莱昂哈德·欧拉——瑞士数学家
欧拉的定理

欧拉定理是数学中的一个重要定理,得名于瑞士数学家莱昂哈德·欧拉。
在数论中,欧拉定理是关于同余的性质,也称为费马-欧拉定理或欧拉函数定理。
复数中的欧拉定理也称为欧拉公式,被认为是数学世界中最美妙的定理之一。
具体来说,对于任何自然数n和实数x,有φ(n)=n(1−1/2+1/3−1/4+1/5−...+(-1)^(r)(r+1)/r),其中φ(n)表示欧拉函数,即小于n且与n互质的正整数的个数。
这个公式可以用来计算φ(n)的值。
此外,在平面几何中,欧拉定理表述的是给定一个简单多边形的顶点数和边数时,其内部点的数目等于边数和顶点数之差加二再除以二。
这个定理可以用于计算多边形的内角和、外角和等。
此外,还有多面体欧拉定理,它表述的是在任意一个凸多面体中,顶点数、棱边数和面数之间存在一个恒定的关系,即顶点数-棱边数+面数=2。
这个定理可以用于计算多面体的各种性质,如外角和、内角和等。
在组合数学中,欧拉定理可以用于求解一些组合问题,例如计算组合数的性质和公式。
在图论中,欧拉定理可以用于求解图的边数和顶点数之间的恒定关系。
此外,欧拉定理还可以用于求解一些物理问题,例如弹性力学和流体动力学中的问题。
在经济学中,欧拉定理可以用于求解一些最优化的数学问题,例如最优价格设置和资源分配等问题。
此外,欧拉定理还有一些有趣的延申和推广。
例如,在复数域中,欧拉定理可以推广为欧拉公式,即e^(ix) = cos(x) + i*sin(x),其中i是虚数单位。
这个公式可以用于求解一些复数问题,例如求解复数函数的积分和微分等。
另外,欧拉定理还可以推广到一些更复杂的数学结构和物理现象中,例如量子力学和相对论中的时空结构。
在这些领域中,欧拉定理的一些性质和结论可以用于描述和解释一些非常抽象和复杂的现象和规律。
总之,欧拉定理是一个非常重要的数学定理,具有广泛的应用价值,同时也有很多有趣的延申和推广。
无论是在数学还是物理等领域中,欧拉定理都是一个重要的工具,可以帮助我们求解一些复杂的问题和探索一些抽象的规律。
欧拉小传

《欧拉小传》读后感莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。
18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。
作为一名数学学习者,我怀着对欧拉前辈的崇敬与仰慕之情拜读了《欧拉小传》这部传记,读罢,我再次为欧拉前辈的魅力所倾倒,被他身上的那种严谨,细致的数学精神所感动。
因而,写下这篇读后感,想与大家分享一下我的浅见拙识。
欧拉是18世纪数学界最杰出的人物之一,他不但在数学上作出伟大贡献,而且把数学用到了几乎整个物理领域。
他又是一个多产作者。
他写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》都成为数学中的经典著作。
除了教科书外,他的全集有74卷。
在他的数学研究成果中,首推第一的是分析学。
可以不夸张的说,欧拉是分析的化身。
那么,欧拉为何能取得如此之多的成就呢?是仅靠与生俱来的天赋吗?显然不是。
论天赋,没有哪位数学家在数学上的天赋能超越“数学王子”高斯,但他与高斯并列为数学史上最伟大的4位数学家之一,这得益于欧拉从小对数学的热爱。
小时候他就特别喜欢数学,不满10岁就开始自学《代数学》。
这本书连他的几位老师都没读过。
可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教。
1720年,13岁的欧拉靠自己的努力考入了巴塞尔大学,得到当时最有名的数学家约翰·伯努利的精心指导。
由此,我们不难看出是对数学的热爱造就了欧拉。
是仅靠当时著名的数学家约翰·伯努利的指导吗?同样不尽然。
欧拉在成名后同样教授了很多学生,他晚年的时候,欧洲所有的数学家都把他当作老师,但他的学生中却很难再找到一个能与他齐名的数学家。
作为一名导师,欧拉的数学能力毋庸置疑要超过伯努利,而他的学生却无法超越欧拉,这不得不认为是欧拉本人的努力要超过其他人。
欧拉定理经济学

欧拉定理经济学欧拉定理(euler theorem),也称费马-欧拉定理或欧拉函数定理,是一个关于同余的性质,得名于瑞士数学家莱昂哈德·欧拉。
该定理被认为是数学世界中最美妙的定理之一,在西方经济学中又称为产量分配净尽定理,指在完全竞争的条件下,假设长期中规模收益不变,则全部产品正好足够分配给各个要素。
欧拉定理指出:如果产品市场和要素市场都是完全竞争的,而且厂商生产的规模报酬不变,那么在市场均衡的条件下,所有生产要素实际所取得的报酬总量正好等于社会所生产的总产品。
该定理又叫做边际生产力分配理论,还被称为产品分配净尽定理。
如上所述,要素的价格是由于要素的市场供给和市场需求共同决定。
在完全竞争的条件下,厂商和消费者都被动地接受市场形成的价格。
定理推论在完全竞争的条件下,厂商使用要素的原则是:要素的边际产品价值等于要素价格。
即:p*mpl=w (1)p*mpk=r (2)由式1和2只须:mpl=w/p (3)mpk=r/p(4p为产品的价格,w/p和r/p分别表示了劳动和资本的实际报酬。
因为在完全竞争的条件下,单位劳动、单位资本的实际报酬分别等于劳动、资本的边际产量。
假定整个社会的劳动总量和资本总量为l和k,而社会总产品为q,由在市场均衡的条件下,所有生产要素实际所取得的报酬总量正好等于社会所生产的总产品,得:q=l*mpl+k*mpk(5)式5称为欧拉分配定理。
它是由于该定理的证明使用了数学上的欧拉定理而得名。
定理证明假设生产函数为:q=f(l.k)(即q为齐次生产函数),定义人均资本k=k/l方法1:根据齐次生产函数中相同类型的生产函数展开分类探讨(1)线性齐次生产函数n=1,规模报酬维持不变,因此存有:q/l=f(l/l,k/l)=f(1,k)=g(k)k为人均资本,q/l为人均产量,人均产量就是人均资本k的函数。
让q对l和k求偏导数,有:由上面两式,即可得欧拉分配定理:(2)非线性齐次生产函数1.当n〉1时,规模报酬递减,如果按照边际生产力分配,则产品比较分配给各个生产要素,即为:2.当n\uc1时,规模报酬递减,如果按边际生产力进行分配,则产品在分配给各个生产要素之后还有剩余,即:方法2:设立一个通常的齐次生产函数q=f(l,k)为n齐次(即n任一的齐次生产函数,既可以就是线性的,也可以就是非线性的),则存有:q=l *g(k)将该函数对k,对l谋略偏导数,得:综合上述两式,有:当n=1时,规模报酬维持不变,该式即为欧拉分配定理当n〉1时,规模报酬递增,故有:当n\uc1时,规模报酬递增,故存有:实例在技术经济学中,欧拉定理属一次齐次函数的一个关键性质,它就是说道一次齐次函数的数值都可以则表示为各自变量和因变量对适当自变量一阶偏导的乘积之和。
欧拉拉格朗日方程小时百科

欧拉-拉格朗日方程(Euler-Lagrange equation)是经典力学中的一个基本方程,它用于描述一个系统的运动规律。
该方程是由瑞士数学家莱昂哈德·欧拉和法国数学家约瑟夫·拉格朗日提出的。
欧拉-拉格朗日方程的基本形式是:
δL = 0
其中L是系统的拉格朗日量,它由系统的动能和势能组成。
这个方程告诉我们,一个系统的运动轨迹需要满足使得系统的总作用量(即拉格朗日量乘以时间)达到极值。
在具体的应用中,欧拉-拉格朗日方程可以用来求解各种不同类型的物理问题,包括天体运动、弹性力学、电磁学等等。
它的求解方法通常是通过变分法,将问题转化为求解一组偏微分方程。
总之,欧拉-拉格朗日方程是经典力学中的一个重要工具,它为我们提供了描述和求解复杂系统运动规律的有效方法。
苏教高中数学选修3 博大精深的数学大师——欧拉课件

新知学习
浏览一下数学和物理教科书的索引就会找到 如下查照:欧拉角(刚体运动)、欧拉常数 (无穷级数)、欧拉方程(流体动力学)、 欧拉公式(复合变量)、欧拉数(无穷级 数)、欧拉多角曲线(微分方程)、欧拉齐 性函数定理摘微分方程)、欧拉变换(无穷 级数)、伯努利—欧拉定律(弹性力学)、 欧拉—傅里叶公式(三角函数)、欧拉—拉 格朗日方程(变分学,力学)以及欧拉一马 克劳林公式(数字法),这里举的仅仅是最 重要的例子。
谢 谢!
•
1.交代故事发生的时间、环境;描绘 出一幅 令人恐 惧的画 面,渲 染紧张 气氛。 侧面表 现人物 恐惧痛 苦的内 心世界 ,与他 所向往 的温馨 的家庭 生活环 境形成 鲜明对 比。
•
2.但是,情况终于改变了。一些急欲 挽救中 国的社 会改革 家发现 ,旧时 代的主 流意识 形态必 须改变 ,而那 些数千 年来深 入民间 社会的 精神活 力则应 该调动 起来。 因此, 大家又 重新惊 喜地发 现了墨 子。
博大精深的数学大 师——欧拉
新知学习
欧拉1707年4月15日出生于瑞士,在那里受 教育。他一生大部分时间在俄罗斯帝国和普 鲁士度过。欧拉是一位数学神童。他作为数
学教授,先后任教于圣彼得 堡和柏林,尔后再返圣彼得 堡。欧拉是有史以来最多遗 产的数学家,他的全集共计 75卷。欧拉实际上支配了18 世纪的数学,对于当时的新 发明微积分,他推导出了很 多结果。
•
9.迫于现实社会生存的巨大综合压力 和人类 因物质 文明进 步而带 来的精 神困惑 ,当代 诗歌的 内容越 来越局 限于私 人性的 东西, 正日愈 失去处 理重大 社会题 材的艺 术能力 ,这就 使得它 日愈减 少获得 公众关 注的机 会,而 只有在 少数未 被现代 社会物 质化的 心灵当 中获得 知音;
数独的起源

数独的起源数独是一种经典的数学逻辑游戏,起源于18世纪瑞士的著名数学家莱昂哈德·欧拉。
数独在世界范围内受到广泛的喜爱和挑战,它不仅具有娱乐性,还能够锻炼人们的逻辑思维和数学能力。
数独的历史数独最早可以追溯到欧拉在18世纪提出的一个数学问题:将9个不同数字填入一个9x9的网格中,要求每一行、每一列以及每个3x3的方块内的数字都不能重复。
这个问题被称为欧拉方块,可以被认为是数独的雏形。
在20世纪70年代,一位日本数学师茂木健一发明了一个用于解决数独的算法,并将其推广给了日本民众。
数独因其简单、有趣且具有挑战性的特点,在日本快速流行开来,并逐渐传播到了全世界。
数独玩法数独游戏的目标是填入1到9的数字,使得每一行、每一列和每个3x3的方块内都包含了1到9的数字,且不重复。
游戏通常提供了一个部分已经填入数字的初始网格,在这个基础上玩家需要通过逻辑推理和试错来填入确切的数字。
通过排除不可能的数字,玩家逐步推进,最终完成整个数独。
数独的受欢迎程度数独在全球范围内受到了广泛的追捧和挑战。
人们喜欢数独的原因有很多,其中一些原因包括:- 数独游戏简单易懂,规则容易掌握;- 数独能够锻炼逻辑思维和数学能力,使大脑保持活跃;- 数独的挑战性让人沉迷其中,有助于放松身心;- 数独可以短时间内完成,适合随时随地进行。
数独的互联网时代随着互联网的发展,数独也进入了新的时代。
人们可以在各类数独网站和手机应用上找到成千上万的数独游戏,难度各异,满足不同水平的玩家需求。
同时,互联网上也有各种数独解题技巧、教程和比赛等资源供玩家研究和交流。
总而言之,数独是一种古老而又受欢迎的数学逻辑游戏,它具有简单易懂的规则和挑战性的玩法。
无论是在纸上填写还是通过互联网进行游戏,数独都能够带给玩家愉悦的体验和思维的训练。
让我们一起享受数独的乐趣吧!。
材料力学欧拉公式
材料力学欧拉公式材料力学是研究材料的力学性能和行为的学科,其中欧拉公式是材料力学中一个非常重要的公式,它对于材料的强度、刚度等性能具有重要的指导意义。
本文将对材料力学欧拉公式进行详细的介绍和解析。
欧拉公式是由瑞士数学家莱昂哈德·欧拉在18世纪提出的,它描述了弹性杆的稳定性问题。
在材料力学中,欧拉公式被广泛应用于杆件的稳定性分析和设计中。
欧拉公式的基本形式为:Pcr = π²EI / L²。
其中,Pcr为临界压力,E为杨氏模量,I为截面惯性矩,L为杆件长度。
这个公式告诉我们,当外部压力超过临界压力时,杆件将会发生稳定性失效。
在实际工程中,材料力学欧拉公式的应用非常广泛。
比如在建筑工程中,我们需要考虑柱子的稳定性,利用欧拉公式可以计算出柱子的临界压力,从而确定柱子的尺寸和材料。
在机械设计中,也经常需要考虑杆件的稳定性,欧拉公式可以帮助工程师设计出更加安全可靠的机械结构。
除了简单的直杆稳定性问题,欧拉公式还可以推广到弯曲杆件、弹性支撑杆件等更加复杂的情况。
通过对欧拉公式的应用,我们可以更好地理解材料的力学性能,并且指导工程实践。
总之,材料力学欧拉公式是材料力学中的重要概念,它对于材料的稳定性分析和设计具有重要的指导意义。
通过对欧拉公式的深入研究和应用,我们可以更好地理解材料的力学性能,为工程实践提供更加可靠的设计依据。
希望本文能够对读者有所帮助,谢谢!以上就是对材料力学欧拉公式的介绍和解析,希望对您有所帮助。
如果您对材料力学欧拉公式还有其他疑问,欢迎随时与我们联系,我们将竭诚为您解答。
欧拉公式指数
欧拉公式指数
欧拉公式是数学中一条重要的等式,描述了数学中五个基本常数之间的关系。
它由瑞士数学家莱昂哈德·欧拉于公元1748年提出。
欧拉公式的数学形式如下:
e^ix = cos(x) + i·sin(x)
在这个等式中,e表示自然对数的底数,i表示虚数单位,x为任意实数。
欧拉公式指出,当实数x取任意值时,e^ix的值可以表示为余弦函数和正弦函数的线性组合。
欧拉公式在数学和物理学中具有广泛的应用。
它将三角函数和指数函数联系在一起,为复数运算提供了一种简洁的表示方法。
欧拉公式在电路分析、波动理论、量子力学等领域也有重要的应用。
欧拉公式的美妙之处在于它将看似独立的数学概念有机地结合起来。
通过欧拉公式,我们可以将复数表示为指数形式,从而方便地进行复数的运算和推导。
这种指数形式的表示方法不仅简洁易懂,同时也带来了许多重要的数学结论和物理应用。
欧拉公式是一条奇妙而重要的数学等式,它揭示了数学中指数函数、三角函数和复数之间的深刻联系,为数学和物理学的发展作出了重要贡献。
欧拉公式的出现极大地推动了数学的发展,也让人们对数学的美感和深度有了更深入的理解。
欧拉公式
(1)正四方体的顶点数v=(
),面数F=(
),棱数E=(
)
正六方体的顶点数v=(
正八方体的顶点数v=(E=(
),棱数E=(
)
)
(2)若将多面体的顶点数用v表示,面数用F表示,棱数用E表示,则v、F、E之间 的数量关系可用一个公式来表示,这就是著名的欧拉公式,请写出欧拉公式 ( )
欧拉公式
莱昂哈德· 欧拉 (1707、4、15~1783、9、18)
瑞士著名数学家、自然科学家生于牧师牧家庭,自幼受父亲 的影响。13岁时入读巴塞尔大学巴塞,15岁大学毕业,16 岁获得硕士学位。
欧拉1707年4月15日出生于瑞士瑞的巴塞尔城
仔细观察下面的正四面体、正六面体、正八面体,解 决下列问题:
有关凸多面体最有趣的定理之一是欧 拉公式“V-E+F=2”,其实大约在 1635年笛卡尔就早已发现了它。欧拉 在1750年独立地发现了这个公式,并 于1752年发表了它。由于笛卡尔的研 究到1860年才被人们发现,所以这个 定理就称为欧拉公式而不是笛卡尔公 式。
如果一个多面体的棱长数为30,定点数为20,那么 它有多少个面?
解:设它的面数为F。 20+F-30=2 F=2+30-20 F=12 答:这个多面体有12个面。
八年级数学下册 20.1数据的代表 数学家欧拉素材 新人教版
欧拉莱昂哈德·欧拉(Leonhard Euler 公元1707-1783年)也有翻译为欧勒,18世纪最优秀的数学家,也是历史上最伟大的数学家之一,被称为“分析的化身”.引述评价“读欧拉原著:在任何意义上,他都是我们的大师.” —拉普拉斯生平1707年出生在瑞士的巴塞尔(Basel)城,小时候他就特别喜欢数学,不满10岁就开始自学《代数学》.这本书连他的几位老师都没读过,可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教.13岁就进巴塞尔大学读书,这在当时是个奇迹,曾轰动了数学界.小欧拉是这所大学,也是整个瑞士大学校园里年龄最小的学生.在大学里得到当时最有名的数学家微积分权威约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导,并逐渐与其建立了深厚的友谊.约翰·伯努利后来曾这样称赞青出于蓝而胜于蓝的学生:“我介绍高等分析时,他还是个孩子,而你将他带大成人.”两年后的夏天,欧拉获得巴塞尔大学的学士学位,次年,欧拉又获得巴塞尔大学的哲学硕士学位.1725年,欧拉开始了他的数学生涯.欧拉的父亲保罗·欧拉(Paul Euler)也是一个数学家,原希望小欧拉学神学,同时教他一点数学.由于小欧拉的才人和异常勤奋的精神,又受到约翰·伯努利的赏识和特殊指导,当他在19岁时写了一篇关于船桅的论文,获得巴黎科学院的奖金后,他的父亲就不再反对他攻读数学了.1725年约翰·伯努利的儿子丹尼尔·伯努利赴俄国,并向沙皇喀德林一世推荐了欧拉,这样,在1727年5月17日欧拉来到了彼得堡.1733年,年仅26岁的欧拉担任了彼得堡科学院数学教授.1735年,欧拉解决了一个天文学的难题(计算彗星轨道),这个问题经几个著名数学家几个月的努力才得到解决,而欧拉却用自己发明的方法,三天便完成了.然而过度的工作使他得了眼病,并且不幸右眼失明了,这时他才28岁.1741年欧拉应普鲁士彼德烈大帝的邀请,到柏林担任科学院物理数学所所长,直到1766年,后来在沙皇喀德林二世的诚恳敦聘下重回彼得堡,不料没有多久,左眼视力衰退,最后完全失明.不幸的事情接踵而来,1771年彼得堡的大火灾殃及欧拉住宅,带病而失明的64岁的欧拉被围困在大火中,虽然他被别人从火海中救了出来,但他的书房和大量研究成果全部化为灰烬了.沉重的打击,仍然没有使欧拉倒下,他发誓要把损失夺回来.欧拉完全失明以后,虽然生活在黑暗中,但仍然以惊人的毅力与黑暗搏斗,凭着记忆和心算进行研究,直到逝世,竟达17年之久.1783年9月18日,在不久前才刚计算完气球上升定律的欧拉,在兴奋中突然停止了呼吸,享年76岁.欧拉生活、工作过的三个国家:瑞士、俄国、德国,都把欧拉作为自己的数学家,为有他而感到骄傲.欧拉的记忆力和心算能力是罕见的,他能够复述年青时代笔记的内容,心算并不限于简单的运算,高等数学一样可以用心算去完成.有一个例子足以说明他的本领,欧拉的两个学生把一个复杂的收敛级数的17项加起来,算到第50位数字,两人相差一个单位,欧拉为了确定究竟谁对,用心算进行全部运算,最后把错误找了出来.欧拉在失明的17年中;还解决了使牛顿头痛的月离问题和很多复杂的分析问题.欧拉的风格是很高的,拉格朗日是稍后于欧拉的大数学家,从19岁起和欧拉通信,讨论等周问题的一般解法,这引起变分法的诞生.等周问题是欧拉多年来苦心考虑的问题,拉格朗日的解法,博得欧拉的热烈赞扬,1759年10月2日欧拉在回信中盛称拉格朗日的成就,并谦虚地压下自己在这方面较不成熟的作品暂不发表,使年青的拉格朗日的工作得以发表和流传,并赢得巨大的声誉.他晚年的时候,欧洲所有的数学家都把他当作老师,著名数学家拉普拉斯(Laplace)曾说过:"读读欧拉、读读欧拉,它是我们大家的老师!" 当欧拉64岁高龄之时,一场突如其来的大火烧掉了他几乎全部的著述,而神奇的欧拉用了一年的时间口述了所有这些论文并作了修订.一年以后,1783年9月18日的下午,欧拉为了庆祝他计算气球上升定律的成功,请朋友们吃饭,那时天王星刚发现不久,欧拉写出了计算天王星轨道的要领,还和他的孙子逗笑,喝完茶后,突然疾病发作,烟斗从手中落下,口里喃喃地说:"我要死了",欧拉终于"停止了生命和计算".欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.可以说欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文(七十余卷,牛顿全集八卷,高斯全集十二卷),其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".欧拉著作的惊人多产并不是偶然的,他可以在任何不良的环境中工作,他常常抱着孩子在膝上完成论文,也不顾孩子在旁边喧哗.他那顽强的毅力和孜孜不倦的治学精神,使他在双目失明以后,也没有停止对数学的研究,在失明后的17年间,他还口述了几本书和400篇左右的论文.19世纪伟大数学家高斯(Gauss,1777-1855年)曾说:"研究欧拉的著作永远是了解数学的最好方法."欧拉的一生,是为数学发展而奋斗的一生,他那杰出的智慧,顽强的毅力,孜孜不倦的奋斗精神和高尚的科学道德,永远是值得我们学习的.欧拉在数学、物理、天文、建筑以至音乐、哲学方面都取得了辉煌的成就.在数学的各个领域,常常见到以欧来命名的公式、定理、和重要常数.课本上常见的如π(1736年),i(1777年),e(1748年),sin和cos (1748年),tg(1753年),△x(1755年),Σ(1755年),f(x)(1734年)等,都是他创立并推广的.歌德巴赫猜想也是在他与歌德巴赫的通信中提出来的.欧拉还首先完成了月球绕地球运动的精确理论,创立了分析力学、刚体力学等力学学科,深化了望远镜、显微镜的设计计算理论.欧拉一生能取得伟大的成就原因在于:惊人的记忆力;聚精会神,从不受嘈杂和喧闹的干扰;镇静自若,孜孜不倦.欧拉(L.Euler,1707.4.15-1783.9.18)是瑞士数学家.生于瑞士的巴塞尔(Basel),卒于彼得堡(Petepbypt).父亲保罗·欧拉是位牧师,喜欢数学,所以欧拉从小就受到这方面的熏陶.但父亲却执意让他攻读神学,以便将来接他的班.幸运的是,欧拉并没有走父亲为他安排的路.父亲曾在巴塞尔大学上过学,与当时著名数学家约翰·伯努利(JohannBernoulli,1667.8.6-1748.1.1)及雅各布·伯努利(Jacob Bernoulli,1654.12.27-1705.8.16)有几分情谊.由于这种关系,欧拉结识了约翰的两个儿子:擅长数学的尼古拉(Nicolaus Bernoulli,1695-1726)及丹尼尔(Daniel Bernoulli,1700.2.9-1782.3.17)兄弟二人,(这二人后来都成为数学家).他俩经常给小欧拉讲生动的数学故事和有趣的数学知识.这些都使欧拉受益匪浅.1720年,由约翰保举,才13岁的欧拉成了巴塞尔大学的学生,而且约翰精心培育着聪明伶俐的欧拉.当约翰发现课堂上的知识已满足不了欧拉的求知欲望时,就决定每周六下午单独给他辅导、答题和授课.约翰的心血没有白费,在他的严格训练下,欧拉终于成长起来.他17岁的时候,成为巴塞尔有史以来的第一个年轻的硕士,并成为约翰的助手.在约翰的指导下,欧拉从一开始就选择通过解决实际问题进行数学研究的道路.1726年,19岁的欧拉由于撰写了《论桅杆配置的船舶问题》而荣获巴黎科学院的资金.这标志着欧拉的羽毛已丰满,从此可以展翅飞翔.欧拉的成长与他这段历史是分不开的.当然,欧拉的成才还有另一个重要的因素,就是他那惊人的记忆力!,他能背诵前一百个质数的前十次幂,能背诵罗马诗人维吉尔(Virgil)的史诗Aeneil,能背诵全部的数学公式.直至晚年,他还能复述年轻时的笔记的全部内容.高等数学的计算他可以用心算来完成.尽管他的天赋很高,但如果没有约翰的教育,结果也很难想象.由于约翰·伯努利以其丰富的阅历和对数学发展状况的深刻的了解,能给欧拉以重要的指点,使欧拉一开始就学习那些虽然难学却十分必要的书,少走了不少弯路.这段历史对欧拉的影响极大,以至于欧拉成为大科学家之后仍不忘记育新人,这主要体现在编写教科书和直接培养有才化的数学工作者,其中包括后来成为大数学家的拉格朗日(grange,1736.1.25-1813.4.10).欧拉本人虽不是教师,但他对教学的影响超过任何人.他身为世界上第一流的学者、教授,肩负着解决高深课题的重担,但却能无视"名流"的非议,热心于数学的普及工作.他编写的《无穷小分析引论》、《微分法》和《积分法》产生了深远的影响.有的学者认为,自从1784年以后,初等微积分和高等微积分教科书基本上都抄袭欧拉的书,或者抄袭那些抄袭欧拉的书.欧拉在这方面与其它数学家如高斯(C.F.Gauss,1777.4.30-1855.2.23)、牛顿(I.Newton,1643.1.4-1727.3.31)等都不同,他们所写的书一是数量少,二是艰涩难明,别人很难读懂.而欧拉的文字既轻松易懂,堪称这方面的典范.他从来不压缩字句,总是津津有味地把他那丰富的思想和广泛的兴趣写得有声有色.他用德、俄、英文发表过大量的通俗文章,还编写过大量中小学教科书.他编写的初等代数和算术的教科书考虑细致,叙述有条有理.他用许多新的思想的叙述方法,使得这些书既严密又易于理解.欧拉最先把对数定义为乘方的逆运算,并且最先发现了对数是无穷多值的.他证明了任一非零实数R有无穷多个对数.欧拉使三角学成为一门系统的科学,他首先用比值来给出三角函数的定义,而在他以前是一直以线段的长作为定义的.欧拉的定义使三角学跳出只研究三角表这个圈子.欧拉对整个三角学作了分析性的研究.在这以前,每个公式仅从图中推出,大部分以叙述表达.欧拉却从最初几个公式解析地推导出了全部三角公式,还获得了许多新的公式.欧拉用a 、b 、c 表示三角形的三条边,用A、B、C表示第个边所对的角,从而使叙述大大地简化.欧拉得到的著名的公式,又把三角函数与指数函联结起来.在普及教育和科研中,欧拉意识到符号的简化和规则化既有有助于学生的学习,又有助于数学的发展,所以欧拉创立了许多新的符号.如用sin 、cos 等表示三角函数,用 e 表示自然对数的底,用f(x) 表示函数,用∑表示求和,用 i表示虚数等.圆周率π虽然不是欧拉首创,但却是经过欧拉的倡导才得以广泛流行.而且,欧拉还把e 、π 、i 统一在一个令人叫绝的关系式中.欧拉不但重视教育,而且重视人才.当时法国的拉格朗日只有19岁,而欧拉已48岁.拉格朗日与欧拉通信讨论"等周问题",欧拉也在研究这个问题.后来拉格朗日获得成果,欧拉就压下自己的论文,让拉格朗日首先发表,使他一举成名.欧拉19岁大学毕业时,在瑞士没有找到合适的工作.1727年春,在巴塞尔他试图担任空缺的教研室主任职务,但没有成功.这时候,俄国的圣彼得堡科院刚建立不久,正在全国各地招聘科学家,广泛地搜罗人才.已经应聘在彼得堡工作的丹尔·伯努利深知欧拉的才能,因此,他竭力聘请欧拉去俄罗斯.在这种情况下,欧拉离开了自己的祖国.由于丹尼尔的推荐,1727年,欧拉应邀到圣彼得堡做丹尼尔的助手.在圣彼得堡科学院,他顺利地获得了高等数学副教授的职位.1731年,又被委任领导理论物理和实验物理教研室的工作.1733年,年仅26岁的欧拉接替回瑞士的丹尼尔,成为数学教授及彼得堡科学院数学部的领导人.在这期间,欧拉勤奋地工作,发表了大量优秀的数学论文,以及其它方面的论文、著作.古典力学的基础是牛顿奠定的,而欧拉则是其主要建筑师.1736年,欧拉出版了《力学,或解析地叙述运动的理论》,在这里他最早明确地提出质点或粒子的概念,最早研究质点沿任意一曲线运动时的速度,并在有关速度与加速度问题上应用矢量的概念.同时,他创立了分析力学、刚体力学,研究和发展了弹性理论、振动理论以及材料力学.并且他把振动理论应用到音乐的理论中去,1739年,出版了一部音乐理论的著作.1738年,法国科学院设立了回答热本质问题征文的奖金,欧拉的《论火》一文获奖.在这篇文章中,欧拉把热本质看成是分子的振动.欧拉研究问题最鲜明的特点是:他把数学研究之手深入到自然与社会的深层.他不仅是位杰出的数学家,而且也是位理论联系实际的巨匠,应用数学大师.他喜欢搞特定的具体问题,而不象现代某些数学家那样,热衰于搞一般理论.正因为欧拉所研究的问题都是与当时的生产实际、社会需要和军事需要等紧密相连,所以欧拉的创造才能才得到了充分发挥,取得了惊人的成就.欧拉在搞科学研究的同时,还把数学应用到实际之中,为俄国政府解决了很多科学难题,为社会作出了重要的贡献.如菲诺运河的改造方案,宫延排水设施的设计审定,为学校编写教材,帮助政府测绘地图;在度量衡委员会工作时,参加研究了各种衡器的准确度.另外,他还为科学院机关刊物写评论并长期主持委员会工作.他不但为科学院做大量工作,而且挤出时间在大学里讲课,作公开演讲,编写科普文章,为气象部门提供天文数据,协助建筑单位进行设计结构的力学分析.1735年,欧拉着手解决一个天文学难题──计算彗星的轨迹(这个问题需经几个著名的数学家几个月的努力才能完成).由于欧拉使用了自己发明的新方法,只用了三天的时间.但三天持续不断的劳累也使欧拉积劳成疾,疾病使年仅28岁的欧拉右眼失明.这样的灾难并没有使欧拉屈服,他仍然醉心于科学事业,忘我地工作.但由于俄国的统治集团长期的权力之争,日益影响到了欧拉的工作,使欧拉很苦闷.事也凑巧,普鲁士国王腓特烈大帝(Frederick the Great,1740-1786在位)得知欧拉的处境后,便邀请欧拉去柏林.尽管欧拉十分热爱自己的第二故乡(在这里他普工作生活了14年),但为了科学事业,他还是在1741年暂时离开了圣彼得堡科学院,到柏林科学院任职,任数学物理所所长.1759年成为柏林科学院的领导人.在柏林工作期间,他并没有忘记俄罗斯,他通过书信来指导他在俄罗斯的学生,并把自己的科学著作寄到俄罗斯,对俄罗斯科学事业的发展起了很大作用.他在柏林工作期间,将数学成功地应用于其它科学技术领域,写出了几百篇论文,他一生中许多重大的成果都是这期间得到的.如:有巨大影响的《无穷小分析引论》、《微分学原理》,既是这期间出版的.此外,他研究了天文学,并与达朗贝尔(I.L.R.D'Alembert,1717.11.16-1783.10.29)、拉格朗日一起成为天体力学的创立者,发表了《行星和彗星的运动理论》、《月球运动理论》、《日蚀的计算》等著作.在欧拉时代还不分什么纯粹数学和应用数学,对他来说,整个物理世界正是他数学方法的用武之地.他研究了流体的运动性质,建立了理想流体运动的基本微分方程,发表了《流体运动原理》和《流体运动的一般原理》等论文,成为流体力学的创始人.他不但把数学应用于自然科学,而且还把某一学科所得到的成果应用于另一学科.比如,他把自己所建立的理想流体运动的基本方程用于人体血液的流动,从而在生物学上添上了他的贡献,又以流体力学、潮汐理论为基础,丰富和发展了船舶设计制造及航海理论,出版了《航海科学》一书,并以一篇《论船舶的左右及前后摇晃》的论文,荣获巴黎科学院奖金.不仅如此,他还为普鲁士王国解决了大量社会实际问题.1760年到1762年间,欧拉应亲王的邀请为夏洛特公主函授哲学、物理学、宇宙学、神学、化理学、音乐等,这些通信充分体现了欧拉渊博的知识、极高的文学修养、哲学修养.后来这些通信整理成《致一位德国公主的信》,1768年分三卷出版,世界各国译本风靡,一时传为佳话.自从1741年欧拉离开彼得堡以后,俄国的政局一直不好,政权几次更迭,最后落入叶卡捷林娜二世的手中,她吸取了以往的教训,开始致力于文治武功.她一面与伏尔泰、狄德罗等法国启蒙学者通信,一面又四方招聘有影响的科学家去彼得堡科学院任职.欧拉自然成了她主要聘请的对象.1766年,年已花甲的欧拉应邀回到彼得堡,这次俄国为他准备了优越的工作条件.这时欧拉的科学研究工作已经是硕果累累,思想也已经成熟.除了一些专题还需继续研究外,他希望能在晚年对过去的成就作系统的总结,出版几部高质量的著作.然而,厄运再次向他袭来.由于俄罗斯气候严寒,以及他工作的劳累,欧拉的左眼又失明了,从此欧拉陷入伸手不见五指的黑暗之中.但欧拉是坚强的,他用口授、别人记录的方法坚持写作.他先集中精力撰写了《微积分原理》一书,在这部三卷本巨著中,欧拉系统地阐述了微积分发明以来的所有积分学的成就,其中充满了欧拉精辟的见解.1768年,《积分学原理》第一卷在圣彼得堡出版.1770年第三卷出版.同年,他又口述写成《代数学完整引论》,有俄文、德文、法文版,成为欧洲几代人的教科书,正当欧拉在黑暗中搏斗时,厄运又一次向他袭来.1771年,圣彼得堡一场大火,秧及欧拉的住宅,把欧拉包围在大火中.在这危急的时刻,是一位仆人冒着生命危险把欧拉从大火中背出来.欧拉虽然幸免于难,可他的藏书及大量的研究成果都化为灰烬.种种磨难,并没有把欧拉搞垮.大火以后他立即投入到新的创作之中.资料被焚,他又双目失明,在这种情况下,他完全凭着坚强的意志和惊人的毅力,回忆所作过的研究.欧拉的记忆力也确实罕见,他能够完整地背诵出几十年前的笔记内容,数学公式当然更能背诵如流.欧拉总是把推理过程想得很细,然后口授,由他的长子记录.他用这种方法又发表了论文400多篇以及多部专著,这几乎占他全部著作的半数以上.1774年,他把自己多年来研究变分问题所取得的成果集中发表一本书《寻求具有某种极大或极小性质的曲线的技巧》中.从而创立了一个新的分支──变分法.另外,欧拉对天文学中的"三体问题"月球运动及摄运问题进行了研究.后来,他解决了牛顿没有解决的月球运动问题,首创了月球绕地球运动地精确理论.为了更好地进行天文观测,他曾研究了光学,天文望远镜和显微镜.研究了光通过各种介质的现象和有关的分色效应,提出了复杂的物镜原理,发表过有关光学仪器的专著,对望远镜和显微镜的设计计算理论做出过开创性的贡献,在1771年他又发表了总结性著作《屈光学》.欧拉从19岁开始写作,直到逝世,留下了浩如烟海的论文、著作,甚至在他死后,他留下的许多手稿还丰富了后47年的圣彼得堡科学院学报.就科研成果方面来说,欧拉是数学史上或者说是自然科学史上首屈一指的.作为这样一位科学巨人,在生活中他并不是一个呆板的人.他性情温和,性格开朗,也喜欢交际.欧拉结过两次婚,有13个孩子.他热爱家庭的生活,常常和孩子们一起做科学游戏,讲故事.欧拉旺盛的精力和钻研精神一直坚持到生命的最后一刻.1783年9月18日下午,欧拉一边和小孙女逗着玩,一边思考着计算天王星的轨迹,突然,他从椅子上滑下来,嘴里轻声说:"我死了".一位科学巨匠就这样停止了生命.历史上,能跟欧拉相比的人的确不多,也有的历史学家把欧拉和阿基米德、牛顿、高斯列为有史以来贡献最大的四位数学家,依据是他们都有一个共同点,就是在创建纯粹理论的同时,还应用这些数学工具去解决大量天文、物理和力学等方面的实际问题,他们的工作是跨学科的,他们不断地从实践中吸取丰富的营养,但又不满足于具体问题的解决,而是把宇宙看作是一个有机的整体,力图揭示它的奥秘和内在规律.由于欧拉出色的工作,后世的著名数学家都极度推崇欧拉.大数学家拉普拉斯(P.S.M.de Laplace,1749.3.23-1827.3.5)普说过:"读读欧拉,这是我们一切人的老师."被誉为数学王子地高斯也普说过:"对于欧拉工作的研究,将仍旧是对于数学的不同范围的最好的学校,并且没有别的可以替代它".欧拉的对数学各个领域的贡献欧拉的结果分散在数学的各个领域里,几乎在数学每个领域都可以看见欧拉的名字,以欧拉命名的定理、公式、函数等不计其数,其中有:Euler公式Euler常数Euler函数Euler定理2、乔治·安德鲁·欧拉(George Andrew Olah)欧拉教授于1927年5月22日生于匈牙利首都布达佩斯的一个律师家庭,1949年在布达佩斯工业大学获博士学位;1957年移居美国进入道氏化学公司工作,1967年在凯斯西部大学任教,1977年进入南加州大学洛克尔碳氢化合物研究所工作,1991年出任该所主任.碳正离子是一种带正电的极不稳定的碳氢化合物.分析这种物质对发现能廉价制造几十种当代必需的化工产品是至关重要的.欧拉教授发现了利用超强酸使碳正离子保持稳定的方法,能够配制高浓度的碳正离子和仔细研究它.他的发现已用于提高炼油的效率、生产无铅汽油和研制新药物.欧拉教授的主要的研究方向有:亲电反应;反应机理;锌的合成方法;有机金属化学;反应中间体;稳定的碳正离子;付瑞迪尔-克拉(Friedel-Crafts Chemistry)佛兹烷基化反应;超强酸化学的等等.他独自或以第一作者发表论文707篇.其中,稳定的碳正离子系列文章有282篇.奖项:诺贝尔化学奖获奖时间:1994年获奖理由:他发现了使碳阳离子保持稳定的方法,在碳正离子化学方面的研究.1994年10月12日,瑞典皇家科学院宣布授予美国南加利福尼亚大学有机化学家乔治·安德鲁·欧拉(George Andrew Olah)教授1994年度诺贝尔化学奖,表彰他在碳正离子化学研究方面所作的贡献.他从小就接受非常严格的中小学训练,有扎实的基础知识.欧拉曾对匈牙利的历史如痴如迷,后来把兴趣转向自然科学.在高中毕业后,他进入Techni-cal University of Budapest,在Geza Zemplén教授的指导下从事有机化学方面的学习及研究,于1949年获理学博士学位,当时年仅22岁.大学几年的学习与研究,把欧拉与有机化学紧紧地连在一起,从此他正式步入了他的有机化学生涯.由于Zemplén是Emil Fischer的学生,欧拉自称他自己是Fischer的“徒孙”.1956年,欧拉移居加拿大,在Dow Chemical公司任资深化学研究员.1957年迁居美国后,继续在该公司任职至1964年.欧拉对碳正离子的早期工作正是在这期间完成的.1965至1977年间,欧拉在Case Western大学任教授.从1977年至今,在南加利福尼亚大学(Universi-ty of Southern California)任讲座教授,并为该大学的Locker碳氢化合物。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
莱昂哈德·欧拉——瑞士数学家莱昂哈德·欧拉介绍中文名:莱昂哈德·欧拉外文名:Leonhard Euler国籍:瑞士出生地:瑞士出生日期:1707年(丁亥年)4月15日逝世日期:1783年9月18日职业:数学家,物理学家毕业院校:巴塞尔大学信仰:基督教主要成就:创立函数的符号创立分析力学解决了柯尼斯堡七桥问题给出各种欧拉公式代表作品:《无穷分析引论》《微分学原理》《积分学原理》星座:白羊座智商:305莱昂哈德·欧拉(Leonhard Euler ,1707年4月15日~1783年9月18日),瑞士数学家、自然科学家。
1707年4月15日出生于瑞士的巴塞尔,1783年9月18日于俄国圣彼得堡去世。
欧拉出生于牧师家庭,自幼受父亲的影响。
13岁时入读巴塞尔大学,15岁大学毕业,16岁获得硕士学位。
欧拉是18世纪数学界最杰出的人物之一,他不但为数学界作出贡献,更把整个数学推至物理的领域。
他是数学史上最多产的数学家,平均每年写出八百多页的论文,还写了大量的力学、分析学、几何学、变分法等的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》等都成为数学界中的经典著作。
欧拉对数学的研究如此之广泛,因此在许多数学的分支中也可经常见到以他的名字命名的重要常数、公式和定理。
此外欧拉还涉及建筑学、弹道学、航海学等领域。
瑞士教育与研究国务秘书Charles Kleiber曾表示:“没有欧拉的众多科学发现,今天的我们将过着完全不一样的生活。
”法国数学家拉普拉斯则认为:读读欧拉,他是所有人的老师。
2007年,为庆祝欧拉诞辰300周年,瑞士政府、中国科学院及中国教育部于2007年4月23日下午在北京的中国科学院文献情报中心共同举办纪念活动,回顾欧拉的生平、工作以及对现代生活的影响。
人物生平欧拉1707年4月15日生于瑞士巴塞尔,1783年9月18日卒于俄国圣彼得堡。
他生于牧师家庭。
15岁在巴塞尔大学获学士学位,翌年得硕士学位。
1727年,欧拉应圣彼得堡科学院的邀请到俄国。
1731年接替丹尼尔·伯努利成为物理教授。
他以旺盛的精力投入研究,在俄国的14年中,他在分析学、数论和力学方面作了大量出色的工作。
1741年受普鲁士腓特烈大帝的邀请到柏林科学院工作,达25年之久。
在柏林期间他的研究内容更加广泛,涉及行星运动、刚体运动、热力学、弹道学、人口学,这些工作和他的数学研究相互推动。
欧拉这个时期在微分方程、曲面微分几何以及其他数学领域的研究都是开创性的。
1766年他又回到了圣彼得堡。
欧拉是18世纪数学界最杰出的人物之一,他不但在数学上作出伟大贡献,而且把数学用到了几乎整个物理领域。
他又是一个多产作者。
他写了大量的力学、分析学、几何学、变分法的课本,《无穷小分析引论》、《微分学原理》、《积分学原理》都成为数学中的经典著作。
除了教科书外,他的全集有74卷。
18世纪中叶,欧拉和其他数学家在解决物理问题过程中,创立了微分方程这门学科。
值得提出的是,偏微分方程的纯数学研究的第一篇论文是欧拉写的《方程的积分法研究》。
欧拉还研究了函数用三角级数表示的方法和解微分方程的级数法等等。
欧拉引入了空间曲线的参数方程,给出了空间曲线曲率半径的解析表达式。
1766年他出版了《关于曲面上曲线的研究》,建立了曲面理论。
这篇著作是欧拉对微分几何最重要的贡献,是微分几何发展史上的一个里程碑。
欧拉在分析学上的贡献不胜枚举。
如他引入了Γ函数和B函数,证明了椭圆积分的加法定理,最早引入了二重积分等等。
数论作为数学中一个独立分支的基础是由欧拉的一系列成果所奠定的。
他还解决了著名的组合问题:柯尼斯堡七桥问题。
在数学的许多分支中都常常见到以他的名字命名的重要常数、公式和定理。
小时候他就特别喜欢数学,不满10岁就开始自学《代数学》。
这本书连他的几位老师都没读过。
可小欧拉却读得津津有味,遇到不懂的地方,就用笔作个记号,事后再向别人请教。
1720年,13岁的欧拉靠自己的努力考入了巴塞尔大学,得到当时最有名的数学家约翰·伯努利(Johann Bernoulli,1667-1748年)的精心指导.。
这在当时是个奇迹,曾轰动了数学界。
小欧拉是这所大学,也是整个瑞士大学校园里年龄最小的学生。
欧拉渊博的知识,无穷无尽的创作精力和空前丰富的著作,都是令人惊叹不已的!他从19岁开始发表论文,直到76岁,半个多世纪写下了浩如烟海的书籍和论文.到今几乎每一个数学领域都可以看到欧拉的名字,从初等几何的欧拉线,多面体的欧拉定理,立体解析几何的欧拉变换公式,四次方程的欧拉解法到数论中的欧拉函数,微分方程的欧拉方程,级数论的欧拉常数,变分学的欧拉方程,复变函数的欧拉公式等等,数也数不清.他对数学分析的贡献更独具匠心,《无穷小分析引论》一书便是他划时代的代表作,当时数学家们称他为"分析学的化身".欧拉是科学史上最多产的一位杰出的数学家,据统计他那不倦的一生,共写下了886本书籍和论文,其中分析、代数、数论占40%,几何占18%,物理和力学占28%,天文学占11%,弹道学、航海学、建筑学等占3%,彼得堡科学院为了整理他的著作,足足忙碌了四十七年。
欧拉曾任彼得堡科学院教授,是柏林科学院的创始人之一。
他是刚体力学和流体力学的奠基者,弹性系统稳定性理论的开创人。
他认为质点动力学微分方程可以应用于液体(1750)。
他曾用两种方法来描述流体的运动,即分别根据空间固定点(1755)和根据确定的流体质点(1759)描述流体速度场。
前者称为欧拉法,后者称为拉格朗日法。
欧拉奠定了理想流体的理论基础,给出了反映质量守恒的连续方程(1752)和反映动量变化规律的流体动力学方程(1755)。
欧拉在固体力学方面的著述也很多,诸如弹性压杆失稳后的形状,上端悬挂重链的振动问题,等等。
欧拉的专著和论文多达800多种。
小行星欧拉2002就是为了纪念欧拉而命名的。
早年欧拉出生于瑞士巴塞尔的一个牧师家庭,父亲保罗·欧拉(Paul Euler)是基督教加尔文宗的牧师,保罗·欧拉早年在巴塞尔大学学习神学,后娶了一位牧师的女儿玛格丽特·布鲁克(Marguerite Brucker),也就是欧拉的母亲。
欧拉是他们6个孩子中的长子。
在欧拉出生后不久,他们全家就从巴塞尔搬迁至郊外的里恩,在那里欧拉度过了他童年的大部分时光。
欧拉最早是从他的父亲那里接触到一些数学,后来欧拉搬回巴塞尔和他的外祖母住在一起,并在那里开始了他的正式学业,在中学时期,由于欧拉所在的学校并不教授数学,他便私下里从一位大学生那里学习。
欧拉13岁时进入了巴塞尔大学,主修哲学和法律,但在每周星期六下午便跟当时欧洲最优秀的数学家约翰·伯努利(Johann Bernoulli)学习数学。
欧拉于1723年取得了他的哲学硕士学位,学位论文的内容是笛卡尔哲学和牛顿哲学的比较研究。
之后,欧拉遵从了他父亲的意愿进入了神学系,学习神学,希腊语和希伯来语(欧拉的父亲希望欧拉成为一名牧师),但最终约翰·伯努利说服欧拉的父亲允许欧拉学习数学,并使他相信欧拉注定能成为一位伟大的数学家。
1726年,欧拉完成了他的博士学位论文De Sono,内容是研究声音的传播。
1727年,欧拉参加了法国科学院主办的有奖征文竞赛,当年的问题是找出船上的桅杆的最优放置方法。
结果他得了二等奖,一等奖为被誉为“舰船建造学之父”的皮埃尔·布格(Pierre Bouguer)所获得,不过欧拉随后在他一生中一共12次赢得该奖项一等奖。
在圣彼得堡这一时期,约翰·伯努利的两个儿子——丹尼尔·伯努利和尼古拉·伯努利(Nicolas Bernoulli)——在位于俄国圣彼得堡的俄国皇家科学院工作,在尼古拉因阑尾炎于1726年7月去世后(此时距他来到俄国仅一年),丹尼尔便接替了他在数学/物理学所的职位,同时推荐欧拉来接替他自己在生理学所空出的职位。
欧拉于1726年11月欣然接受了邀请,但并没有立即动身前往圣彼得堡,而是先申请巴塞尔大学的物理学教授,不过没有成功。
欧拉于1727年5月17日抵达圣彼得堡,在丹尼尔等人的请求下,科学院将欧拉指派到数学/物理学所工作,而不是起初的生理学所。
欧拉与丹尼尔保持着密切的合作关系,并且与丹尼尔住在一起。
在1727年至1730年间,欧拉还担任了俄国海军医官的职务。
俄国皇家科学院由彼得大帝于1724年创建,在彼得大帝和他的继任者凯瑟琳女皇主政时期,科学院是一个对外国学者具有吸引力的地方。
科学院有充足的资金来源和一个规模庞大的综合图书馆,并且只招收非常少的学生,以减轻教授们的教学负担。
科学院还非常重视研究,给予教授们充分的时间及自由,让他们探究科学问题。
凯瑟琳女皇,同时也是科学院的资助者,于欧拉到达圣彼得堡的当天去世。
其后彼得二世继位,彼得二世是个软弱的君主,实际权力由俄国贵族掌握。
贵族们对科学院的外国科学家心存戒心,于是他们切断了对欧拉及其同事们的财政资助,并且在其它方面找他们的麻烦。
情况在彼得二世去世(1730年)后有所好转,欧拉在科学院迅速得到提升,并于1731年获得物理学教授的职位。
两年后,由于受不了在圣彼得堡受到的种种审查和敌视,丹尼尔·伯努利返回了巴塞尔,欧拉于是接替丹尼尔成为数学所所长。
1735年,欧拉还在科学院地理所担任职务,协助编制俄国第一张全境地图。
1734年1月7日,欧拉迎娶了科学院附属中学的美术教师,瑞士人乔治·葛塞尔(Georg Gsell)的女儿,柯黛琳娜·葛塞尔(Katharina Gsell,1707-1773) ,两人共育有13个子女,其中仅有5个活到成年。
在柏林考虑到俄国持续的动乱,欧拉在1741年6月19日离开了圣彼得堡,到柏林科学院就职,职位由腓特烈二世提供。
他在柏林生活了25年,并在那儿写了不止380篇文章。
在柏林,他出版了他最有名的两部作品:关于函数方面的文章《无穷小分析引论》,出版于1748年;另一部是关于微分的《微积分概论》,出版于1755年。
在1755年,他成为瑞典皇家科学院的外籍成员。
视力恶化在欧拉的数学生涯中,他的视力一直在恶化。
在1735年一次几乎致命的发热后的三年,他的右眼近乎失明,但他把这归咎于他为圣彼得堡科学院进行的辛苦的地图学工作。
视力在他在德国期间也持续恶化,以至于弗雷德里克把他誉为“独眼巨人”。
欧拉的原本正常的左眼后来又遭受了白内障的困扰。
在他于1766年被查出有白内障的几个星期后,导致了他的近乎完全失明。
即便如此,病痛似乎并未影响到欧拉的学术生产力,这大概归因于他的心算能力和超群的记忆力。
比如,欧拉可以从头到尾不犹豫地背诵维吉尔的史诗《埃涅阿斯纪》,并能指出他所背诵的那个版本的每一页的第一行和最后一行是什么。