一元一次不等式组试题(含答案)

合集下载

2022年沪科版七年级数学下册第7章一元一次不等式与不等式组章节训练试题(含解析)

2022年沪科版七年级数学下册第7章一元一次不等式与不等式组章节训练试题(含解析)

七年级数学下册第7章一元一次不等式与不等式组章节训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某种商品进价为20元,标价为30元出售,商场规定可以打折销售,但其利润率不能少于5%,这种商品最多可以按几折销售?设这种商品打x 折销售,则下列符合题意的不等式是( )A .30x ﹣20≥20×5%B .30x ﹣20≤20×5%C .30×10x ﹣20≥20×5%D .30×10x ﹣20≤20×5% 2、已知关于x 的不等式组420102x x a -≥⎧⎪⎨->⎪⎩恰有4个整数解,则a 的取值范围是( ) A .﹣1<a <﹣12 B .﹣1≤a ≤﹣12 C .﹣1<a ≤﹣12 D .﹣1≤a <﹣12 3、如图,下列结论正确的是( )A .c >a >bB .11b c >C .|a |<|b |D .abc >04、﹣(﹣a )和﹣b 在数轴上表示的点如图所示,则下列判断正确的是( )A .﹣a <1B .b ﹣a >0C .a +1>0D .﹣a ﹣b <05、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣46、若x +2022>y +2022,则( )A .x +2<y +2B .x -2<y -2C .-2x <-2yD .2x <2y7、解集在数轴上表示为如图所示的不等式的是( )A .2x <B .2x ≤C .2x >D .2x ≥8、若m >n ,则下列不等式成立的是( )A .m ﹣5<n ﹣5B .55m n <C .﹣5m >﹣5nD .55m n -<- 9、已知x =1是不等式(x ﹣5)(ax ﹣3a +2)≤0的解,且x =4不是这个不等式的解,则a 的取值范围是( )A .a <﹣2B .a ≤1C .﹣2<a ≤1D .﹣2≤a ≤110、若a >b >0,c >d >0,则下列式子不一定成立的是( )A .a ﹣c >b ﹣dB .cd b a > C .ac >bc D .ac >bd第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若关于x 的不等式1x m +>的解集如图所示,则m 的值为_____.2、不等式组0123x a x -≥⎧⎨->-⎩的整数解共有4个,则a 的取值范围是 __________. 3、若x >y ,试比较大小:﹣3x +5 ______﹣3y +5.(填“>”、“<”或“=”)4、不等式组53x x m <⎧⎨>+⎩有解,m 的取值范围是 ______. 5、不等式组121a a a-<⎧⎨>-⎩的解集为____________. 三、解答题(5小题,每小题10分,共计50分)1、解不等式组求它的整数解:()202131x x x ->⎧⎪⎨+≥-⎪⎩ 2、关于x 的方程6422x a x a +-=+的解大于1,求a 的取值范围.3、定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”.例如:方程2x ﹣6=0的解为x =3,不等式组205x x -⎧⎨⎩><的解集为2<x <5.因为2<3<5.所以称方程2x ﹣6=0为不等式组205x x -⎧⎨⎩><的相伴方程. (1)若关于x 的方程2x ﹣k =2是不等式组3641410x x x x --⎧⎨-≥-⎩>的相伴方程,求k 的取值范围; (2)若方程2x +4=0,213x -=-1都是关于x 的不等式组()225m x m x m ⎧--⎨+≥⎩<的相伴方程,求m 的取值范围;(3)若关于x 的不等式组2122x x x n --+⎧⎨≤+⎩>的所有相伴方程的解中,有且只有2个整数解,求n 的取值范围.4、已知某校六年级学生超过130人,而不足150人,将他们按每组12人分组,多3人,将他们按每组8人分组,也多3人,该校六年级学生有多少人?5、解不等式(组):(1)3x ﹣2<x +10;(2)2(3)831214x x x x -+>⎧⎪⎨+≥-⎪⎩.-参考答案-一、单选题1、C【分析】根据题意易得这种商品的利润为30×10x ﹣20,然后根据“其利润率不能少于5%”可列出不等式. 【详解】解:设这种商品打x 折销售,由题意得:30×10x ﹣20≥20×5%; 故选C .【点睛】本题主要考查一元一次不等式的应用,解题的关键是熟练掌握销售中的利润问题.2、D【分析】先分别求得每个一元一次不等式的解集,再根据题意得出2a 的取值范围即可解答.【详解】解:解不等式组得:22x x a ≤⎧⎨>⎩, ∵该不等式组恰有4个整数解,∴-2≤2a <-1,解得:﹣1≤a <﹣12,故选:D .【点睛】本题考查解一元一次不等式组,熟练掌握一元一次不等式组的解法,得出2a 的取值范围是解答的关键.3、B【分析】根据数轴可得:101a b c <-<<<<再依次对选项进行判断.【详解】解:根据数轴上的有理数大小的比较大小的规律,从左至右逐渐变大,即可得:101a b c <-<<<<,A 、由101a b c <-<<<<,得c b a >>,故选项错误,不符合题意;B 、01b c <<<,根据不等式的性质可得:11b c >,故选项正确,符合题意;C 、1,01a b <-<<,可得||||a b >,故选项错误,不符合题意;D 、0,0,0a b c <<<,故0abc <,故选项错误,不符合题意;故选:B .【点睛】本题考查了利用数轴比较大小,不等式的性质、绝对值,解题的关键是得出101<-<<<<.a b c4、B【分析】化简﹣(﹣a)=a,根据数轴得到a<﹣1<﹣b<0,再结合有理数的加减、不等式的性质逐项分析可得答案.【详解】解:﹣(﹣a)=a,由数轴可得a<﹣1<﹣b<0,∵a<﹣1,∴﹣a>1,故A选项判断错误,不合题意;∵﹣b<0,∴b>0,b﹣a>0,故B正确,符合题意;∵a<﹣1,∴a+1<0,故C判断错误,不合题意;∵a<﹣b,∴a+b<0,∴﹣a﹣b>0,故D判断错误,不合题意.故选:B.【点睛】本题考查了有理数的加减法则、不等式的性质、用数轴表示数等知识,熟知相关知识并根据题意灵活应用是解题关键.5、D【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A.∵m>n,∴m+4>n+4,故该选项正确,不符合题意;B.∵m>n,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意; D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;故选:D .【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.6、C【分析】直接根据不等式的性质可直接进行排除选项【详解】解:∵x +2022>y +2022,∴x >y ,∴x +2>y +2,x -2>y -2,-2x <-2y ,2x >2y .故答案为:C .【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号方向改变,据此判断即可.7、C【分析】根据数轴可以得到不等式的解集.【详解】解:根据不等式的解集在数轴上的表示,向右画表示>或⩾,空心圆圈表示>,故该不等式的解集为x >2;故选C【点睛】本题要考查的是在数轴上表示不等式的解集,运用数形结合的思想是本题的解题关键8、D【分析】根据不等式的性质:不等式的两边都加(或减)同一个数,不等号的方向不变,不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的两边都乘以(或除以)同一个负数,不等号的方向改变,可得答案.【详解】解:A 、在不等式m >n 的两边同时减去5,不等式仍然成立,即m ﹣5>n ﹣5,原变形错误,故此选项不符合题意;B 、在不等式m >n 的两边同时除以5,不等式仍然成立,即55m n >,原变形错误,故此选项不符合题意; C 、在不等式m >n 的两边同时乘以﹣5,不等式号方向改变,即﹣5m <﹣5n ,原变形错误,故此选项不符合题意;D 、在不等式m >n 的两边同时乘以﹣5,不等式号方向改变,即55m n -<-,原变形正确,故此选项符合题意.故选:D .【点睛】本题考查了不等式的性质,不等式的基本性质是解不等式的主要依据,必须熟练地掌握.要认真弄清不等式的基本性质与等式的基本性质的异同,特别是在不等式两边同乘以(或除以)同一个数时,不仅要考虑这个数不等于0,而且必须先确定这个数是正数还是负数,如果是负数,不等号的方向必须改变.9、A【分析】根据不等式解的定义列出不等式,求出解集即可确定出a 的范围.【详解】解:∵x =1是不等式(x ﹣5)(ax ﹣3a +2)≤0的解,且x =4不是这个不等式的解,∴()()15320a a --+≤ 且()()454320a a --+> ,即﹣4(﹣2a +2)≤0且﹣(a +2)>0,解得:a <﹣2.故选:A .【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键.10、A【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【详解】解:A .当2a =,1b =,4c =,3d =时,a c b d -=-,故本选项符合题意;B .若0a b >>,0c d >>,则c d b a>,故本选项不合题意;C .若0a b >>,0c d >>,则ac bc >,故本选项不合题意;D .若0a b >>,0c d >>,则ac bd >,故本选项不合题意;故选:A .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.二、填空题1、3【分析】由数轴可以得到不等式的解集是x >﹣2,根据已知的不等式可以用关于m 的式子表示出不等式的解集.就可以得到一个关于m 的方程,可以解方程求得.【详解】解:解不等式x +m >1得1x m >-由数轴可得,x >﹣2,则12m -=-解得,m =3.故答案为:3.【点睛】本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括﹣2,即x >﹣2.并且本题是不等式与方程相结合的综合题.2、32a -<≤-【分析】解不等式组得到2a x ≤<,再根据不等式组有4个整数解,写出符合条件的整数解,据此解出a 的取值范围.【详解】解:解不等式组0123x a x -≥⎧⎨->-⎩得,2a x ≤< 不等式组的整数解共有4个,∴不等式组的整数解分别为:-2,-1,0,1,32a ∴-<≤-故答案为:32a -<≤-.【点睛】本题考查一元一次不等式组的整数解,正确得出不等式组的整数解是解题关键.3、<【分析】利用不等式的性质进行判断.【详解】解:∵x >y ,∴﹣3x <﹣3y ,∴﹣3x +5<﹣3y +5.故答案为:<.【点睛】本题考查了不等式的基本性质:不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.4、m <2【分析】根据不等式组得到m +3<x <5,【详解】解:解不等式组53x x m <⎧⎨>+⎩,可得,m +3<x <5, ∵原不等式组有解∴m +3<5,解得:m <2,故答案为:m <2.【点睛】本题主要考查了不等式组的计算,准确计算是解题的关键.5、132a <<【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】解:解不等式12a -<得: 3a <解不等式1a a 得:12a > ∴原不等式组的解集为132a << 故答案为:132a <<【点睛】本题考查了解一元一次不等式组,掌握求不等式组的解集是解题的关键.三、解答题1、不等式组的解集为23x <≤,不等式组的整数解为3.【分析】先求出每个不等式的解集,然后求出不等式组的解集,最后求出不等式组的整数解即可.【详解】解:()202131x x x ->⎧⎪⎨+≥-⎪⎩①② 解不等式①得:2x >,解不等式②得:3x ≤,∴不等式组的解集为23x <≤,∴不等式组的整数解为3.【点睛】本题主要考查了解一元一次不等式组和求一元一次不等式组的整数解,解题的关键在于能够熟练掌握解不等式组的方法.2、a >0【分析】先解方程得出x =44a +,根据方程的解大于1得出关于a 的不等式,解之即可. 【详解】解:解不等式6x +a −4=2x +2a ,得x =44a +, 根据题意,得:44a +>1, 解得a >0.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.3、(1)3<k≤4;(2)2<m≤3;(3)4≤n<6.【分析】(1)首先求出方程2x﹣k=2的解和不等式组3641410x xx x--⎧⎨-≥-⎩>的解集,然后根据“相伴方程”的概念列出关于k的不等式组求解即可;(2)首先求出方程2x+4=0,213x-=-1的解,然后分m<2和m>2两种情况讨论,根据“相伴方程”的概念即可求出m的取值范围;(3)首先表示出不等式组2122x xx n--+⎧⎨≤+⎩>的解集,然后根据题意列出关于n的不等式组求解即可.【详解】解:(1)∵不等式组为3641410x xx x--⎧⎨-≥-⎩>,解得532x≤<,∵方程为2x﹣k=2,解得x22k+ =,∴根据题意可得,523 22k+≤<,∴解得:3<k≤4,故k取值范围为:3<k≤4.(2)∵方程为2x+4=0,2113x-=-,解得:x=﹣2,x=﹣1;∵不等式组为225m x mx m--⎧⎨+≥⎩()<,当m<2时,不等式组为15xx m⎧⎨≥-⎩>,此时不等式组解集为x>1,不符合题意,应舍去;∴当m>2时不等式组解集为m﹣5≤x<1,∴根据题意可得,252mm⎧⎨-≤-⎩>,解得2<m≤3;故m取值范围为:2<m≤3.(3)∵不等式组为2122x xx n--+⎧⎨≤+⎩>,解得1<x22n+≤,根据题意可得,3242n+≤<,解得4≤n<6,故n取值范围为4≤n<6.【点睛】此题考查了新定义问题,一元一次方程和一元一次不等式组含参数问题,解题的关键是正确分析新定义的“相伴方程”概念,并列出方程求解.4、147【分析】由12和8的最小公倍数为24,可设该校六年级学生有(24x+3)人,根据“该校六年级学生超过130人,而不足150人”,即可得出关于x的一元一次不等式组,解之即可得出x的取值范围,结合x为正整数即可确定x的值,再将其代入(24x+3)中即可得出结论.【详解】解:∵12和8的最小公倍数为24,∴设该校六年级学生有(24x+3)人.依题意,得:243130 243150xx+>⎧⎨+<⎩,解得:5724<x <618. 又∵x 为正整数,∴x =6,∴24x +3=147(人).答:该校六年级学生有147人.【点睛】本题考查了一元一次不等式组.解题的关键在于通过确定两数的最小公倍数得到数量关系,正确的列不等式组.5、(1)x <6(2)﹣2<x ≤1【分析】(1)根据解不等式的步骤:移项,合并同类项,系数化为1进行计算.(2)分别解出不等式的解集,然后找出公共部分.(1)解: 3x ﹣2<x +10,移项得,3x ﹣x <10+2,合并同类项得,2x <12,系数化为1得,x <6.(2)2(3)8?31214x x x x -+>⎧⎪⎨+≥-⎪⎩①②,解不等式①得,x>﹣2,解不等式②得,x≤1,所以原不等式的解集为:﹣2<x≤1.【点睛】本题考查的是解一元一次不等式,以及解一元一次不等式组,正确求出每一个不等式解集是基础,“熟知同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。

人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案) (66)

人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案) (66)

人教版七年级数学下册第九章第三节一元一次不等式组复习试题(含答案)(1)计算:3tan30°﹣12|﹣2﹣1+(π﹣2019)0;(2)解不等式组:2(1)3212223x x x x x +>-⎧⎪-⎨-≤-⎪⎩ 【答案】(1)1;(2)945x -≤<【解析】【分析】(1)先代入三角函数值,取绝对值符号、计算负整数指数幂和零指数幂,再去括号、计算加减可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】(1)原式=311-+122⎫⎪⎭11-+122=1;(2)解不等式2(x+1)>3x ﹣2,得:x <4, 解不等式12223x x -≤- ,得:x ≥﹣95, 则不等式组的解集为﹣95≤x <4. 【点睛】此题考查三角函数值,绝对值,负整数指数幂和零指数幂,解一元一次不等式组,掌握运算法则是解题关键52.解不等式组:3561162x x x x <+⎧⎪+-⎨≥⎪⎩,把它的解集在数轴上表示出来,并写出其整数解.【答案】32x -<≤,x 的整数解为﹣2,﹣1,0,1,2.【解析】【分析】先对不等式组中的两个不等式进行分别求解,求得解集,再将解集表示在数轴上.【详解】 解:3561162x x x x <+⎧⎪⎨+-≥⎪⎩①② 解不等式①,3x >-,解不等式②,2x ≤,∴32x -<≤,解集在数轴上表示如下:∴x 的整数解为﹣2,﹣1,0,1,2.【点睛】本题考查不等式组和数轴,解题的关键是熟练掌握不等式组的求解和有理数在数轴上的表示.53.根据有理数乘法(除法)法则可知:①若0ab >(或0a b >),则00a b >⎧⎨>⎩或ab<⎧⎨<⎩;②若0ab<(或a0b<),则ab>⎧⎨<⎩或ab<⎧⎨>⎩.根据上述知识,求不等式(2)(3)0x x-+>的解集:解:原不等式可化为:(1)2030xx->⎧⎨+>⎩或(2)2030xx-<⎧⎨+<⎩.由(1)得,2x>,由(2)得,3x<﹣,∴原不等式的解集为:3x<﹣或2x>请你运用所学知识,结合上述材料解答下列问题:(1)不等式2230x x﹣﹣<的解集为.(2)求不等式401xx+<-的解集(要求写出解答过程)【答案】(1)13x-<<;(2)1x>或4x<-.【解析】【分析】(1)根据有理数乘法运算法则可得不等式组,仿照有理数乘法运算法则得出两个不等式组,分别求解可得.(2)根据有理数除法运算法则可得不等式组,仿照有理数除法运算法则得出两个不等式组,分别求解可得.【详解】解:(1)原不等式可化为:①3010xx->⎧⎨+<⎩或②3010xx-<⎧⎨+>⎩.由①得,空集,由②得,13x,∴原不等式的解集为:13x,故答案为:13x.(2)由401x x +<-知①4010x x +>⎧⎨-<⎩或②4010x x +<⎧⎨->⎩, 解不等式组①,得:1x >;解不等式组②,得:4x <-; 所以不等式401x x+<-的解集为1x >或4x <-. 【点睛】考查解不等式、不等式组的能力,将原不等式转化为两个不等式组是解题的关键.54.解下列方程组或不等式组. (1)24326x y x y -=⎧⎨+=⎩;(2)24(2)122x x x x +⎧⎪⎨-<⎪⎩. 【答案】(1)20x y =⎧⎨=⎩;(2)13x >-. 【解析】【分析】(1)先寻找两个式子之间的关系,用加减消元法解题即可;(2)解一元一次不等式组,先把每个不等式的解集求出来,再把两个解集取公共部分即可.【详解】(1)24,326x y x y -=⎧⎨+=⎩①② ①×2+②得:714x =,解得:2x =,把2x =代入①得:0y =,∴方程组的解为20 xy=⎧⎨=⎩(2)24(2)122x xxx+⎧⎪⎨-<⎪⎩①②解不等式①,得4x≥-,解不等式②,得13x>-,故不等式组的解集为13x>-.【点睛】(1)本题考查二元一次方程组的解法,一般选用加减法和代入法解二元一次方程组;(2)本题考查了一元一次不等式组的解法,解题的关键是分别求出两个式子的解集,再把解集合并.55.为提高饮水质量,越来越多的居民选购家用净水器.我市飞龙商场抓住商机,从厂家购进了A、B两种型号家用净水器共100台,A型号家用净水器进价是150元/台,B型号家用净水器进价是250元/台,购进两种型号的家用净水器共用去19000 元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这100台家用净水器的毛利润不低于5600元,求每台A型号家用净水器的售价至少是多少元? (注:毛利润=售价一进价) .【答案】(1)A:60台,B:40台;(2)190元【解析】【分析】(1)可以利用列表分析法对题目进行分析,找出其中的等量关系:所以可以得到方程组10 150******** x yx y+=⎧⎨+=⎩(2)设每台A型号家用净水器的毛利润是a元,则每台B型号家用浄水器的毛利润是2a元,根据题意得:60a+40×2a≥5600。

难点详解华东师大版七年级数学下册第8章一元一次不等式专题训练试题(含答案及详细解析)

难点详解华东师大版七年级数学下册第8章一元一次不等式专题训练试题(含答案及详细解析)

七年级数学下册第8章一元一次不等式专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若整数m 使得关于x 的不等式组()251325131x m x m x x ++⎧-≤⎪⎨⎪-<+⎩有且只有三个整数解,且关于x ,y 的二元一次方程组31x y m x y -=⎧⎨+=-⎩ 的解为整数(x ,y 均为整数),则符合条件的所有m 的和为( ) A .27 B .22 C .13 D .92、下列选项正确的是( )A .a 不是负数,表示为0a >B .a 不大于3,表示为3a <C .x 与4的差是负数,表示为40x -<D .x 不等于34,表示为34x > 3、由x >y 得ax <ay 的条件应是( )A .a >0B .a <0C .a ≥0D .b ≤04、如果不等式组12x x a⎧>-⎪⎨⎪>⎩的解集是12x >-,那么a 的值可能是( )A .13-B .0C .﹣0.7D .15、若a >b >0,c >d >0,则下列式子不一定成立的是( )A .a ﹣c >b ﹣dB .cd b a > C .ac >bc D .ac >bd6、下列说法中,正确的是( )A .x =3是不等式2x >1的解B .x =3是不等式2x >1的唯一解C .x =3不是不等式2x >1的解D .x =3是不等式2x >1的解集7、若m >n ,则下列不等式不成立的是( )A .m +4>n +4B .﹣4m <﹣4nC .44m n >D .m ﹣4<n ﹣48、不等式组2145x x x m -+⎧⎨>⎩有两个整数解,则m 的取值范围为( ) A .54m -<- B .54m -<<- C .54m -<- D .54m --9、已知关于x 的不等式(4)4a x a -<-的解集为1x <-,则a 的取值范围是( )A .4a >B .4a ≠C .4a <D .4a10、某矿泉水每瓶售价1.5元,现甲、乙两家商场 给出优 惠政策:甲商场全部9折,乙商场20瓶以上的部分8折.老师要小明去买一些矿泉水,小明想了想觉得到乙商场购买比较优惠.则小明需要购买的矿泉水的数量x 的取值范围是( )A .x >20B .x >40C .x ≥40D .x <40第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式组36x x <-⎧⎨≤⎩的解集是_______. 2、比较大小,用“>”或“<”填空:(1)若x y <,且()()a b x a b y ->-,则a _____b .(2)若a ,b 为实数,则22432a b b +-+____2321a b -+.3、不等式﹣5+x ≤0非负整数解是____.4、用“>”或“<”填空,并说明是根据不等式的哪条基本性质:(1)如果x +2>5,那么x _______3;根据是_______.(2)如果314a -<-,那么a _______43;根据是________. (3)如果233x <-,那么x ________92-;根据是________. (4)如果x -3<-1,那么x _______2;根据是________.5、不等式2x ﹣3<4x 的最小整数解是____.三、解答题(5小题,每小题10分,共计50分)1、解不等式:253164x x --+. 2、某市公交公司为落实“绿色出行,低碳环保”的城市发展理念,计划购买A ,B 两种型号的新型公交车,已知购买1辆A 型公交车和2辆B 型公交车需要165万元,2辆A 型公交车和3辆B 型公交车需要270万元.(1)求A 型公交车和B 型公交车每辆各多少万元?(2)公交公司计划购买A 型公交车和B 型公交车共140辆,且购买A 型公交车的总费用不高于B 型公交车的总费用,那么该公司最多购买多少辆A 型公交车?3、某童装店按每套90元的价格购进40套童装,然后按标价打九折售出,如果要获得不低于900元的利润,每套童装的标价至少是_____元.4、求一元一次不等式组的解集,并把它的解集表示在数轴上.()3241213x x x x ⎧--≥-⎪⎨+>-⎪⎩5、为做好“园林城市创建”工作,打造美丽城市,达州市绿化提质改造工程正如火如荼地进行.某施工队计划购买甲、乙两种树苗共400棵对芙蓉路的某桥标段道路进行绿化改造,已知甲种树苗每棵200元,乙种树苗每棵300元.(1)若购买两种树苗的总金额为90000元,求需购买甲、乙两种树苗各多少棵?(2)若购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?-参考答案-一、单选题1、A【解析】【分析】 先求出不等式组的解集为6211m x +-≤<,根据不等式组有且只有三个整数解,可得516m ≤< ,再解出方程组,可得1434m x m y -⎧=⎪⎪⎨+⎪=-⎪⎩,再根据x ,y 均为整数,可得m 取5,9,13,即可求解. 【详解】 解:()251325131x m x m x x ++⎧-≤⎪⎨⎪-<+⎩①② 解不等式①,得:611m x +≥- , 解不等式②,得:2x < , ∴不等式的解集为6211m x +-≤<, ∵不等式组有且只有三个整数解, ∴62111m +-<-≤- ,解得:516m ≤< ,∵m 为整数,∴m 取5,6,7,8,9,10,11,12,13,14,15,31x y m x y -=⎧⎨+=-⎩,解得:1434m x m y -⎧=⎪⎪⎨+⎪=-⎪⎩, ∴当m 取5,9,13 时,x ,y 均为整数,∴符合条件的所有m 的和为591327++= .故选:A【点睛】本题主要考查了解一元一次不等组和二元一次方程组,及其整数解,熟练掌握解一元一次不等组和二元一次方程组的方法是解题的关键.2、C【解析】【分析】由题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案.【详解】解:A .a 不是负数,可表示成0a ,故本选项不符合题意;B .a 不大于3,可表示成3a ,故本选项不符合题意;C .x 与4的差是负数,可表示成40x -<,故本选项符合题意;D .x 不等于34,表示为34x ≠,故本选项不符合题意; 故选:C .【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“≤”.3、B【解析】【分析】由不等式的两边都乘以,a而不等号的方向发生了改变,从而可得0a<.【详解】解:,0,x y a,ax ay故选B【点睛】本题考查的是不等式的性质,掌握“不等式的两边都乘以同一个负数,不等号的方向改变”是解本题的关键.4、C【解析】【分析】根据不等式组解集的确定方法:大大取大可得12a≤-,再在选项中找出符合条件的数即可.【详解】解:∵不等式组12xx a⎧>-⎪⎨⎪>⎩的解集是12x>-,∴a≤12 -,而1132->-;102>-;112>-;10.72-<-, 故选:C .【点睛】本题考查一元一次不等式组的解法,理解一元一次不等式组的解集的意义是正确解答的前提.5、A【解析】【分析】根据不等式的基本性质:①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【详解】解:A .当2a =,1b =,4c =,3d =时,a c b d -=-,故本选项符合题意;B .若0a b >>,0c d >>,则c d b a>,故本选项不合题意; C .若0a b >>,0c d >>,则ac bc >,故本选项不合题意;D .若0a b >>,0c d >>,则ac bd >,故本选项不合题意;故选:A .【点睛】本题主要考查了不等式的性质,解题的关键是注意不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变.6、A【解析】【分析】对A 、B 、C 、D 选项进行一一验证,把已知解代入不等式看不等式两边是否成立.解:A 、当x =3时,2×3>1,成立,故A 符合题意;B 、当x =3时,2×3>1成立,但不是唯一解,例如x =4也是不等式的解,故B 不符合题意;C 、当x =3时,2×3>1成立,是不等式的解,故C 不符合题意;D 、当x =3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x >12,故D 不符合题意;故选:A .【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.7、D【解析】【分析】根据不等式的基本性质对各选项进行逐一分析即可.【详解】解:A .∵m >n ,∴m +4>n +4,故该选项正确,不符合题意;B .∵m >n ,∴44m n -<-,故该选项正确,不符合题意;C .∵m >n , ∴44m n >,故该选项正确,不符合题意;D .∵m >n ,∴44m n ->-,故该选项错误,符合题意;【点睛】本题考查不等式的基本性质.掌握不等式的基本性质“1.不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;2.不等式两边都乘(或除以)同一个正数,不等号的方向不变;3.不等式两边都乘(或除以)同一个负数,不等号的方向改变.”是解答本题的关键.8、C【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,最后根据已知得出关于m的不等式组,求出即可.【详解】解:2145x xx m-+⎧⎨>⎩①②,解不等式①得:3x-,解不等式②得:x m>,∴不等式组的解集为3m x<-,不等式组有两个整数解,54m∴-<-,故选:C.【点睛】本题考查了解一元一次不等式组,不等式组的整数解的应用,解此题的关键是求出关于m的不等式组,难度适中.9、C【解析】由题意直接根据已知解集得到40a ->,即可确定出a 的范围.【详解】 解:不等式(4)4a x a -<-的解集为1x <-,40a ∴->,解得:4a <.故选:C .【点睛】本题考查不等式的解集,熟练掌握不等式的基本性质是解答本题的关键.10、B【解析】略二、填空题1、x <﹣3【解析】【分析】根据求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)进行解答.【详解】解:根据“同小取小”,不等式组36x x <-⎧⎨≤⎩的解集是x <﹣3. 故答案为:x <﹣3.【点睛】本题考查了一元一次不等式组的解集.解题的关键是掌握一元一次不等式组解集的求法,其简便求法就是用口诀求解.求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).2、 <>【解析】【分析】(1)由不等式的性质可得0a b -<,即可求解.(2)将两个代数式进行作差,求出差的正负,从而判断出代数式的大小.【详解】解:(1)x y <,且()()a b x a b y ->-,0a b ∴-<,a b ∴<,故答案为:<.(2)222432(321)a b b a b +-+--+222432321a b b a b =+-+-+-230b =+>,222432321a b b a b ∴+-+>-+.故答案为:>.【点睛】本题主要是考察了比较代数式的大小以及不等式的基本性质,常见的比较大小的方法有:作差法、作商法、两边同时平方等,熟练运用合适的方法进行比较,是解决此类题的关键.3、0,1,2,3,4,5【解析】【分析】先根据不等式的基本性质求出x的取值范围,再根据x的取值范围求出符合条件的x的非负整数解即可.【详解】解:移项得:x≤5,故原不等式的非负整数解为:0,1,2,3,4,5.故答案为:0,1,2,3,4,5.【点睛】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.4、>不等式基本性质1 >不等式基本性质3 <不等式基本性质2 <不等式基本性质1;【解析】【分析】(1)根据不等式基本性质1,不等式两边同时加上或减去一个数,不等号方向不变,求解即可;(2)根据不等式基本性质3,不等式两边同时乘以或除以一个负数,不等号方向改变,据此求解即可;(3)根据不等式基本性质2,不等式两边同时乘以或除以一个正数,不等号方向不变,求解即可;(4)根据不等式基本性质1,不等式两边同时加上或减去一个数,不等号方向不变,求解即可.【详解】解:(1)如果x+2>5,那么3x>,不等号两边同时减去2,不等号方向不变,根据的是不等式基本性质1;(2)如果314a-<-,不等号两边同时乘以43-,那么43a>;根据是不等式基本性质3;(3)如果233x<-,不等号两边同时乘以32,那么92x<-;根据是不等式基本性质2;(4)如果x-3<-1,不等号两边同时加上3,那么2x<;根据是不等式基本性质1;故答案为:>,不等式基本性质1;>,不等式基本性质3;<,不等式基本性质2;<,不等式基本性质1.【点睛】此题考查了不等式的基本性质,解题的关键是掌握不等式的基本性质.5、1-【解析】【详解】解:234x x-<,23x-<,32x>-,最小整数解是1-,故答案为1-.【点睛】本题考查了一元一次不等式的整数解,解题的关键是求出不等式的解集.三、解答题1、1x【解析】【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得.【详解】两边都乘以12,得:()()1222533x x +--,去括号,得:1241093x x +--,移项、合并同类项,得:77x ,系数化为1得,1x .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.2、 (1)A 型公交车每辆45万元,B 型公交车每辆60万元;(2)80【解析】【分析】(1)设A 型公交车每辆x 万元,B 型公交车每辆y 万元,由题意:购买1辆A 型公交车和2辆B 型公交车需要165万元,2辆A 型公交车和3辆B 型公交车需要270万元.列出二元一次方程组,解方程组即可;(2)设该公司购买m 辆A 型公交车,则购买(140-m )辆B 型公交车,由题意:购买A 型公交车的总费用不高于B 型公交车的总费用,列出一元一次不等式,解不等式即可.(1)解:设A 型公交车每辆x 万元,B 型公交车每辆y 万元,由题意得:216523270x y x y +=⎧⎨+=⎩, 解得:4560x y =⎧⎨=⎩, 答:A 型公交车每辆45万元,B 型公交车每辆60万元;(2)解:设该公司购买m辆A型公交车,则购买(140﹣m)辆B型公交车,由题意得:45m≤60(140﹣m),解得:m≤80,答:该公司最多购买80辆A型公交车.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.3、125【解析】【分析】设每套童装的标价是x元,根据(售价﹣进价)×销量=总利润列出不等式,解不等式可得出x的取值范围,即可得答案.【详解】设每套童装的标价是x元,∵按标价打九折售出,要获得不低于900元的利润,∴40×(x•90%﹣90)≥900,解得:x≥125,∴每套童装的标价至少125元.故答案为:125【点睛】本题考查一元一次不等式的应用,理解题意,根据(售价﹣进价)×销量=总利润列出不等式是解题关键.4、x≤1,解集在数轴上的表示见解析【分析】先求出两个一元一次不等式的解集,再求两个解集的公共部分即得不等式组的解集,然后把解集在数轴上表示出来即可.【详解】()3241213x x x x ⎧--≥-⎪⎪⎨+⎪>-⎪⎩①② 解不等式①得:x ≤1,解不等式②得:x <4,∴不等式组的解集为x ≤1.不等式组的解集在数轴表示如下:【点睛】本题考查了解一元一次不等式组,关键是求出每一个一元一次不等式的解集,注意当不等式两边同除以一个负数时,务必记住:不等号的方向要改变.5、(1)购买甲种树苗300棵,则购买乙种树苗100棵;(2)至少应购买甲种树苗240棵【解析】【分析】(1)设购买甲种树苗x 棵,则购买乙种树苗(400-x )棵,根据购买两种树苗的总金额为90000元建立方程求出其解即可;(2)设应购买甲种树苗a 棵,则购买乙种树苗(400-a )棵,根据购买甲种树苗的金额不少于购买乙种树苗的金额建立不等式求出其解即可.解:(1)设购买甲种树苗x棵,则购买乙种树苗(400-x)棵,由题意得200x+300(400-x)=90000,解得:x=300,∴购买乙种树苗400-300=100棵,答:购买甲种树苗300棵,则购买乙种树苗100棵;(2)设应购买甲种树苗a棵,则购买乙种树苗(400-a)棵,由题意,得200a≥300(400-a),解得:a≥240.答:至少应购买甲种树苗240棵.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次不等式的解法的运用,解答时建立方程和不等式是关键.。

人教版七年级数学第九章第3节《一元一次不等式组》单元提高训练 (9)(含答案解析)

人教版七年级数学第九章第3节《一元一次不等式组》单元提高训练 (9)(含答案解析)
(1) ;
(2) ,并写出其整数解.
【答案与解析】
1.C
【解析】
设用A型货厢x节,B型货厢 节,根据题意列不等式组求解,求出x的范围,看有几种方案.
解:设用A型货厢x节,B型货厢 节,
根据题意列式: ,解得 ,
因为x只能取整数,所以x可以取28,29,30,对应的 是22,21,20,有三种方案.
故选:C.
解:设小碗的单价为a,中碗的单价为2a,大碗的单价为3a,大碗、中碗、小碗的总数分别为x、y、z,根据题意得:
,则有 ,
令 ,
其中小碗的总数超过 个,
,即 ,
又 为整数,且兄弟俩买回来的碗总数是一个两位数,

中碗总数为36,小碗总数为24,
由各自买回来的相同规格的碗数量之差小于 ,
哥哥与弟弟买回中碗的可能是:18、18和19、17两种可能,买回小碗的可能有12、12和13、11两种可能;
7.C
【解析】
∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,
∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,
∴1<a⩽2,
故选C.
8.a≥1
【解析】
已知不等式组的解集为 ,再根据不等式组解集的口诀:同大取大,得到a的范围.
销售情况
销售收入


第一周
5个
8个
2350元
第二周
10个
6个
2700元
(1)请计算甲、乙两种测温仪的销售单价;
(2)若该超市计划再购进一批这两种品牌测温仪共40个,销售单价不变,若设甲型号购进 个,则该批测温仪销售总利润为_______元(用含 的代数式表示);

第二章一元一次不等式与一元一次不等式组综合测试题含答案

第二章一元一次不等式与一元一次不等式组综合测试题含答案

第二章 一元一次不等式与一元一次不等式组 综合测试题 一、选择题(每小题3分,共30分)1.若关于x 的不等式组的解集表示在数轴上如图1所示,则这个不等式组的解集是( )A. x ≤2B. x >1C. 1≤x <2D. 1<x ≤22.已知实数a ,b ,若a >b ,则下列结论正确的是( )A. a -5<b -5B. 2<2C. 3a <3bD. 3a >3b 3.不等式4-3x ≥2x -6的非负整数解有( )A. 1个B. 2个C. 3个D. 4个4.关于x 的不等式-≥1的解集如图2所示,则a 的值为( )A. -1B. 0C. 1D. 25.若不等式-2>0的解集为x <-2,则关于y 的方程2=0的解为( )A. y =-1B. y =1C. y =-2D. y =2图1 0 图-3 32 1 -2 -1 06.若>0,且b<0,则a,b,-a,-b的大小关系为()A. -a<-b<b<aB. -a<b<-b<aC. -a<b<a<-bD. b<-a<-b<a7.使不等式x-1≥2与3x-7<8同时成立的x的整数值是()A. 3,4B. 4,5C. 3,4,5D. 不存在8.铁路部门规定旅客免费携带行李箱的长、宽、高之和不超过160 ,某厂家生产符合该规定的行李箱,已知行李箱的高为30 ,长与宽的比为3∶2,则该行李箱的长的最大值为()A. 30B. 160C. 26D. 789.图3是测量一颗玻璃球体积的过程:①将300 3的水倒进一个容量为500 3的杯子中;②将四颗相同的玻璃球放入水中,结果水没有满;③再将一颗同样的玻璃球放入水中,结果水满溢出.根据以上过程,推测这样一颗玻璃球的体积在()A. 20 3以上,30 3以下B. 30 3以上,40 3以下C. 40 3以上,50 3以下D. 50 3以上,60 3以下图Oxy-2y=ny=-4图10.如图4,直线y =-与y =4n (n ≠0)的交点的横坐标为-2,则关于x 的不等式->4n >0的整数解为( )A. -1B. -5C. -4D. -3二、填空题(每小题4分,共32分)11.写出一个解集为x ≥1的一元一次不等式___.12.如图5,已知函数y =2与函数y =-3的图象交于点P ,则不等式-3>2的解集是___.图4 O x y P -6 y =-3y =213.如果a<b ,那么3-23-2b.14.不等式13(x -m )>3-m 的解集为x >1,则m 的值为___.15.某市组织开展“吸烟有害健康”的知识竞赛,共25道题,答对一题得4分,不答或答错扣2分,得分不低于60分获奖,那么获奖至少需要答对道题.16.若关于x 的一元一次不等式组100x x a -<⎧⎨->⎩,无解,则a 的取值范围是__.17.定义新运算:对于任意实数a ,b 都有a △b =-a -1,例如:2△4=24-2-4+1=8-6+1=3.请根据上述知识解决问题:若3△x 的值大于5而小于9,那么x 的取值范围是___. 18.按下列程序进行运算(如图6):规定:程序运行到“判断结果是否大于244”为一次运算.若x =5,则运算进行___次才停止;若运算进行了5次才停止,则x 的取值范围是___.三、解答题(共58分)19.(6分)解不等式213x --926x +≤1,并把解集表示在数轴上. 图是 否 输入 x 乘以3 减去2停止 大于24420.(8分)解不等式组523132x x x +⎧⎪+⎨⎪⎩≥,>,并写出不等式组的整数解. 21.(10分)为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品.已知乒乓球每个1.5元,球拍每只22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少只球拍?22.(10分)已知实数a 为常数且a ≠3,解不等式组()233112022x x a x -+≥-⎧⎪⎨-+<⎪⎩,①,②并根据a 的取值情况写出其解集.23.(12分)已知某工厂计划用库存的302 m 2木料为某学校生产500套桌椅,供该校1250名学生使用.该厂生产的桌椅分为A ,B 两种型号,有关数据如下:设生产A 型桌椅x 套,生产全部桌椅并运往该校的总费用(总费用=生产成本+运费)为y 元.(1)求y 与x 之间的关系式,并指出x 的取值范围;(2)求总费用y 最小时的值.24.(12分)阅读下面的材料,回答问题:已知(x -2)(6+2x )>0,求x 的取值范围.解:根据题意,得20620x x ⎧⎨⎩->,+>或20620x x ⎧⎨⎩-<,+<. 分别解这两个不等式组,得x >2或x <-3.故当x >2或x <-3时,(x -2)(6+2x )>0.(1)由(x -2)(6+2x )>0,得出不等式组20620x x ⎧⎨⎩->,+>或20620x x ⎧⎨⎩-<,+<,体现了 思想.(2)试利用上述方法,求不等式(x -3)(1-x )<0的解集.附加题(15分,不计入总分)25.我们用[a ]表示不大于a 的最大整数,例如:[2.5]=2,[3]=3,[-2.5]=-3;用<a >表示大于a 的最小整数,例如:<2.5>=3,<4>=5,<-1.5>=-1.解决下列问题:(1)[-4.5]=___,<3.5>=___;(2)若[x ]=2,则x 的取值范围是___;若<y >=-1,则y 的取值范围是___.(3)已知x ,y 满足方程组[][]3233 6.x y x y ⎧+=⎪⎨-=-⎪⎩,求x ,y 的取值范围.参考答案一、1. D 2. D 3. C 4. D 5. D 6. B 7. A 8. D 9. C 10. D二、11. 答案不唯一,如2≥3 12. x <4 13. > 14. 4 15. 19 16. a ≥1 17. 72<x <11218. 4 2<x ≤4 提示:通过计算知,经过4次运算后结果大于244. 若运算进行了5次才停止,则有第一次结果为3x -2,第二次结果为3(3x -2)-2=9x -8,第三次结果为3(9x -8)-2=27x -26,第四次结果为3(27x -26)-2=81x -80,第五次结果为3(81x -80)-2=243x -242.由题意,得8180244243242244.x x -≤⎧⎨->⎩,解得2<x ≤4.三、19. 不等式的解集为x ≥-2,在数轴上表示如图所示:20. 不等式组的解集是-1≤x <2,不等式组的整数解是-1,0,1.21. 解:设购买球拍x 只.根据题意,得1.5×20+22x ≤200,解得x ≤8711. 由于x 取整数,故x 的最大值为7.----0 1 2答:孔明应该买7只球拍.22. 解:解不等式①,得x ≤3;解不等式②,得x <a .因为a 是不等于3的常数,所以当a >3时,不等式组的解集为x ≤3;当a <3时,不等式组的解集为x <a .23. 解:(1)由题意,得生产B 型桌椅(500-x )套,则y =(100+2)(120+4)(500-x )=-2262 000.又()()2350012500.50.7500302x x x x +-≥⎧⎪⎨+-≤⎪⎩,,解得240≤x ≤250,所以y =-2262 000(240≤x ≤250).(2)因为-22<0,所以y 随x 的增大而减小.所以当x =250时,总费用y 最小,最小值为56 500元.24. 解:(1)转化(2)由(x -3)(1-x )<0,可得3010x x -⎧⎨-⎩>,<或3010.x x -⎧⎨-⎩<,> 分别解这两个不等式组,得x>3或x<1.所以不等式(x-3)(1-x)<0的解集是x>3或x<1.25. 解:(1)-5 4(2)2≤x <3 -2≤y <-1提示:因为 [x ]=2表示不大于x 的最大整数是2,所以[2]=2,[3]=3.所以x 可以等于2,不可以等于3,即2≤x <3;因为<y >=-1表示大于y 的最小整数是-1,所以<-2>=-1,<-1>=0.所以y 可以等于-2,不可以等于-1,即-2≤y <-1.(3)解方程组[][]32336x y x y ⎧+=⎪⎨-=-⎪⎩,,得[]13x y ⎧=-⎪⎨=⎪⎩,.因为[x]=-1表示不大于x的最大整数是-1,所以[-1]=-1,[0]=0.所以x可以等于-1,不可以等于0,即-1≤x<0;因为<y>=3表示大于y的最小整数是3,所以<2>=3,<3>=4.所以y可以等于2,不可以等于3,即2≤y<3.。

湘教版八年级数学上册第四章一元一次不等式(组)测试题五(附答案)

湘教版八年级数学上册第四章一元一次不等式(组)测试题五(附答案)

湘教版八年级数学上册第四章一元一次不等式(组)测试题五(附答案)一、单选题(共12题;共24分)1.不等式3x≤2(x﹣1)的解集为()A. x≤﹣1B. x≥﹣1C. x≤﹣2D. x≥﹣22.不等式x+1≥2的解集在数轴上表示正确的是()A. B. C. D.3.若关于x的不等式的整数解共有5个,则m的取值范围是()A. 7≤m≤8B. 7≤m<8C. 7<m≤8D. 7<m<84.不等式组的最大整数解是( )A. 0B. -1C. 1D. -25.若一元一次不等式组有解,则m的取值范围是()A. m≤6B. m≥6C. m<6D. m>66.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至少可打()A. 6折B. 7折C. 8折D. 9折7.不等式组的解集是()A. ﹣2≤x≤1B. ﹣2<x<1C. x≤﹣1D. x≥28.不等式组的解在数轴上表示为()A. B. C. D.9.不等式组的解集是()A. x>﹣1B. x≤1C. x<﹣1D. ﹣1<x≤110.实数,,,﹣,0,2.9 ,1.313113111…(两个“3”之间依次多一个“1”),其中无理数有()A. 1个B. 2个C. 3个D. 4 个11.若关于的一元一次不等式组无解,则的取值范围是()A. ≥1B. >1C. ≤D. <12.已知整数k使得关于x、y的二元一次方程组的解为正整数,且关于x的不等式组有且仅有四个整数解,则所有满足条件的k的和为()A. 4B. 9C. 10D. 12二、填空题(共7题;共16分)13.有若干辆载重8吨的车运一批货物,每辆车装载5吨,则剩下10吨货物,每辆车装载8吨,则最后一辆不满也不空,则货物有________吨.14.若x,y为实数,且|x﹣2|+=0,则x+y=________ .15.要使不等式﹣3x﹣a≤0的解集为x≥1,那么a= ________16.某公司打算至多用1200元印制广告单.已知制版费50元,每印一张广告单还需支付0.3元的印刷费,则该公司可印制的广告单数量x(张)满足的不等式为________.17.不等式组的最小整数解是________.18.若不等式组有解,则a的取值范围是________19.Rt△ABC中,AB=8,BC=6,将它绕着斜边AC中点O逆时针旋转一定角度后得到△A’B’C’,恰好使A’B’∥AC,同时A'B’与AB、BC分别交于点E、F,则EF的长为________ .三、解答题(共5题;共25分)20.解不等式组,并求它的整数解.21.解不等式组:,并把解集表示在数轴上.22.某班有住宿生若干人,分住若干间宿舍,若每间住4人,则还余20人无宿舍住;若每间住8人,则有一间宿舍不空也不满,求该班住宿生人数和宿舍间数.23.若关于x的不等式组的正整数解只有2个,求a的取值范围.24.解不等式组,并写出该不等式组的最大整数解.四、综合题(共3题;共35分)25.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.26.综合题。

初二数学一元一次不等式试题答案及解析

初二数学一元一次不等式试题答案及解析1.求不等式组的整数解。

【答案】-1,0.【解析】先分别解不等式,然后根据“口诀”确定不等式组的解,然后找出整数解即可.试题解析:解不等式5+2x≥3,得:x≥-1.解不等式,得:x<1所以不等式组的解为:-1≤x<1所以整数解为:-1,0.【考点】一元一次不等式组的解法;不等式整数解.2.不等式x>x-1的非负数解的个数是()A.1B.2C.3D.无数个【答案】B.【解析】移项得:x<1,解得:x<,则不等式x>x-1的非负整数解为1,0,共2个.故选B.【考点】一元一次不等式的整数解.3.下列不等式变形正确的是()A.B.C.D.【答案】D【解析】A、若c<0,则A错误;B、由不等式的基本性质1,可知错误;C、若a<0,则C错误;D、由不等式的基本性质3,可知D正确,故选D【考点】不等式的基本性质4.解不等式组,把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数集.【答案】不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2【解析】先将不等式组中每一个不等式的解集求出,然后再在数轴上表示,写出满足条件的非负整数解即可试题解析:解不等式①得,x≥-1;解不等式②得,x<3;所以原不等式组的解集为:-1<x≤3不等式组的非负整数解为:0,1,2.【考点】1、解不等式组;2、不等式组的整数解5.如果关于x的不等式组无解,那么m的取值范围是()A.m>1B.m≥1C.m<1D.m≤1【答案】D.【解析】∵关于x的不等式组无解∴3-m≥m+1解得:m≤1,故选D.【考点】解一元一次不等式组6.如果不等式(m-2)x>2-m的解集是x<-1, 则有()A.m>2B.m<2C.m=2D.m≠2【答案】B.【解析】∵(m-2)x>2-m的解集是x<-1,∴m-2<0,∴m<2.故选:B.【考点】不等式的性质.7.某宾馆一楼客房比二楼少5间,某旅游团有48人,如果全住一楼,若按每间4人安排,则房间不够;若按每间5人安排,则有的房间住不满5人.如果全住在二楼,若按每间3人安排,则房间不够;若按每间4人安排,则有的房间住不满4人,试求该宾馆一楼有多少间客房?【答案】10.【解析】关系式为:4×第一层房间数<48;5×第一层房间数>48;3×第二层房间数<48;4×第二层房间数>48,把相关数值代入求整数解即可.试题解析:设第一层有客房x间,则第二层有(x+5)间,由题可得由①得:,解得:;由②得:,解得:7<x<11.∴原不等式组的解集为.∴整数x的值为x=10.答:一层有客房10间.【考点】一元一次不等式组的应用.8.关于x的不等式组有四个整数解,则a的取值范围是 [ ].A.B.C.D.【答案】B.【解析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求a的取值范围即可.由(1)得x>8;由(2)得x<2-4a;其解集为8<x<2-4a,因不等式组有四个整数解,为9,10,11,12,则解得-≤a<-.故选B.考点: 一元一次不等式组的整数解.9.已知关于x,y的方程组的解为非负数,求整数m的值.【答案】7,8,9,10.【解析】此题考查了解方程组与解不等式组,根据题意可以先求出方程组的解(解中含有字母m),然后根据x≥0,y≥0,组成关于m的不等式组,解不等式组即可求解.试题解析:解方程组可得.因为x≥0,y≥0,所以解得所以≤m≤,因为m为整数,故m=7,8,9,10.考点: 1一元一次不等式组的整数解;2.解二元一次方程组.10.下列不等式一定成立的是()A.4a>3a B.3-x<4-x C.-a>-3a D.【答案】B.【解析】A、当a=0时,4a=3a,故选项错误;B、正确;C、当a=0时,-a=-3a,故选项错误;D、当a<0时,.故选B【考点】不等式的性质.11.下列不等式变形正确的是()A.由,得B.由,得-2a>-2bC.由,得D.由,得【答案】B【解析】A错误:当c=0时,ac>bc不成立。

初中数学一元一次不等式(组)单元综合能力达标测试题4(附答案)

(1)王老师为什么说他搞错了?试用方程的知识给予解释;
(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本,但笔记本的单价已经模糊不清,只能辨认应为小于5的整数,笔记本的单价可能为多少元?
参考答案
1.A
【解析】

解①得:x≥a+b,
解②得:x< ,
根据题意得:
解得: ,
所以 .
故选A.
【详解】
设胜的场次为x,则负的场次为32-x,则根据题意可得:
,解得不等式为 ,故这个队至少要胜20场才有希望进入季后赛.
【点睛】
本应用题关键学会利用方程的思想解不等式。
13.0,1,2
【解析】
【分析】
先按照解不等式的方法求出不等式的解集,然后再在其解集中确定符合题意的非负整数解即可.
【详解】
解:移项得: ,
故选:C
【点睛】
本题考查了一元一次不等式的应用,解答本题的关键是读懂题意,找出合适的不等关系,列不等式求解.
7.C
【解析】
【分析】
利用方差的意义、不等号的性质、全等三角形的判定及确定圆的条件对每个选项逐一判断后即可确定正确的选项.
【详解】
A.方差越大,越不稳定,故选项错误;
B.在不等式的两边同时乘以或除以一个负数,不等号方向改变,故选项错误;
(1)请为校方设计可能的租车方案;
(2)在(1)的条件下,校方根据自愿的原则,统计发现有 人参加,请问校方应如何租车,且又省钱?
24.我市正在创建“全国文明城市”,某校拟举办“创文知识”抢答赛,欲购买A、B两种奖品以鼓励抢答者.如果购买A种20件,B种15件,共需380元;如果购买A种15件,B种10件,共需280元.

八年级数学下册《一元一次不等式组》典型例题2(含答案)

《一元一次不等式组》典型例题例题1车站有待运的甲种货物1530吨,乙种货物1150吨,原计划用50节BA,两种型号的车厢将这批货物运至北京,已知每节A型货箱的运费为0.5万元,每节B型货箱的运费为0.8万元,甲种货物35吨和乙种货物15吨可装满一节A型货箱,甲种货物25吨和乙种货物35吨可装满一节B型货箱,按此要求安排BA,两种货箱的节数,共有哪几种方案?请你设计出来,并说明哪种方案的运费最少?例题2幼儿园大班分苹果,若每人分3个,则余8个,若前面每人分5个,则最后一个小朋友得到的苹果数不足3个,求有多少个小朋友和多少个苹果?例题3某班需要买一些笔记本和钢笔以表扬在数学竞赛中获奖的10名学生,已知笔记本的单价是3.5元,钢笔的单价是8元,且购买奖品的金额不超过70元.问至多能买几支钢笔?例题4某宾馆底楼客房比二楼少5间,某旅游团有48人,若全安排在底楼,每间4人,房间不够,每间5人,有房间没有住满,又若安排住二楼,每间3人,房间不够,每间4人,又有房间没有住满,问宾馆底楼有客房几间?例题5幼儿园有玩具若干件,分给小朋友,如果每人3件,那么还余59件,如果每人分5件,那么最后一个小朋友少几件,来这个幼儿园有多少玩具?多少个小朋友?例题6某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品共50件.已知生产一件A种产品需甲种原料9kg、乙种原料3kg;生产一件B种产品需甲种原料4kg、乙种原料10kg.(1)设生产x件A种产品,写出x应满足的不等式组;(2)如果x是整数,有哪几种符合题意的生产方案?请你帮助设计.例题8一条铁路线上EA,,,各站之间的路程如图所示,单位为千,DCB米.一列火车7:30从A站开出,向E站行驶,行驶速度为80km/h,每站停车时间约4min,问这列火车何时行驶在D站与E站之间(不包括D站、E站)的铁路线上.例题9某自行车厂今年生产销售一种新自行车,现向你提供以下有关信息:(1)该厂去年已备有这种自行车的车轮10000只,车轮车间今年平均每月可生产车轮1500只,每辆自行车需装配2只轮;(2)该厂装配车间(自行车生产最后一道工序的生产车间)每月至少可装配这种自行车1000辆,但不超过1200辆;(3)今年该厂已收到各地客户订购这种自行车共14500辆的订货单;(4)这种自行车出厂销售单价为500元/辆.设该厂今年这种自行车的销售金额为a万元,请你根据上述信息,判断a的取值范围.例题10某园林的门票每张10元,一次使用.考虑人们的不同需求,也为了吸引更多的游客,该园林除保留原来的售票方法外,还推出了一种购买个人年票的售票方法(个人年票从购买日起,可供持票者使用一年).年票分C,三A,B类:A类年票每张120元,持票者进入园林时,无需再买门票;B类年票每张60元,持票者进入该园林时,需再购买门票,每次2元;C类年票每张40元,持票者进入该园林时,需再购买门票,每次3元.(1)如果你只选择一种购买门票的方式,并且你计划在一年中用80元花在该园林的门票上,试通过计算,找出进入该园林的次数最多的购票方式.(2)求一年中进入该园林至少超过多少次时,购买A在年票比较合算.例题11有两个学生参加四次测验,他们的平均分数不同,但都是低于90分的整数.他们又参加了第五次测验,测验后他们的平均成绩都提高到90分.问在第五次测验时,这两个学生的分数各是多少?(满分100分,得分都是整数)例题12大小盒子共装球99个,每个大盒装12个,小盒装5个,恰好装完,盒子个数大于10,问:大小盒子各多少个?参考答案例题1 分析 这是一道方案设计优化问题,要将货物运至北京,车厢的总装载重量必须大于或等于货物的总量,由此可列不等式。

第八章 一元一次不等式单元测试(含答案)

第八章 一元一次不等式 单元测试一、选择题:1. (2011上海)如果a >b ,c <0,那么下列不等式成立的是( ).(A) a +c >b +c ; (B) c -a >c -b ; (C) ac >bc ; (D)a b c c> . 2. (2011湖南湘潭市)不等式组⎩⎨⎧≤>21x x 的解集在数轴上表示为3. (2011江苏淮安)不等式322x x +<的解集是( ) A.x <-2 B. x <-1 C. x <0 D. x >24. (2011山东临沂)不等式组⎪⎪⎩⎪⎪⎨⎧≥+01-3x 3-x 12x的解集是( )A .x≥8B .3<x≤8C .0<x≤2D .无解5 (2011山东烟台)不等式4-3x ≥2x -6的非负整数解有( ) A.1 个 B. 2 个 C. 3个 D. 4个6. (2011山东日照)若不等式2x <4的解都能使关于x 的一次不等式(a -1)x <a +5成立,则a 的取值范围是( )(A )1<a ≤7 (B )a ≤7 (C ) a <1或a ≥7 (D )a =7 7. (2011山东威海)如果不等式213(1),.x x x m ->-⎧⎨<⎩的解集是2x <,那么m 的取值范围是( ) A .m =2B .m >2C .m <2D .m ≥28. (2011贵州安顺,5,3分)若不等式组⎩⎨⎧≥-≥-0035m x x 有实数解,则实数m 的取值范围是( )A .m ≤35B .m <35C .m >35D .m ≥35 二、填空题:B21 0 C2 1 0 D21 0 A2 1 09、“x 的2倍与5的差小于0”用不等式表示为 . 10. (2011江苏泰州)不等式2x+1>﹣5的解集是 .11、幼儿园把新购进的一批玩具分给小朋友.若每人3件,那么还剩余 59件;若每人5件,那么最后一个小朋友分到玩具,但不足4件,这批玩具共有 件.12. (2011湖北黄冈)若关于x ,y 的二元一次方程组3133x y ax y +=+⎧⎨+=⎩的解满足2x y +<,则a 的取值范围为______.13. (2011四川眉山)关于x 的不等式3x-a≤0,只有两个正整数解,则a 的取值范围是____ 三、解答题:14. (2011浙江省舟山)解不等式组:⎩⎨⎧≤-+>+1)1(2,13x x x 并把它的解在数轴上表示出来.15. (2011江苏扬州)解不等式组 )2( 132121)1( 313⎪⎩⎪⎨⎧++≤+-<+xx x x ,并写出它的所有整数解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次不等式组A卷:基础题一、选择题1.下列不等式组中,是一元一次不等式组的是()A.2,3 xx>⎧⎨<-⎩B.10,20xy+>⎧⎨-<⎩C.320,(2)(3)0xx x->⎧⎨-+>⎩D.320,11xxx->⎧⎪⎨+>⎪⎩2.下列说法正确的是()A.不等式组3,5xx>⎧⎨>⎩的解集是5〈x〈3 B.2,3xx>-⎧⎨<-⎩的解集是-3<x<-2C.2,2xx≥⎧⎨≤⎩的解集是x=2 D.3,3xx<-⎧⎨>-⎩的解集是x≠33.不等式组2,3482xx x⎧>-⎪⎨⎪-≤-⎩的最小整数解为( )A.-1 B.0 C.1 D.44.在平面直角坐标系中,点P(2x-6,x-5)在第四象限,则x的取值范围是()A.3〈x〈5 B.-3<x〈5 C.-5<x<3 D.-5〈x<-35.不等式组20,30xx->⎧⎨-<⎩的解集是()A.x〉2 B.x〈3 C.2〈x<3 D.无解二、填空题6.若不等式组2,xx m<⎧⎨>⎩有解,则m的取值范围是______.7.已知三角形三边的长分别为2,3和a,则a的取值范围是_____.8.将一筐橘子分给若干个儿童,如果每人分4个橘子,则剩下9个橘子;•如果每人分6个橘子,则最后一个儿童分得的橘子数将少于3个,由以上可推出,共有_____个儿童,分_____个橘子.9.若不等式组2,20x ab x->⎧⎨->⎩的解集是-1〈x<1,则(a+b)2006=______.三、解答题10.解不等式组2(2)4,(1) 10(2) 32x xx x-≤-⎧⎪+⎨-<⎪⎩11.若不等式组1,21x mx m<+⎧⎨>-⎩无解,求m的取值范围.12.为节约用电,某学校于本学期初制定了详细的用电计划.•如果实际每天比计划多用2度电,那么本学期用电量将会超过2530度;如果实际每天比计划节约了2度电,那么本学期用电量将会不超过2200度.若本学期的在校时间按110天计算,那么学校每天计划用电量在什么范围内?B卷:提高题一、七彩题1.(一题多变题)如果关于x的不等式(a-1)x〈a+5和2x<4的解集相同,则a•的值为______.(1)一变:如果(1)5,24a x ax-<+⎧⎨<⎩的解集是x〈2,则a的取值范围是_____;(2)二变:如果24,1,51xxaxa⎧⎪<⎪≥⎨⎪+⎪<-⎩的解集是1≤x〈2,则a的取值范围是____二、知识交叉题2.(科内交叉题)在关于x1,x2,x3的方程组121232133,,x x ax x ax x a+=⎧⎪+=⎨⎪+=⎩中,已知a1>a2>a3,请将x1,x2,x3按从大到小的顺序排列起来.3.(科外交叉题)设“○”、“□”、“△"分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图1-6-1所示,那么每个“○”、“□”、 “△”这样的物体,按质量从小到大的顺序排列为()A.○□△B.○△□ C.□○△D.△□○三、实际应用题4.某宾馆底层客房比二楼少5间,某旅游团有48人,若全安排在底层,每间4人,则房间不够;若每间5人,则有房间没有住满5人;若全安排在二楼,每间住3人,房间不够;每间住4人,则有房间没有住满4人,求该宾馆底层有客房多少间?四、经典中考题5.(2007,厦门,3分)小宝和爸爸,妈妈三人在操场上玩跷跷板,爸爸体重为69•千克,坐在跷跷板的一端,体重只有妈妈一半的小宝和妈妈一同坐在跷跷板的另一端,•这时爸爸的一端仍然着地.后来小宝借来一副质量为6千克的哑铃,•加在他和妈妈坐的一端,结果爸爸被跷起,那么小宝的体重可能是( )A.23。

2千克B.23千克C.21.1千克D.19.9千克6.(2008,天津,3分)不等式组322(1),841x xx x+>-⎧⎨+>-⎩的解集为______.7.(2007,青岛,8分),某饮料厂开发了A,B两种新型饮料,主要原料均为甲和乙,•每瓶饮料中甲,乙的含量如下表所示,现用甲原料和乙原料各2800克进行试生产,•计划生产A,B两种饮料共100瓶.设生产A种饮料x瓶,解答下列问题.(1)有几种符合题意的生产方案?写出解答过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2。

80元,•这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低.C卷:课标新型题1.(结论开放题)有甲,乙,丙三个人在一起讨论一个一元一次不等式组,•他们各说出该不等式组的一个性质.甲:它的所有解为非负数.乙:其中一个不等式的解集为x≤8.丙:其中一个不等式在解的过程中需改变不等号的方向.请试着写出符合上述条件的一个不等式组,并解答.2.(阅读理解题)先阅读不等式x2+5x-6<0的解题过程,然后完成练习.解:因为x2+5x-6<0,所以(x-1)(x+6)〈0.因为两式相乘,异号得负.所以10,60xx->⎧⎨+<⎩或10,60xx-<⎧⎨+>⎩即1,6xx>⎧⎨<-⎩(舍去)或1,6xx<⎧⎨>-⎩所以不等式x2+5x-6〈0的解集为-6<x〈1.练习:利用上面的信息解不等式228xx-+〈0.3.(方案设计题)为了保护环境,某企业决定购买10台污水处理设备,现有A,B•两种型号的设备,其中每台的价格,月处理污水量如下表:经预算,•该企业购买设备的资金不高于105•万元,•若企业每月产生的污水量为2040t,为了节约资金,请你为企业设计购买方案.3。

把若干个糖果分给几只猴子,若每只猴子分3个,则余8个;若每只猴子分5个,•则最后一个猴子分得的糖果数不足3个,问共有多少只猴子,多少个糖果?参考答案A卷一、1.A 点拨:B中含有两个未知数x,y.C中x的最高次数是2,D中分母中含有未知数.2.C 点拨:A中不等式组的解集是x>5,B,D中不等式组的解集是空集.3.B 点拨:不等式组的解集为-23〈x≤4,所以最小整数解为0.4.A 点拨:由题意得260,50,xx->⎧⎨-<⎩,解得3〈x<5.5.C二、6.m〈27.1<a〈5 点拨:由题意知3-2〈a<3+2,即1〈a<5.本题考查三角形三边之间的关系.8.7;37 点拨:设有x个儿童,则橘子的个数为4x+9,依题意得0<4x+9-6(x-1)<3,解之得6〈x<7。

5,因为x为正整数,所以x=7,所以4x+9=4×7+9=37(个).9.1三、10.解:不等式(1)的解集为x≤0.不等式(2)的解集为x〉-3.所以原不等式组的解集为-3〈x≤0.点拨:先求每一个不等式的解集,然后找出它们的公共部分.11.错解:由不等式组无解可知2m-1〉m+1,所以m〉2.正确解法:由题意得2m-1≥m+1时,因为原不等式组无解,所以m≥2.点拨:此题错误原因在于忽略了m+1与2m-1可以相等,即类似,x ax a>⎧⎨<⎩的形式也是无解的.12.解:设学校每天计划用电量为x度,依题意,得110(2)2530,110(2)2200.xx+>⎧⎨-≤⎩,解得21<x≤22,•即学校每天计划用电量在21度(不包括21度)到22度(包括22度)范围内.B卷一、1.7 (1)1〈a≤7 (2)1〈a≤7点拨:由题意得(a-1)x〈a+5的解集为x〈2,所以52110.aaa+⎧=⎪-⎨⎪->⎩,所以a=7.(1)由题意得a-1>0,即a〉1时,512axax+⎧<⎪-⎨⎪<⎩的解集为x〈2.所以51aa+-≥2,所以a≤7,所以1<a≤7.(2)由一变可知51aa+-≥2,当a-1>0,即a>1时,1<a≤7;当a-1<0,即a〈1时,a+5≤2(a-1),所以a≥7,此时a的值不存在.综上所述,1〈a≤7.去分母时,要根据分母是正是负两种情况进行讨论.二、2.解:将方程组的三式相加得2(x1+x2+x3)=a1+a2+a3.所以x1+x2+x3=12(a1+a2+a3),因为x1+x2=a1,所以a1+x3=12(a1+a2+a3),所以x3=12(a2+a3-a1).同理x1=12(a1+a3-a2),x2=12(a1+a2-a3).因为a1〉a2〉a3.所以x1-x2=12(a1+a3-a2)-12(a1+a2-a3)=a3-a2〈0,所以x1<x2,同理x1>x3,所以x3<x1〈x2.3.D 点拨:由第一个天平知○>□,由第二个天平知□=2△,即□〉△,所以○>□〉△.本题主要考查了数形结合的数学思想和观察识别图形的能力.三、4.解:设该宾馆底层有客房x间,则二楼有客房(x+5)间,根据题意得4848,5448485,43xx⎧<<⎪⎪⎨⎪<+<⎪⎩,•解得485<x〈11,因为x为整数,所以x=10.答:宾馆底层有客房10间.四、5.C 点拨:设小宝的体重为x千克,根据题意,得269,2669. x xx x+<⎧⎨++>⎩解这个不等式组得21<•x<23,故选C.6.-4〈x〈3 点拨:由①得:x〉-4;由②得:x<3,分别解完不等式后可以利用数轴或口诀“比大的小,比小的大,中间找”得到最终结果.此题考查利用数形结合解不等式组,是对学生基本运算方法、运算法则、基本性质的动用能力的考查.7.解:(1)设生产A种饮料x瓶,根据题意,得2030(100)2800, 4020(100)2800.x xx x+-≤⎧⎨+-≤⎩解这个不等式组,得20≤x≤40,因为其中正整数解共有21个, 所以符合题意的生产方案有21种.(2)根据题意,得y=2。

6x+2.8(100-x),整理,得y=-0.2x+280.因为k=-0.2<0,所以y随x的增大而减小, 所以当x=40时成本总额最低.C卷1.解:可以写出不同的不等式组,如3325(1), 221(2). x xx x-≤+⎧⎨-<-⎩,不等式(1)的解集为x≤8,•不等式(2)的解集为x〉1,所以原不等式组的解集为1<x≤8.点拨:此题为结论开放性试题,答案不唯一,只要符合题意即可.2.解:因为两式相除,异号得负,由228xx-+<0,得220,80xx->⎧⎨+<⎩或220,80xx-<⎧⎨+>⎩,即1,8xx>⎧⎨<-⎩(舍去)或1,8xx<⎧⎨>-⎩所以不等式228xx-+〈0的解集是-8〈x<1.点拨:认真阅读所给材料,从中获取相关信息,由两式相乘,异号得负,•得到两式相除,异号得负,由此解不等式228xx-+<0.3.解:设购买污水处理设备A型号x台,则购买B型号(10-x)台,根据题意,得1210(10)105,240200(10)2040.x xx x+-≤⎧⎨+-≥⎩,解这个不等式组,得1≤x≤2。

相关文档
最新文档