,—1),b=(—1,1),c=(5,1),则c+a+b=A .aB . bC .cD .a+b3.抛物线24y x =-的准线方程是A .116x = B .1x = C .1y = D .116y =4.已知1=a ,复数),()2()1(2R b a i a a z ∈-+-=,则“1=a ”是“z 为纯虚数”的A .充分非必要条件B .必要非充分条件C .充要条件D .既非充分又非必要条件5.如图,是CCTV 青年歌手大奖赛上某位选手得分的茎叶图,去掉一个最高分和一个最低分后,所剩数据的方 差为A .647 B .9 C .738 D .780 6.如图,水平放置的三棱柱的侧棱长和底面边长均为2,且侧棱AA 1⊥底面A 1B 1C 1,主视图是边长为2的正方形,该三棱柱的左视图面积为第Ⅱ卷(非选择题共110分)注意事项:用黑色签字笔将答案写在答题卡上规定的区域内.二、填空题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9.函数sin cos y x x =的最小正周期为 . 10.经过极点,圆心在极轴上,且半径为1的圆的极坐标方程为 _.11.如图,是计算111124620++++的值的一个程序框图,其中判断框内应填入的条件是 . 12.若函数2)(3++-=cx xx f )(R c ∈,则/3()2f -、/(1)f-、/(0)f的大小关系是_. 13.如图,圆O 和圆O '相交于A ,B 两点,AC 是圆O '的切线,AD 是圆O 的切线,若BC =2,AB =4,则=BD _. 14.已知函数⎩⎨⎧>-≤++-=0,20,)(2x x c bx x x f ,若1)1(=-f ,2)0(-=f ,则函数x x f x g +=)()(的零点个数为 ____.三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15.(本小题共12分)..C O BD A已知函数)2sin()42cos(21)(x x x f --+=ππ.(Ⅰ)求函数)(x f 的定义域;(Ⅱ)求)(x f 在区间[,)42ππ-上的最大值与最小值.16.(本小题满分14分)如图,已知四棱锥S —ABCD 的底面ABCD 是矩形,M 、N 分别是CD 、SC 的中点,SA ⊥底面ABCD , SA =AD =1,AB =2.(I )求证:MN ⊥平面ABN ;(II)求二面角A—BN—C的余弦值.17.(本小题满分13分)已知函数()32331f x axx a=-+-(R a ∈,且0)a ≠,求)(x f '及函数)(x f 的极大值与极小值.18.(本小题满分13分)甲、乙两人同时参加奥运志愿者选拔赛的考试,已知在备选的10道题中,甲能答对其中的6道题,乙能答对其中的8道题.规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2道题才能入选.(I)求甲答对试题数 的分布列及数学期望;(II)求甲、乙两人至少有一人入选的概率.19.(本小题满分14分)已知椭圆C的中心在坐标原点,离心率e ,一2个焦点的坐标为()3,0.(I )求椭圆C 方程; (II )设直线1:2l y x m =+与椭圆C 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点T .当m 变化时,求TAB ∆面积的最大值.20.(本小题满分14分)当np p p ,,,21均为正数时,称np pp n+++ 21为np p p ,,,21的“均倒数”.已知数列{}na 的各项均为正数,且其前n 项的“均倒数”为121+n .(Ⅰ)试求数列{}na 的通项公式;(Ⅱ)设12+=n a cn n,试判断并说明()*1n ncc n N +-∈的符号;(Ⅲ)已知(0)n a nb t t =>,记数列{}nb 的前n 项和为nS ,试求1n nS S +的值;(Ⅳ)设函数124)(2+-+-=n a x xx f n,是否存在最大的实数λ,使当λ≤x 时,对于一切正整数n ,都有0)(≤x f 恒成立?怀柔区2019学年度第二学期高三数学期中练习参考答案及评分标准(理科)2010.3 一、选择题:本大题共8 小题,每小题 5 分,共40 分.二、填空题:本大题共 6 小题,每小题 5 分,共 30 分.9. π 10.2cos ρθ=11.20n ≤12. /(0)f >/(1)f ->/3()2f - 13. 814. 3三、解答题:本大题共 6 小题,共 80 分.15. (本小题共12分) 解:(Ⅰ)由题意 0)2sin(≠-x π ⇒ Zk k x ∈≠-,2ππ⇒Zk k x ∈+≠,2ππ故所求定义域为{Z k k x x ∈+≠,2|ππ} …………4分 (Ⅱ)x x x x x x f cos 2sin 2cos 1)2sin()42cos(21)(++=--+=ππxxx x cos cos sin 2cos 22+=x x sin 2cos 2+=)4sin(22π+=x …………9分3,04244x x ππππ-≤<∴≤+<,…………10分∴当04x π+=即4x π=-时,min()0f x =;当42x ππ+=即4x π=时,max ()f x = ……12分16.(本小题满分14分)解:(I )以A 点为原点,AB 为x 轴,AD 为y 轴,AD为z 轴的空间直角坐标系,如图所示. 则依题意可知相关各点的坐标分别是:A (0,0,0),B (2,0,0),C (2,1,0),D (0,1,0),S (0,0,1)(图略)).21,21,22(),0,1,22(N M ∴ ……………………2分).21,21,22(),0,0,2(),21,21,0(==-=∴…………………………4分.,.0,0⊥⊥∴==⋅==⋅∴ ∴MN⊥平面ABN .……………………………………………………………………7分(II )设平面NBC 的法向量.,),,,(c b a ⊥⊥=则且又易知)1,1,2(),0,1,0(-==⎩⎨⎧==∴⎩⎨⎧=-+=⎪⎩⎪⎨⎧=⋅=⋅∴.2,0.02,0,0,0a c b c b a b 即令a =1,则).2,0,1(=……………………………………………………11分 显然,)21,21,0(-=就是平面ABN 的法向量..33||||,cos ==⋅>=<∴ MN n由图形知,二面角A —BN —C 是钝角二面角…………………………………12分.33---∴的余弦值是二面角C BN A ……………………………………14分17.(本小题满分13分) 解:由题设知)2(363)(,02ax ax x ax x f a -=-='∴≠ (2)分令2()00f x x x a'===得 或 ……………………………4分当0a >时,随x 的变化,()/fx 与()f x 的变化如下:∴()()301f x f a==-极大,()22431f x f a a a ⎛⎫==--+ ⎪⎝⎭极小……………8分当0a <时,随x 的变化,()'f x 与()f x 的变化如下:∴()()301f x f a==-极大,()22431f x f a a a ⎛⎫==--+ ⎪⎝⎭极小…………………12分综上,当0a >时,()31f x a=-极大,()2431f x a a=--+极小;当a <时,()31f x a=-极大,()2431f x a a=--+极小.……………13分18.(本小题满分13分)解:(I )依题意,甲答对试题数ξ的可能取值为0,1,2,3,…………………1分 则,301)0(31034===C C P ξ12643103(1),10C C P C ξ⋅=== ,21)2(3101426=⋅==C C C P ξ.61)3(31036===C C P ξ ………………………………………………… 5分ξ∴的分布列为…………………… 6分甲答对试题数ξ的数学期望为.5961321210313010=⨯+⨯+⨯+⨯=ξE ………………………………7分(II )设甲、乙两人考试合格的事件分别为A 、B ,则2()(2)(3),3P A P P ξξ==+==.15141205656)(310381228=+=+=C C C C B P (9)分因为事件A 、B 相互独立, ∴ 甲、乙两人考试均不合格的概率为 .451]15141][321[)()()(=--=⋅=⋅B P A P B A P ………………………11分∴甲、乙两人至少有一人考试合格的概率为.45444511)(1=-=⋅-=B A P P 答:甲、乙两人于少有一人考试合格的概率为.4544 …………………13分另解:甲、乙两人至少有一个考试合格的概率为.454415143215143115123)()()(=⨯+⨯+⨯=⋅+⋅+⋅=B A P B A P B A P P答:甲、乙两人于少有一人考试合格的概率为.4544 19.(本小题满分14分)解法一:(I )依题意,设椭圆C 的方程为22221x y a b +=)0(>>b a3,2c c e a ===,2=∴a …… …………3分,1222=-=c a b ………………4分∴椭圆C的方程是2214x y += ………………5分(II )221412x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩由2222214()4,222020,840,7x x m x mx m m m ++=++-=∆>-><<得即令得分设()()1122,,,A x y B x y ,AB 中点为()0,M x y……()21212012002,22 111,,2221,2x x m x x m AB x x x m y x m m M m m +=-=-====+=-=+=⎛⎫∴- ⎪⎝⎭则(),0,1012,1233,,044MT AB T t mMT AB k k t m t m T m -⊥∴⋅=⋅=-+⎛⎫=-∴- ⎪⎝⎭设解得 (11)分||45)2(521||||21.||4541161||222m m MT AB S m m m MT TAB ⋅-⋅=⋅=∴=+=∴∆.1)1(8522+--=m ………………13分22<<-m , ∴当21m =,即1m =±时,TABS ∆取得最大值为.85 ………………14分 解法二:(I )同解法一(II )221412x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩由2222214()4,222020,840,7x x m x mx m m m ++=++-=∆>-><<得即令得分设()()1122,,,A x y B x y ,AB 中点为()0,M x y212122,22x x m x x m ∴+=-=-… ……………8分()01200111,,2221,2x x x m y x m m M m m =+=-=+=⎛⎫∴- ⎪⎝⎭………………10分MT AB ⊥MT∴的方程为322y x m =-- 令0y =,得34x m =-,3,04T m ⎛⎫∴- ⎪⎝⎭………………9分设AB 交x 轴与点R,则()2,0R m -.||45||m TR =∴ ………………11分2122121214)(||41||||41||||21x x x x TR x x TR y y TR S TAB -+⋅=-⋅=-⋅=∴∆)2(8522m m -=,852)2(8522=-+⋅≤m m (13)分∴当21m=,即1m =±时,TABS ∆取得最大值为.85 (14)分20.(本小题满分14分)解:(Ⅰ)121(21)n n a a a a n n -++⋅⋅⋅++=+,121(1)(21)n a a a n n -++⋅⋅⋅+=--,两式相减,得41(2)na n n =-≥ . 又111211a =⨯+,解得 13411a ==⨯- , ∴41()na n n N +=-∈ . ………4分(Ⅱ)∵4132212121nna n c n n n -===-+++, 11322323n n a c n n ++==-++ , ∴1332123n n c c n n +-=-++>0, 即1n nc+>c . ………7分(Ⅲ)∵41()na n nb t t t -==>0,∴374112n nnS b b b t t t -=++⋅⋅⋅+=++⋅⋅⋅+,当1t =时,nS n = ,11n nS n S n++=; ………8分 当t >0且1t ≠时,344(1)1n n t t S t -=-,441411n n nn S t S t ++-=-. ………10分综上得,⎪⎪⎩⎪⎪⎨⎧≠>--=+=++1,0,111,14441t t t t t n n S S nn nn………11分(Ⅳ)由(Ⅱ)知数列 {}nc 是单调递增数列,11c =是其的最小项,即11n c c ≥=.假设存在最大实数,使当x λ≤时,对于一切正整数n ,都有2()4021naf x x x n =-+-≤+ 恒成立,则2421nna x x c n -+≤=+ ()n N +∈.只需2141xx c -+≤=,即2410x x -+≥.解之得2x ≥+ 或2x ≤-.于是,可取2λ=-14分。

初中数学北京市怀柔区中考模拟模拟考试(一模)数学考试题含答案

初中数学北京市怀柔区中考模拟模拟考试(一模)数学考试题含答案

xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图所示,用刻度尺度量线段AB,可以读出线段AB的长度为(A) 5.2cm (B) 5.4cm (C) 6.2cm (D) 6.4cm试题2:怀柔素有“北京后花园”之称,因为有着“一半山水一半城,山凝水重入画屏”的美丽自然景观,吸引着中外游客. 2016年1至11月怀柔主要旅游区(点)共接待中外游客约为5870000人次.将5870000用科学记数法表示为(A)5.87×105 (B) 5.87×106 (C) 0.587×107 (D)58.7×105【试题3:数轴上有A,B,C,D四个点,其中表示互为相反数的两个点是(A) 点B与点C (B) 点A与点C(C) 点A与点D (D)点B与点D试题4:评卷人得分下列各式运算结果为的是(A) (B)(C) (D)试题5:下列成语中描述的事件是随机事件的是(A)水中捞月(B)瓮中捉鳖(C)拔苗助长(D)守株待兔试题6:下面的几何体中,主视图、左视图和俯视图形状都相同,大小均相等的是(A)圆柱(B)圆锥(C)三棱柱(D)球试题7:内角为108°的正多边形是试题8:如图,函数y =-2x2的图象是(A)①(B)②(C)③(D)④试题9:如图,A,B两点分别位于一个池塘的两端,小明想用绳子测量A,B间的距离,但绳子不够长,于是他想到了一个办法,先在地上取一个可以直接到达A点和B点的O点,连接AO并延长到C,使OC=AO,连接BO并延长到D,使OD=OB,连接DC,测得DC=20m,这样小明就可以算出A,B间的距离为2·1·c·n·j·y (A)30m (B)40m (C)60m (D)80m试题10:在“校园读书月”活动中,小华调查了班级里40名同学本学期购买课外书的花费情况,并将结果绘制成如图所示的统计图.下面有四个推断:这次调查获取的样本数据的众数是30 元 这次调查获取的样本数据的中位数是40元若该校共有学生1200人,根据样本数据,估计本学期计划购买课外书花费50元的学生有300人④花费不超过50元的同学共有18人其中合理的是(A) (B) ④(C) (D) ④试题11:分解因式:=_______________.试题12:写出图象经过点(-1,2)的一个函数的表达式____________________.试题13:如图,在ABCD中,ED=2,BC=5,∠ABC的平分线交AD于点E,则AB的长为_______________.试题14:上图中的四边形均为矩形.根据图形,写出一个正确的等式:_______________.试题15:算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹计数法中,以“立”,“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推.《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图1,从左向右的符号中,前两个符号分别代表未知数x,y的系数.因此,根据此图可以列出方程:x+10y=26.请你根据图2列出方程组.试题16:.数学活动课上,老师让同学们围绕一道尺规作图题展开讨论,尽可能想出不同的作法:已知:如图,直线L和L外一点P.求作:直线PQ,使PQ⊥L于点Q.小强的作法如下:1.在直线L上任取一点A,连接PA;2.分别以A,P为圆心,以大于AP长为半径作弧,两弧交于C,D两点;3.作直线CD,交AP于点O;老师说:“小强的作法正确.”请回答:小强这样作图的依据是: .试题17:计算:.试题18:已知,求代数式的值.试题19:如图,在中,∠ACB=90°,点D是AB边的中点,CE=CD,∠B=∠E.求证:CF=DF.4.以O为圆心,以OA长为半径作圆,交直线L于点Q;5.作直线PQ.所以直线PQ即为所求.试题20:解不等式组:试题21:调查作业:了解某家超市不同品牌饮料的销售情况.为调查不同品牌饮料的市场销售情况,小东和小芸两位同学对一家超市进行了调查,二人在某天对照50名顾客购买饮料的品牌进行了记录.小东的作法是:如果一个顾客购买某一品牌的饮料,就将这一饮料的品牌名字记录一次.表1是记录的初始数据.表1统一冰茶可口可乐统一冰茶汇源果汁露露露露统一冰茶可口可乐露露可口可乐统一冰茶可口可乐可口可乐百事可乐统一冰茶可口可乐百事可乐统一冰茶可口可乐百事可乐百事可乐露露露露百事可乐露露可口可乐统一冰茶统一冰茶汇源果汁汇源果汁汇源果汁统一冰茶可口可乐可口可乐可口可乐可口可乐百事可乐露露汇源果汁百事可乐露露可口可乐百事可乐可口可乐露露可口可乐统一冰茶百事可乐汇源果汁统一冰茶记录之后,小东对上述收集的数据进行了整理,绘制了表2:表2 表3饮料名称频数可口可乐15统一冰茶11百事可乐9露露9汇源果汁 6合计50饮料名称画记频数可口可乐正正正15统一冰茶正正一11百事可乐正9露露正9汇源果汁正一 6合计50小芸的作法是:先设计一个统计表,再进行数据的收集与整理,她的方法是如果一个顾客购买某一品牌的饮料,就将这一饮料的品牌在相应的表格中画记一笔“正”字,上面表3是小芸设计的表格及调查时画记和填写的数据.根据以上材料回答问题:本次调查如果让你去做,在收集整理数据时,你会选择他们中的哪种方法?请你说明理由或者介绍一种新的方法.试题22:如图,已知菱形ABCD的对角线AC,BD相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:四边形BECD是平行四边形;(2)若∠E=60°,AC=,求菱形ABCD的面积.试题23:如图,在平面直角坐标系xOy中,直线y=x+b与双曲线相交于A,B两点,已知A(1,3),B(-3,m).(1)求一次函数和反比例函数的表达式;(2)如果点是y轴上一点,且的面积是4,求点的坐标.试题24:阅读下列材料:为保障和改善民生建设,北京市建立了以最低生活保障为基础、专项救助相配套、临时救助为补充的城乡社会救助体系,逐年提高救助标准,全市困难群众基本生活得到较好保障,并达到全覆盖的目的.2013年底全市共有农村低保人数5.96万人,城市低保人数10.37万人.2014年底全市共有农村低保人数5.13万人,比上年同期减少了13.9%,城市低保人数8.91万人,比上年同期减少了14.1%.2015年底全市共有农村低保人数比上年同期减少了4.8%,城市低保人数8.49万人.2016年底全市共有低保人数12.68万人,其中农村低保人数比城市低保人数少3.36万人.根据以上材料解答下列问题:(1)2015年底北京市农村低保人数约为万人;(2)2016年底北京市城市低保人数约为万人;(3)利用统计表或统计图将2013 - 2016年北京市农村低保人数和城市低保人数表示出来;(4)针对以上文字内容,谈谈你的看法.试题25:如图,在△ABC中,点D为BC上一点,过A,B,D三点作⊙O,AE是⊙O的直径,AC是⊙O的切线,AD=DC,连结DE.(1)求证:AB=AC;(2)若,AC=,求△ADE的周长(用含a的代数式表示).试题26:已知y是x的函数,下表是y与x的几组对应值.x 2 3 4 5 6 7 …y 0 1 2 …小聪根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的表达式,图象和性质进行了探究.下面是小聪的探究过程,请补充完整:(1)根据上述表格所反映出的y与x之间的变化规律,写出该函数的表达式: ;(2)该函数自变量x的取值范围是 ;(3)如图,在平面直角坐标系xOy中,描出上表中各对对应值为坐标的点的位置(近似即可),根据描出的点,画出该函数的图象;(4)根据画出的函数图象,写出该函数的一条性质: .试题27:已知二次函数(a>0).(1)求证:抛物线与x轴有两个交点;(2)求该抛物线的顶点坐标;(3)结合函数图象回答:当x≥1时,其对应的函数值y的最小值范围是2≤y≤6,求a的取值范围.试题28:(1)如图1,在△ACB和△ADB中,∠C=∠D =90°,过A,B,C三点可以作一个圆,此时AB为圆的直径,AB的中点O为圆心.因为∠D=90°,利用圆的定义可知点D也在此圆上,若连接DC,当∠CAB=31°时,利用圆的知识可知∠CDB= 度.(2)如图2,在△ACB中,∠ACB=90°,AC=BC=3,CE⊥AB于E,点F是CE中点,连接AF并延长交BC于点D.CG⊥AD于点G,连接EG.①求证:BD=2DC;②借助(1)中求角的方法,写出求EG长的思路.(可以不写出计算的结果)试题29:在平面直角坐标系xOy中,点P的坐标为(x,y),若过点p的直线与x轴夹角为60°时,则称该直线为点P的“相关直线”,(1)已知点A的坐标为(0,2),求点A的“相关直线”的表达式;(2)若点B的坐标为(0,),点B的“相关直线”与直线y=交于点C,求点C的坐标;(3)⊙O的半径为,若⊙O上存在一点N,点N的“相关直线”与双曲线y=(x>0)相交于点M,请直接写出点M的横坐标的取值范围.试题1答案:BB试题3答案:A试题4答案:B试题5答案:D试题6答案:D试题7答案:B试题8答案:C试题9答案:B试题10答案:C试题11答案:试题12答案:.答案比唯一.如:y=-2x. 试题13答案:3(m+n)(a+b)=ma+mb+na+nb试题15答案:试题16答案:直径所对的圆周角是90º;两点确定一条直线.到线段两端距离相等的点在线段的垂直平分线上. 试题17答案:解:.试题18答案:.解:.∵,∴原式.试题19答案:证明:∵在中,∠ACB=90°,点D是AB边的中点,∴CD=BD.∴∠DCB=∠B.∵CD=CE,∴∠CDE=∠E.∵∠B=∠E,∴∠DCF=∠CDF.∴CF=DF.试题20答案:解不等式①,得x<1.解不等式②,得x≥.∴不等式组的解集为:≤x<1试题21答案:选择小芸的作法因为小芸的方法清晰,方便,简明.(答案不唯一)试题22答案:(1)证明:∵四边形ABCD是菱形,∴AB=CD,AB∥CD. 又∵BE=AB,∴BE=CD∵BE∥CD,∴四边形BECD是平行四边形.(2)解:∵四边形BECD是平行四边形,∴BD∥CE.∴∠ABO=∠E=60°.又∵四边形ABCD是菱形,∴AC丄BD,OA=OC.∴∠BOA=90°,∴∠BAO=30°.∵AC=,∴OA=OC=.∴OB=OD=2. ∴BD=4.∴菱形ABCD的面积=试题23答案:解:(1)把A(1,3)代入y=x+b中,得3=1+b ,解得b=2 .∴一次函数的表达式为. 把A(1,3)代入中,得,解得k=3 .∴反比例函数的表达式为. ;(2)把B(-3,m)代入y=x+2,可得B(-3,-1).设一次函数的图象与y轴的交点C的坐标为(0,2).∵S△ABP = 4,∴.∴.∴点P的坐标为(0,0),(0,4)试题24答案:解:(1)4.88.(2)8.02 .(3) 2013 — 2016年北京市农村低保和城市低保人数统计表农村低保城市低保低保类别人口数量(万人)年度2013 5.96 10.372014 5.13 8.912015 4.88 8.492016 4.66 8.02数值近似即可(4)北京市低保人数逐年递减,政府加强了民生的保障和改善,社会生活水平有新的提高. (答案不唯一,要体现正能量)试题25答案:(1)证明:∵AD=DC,∴∠CAD=∠C.∵AC是⊙O的切线,∴∠CAE=90°.∴∠CAD+∠EAD=90°.∵AE是⊙O的直径,∴∠ADE=90°.∴∠E+∠EAD=90°.∴∠CAD=∠E.又∵∠E=∠B,∴∠C=∠B.∴AB=AC. ……………………………2分(2)解:过点D作DF⊥AC于点F.①由DA=DC,AC=,可得CF==.②由∠C=∠E,,可得.在 Rt△CDF中,求出CD=DA=3a. (或利用△CDF∽△ADE求).③在 Rt△ADE中,利用,求出AE=9a.再利用勾股定理得出DE=.④△ADE的三边相加得出周长为12a+.试题26答案:(1)y=(2)x≥2;(3) 如图:(4) x≥2时,函数图形y随x的增大而增大.试题27答案:解:(1)令y=0.∴.∵△==4a,∵a>0,∴4a>0.∴△>0. ∴抛物线与x轴有两个交点.(2).把x=-1代入.∴y=-1.∴顶点坐标(-1,-1).(3)①把(1,2)代入.∴②把(1,6)代入.∴.∴由图象可知:≤a≤.试题28答案:解:(1)31°.(2)①过点E作EH∥AD交CB于H点.∵CE⊥AB于点E,AC=BC,∴点E是AB中点.∴BH=DH.∵点F是CE中点,∴HD=DC.∴BD=2CD②∵CE⊥AB于点E,∴∠CEA=90°.∵CG⊥AD于点G,∴∠CGA=90°.∴AC为圆的直径.∵∠ACB=90°,AC=BC,∴∠CAE =45°.∵CE⊥AB于点E,∴∠ACE =45°.∴∠AGE=45°.方法1:解斜三角形法在Rt△DCA中,因为∠C =90°, CG⊥AD于点G,DC=1.所以可以求出CG的长.又因为∠CGE==135°,CE=.解△ECG可求出EG的长.(此题解△AEG也可行)…………………7分方法2:证明等腰直角三角形法.延长CG交EH于M点.因为EH∥AD交CB于H点,点F是CE中点,所以点G为MC的中点.因为AD=.∴CG=.∴MG=.……………………6分因为∠EGA=∠ACE=45°,所以∠CGE==135°.所以∠MGE=∠GEM=45°,所以GE可解.∵ME=MG=.,∴EG=.………………………7分方法3:相似法∵AC=BC=3,∴AB=.∴AE=.∵CD=1,∴BD=2,AD.∵∠AGE=∠B= 45°, ∠DAB=∠EAD.∴△AGE△ABD. …………………6分∴.∴.∴EG=.………………………7分方法4:旋转法:过E 作EK⊥GE交AD于点K,可证△AKE△CGE(ASA). …………………6分∴AK=CG=.∵CD=1,AD,∴DG=.∴KG=.∴EG=.……………………………7分试题29答案:解:(1)①当过点A的直线与x轴正方向夹角为60°时,点A的相关直线表达式:.……………………………1分②当过点A的直线与x轴负方向夹角为60°时,点A的相关直线表达式:.……………………………2分(2)可知BC1直线表达式为, ∴C1(1,).………………………3分同理C2(-1,).(3)设点N1的“相关直线”与⊙O相切,交双曲线于点M1.可求得直线N1 M1的表达式为.………4分∴x=1或 x=-3(舍).……………………………5分∴M1(1,).……………………………6分同理M2(3,).……………………………7分∴M的横坐标的取值范围是1≤X M≤3. ………………8分。

怀柔区初三一模物理试卷-word

怀柔区2019年初三一模物理试卷一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。

共28分,每小题2分)1.在图1所示的物理学家中,以其名字命名电流单位的是2.下列文具中,通常情况下属于绝缘体的是A.铅笔芯B.金属小刀C.塑料三角板D.不锈钢尺3.图2所示的四种现象中,由于光的反射形成的是4.下列用电器中,利用电流热效应工作的是A.电冰箱B.电饭锅C.电风扇D.洗衣机5.下列实例中,目的是为了减小摩擦的是A.汽车轮胎上制有凹凸的花纹B.用橡胶制作自行车的闸皮C.旅行箱下装有小轮D.骑自行车的人刹车时用力捏闸6.下列自然现象在形成过程中,需要吸收热量的是A.早春,冰雪融化B.盛夏,冰棒冒白气C.初秋,田野花草挂上露珠D.寒冬,树梢上结了霜7.下列实例中,目的是为了增大压强的是A.书包带做得较宽B.盲道由凸起的棱和圆点组成C.火车铁轨铺在枕木上D.载重汽车装有很多轮子8.如图3所示的生活用具中,使用时属于费力杠杆的是9.下列实例中,为了加快蒸发的是A.用地膜覆盖农田B.给盛有饮料的瓶子加盖C.把湿衣服晾在通风向阳处D.把新鲜的樱桃装入保鲜盒10.下列情景中,重力对小球做功的是A.小球在地面上静止B.小球由高处下落C.小球沿水平轨道运动D.小球悬挂在天花板上不动11.下列估测值最接近实际的是A.一本初中物理书的长度约为50cmB.普通中学生课桌的高度约为3mC. 一支粉笔的质量约为0.5 kgD.一个篮球的质量约为600g12.如图4运动员在投篮时把篮球抛向空中,若不计空气阻力,则能正确表示篮球在空中飞行时的受力图,其中正确的是(G表示重力,F表示手对球的作用力)13. 如图5所示,电源两端的电压保持不变,灯丝电阻不变。

将滑动变阻器的滑片P 置于中点,闭合开关S后,各电表的示数和灯泡的发光情况均正常。

现将滑动变阻器的滑片P由中点向右移动,则A.电流表A1示数变大B.电流表A2示数变小C.灯泡L变亮D.电压表V示数变大14.甲溢水杯盛满密度为1的液体,乙溢水杯盛满密度为2的液体。

2021年怀柔区初三一模试题答案(Word版)

中考一模数学试卷答案及评分参考题 号 1 2 3 4 5 6 7 8 答 案 CDBDCCBA题号 910 11 12 答案2x ≠x=-1 或x=3m=62≤AD <3(注:12题评分标准:有AD <3 …2分, 有2≤AD …2分, 有2<AD …1分)三、解答题(本题共30分,每小题5分)13(本题满分5分)计算:02sin 308232011︒解:原式=12223212⨯+……………………………………4分 323=5分14. (本题满分5分)因式分解: 221218x x -+解:221218x x -+=2)96(2+-x x …………………………………4分=223x -()……………………………………………… …5分 15.(本题满分5分)证明:∵BF=DE EF=EF ∴BF- EF =DE- EF∴BE=DF ………………………1分 在△ABE 和△CDF 中∵12,34,BE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF ……………………………………4分 ∴AE=CF .…………………………………5分16.(本题满分5分)已知 230a a --=,求代数式111aa --的值.解:()11111a aa a a a ---=--………………………………………1分 ()11a a =--……………………………………………………2分21a a=--……………………………………3分 ∵ 230a a --=, ∴23a a -=.…………………………………4分 ∴ 原式13=-……………………………………5分 17. (本题满分5分)解:∵抛物线 )0(2<=a ax y点B 在抛物线上,将B(0.8,2.4)它的坐标代人)0(2<=a ax y ,求得 415-=a ………………………2分 所求解析式为2415x y -= 再由条件设D 点坐标为)9.0,(-x ………………………3分则有:24159.0x -=- 0.24x =0.254分x <0.5 ……………………………5分2x <1所以涵洞ED 不超过1m.18.(本题满分6分)解:(1) 家长人数为80÷20%=400 家长反对人数280 补全图 ……2分(2)40360400⨯°=36° ………………………… 4分 (3)300.151403030=++ ………………………… 6分(1)四、解答题(本题共20分,第19、20题各5分,第21题6分,第22题4分) 19.证明:连结OC ,∵OA=OC ∴∠OAC=∠OCA ……………(1分) ∵DC 是切线∴∠DCF=900-∠OCA ……………(2分) ∵DE ⊥AB∴∠DFC=900-∠OAC ……………(3分) ∵∠OAC=∠OCA ,……………(4分)∴∠DFC=∠DCF ……………(5分)即△DFC 是等腰三角形. 20.(本题满分5分) 20.解法一:求两个班人均捐款各多少元?设1班人均捐款x 元,则2班人均捐款(x+4)元,根据题意得 1800x ·90%=1800x+4………………………………………………………(3分)解得x=36 经检验x=36是原方程的根,且符合实际意义………………………(4分) ∴x+4=40 ……………………………………………(5分) 答:1班人均捐36元,2班人均捐40元解法二:求两个班人数各多少人? 设1班有x 人,则根据题意得1800x +4=180090x% …………(3分)解得x=50 ,经检验x=50是原方程的根,且符合实际意义…(4分)∴90x % =45 ……………(5分) 答:1班有50人,2班有45人. (不检验扣1分) 21. (本题满分6分)解:(1)令x 2-4x + 3=0,1x =1,2x =3………………………(2分) 则A(1,0) B(3,0) C(0,3)BC 所在直线为3y x =-+……………………………………………(3分)(2)反比例函数ky x=与BC 有两个交点且k 为正整数整理得:x 2-3x + k=0………………………(4分)∵△=9-4k >0 ∴ k <94…………………………………………………(5分) 又因为反比例函数ky x=与BC 的交点 所以k >0,因为 k 为正整数所以k=1或k=2………………………………………(6分)22.(本题满分4分) 解:(1)92 92………………………(2分) (2)22a…………(2分) 结论是:三角形DBF 的面积的大小只与a 有关, 与b 无关. (没写结论也不扣分)五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23. (本题满分7分)解:(1)根据题意,得⎪⎩⎪⎨⎧+⨯-⨯=-+-⨯--⨯=.0405,)1(4)1(022c a c a …(2分)解得 ⎩⎨⎧-==.5,1c a ……………………(3分)∴二次函数的表达式为542--=x x y .B(5,0)…………………………………………………………………………(4分) (2)令y=0,得二次函数542--=x x y 的图象与x 轴的另一个交点坐标C (5, 0)…………………………………………………(5分) 由于P(2,-2) ,符合条件的坐标有共有4个,分别是1P (4,0)2P (2,0) 3P (-22,0)4P ( 22,0) ………………………………………………………………………(7分)① 24. (本题满分6分) 解:(1)证明:EPC BEP B ∠=∠+∠ 而FPC EPF EPC ∠+∠=∠ ︒=∠=∠30EPF B 所以FPC BEP ∠=∠ 由︒=∠=∠30C B 可知结论成立. ………………………………………………………………………(3分) (2)①相似……………………………………………………………………………(4分)②相似……………………………………………………………………………(5分) 理由:由△BPE 与△CFP 相似可得 PF PE PC BE =即PFPEPB BE =,而︒=∠=∠30EPF B 知结论成立…………(6分)(第23题图)③由△BPE 与△PFE 相似得EFPEPF BP =,即m PF PE 34=⋅,过F 作PE 垂线可得 m PE PF S 32121=⋅⋅=)0(>m ………………………………………………(7分)图a图b25.(本题满分8分)解:(1)∵ 点A )4,2(在抛物线C 1上,∴ 把点A 坐标代入()512-+=x a y 得 a =1 ……………………………………(2分)∴ 抛物线C 1的解析式为422-+=x x y设B(-2,b), ∴ b =-4, ∴ B(-2,-4) …………………………(3分) (2)①如图1:∵ M(1, 5),D(1, 2), 且DH ⊥x 轴,∴ 点M 在DH 上,MH=5. 过点G 作GE ⊥DH,垂足为E,由△DHG 是正三角形,可得EG=3, EH=1,∴ ME =4. ………………………………(4分) 设N ( x, 0 ), 则 NH =x -1,由△MEG ∽△MHN,得HN EGMH ME =, ∴ 1354-=x , ∴ =x 1345+…………(5分)) ∴ 点N 的横坐标为1345+. ② 当点D移到与点A 重合时,如图2,直线l 与DG 交于点G,此时点N的横坐标最大. 过点G,M作x 轴的垂线,垂足分别为点Q,F, 设N(x ,0)∵ A (2, 4) ∴ G (322+, 2)∴ NQ=322--x NF =1-x GQ=2 MF =5. ∵ △NGQ ∽△NMF ∴MFGQNF NQ = A BCP EFABCPEF第25题图1第25题图2∴521322=---x x∴ 38310+=x . ………………………………………………………(7分)当点D 移到与点B 重合时,如图3 直线l 与DG 交于点D,即点B 此时点N 的横坐标最小.∵ B(-2, -4) ∴ H(-2, 0), D(-2, -4) 设N (x ,0)∵ △BHN ∽△MFN , ∴MFBHFN NH = ∴5412=-+x x ∴ 32-=x∴ 点N 横坐标的范围为 32-≤x ≤38310+………………………………(8分)(注:本卷中许多问题解法不唯一,请老师根据评分标准酌情给分)第25题图3图4。

北京市怀柔区九年级数学模拟试题(一模)

D C B A 0北京市怀柔区2017届九年级数学模拟试题(一模)一、选择题(本题共30分,每小题3分)第1—10题均有四个选项,符合题意的选项只有..一个. 1.如图所示,用刻度尺度量线段AB, 可以读出线段AB 的长度为 (A) 5.2cm (B) 5.4cm(C) 6.2cm(D) 6.4cm2.怀柔素有“北京后花园”之称,因为有着“一半山水一半城,山凝水重入画屏”的美丽自然景观,吸引着中外游客. 2016年1至11月怀柔主要旅游区(点)共接待中外游客约为5870000人次.将5870000用科学记数法表示为 (A)5.87×105(B) 5.87×106(C) 0.587×107 (D)58.7×1053.数轴上有A ,B ,C ,D 四个点,其中表示互为相反数的两个点是 (A) 点B 与点C (B) 点A 与点C (C) 点A 与点D (D)点B 与点D 4.下列各式运算结果为9a 的是(A )33a a + (B)33()a (C )33a a ⋅ (D)122a a ÷5.下列成语中描述的事件是随机事件的是(A )水中捞月 (B )瓮中捉鳖 (C )拔苗助长 (D )守株待兔 6.下面的几何体中,主视图、左视图和俯视图形状都相同,大小均相等的是 (A )圆柱 (B)圆锥 (C)三棱柱 (D )球7.内角为108°的正多边形是(D)(C)(B)(A)8.如图,函数y =-2x2的图象是(A)①(B)②(C)③(D)④(A)30m (B)40m (C)60m (D)80m10.在“校园读书月”活动中,小华调查了班级里40名同学本学期购买课外书的花费情况,并将结果绘制成如图所示的统计图.下面有四个推断:D CBA第9题图第8题图①这次调查获取的样本数据的众数是30 元 ②这次调查获取的样本数据的中位数是40元 ③若该校共有学生1200人,根据样本 数据,估计本学期计划购买课外书花费 50元的学生有300人④花费不超过50元的同学共有18人 其中合理的是(A) ①② (B) ②④ (C) ①③ (D) ①④二、填空题(本题共18分,每小题3分) 11.分解因式:a am 1822 =_______________.12.写出图象经过点(-1,2)的一个函数的表达式____________________. 13.如图,在ABCD 中,ED=2,BC=5,∠ABC 的平分线交AD 于点E ,则AB 的长为_______________.14.上图中的四边形均为矩形.根据图形,写出一个正确的等式:_______________.15.算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹计数法中,以“立”,“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推.《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图1,从左向右的符号中,前两个符号分别代表未知数x ,y 的系数.因此,根据此图可以列出方程:x+10y=26.请你根据图2列出方程组 ./元banm 14题图13题图EDCB AFDCBA16.数学活动课上,老师让同学们围绕一道尺规作图题展开讨论,尽可能想出不同的作法:老师说:“小强的作法正确.”请回答:小强这样作图的依据是: .三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)解答应写出文字说明,演算步骤或证明过程.17. 计算:(10134sin 302π-︒⎛⎫-+ ⎪⎝⎭.18.已知210a a +-=,求代数式2(1)(1)(1)a a a +++-的值. 19.如图,在ABC V 中,∠ACB=90°,点D 是AB 边的中点, CE=CD ,∠B =∠E . 求证:CF=DF .20.解不等式组:72,43(1) 2.x x x x +⎧<++≥⎪⎨⎪⎩ 21.调查作业:了解某家超市不同品牌饮料的销售情况.为调查不同品牌饮料的市场销售情况,小东和小芸两位同学对一家超市进行了调查,二人在某天对照50名顾客购买饮料的品牌进行了记录.小东的作法是:如果一个顾客购买某一品牌的饮料,就将这一饮料的品牌名字记录一次.表1是记录的初始数据. 表1记录之后,小东对上述收集的数据进行了整理,绘制了表2: 表2 表3小芸的作法是:先设计一个统计表,再进行数据的收集与整理,她的方法是如果一个顾客购买某一品牌的饮料,就将这一饮料的品牌在相应的表格中画记一笔“正”字,上面表3是小芸设计的表格及调查时画记和填写的数据. 根据以上材料回答问题:本次调查如果让你去做,在收集整理数据时,你会选择他们中的哪种方法?请你说明理由或者介绍一种新的方法.22.如图,已知菱形ABCD 的对角线AC,BD 相交于点O ,延长AB 至点E ,使BE=AB ,连接CE . (1)求证:四边形BECD 是平行四边形;(2)若∠E=60°,AC=求菱形ABCD 的面积.23. 如图,在平面直角坐标系xOy 中,直线y=x+b 与双曲线ky x相交于A ,B 两点,已知A (1,3),B(-3,m).(1)求一次函数和反比例函数的表达式; (2)如果点P 是y 轴上一点,且ABP △的面积是4,求点P 的坐标.24.阅读下列材料:为保障和改善民生建设,北京市建立了以最低生活保障为基础、专项救助相配套、临时救助为补充的城乡社会救助体系,逐年提高救助标准,全市困难群众基本生活得到较好保障,并达到全覆盖的目的.2013年底全市共有农村低保人数5.96万人,城市低保人数10.37万人.2014年底全市共有农村低保人数 5.13万人,比上年同期减少了13.9%,城市低保人数8.91万人,比上年同期减少了14.1%.2015年底全市共有农村低保人数比上年同期减少了4.8%,城市低保人数8.49万人.2016年底全市共有低保人数12.68万人,其中农村低保人数比城市低保人数少3.36万人. 根据以上材料解答下列问题:(1)2015年底北京市农村低保人数约为 万人; (2)2016年底北京市城市低保人数约为 万人;(3)利用统计表或.统计图将2013 - 2016年北京市农村低保人数和城市低保人数表示出来; (4)针对以上文字内容,谈谈你的看法.25.如图,在△ABC 中,点D 为BC 上一点,过A ,B ,D 三点作⊙O ,AE 是⊙O 的直径,AC 是⊙O 的切线,AD=DC ,连结DE . (1)求证:AB=AC; (2)若1sin 3E,AC=,求△ADE 的周长(用含a26.已知y 是x 的函数,下表是y 与x 的几组对应值.小聪根据学习函数的经验,利用上述表格所反映出的y 与x 之间的变化规律,对该函数的表达式,图象和性质进行了探究. 下面是小聪的探究过程,请补充完整:(1)根据上述表格所反映出的y 与x 之间的变化规律, 写出该函数的表达式: ; (2)该函数自变量x 的取值范围是 ;(3)如图,在平面直角坐标系xOy 中,描出上表中各对对应值为坐标的点的位置(近似即可),;(4)根据画出的函数图象,写出该函数的一条性质: .27.已知二次函数122-++=a ax axy (a>0).(1)求证:抛物线与x 轴有两个交点; (2)求该抛物线的顶点坐标;(3)结合函数图象回答:当x ≥1时,其对应的函数值y 的最小值范围是2≤y ≤6,求a 的取值范围.28.(1)如图1,在△ACB 和△ADB 中,∠C=∠D =90°,过A ,B ,C 三点可以作一个圆,此时AB 为圆的直径,AB 的中点O 为圆心.因为∠D =90°,利用圆的定义可知点D 也在此圆上,若连接DC ,(2)如图2,在△ACB 中,∠ACB=90°,AC=BC=3,CE ⊥AB 于E ,点F 是CE 中点,连接AF 并延长交BC 于点D.CG ⊥AD 于点G ,连接EG. ①求证:BD=2DC;②借助(1)中求角的方法,写出求EG 长的思路.(可以不写出计算的结果)29. 在平面直角坐标系xOy 中,点P 的坐标为(x,y ),若过点p 的直线与x 轴夹角为60°时,则称该直线为点P 的“相关直线”, (1)已知点A 的坐标为(0,2),求点A 的“相关直线”的表达式;(2)若点B 的坐标为(0,3),点B 的“相关直线”与直线y=32交于点C ,求点C 的坐标;(3)⊙O 的半径为3,若⊙O 上存在一点N ,点N 的“相关直线”与双曲线y=x33(x >0)相交于点M,请直接写出点M 的横坐标的取值范围.图2GFED CBA图1OB AFEDCBA2017年怀柔区高级中等学校招生模拟考试(一)数学试卷答案及评分参考一、选择题(本题共30分,每小题3分)二、填空题(本题共18分,每小题3分) 11.)3)(3(2-+m m a 12.答案比唯一.如:y=-2x. 13.314.(m+n)(a+b)=ma+mb+na+nb 15.22218x y x y +=⎧⎨+=⎩16.直径所对的圆周角是90º;两点确定一条直线.到线段两端距离相等的点在线段的垂直平分线上. 三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分)17解:(10134sin302π-︒⎛⎫--+ ⎪⎝⎭.123142=++⨯…………………………4分6=5分18.解:22211a a a =+++-原式 ………………………2分222a a =+.………………………………3分∵210a a +-=,∴原式22()2a a =+=. …………………………5分19. 证明:∵在ABC V 中,∠ACB=90°,点D 是AB 边的中点,∴CD=BD. ………………………………1分 ∴∠DCB =∠B .………………………………2分 ∵CD=CE,∴∠CDE =∠E .………………………………3分 ∵∠B =∠E,∴∠DCF =∠CDF .………………………4分 ∴CF=DF .………………………………5分20. 解不等式①,得x <1.……………………………………………2分解不等式②,得x ≥1-2.………………………………………4分 ∴不等式组的解集为:1-2≤x <1. ………………5分21.选择小芸的作法. ……………………………2分因为小芸的方法清晰,方便,简明.(答案不唯一)……………………………5分 22.(1)证明:∵四边形ABCD 是菱形,∴AB=CD ,AB ∥CD. ……………………1分又∵BE=AB ,∴BE=CD.………………………2分∵BE∥CD,∴四边形BECD 是平行四边形.………………………3分 (2)解:∵四边形BECD 是平行四边形,∴BD ∥CE. ∴∠ABO=∠E=60°. ……………………4分 又∵四边形ABCD 是菱形,∴AC 丄BD,OA=OC. ∴∠BOA=90°,∴∠BAO=30°.∵AC=∴OA=OC=∴OB=OD=2. ∴BD=4. ∴菱形ABCD 的面积=11422AC BD ⨯⨯=⨯=5分 23.解:(1)把A (1,3)代入y=x+b 中,得3=1+b ,解得b=2 . ∴一次函数的表达式为2y x =+. ………………… 1分;把A (1,3)代入k y x =中,得31k=,解得k=3 . ∴反比例函数的表达式为3y x=. ………………… 2分;(2)把B(-3,m)代入y=x+2,可得B (-3,-1).设一次函数2y x =+的图象与y 轴的交点C 的坐标为(0,2). ∵S △ABP = 4, ∴1113422PC PC ⋅+⋅=. ∴2PC =.……………………………4分∴点P 的坐标为(0,0),(0,4).……………………5分 24. 解:(1)4.88. …………………………1分(2)8.02 .…………………………2分(3) 2013 — 2016年北京市农村低保和城市低保人数统计表数值近似即可…………………………4分(4)北京市低保人数逐年递减,政府加强了民生的保障和改善,社会生活水平有新的提高.(答案不唯一,要体现正能量)……………………………5分 25. (1)证明:∵AD=DC ,∴∠CAD=∠C.∵AC 是⊙O 的切线,∴∠CAE=90°. ………………………1分 ∴∠CAD+∠EAD=90°.∵AE 是⊙O 的直径,∴∠ADE=90°. ∴∠E+∠EAD=90°.∴∠CAD=∠E. 又∵∠E=∠B ,∴∠C=∠B.∴AB=AC. ……………………………2分 (2)解:过点D 作DF ⊥AC 于点F.年份人数(万人)2013—2016年北京市农村低保和城市低保人数统计图①由DA=DC ,AC=,可得CF=12AC =.②由∠C=∠E ,1sin 3E =,可得1sin 3C =.在 Rt △CDF 中,求出CD=DA=3a. (或利用△CDF ∽△ADE 求). ……………………………3分 ③在 Rt △ADE 中,利用1sin 3E =,求出AE=9a.再利用勾股定理得出DE=.……………………………4分④△ADE 的三边相加得出周长为12a+.……………………………5分26.……………………………2分(2)x ≥2; ……………………………3分 (3) 如图:……………………………4分 (4) x ≥2时,函数图形y 随x 的增大而增大. ……………………………5分 27.解:(1)令y=0. ∴0122=-++a ax ax . ∵△=)1(442--a a a=4a,……………………………1分∵a>0,∴4a>0.∴△>0.∴抛物线与x 轴有两个交点. …………………2分 (2)212ax a=-=-.……………………………3分 把x=-1代入122-++=a ax ax y .∴y=-1.∴顶点坐标(-1,-1).…………………4分 (3)①把(1,2)代入122-++=a ax ax y .∴43=a .……………………………5分MHABC D FG②把(1,6)代入122-++=a ax ax y .∴74a =.……………………………6分 ∴由图象可知:43≤a ≤74.……………………………7分28. 解:(1)31°. ……………………………2分(2)①过点E 作EH ∥AD 交CB 于H 点. ……………………3分 ∵CE ⊥AB 于点E ,AC=BC , ∴点E 是AB 中点.∴BH=DH. ∵点F 是CE 中点,∴HD=DC.∴BD=2CD. ……………………………4分 ②∵CE ⊥AB 于点E ,∴∠CEA=90°.∵CG ⊥AD 于点G ,∴∠CGA=90°.∴AC 为圆的直径. ∵∠ACB=90°,AC=BC ,∴∠CAE =45°.∵CE ⊥AB 于点E ,∴∠ACE =45°.∴∠AGE=45°. ……………………………5分 方法1:解斜三角形法在Rt △DCA 中,因为∠C =90°, CG ⊥AD 于点G ,DC=1. 所以可以求出CG 的长. ……………………………6分 又因为∠CGE==135°,CE=2. 解△ECG 可求出EG 的长.(此题解△AEG 也可行)…………………7分 方法2:证明等腰直角三角形法.延长CG 交EH 于M 点.因为EH ∥AD 交CB 于H 点,点F 是CE 中点, 所以点G 为MC 的中点.因为==∴.∴.……………………6分 因为∠EGA=∠ACE=45°,所以∠CGE==135°.GFD CBAKABCDEFGx所以∠MGE=∠GEM=45°,所以GE 可解. ∵ME=MG=10.,∴EG=5.………………………7分 方法3:相似法∵AC=BC=3,∴AB=∴AE=2.∵CD=1,∴BD=2,AD =∵∠AGE=∠B= 45°, ∠DAB=∠EAD.∴△AGE △ABD. …………………6分∴AE GEAD DB =.2EG =.∴.………………………7分 方法4:旋转法:过E 作EK ⊥GE 交AD 于点K , 可证△AKE ≅△CGE (ASA ). …………………6分 ∴AK=CG=10.∵CD=1,AD =∴DG=10. ∴.∴.……………………………7分 29. 解:(1)①当过点A 的直线与x 轴正方向夹角为60°时,点A 的相关直线表达式:23+=x y .……………………………1分②当过点A 的直线与x 轴负方向夹角为60°时,点A 的相关直线表达式:23+-=x y .……………………………2分(2)可知BC 1直线表达式为33+=x y ,∴C 1(1,32).………………………3分 同理C 2(-1,32).(3)设点N 1的“相关直线”与⊙O 相切,交双曲线x y 33=于点M 1.可求得直线N 1 M 1的表达式为323+=x y .………4分∴⎪⎩⎪⎨⎧=+=x y x y 33323x=1或 x=-3(舍).……………………………5分 ∴M 1(1,33).……………………………6分 同理M 2(3,3).……………………………7分 ∴M 的横坐标的取值范围是1≤X M ≤3. ………………8分。

北京市怀柔区2019年中考数学一模试题及答案

北京市怀柔区2019年高级中等学校招生模拟考试(一)一、选择题(本题共30分,每小题3分)下列各题均有四个选项,其中只有一个..是符合题意的. 1.把8000用科学计数法表示是A .28010⨯ B .3810⨯C .40.810⨯D .4810⨯ 2.数轴上有A ,B ,C ,D 四个点,其中绝对值相等的点是 A.点A 与点D B. 点A 与点C C. 点B 与点C D. 点B 与点D3.下列手机软件图标中,既是轴对称图形又是中心对称图形的是A B C D 4. 小华的老师让他在无法看到袋子里小球的情形下,从袋子里模出一个小球. 袋子里各种颜色小球的数量统计如表所示.小华模到褐色小球的概率为 A .101 B .51 C .41D .215. 如图,AD 是∠EAC 的平分线,AD∥BC,∠B=30°,则∠C 为A .30°B .60°C .80°D .120°6.如图,已知⊙O 的半径为10,弦AB 长为16,则点O 到AB 的距离是 A. 3 B. 4 C. 5 D. 67.某校在“中国梦.我的梦”演讲比赛中,有11名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前6名,不仅要了解自己的成绩,还要了解这11名学生成绩的A.平均数B.众数C.中位数D.方差8.如图,已知正方形ABCD中,G、P分别是DC、BC上的点,E、F分别是AP、GP的中点,当P在BC上从B向C移动而G不动时,下列结论成立的是A.线段EF的长逐渐增大 B.线段EF的长逐渐减小C.线段EF的长不改变 D.线段EF的长不能确定9.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x≥ax+4的解集为A .x≥ B. x≤3C. x ≤D.x≥310.如图1,在等边△ABC中,点E、D分别是AC,BC边的中点,点P为AB边上的一个动点,连接PE,PD,PC,DE.设AP=x,图1中某条线段的长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是图1中的A.线段PD B.线段PC C.线段PE D.线段DE二、填空题(本题共18分,每小题3分)11.函数y=1x-3中自变量x的取值范围是_________________.12.请写出一个过一、三象限的反比例函数的表达式_________________.13.下面有五个图形,与其它图形众不同的是第个.GFEPDCBAPED CBA图114.如图,在矩形ABCD 中,=,以点B 为圆心,BC 长为半径画弧,交边AD 于点E .若AE •ED =16,则矩形ABCD 的面积为 .15.当三角形中一个内角α是另一个内角β的一半时,我们称此三角形为“半角三角形”,其中α称为“半角”. 如果一个“半角三角形”的“半角”为20°,那么这个“半角三角形”的最大内角的度数为__________.16.2019年5月1日开始,北京市开始实施居民用水阶梯水价.具体方案如下:户年用水量180立方米(含)内,每立方米5元;181立方米至260立方米(含)内,每立方米7元;260立方米以上,每立方米9元.阶梯水价以日历年(每年1月1日到12月31日)为周期计算.小王家2019年4月30日抄表示数550立方米,5月1日起实施阶梯水价,6月抄表时因用户家中无人未见表,8月12日抄表示数706立方米,那么小王家本期用水量为 立方米,本期用水天数104天,日均用水量为 立方米. 如果按这样每日用水量计算,小李家今后每年的水费将达到 元(一年按365天计算). 三、解答题(本题共30分,每小题5分)17.如图,点C ,D 在线段BF 上,AB DE ∥,AB DF =,A F ∠=∠.求证:BC DE =.18.计算:011(20152014)2cos 45()2--︒+19.解不等式组:240,3(1) 2.x x x -<⎧⎨+≥+⎩20.已知32a b=,求代数式2243(3)9a b a b a b ++-的值.21.列方程或方程组解应用题:为了培育和践行社会主义核心价值观,引导学生广泛阅读古今文学名著,传承优秀传统文化,我区某校决定为初三学生购进相同数量的名著《三国演义》和《红岩》.其中《三国演义》的单价比《红岩》的单价多28元.若学校购买《三国演义》用了1200元,购买《红岩》用了400元,求《三国演义》和《红岩》的单价各多少元.FEDCB A22.已知:关于x 的一元二次方程2(41)330kx k x k -+++=(k 是整数). (1)求证:方程有两个不相等的实数根; (2)若方程的两个实数根都是整数,求k 的值. 四、解答题(本题共20分,每小题5分)23. 如图,BD 是△ABC 的角平分线,点E ,F 分别在BC ,AB 上,且DE ∥AB ,BE =AF . (1)求证:四边形ADEF 是平行四边形;(2)若∠ABC =60°,BD =4,求平行四边形ADEF 的面积.24.某公司有5个股东,每个股东的利润相同,有100名工人,每名工人的工资相同.2019年第一个季度工人的工资总额与公司 的股东总利润情况见右表: 该公司老板根据表中数据,作出了图1,并声称股东利润和工人工资同步增长,公司和工人做到了“有福同享”.针对老板的说法,解决下列问题: (1)这三个月工人个人的月收入分别是 万元;(2)在图2中,已经做出这三个月每个股东利润统计图,请你补出这三个月工人个人月收入的统计图;(3)通过完成第(1),(2)问和对图2的观察,你如何看待老板的说法?(用一两句话概括)总额图1个人收入图225. 如图,AB 是⊙O 的直径,C 是弧AB 的中点,D 是⊙O 的切线CN 上一点,BD 交AC 于点E ,且BA= BD . (1)求证:∠ACD=45°; (2)若OB=2,求DC 的长.26.阅读下面材料:小聪遇到这样一个有关角平分线的问题:如图1,在△ABC 中,∠A =2∠B,CD 平分∠A CB ,AD=2.2,AC=3.6 求BC 的长.小聪思考:因为CD 平分∠A CB,所以可在BC 边上取点E ,使EC=AC ,连接DE. 这样很容易得到△DEC ≌△DAC ,经过推理能使问题得到解决(如图2). 请回答:(1)△BDE 是_________三角形.(2)BC 的长为__________.参考小聪思考问题的方法,解决问题:如图3,已知△ABC 中,AB=AC, ∠A =20°, BD 平分∠ABC,BD=2.3,BC=2.求AD 的长. 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.在平面直角坐标系xOy 中,二次函数y=(a-1)x 2+2x+1与x 轴有交点,a 为正整数. (1)求a 的值. (2)将二次函数y=(a-1)x 2+2x+1的图象向右平移m 个单位,向下平移m 2+1个单位,当 -2≤x ≤1时,二次函数有最小值-3求实数m 的值.C ED CB A BC 27题图28.在等边△ABC 外侧作直线AP ,点B 关于直线AP 的对称点为D ,连接BD,CD ,其中CD 交直线AP于点E .(1)依题意补全图1;(2)若∠PAB=30°,求∠ACE 的度数;(3)如图2,若60°<∠PAB <120°,判断由线段AB,CE,ED 可以构成一个含有多少度角的三角形,并证明.29. 对某种几何图形给出如下定义: 的轨迹.例如,平面内到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆. (1)如图1,在△ABC 中,AB=AC ,∠BAC=90°,A(0,2),B是x 轴上一动点,当点B 在x 轴上运动时,点C 在坐标系中运动,点C 运动形成的轨迹是直线DE ,且DE ⊥x 轴于点G. 则直线DE 的表达式是 .(2)当△ABC 是等边三角形时,在(1①当点B 运动到如图2的位置时,AC ∥x 轴,则C 点的坐标是 . ②在备用图中画出动点C 形成直线的示意图,并求出这条直线的表达式.③设②中这条直线分别与x,y 轴交于E,F 两点,当点C 在线段EF 上运动时,点H 在线段OF 上运动,(不与O 、F 重合),且CH=CE,则CE 的取值范围是 .A B CPABCP怀柔区2019—2019学年度中考模拟练习(一)数学试卷答案及评分参考二、填空题(本题共18分,每小题3分)三、解答题(本题共30分,每小题5分) 17.(本小题满分5分) 证明:∵ AB ∥DE∴ ∠B = ∠EDF ;在△ABC 和△F DE 中A F AB DFB EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩…………………………3分 ∴△ABC ≌△FDE (ASA),…………………4分 ∴BC=DE. …………………………………5分 18.解:原式=1+2+……………………………………4分 =1++2…………………………………………………………5分 19. 解①得:x<2,…………………………………………………………2分解②得:x ≥1-2,……………………………………………………4分 所以不等式组的解集为:1-2≤x<2. ……………………………5分20. 解:2243(3)9a ba b a b ++- 43(3)(3)(3)a b a b a b a b +=++- 433a ba b+=-……………………………………………3分∵32a b =, ∴23a b =. ………………………………………………4分∴原式=662aa a=--. ……………………………………5分21.解:设《红岩》的单价为x 元,则《三国演义》的单价为(x+28)元. ……………1分. 由题意,得120040028x x=+……………………………………3分. 解得x=14. ……………………………………4分.经检验,x=14是原方程的解,且符合题意. ∴x+28=42.答:《红岩》的单价为14元,《三国演义》的单价为42元. ……………………5分.22.(1)证明:△2(41)4(33)k k k =+-+2(21)k =-·………………………………………1分.∵2(41)330kx k x k -+++=是一元二次方程,∴k ≠0, ∵k 是整数 ∴12k ≠即210k -≠. ∴△2(21)0k =->∴方程有两个不相等的实数根. ………………………………………2分(2)解方程得:x =……………………………………3分.∴3x =或11x k=+………………………………………4分 ∵k 是整数,方程的根都是整数,∴k =1或-1…………………………………5分.四、解答题(本题共20分,每小题5分)23. (1)证明:∵BD 是△ABC 的角平分线, ∴∠ABD =∠DBE ,∵DE ∥AB , ∴∠ABD =∠BDE , ∴∠DBE =∠BDE ,∴BE=DE;∵BE =AF ,∴AF=DE;∴四边形ADEF 是平行四边形. ………………………………………2分 (2)解:过点D 作DG ⊥AB 于点G ,过点E 作EH ⊥BD 于点H , ∵∠ABC =60°,BD 是∠ABC 的平分线, ∴∠ABD =∠EBD =30°,∴DG =BD =×4=2,………………………………………3分 ∵BE =DE ,∴BH =DH =2,∴BE =DE,………………………………………4分 ∴四边形ADEF 的面积为:DE •DG.………………………………………5分24. 解:(1)0,28,0.3,0.32. ……………………………3分(2)补图如右图:………………………………4分 (3)答案不唯一.…………………………………5分25. (1)证明:∵C 是弧AB 的中点,∴弧AC=弧BC,∴AC=BC.∵AB 是⊙O 的直径,∴∠ACB=90°,∴∠BAC=∠CBA=45°, 连接OC, ∵OC=OA, ∴∠AC0=45°. ∵CN 是⊙O 切线,∴∠OCD=90°,∴∠ACD=45°. ………………………………2分.(2) 解:作BH ⊥DC 于H 点,…………………………3分. ∵∠ACD=45°,∴∠DCB=135°, ∴∠BCH=45°, ∵OB=2,∴BA= BD=4,AC= BC=. ∵BC=,∴BH= CH=2, 设DC=x,在Rt △DBH 中,利用勾股定理:2222)24x ++=(,………4分. 解得:x=2-±,∴x=2-+ ∴DC的长为:2-+5分.26.解:(1)△BDE 是等腰三角形. ………………………1分. (2)BC 的长为5.8.………………………………2分. ∵△ABC 中,AB=AC, ∠A =20°, ∴∠A BC=∠C= 80°,∵BD 平分∠B. ∴∠1=∠2= 40°,∠BDC= 60°,.在BA 边上取点E ,使BE=BC=2,连接DE ,. ………………………3分 则△DEB ≌△DBC ,∴∠BED=∠C= 80°, ∴∠4=60°,∴∠3=60°,在DA 边上取点F ,使DF=DB ,连接FE ,…………………………4分 则△BDE ≌△FDE ,∴∠5=∠1= 40°,BE=EF=2, ∵∠A =20°,∴∠6=20°,∴AF=EF=2,∵BD=DF=2.3, ∴AD = BD+BC=4.3.…………………………5分.654321F ED CBA个人收入五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵二次函数y=(a-1)x 2+2x+1与x 轴有交点,令y=0,则(a-1)x 2+2x+1=0,∴=4-4(a-1)0∆≥,解得a ≤2. …………………………………1分. ∵a 为正整数. ∴a=1、2又∵y=(a-1)x 2+2x+1是二次函数,∴a-1≠0,∴a ≠1, ∴a 的值为2. ………………………………………2分(2)∵a=2,∴二次函数表达式为y=x 2+2x+1,将二次函数y=x 2+2x+1化成顶点式y=(x+1)2二次函数图象向右平移m 个单位,向下平移m 2+1个单位后的表达式为y=(x+1-m )2-(m 2+1).此时函数的顶点坐标为(m-1, -m 2-1). …………………………………4分 当m-1<-2,即m <-1时, x=-2时,二次函数有最小值-3, ∴-3=(-1-m )2-(m 2+1),解得32m =-且符合题目要求. ………………………………5分 当 -2≤m-1≤1,即-1≤m ≤2,时,当 x= m-1时,二次函数有最小值-m 2-1=-3,解得m =.∵m =-1≤m ≤2的条件,舍去.∴m =……………………………………6分当m-1>1,即m >2时,当 x=1时,二次函数有最小值-3, ∴-3=(2-m )2-(m 2+1),解得32m =,不符合m >2的条件舍去. 综上所述,m 的值为32-……………………………………7分 28.解:(1)补全图形,如图1所示. …………………………… 1分(2)连接AD ,如图2.∵点D 与点B 关于直线AP 对称,∴AD=AB ,∠DAP = ∠BAP =30°.∵AB=AC, ∠BAC =60°. ∴AD=AC, ∠DAC =120°.∴2∠ACE+60°+60°=180°∴∠ACE =30°…………………………… 3分PEDC B A PEDCBA(3)线段AB,CE,ED可以构成一个含有60°角的三角形.…………………………… 4分证明:连接AD,EB,如图3.∵点D与点B关于直线AP对称,∴AD=AB,DE=BE,可证得∠EDA= ∠E BA.∵AB=AC,AB=AD.∴AD=AC, ∴∠ADE= ∠ACE.∴∠ABE= ∠ACE.设AC,BE交于点F,又∵∠AFB= ∠CFE.∴∠B AC= ∠BEC=60°.∴线段AB,CE,ED可以构成一个含有60°角的三角形.………7分29. 解:(1)x=2.…………………………1分.(2)①C点坐标为: 23()…………………………3分.②由①C点坐标为: ,23()再求得其它一个点C1),或(0,-2)等代入表达式y=kx+b,解得b=-2 k⎧⎪⎨=⎪⎩∴直线的表达式是2y=-.………………………5分.动点C运动形成直线如图所示.……………6分.EC≤<…………………………8分.FPCADE11。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市怀柔区2015年高级中等学校招生模拟考试(一) 物 理 试 卷 学校______________________姓名____________________准考证号___________________ 考 生 须 知

1.本试卷共8页,共六道大题,44道小题,满分100分。考试时间120分钟。 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。 5.考试结束,将本试卷、答题卡和草稿纸一并交回。

一、单项选择题(下列各小题均有四个选项,其中只有一个选项符合题意。共30分,每小题2分) 1.力学中的三个基本物理量是质量、长度和时间,它们的国际单位分别是 A.克、厘米、秒 B.克、厘米、小时 C.千克、米、小时 D.千克、米、秒 2.图1所示的现象中,属于光的反射现象的是

3.下列物品中,通常情况下属于导体的是 A.铅笔芯 B.塑料笔杆 C.橡胶手套 D.陶瓷碗 4.下列实例中,为了加快蒸发的是 A.给盛有酒精的瓶子加盖 B.把新鲜的蔬菜装入保鲜袋中 C.将湿衣服晾在通风向阳处 D.春季植树时剪除大量枝叶 5.图2所示的家用电器中,利用电流热效应工作的是

6.下列实例中,为了减小摩擦的是 A.骑自行车的人刹车时用力捏闸 B.给自行车轴承中加润滑油 C.足球守门员戴有防滑手套 D.运动鞋的底部制有凹凸不平的花纹 7.关于家庭电路和安全用电,下列选项中正确的是 A.家庭电路中必须安装保险丝或空气开关 B.在未断开电源开关的情况下更换灯泡

放大镜把字“放大” 图1 D C B A

雨后天空中出现彩虹 景物在水中形成“倒影” 钢勺好像在水面处折断了

A.电脑 B.电风扇 C.电熨斗 D.洗衣机

图2 C.在输电线上晒衣服 D.使用绝缘层破损的导线 8.下列情景中,人对物体做功的是 A.举重运动员举着杠铃不动 B.人提着书包在水平路面上匀速直线前进 C.大力士用力推一块大石头但没有推动 D.顾客在超市里推着购物车沿水平方向运动 9.下列的估测,最接近实际的是 A.普通课桌的高度约为10 cm B.物理课本的长度约为2.6m C.一位普通中学生的质量约为50 kg D.一袋普通方便面的质量约为0.5g 10.下列能源中,属于可再生能源的是 A.石油 B.煤炭 C.天然气 D.太阳能 11.关于声现象,下列说法中错误..的是

A.“闻其声而知其人”主要是根据音色来判断的 B.公路旁安装隔音墙是为了在传播路径上减弱噪声 C.课堂上能听到老师讲课声,是由于空气能够传声 D.用大小不同的力先后敲击同一音叉,音叉发声的音调会不同 12.对于功率和机械效率的理解,下列说法中正确的是 A.机械工作时的功率越大,其工作时机械效率一定越高 B.机械工作时的功率越大,其工作时一定越省力 C.机械做的有用功相同,总功越少,其机械效率一定越高 D.机械工作时越省力,其机械效率一定越高 13.图3甲所示的电蚊拍,具有灭蚊和照明的功能。当开关Sl闭合、S2断开时,只有灭蚊网通电起到灭蚊作用;当开关Sl和S2都闭合时,灭蚊网与灯都通电同时起到灭蚊和照明作用。图3乙所示的四个电路设计中符合这种要求的是

14.图4所示,电源两端的电压保持不变,灯丝电阻不变。将滑动变阻器的滑片P 置于中点,闭合开关S后,各电表的示数和灯泡的发光情况均正常。现将滑动变阻器的滑片P由中点向右移动,则 A.电流表A1示数变大 B.电流表A2示数变小 C.灯泡L变亮 D.电压表V示数变大

A B C D 甲

灭蚊网 灯 S1

S2

S2 S1

S1 S2

S2

S1

乙 图3

图4 A1

A2

V

L S R P 15.图5所示,质量相等的甲、乙两个薄壁圆柱形容器内分别盛有深度相同的A、B两种液体,且ρA=2ρB,两容器的底面积分别为S

甲 和S乙,且S乙=2S甲。现将两个完全相同的小球分别放入甲、乙两容器中(没有液体溢出),小球在B液体中处于悬浮状态。 下列判断正确的是 A.放入小球前,甲容器对桌面的压力小于乙容器对桌面的压力 B.放入小球后,甲容器的底部所受液体的压强大于乙容器底部所受液体的压强 C.放入小球前,甲容器的底部所受液体的压力大于乙容器底部所受液体的压力 D.放入小球后,甲容器对桌面的压强等于乙容器对桌面的压强

二、多项选择题(下列各小题均有四个选项,其中符合题意的选项均多于一个。共8分,每小题2分。每小题选项全选对的得2分,选对但不全的得1分,有错选的不得分) 16.下列说法中正确的是 A.指南针能指南是由于地磁场对指南针磁极有力的作用 B.利用撒在磁体周围的铁屑可以判断该磁体周围的磁场强弱 C.如果通电线圈在磁场作用下转动,则线圈机械能转化为电能 D.导体在磁场中做切割磁感线运动时,导体中就会产生感应电流 17.下列说法中正确的是 A.物质吸收热量,温度一定升高 B.质量相同的0℃的冰和0℃的水的内能一定不相同 C.雾霾是扩散现象,其原因是分子不停地做无规则运动 D.分子间同时存在着引力和斥力 18.下列说法中正确的是 A.运动的物体在平衡力作用下一定做匀速直线运动 B.做匀速直线运动的物体的机械能保持不变 C.一切物体在任何情况下都具有惯性,惯性的大小只与物体的质量有关 D.用手拉弹簧,在弹簧被拉长的过程中,手拉弹簧的力大于弹簧拉手的力 19.质量相等的甲、乙两只降落伞,分别载着质量相等的救灾物资在空中从同一高度匀速下降,甲的速度是5 m/s,乙的速度是3 m/s,下列说法正确的是 A.它们所受阻力F甲、F乙之比是5 :3 B.它们所受阻力F甲、F乙之比是1 :1 C.甲降落伞落地的时间一定小于乙降落伞落地的时间 D.重力对甲降落伞做的功一定大于对乙降落伞做的功 三、填空题(共10分,每小题1分) 20.电磁波在真空中 (选填“可以”或“不可以”)传播 。 21.矫正远视眼的眼镜的镜片应是________透镜。 22.小英乘坐在行驶的列车上,看到路旁的树向后运动,小英是以 为参照物的。 23. 汽油机在“吸气、压缩、做功、排气”的四个冲程中, 冲程是将机械能转化为内能的过程。

甲 乙 B A 图5 24.小峰用200N的推力将重为500N的木箱沿着力的方向移动了10m,小峰对木箱做的功为 J。 25. 一根阻值为50Ω的电阻丝,通电100s,通过的电流为0.2A,则电流通过电阻丝产生的热量为 J。 26.盛夏,我们在海滩游玩,会发现同样在烈日的照耀下,踩着的沙滩很烫脚,而水里却很凉爽,其原因是水和沙石的比热容不同, 的比热容较大。 27.图6所示是科学实践课中一位同学制作的简易电动机,它是由一节一号电池、一段导线和一块金属磁铁所组成。安装好后由导线弯成的线圈可以转动起来。其中该装置的工作原理是 。 28. 图7所示,在弹簧测力计的挂钩下悬挂一个小水桶,桶与水的总质量为 5 kg。用细线系一个质量为 0.54 kg的铝球,用手提细线上端将小球缓慢浸没在水中,使其在水中静止,且不与桶壁、桶底接触,水未溢出。此时弹簧测力计的示数是 N。(ρ铝=2.7×103kg/m3 、g取10N/kg)

29. 图8所示电路,电源电压保持不变,开关S闭合后调节滑动变阻器的滑片P,使电压表的示数为10 V,滑动变阻器的功率是10 W,调节滑动变阻器的滑片P到另一位置时,电压表的示数为5 V,此时滑动变阻器的功率是7.5 W,则定值电阻R0的阻值为 Ω。

四、实验与探究题(共36分,30~32、34、38题各2分, 35、36、37题各3分,33、39、40题各4分,41题5分) 30. 图9所示,温度计的示数是 ℃。 31.图10所示的螺线管已有电流通过,则螺线管左端的磁极是 极。 32.图11所示,物块的长度是 cm。

R' R0 S V P 图8

20 ℃ 10 图 9

I

图10 0 1 2 cm A 图11

图6 图7 33.用天平和量筒测定金属块的密度,进行了如下实验: (1)在调节天平横梁平衡时,将托盘天平放在水平桌面上,游码应放在标尺的零刻线处。如果指针偏向刻度盘左侧的位置,为使天平横梁在水平位置平衡,应将天平右端的平衡螺母向 移动; (2)把金属块放在调节好的天平的左盘中,当右盘中的砝码以及游码在标尺上的位置如图12甲所示时,天平横梁再次水平平衡,则金属块的质量是 g; (3)金属块放入量筒前、后量筒中水面位置如图12乙所示,则金属块的体积 是 cm3; (4)则金属块的密度是 kg/m3。

34.小阳在实验室测量小灯泡的电功率。当小灯泡两端电压为2.5V时,电流表的示数如图13所示,此时通过小灯泡的电流为_____A,则小灯泡的电功率为_____W。 35. 小刚在探究海波和蜂蜡的熔化规律时,记录实验数据如下表所示,请回答下列问题。

根据表中的实验数据可以判断: (1)蜂蜡属于______(选填“晶体”或“非晶体”); (2)海波的熔点为______℃; (3)当海波的温度为56℃时,它处于______态。(选填“固”或“液”) 36.小红在探究凸透镜成像规律的实验中,选择了焦距为10cm的凸透镜。她将点燃的蜡烛、凸透镜和光屏依次固定在光具座上,图14所示。为了在光屏上找到烛焰放大的实像,小红应将凸透镜向 移动(选填“左”或“右”),此时该像是 的(选填“正立”或“倒立”)。这一实验现象可以说明 的成像特点(选填“照相机”、“幻灯机”或“放大镜”)。

加热时间/min 0

蜂蜡的温度/℃ 4 48 49 51 52 54

海波的温度/℃ 4 48 48 48 50 53

图13

图14 0 cm 50 1 90 80 70 60 40 30 20 10 图15

S2

A2

R0

A1

RX

S1

g 5 4 3 1 2

mL 100 50 mL 100

50

乙图 甲图 0

100g 20g

图12 50g

相关文档
最新文档